hewlett hp packard

MEASUREMENT/COMPUTATION

PRODUCT EXCELLENCE, LASTING VALUE

Assurance of lasting value accompanies every Hewlett Packard product. HewlettPackard intends to continue the longstanding practice of offering excellent products, supported by a wide variety of useful services both before and after the sale. HP design technology

Hewlett-Packard's responsibility begins with product designs which apply advanced technologies, often pioneered al HP ibrough extensive ongoing research. Many of today's commonly-accepted measurement standards and practices began with the design of innovative $H P^{P}$ products.

Advanced technology is not the only design consideration, however. An HP product's "manufacturability" and les. pecially inportant after the purchase of a product) its "serviceability" also contribute to its lasting value.
HP manufacturing
HP product designers understand the practical aspects of product manufacture. This emphasis on modern manufacturing technology, coupled with superior workmanship and high productivity, ultimately delivers high-value HP products at competitive prices. In products at competitive prices. In addition, HP manufacturing facilities contribute to the ultimate serviceability of the products purchased by furnishing clear and well-written operating and service instructions.

Today, Hewlett-Packard has more than 30 manufacturing facilities located in California, Colorado, İdaho, New Jersey, Oregon, Pennsylvania and Massachusetts in the U.S.-as well as in Scotland, the German Federal Republic, France, Japan, Singapore, Malaysia and Brazil.

HP product serviceability

Serviceability can mean many things. In the broadest sense, it means getting full utilization and value from a purchase. and this is one of HP's principal objectives in serving customers.

In other ways. it can mean having a product that is easy to understand and operate-as well as one that works under a variety of adverse conditions and can be depended upon to perform as expected for years to come. As a practical matter. it also means having a product backed by a reputable firm so that subsequent maintenance, repairs and parts are readily available. Hewleta-Packard's worldwide service organization helps provide full and continuing value from an HP product.

HP SALES AND SERVICE: NEARBY... AND WORLDWIDE

Product excellence and value are only part of the total HP story. Equally important is the ready availability of local sales and service support.

To be responsive to customer needs. Hewlett-Packard has 172 sales/service offices in 65 countries. These offices are staffed by $3,100 \mathrm{HP}$ sales and service engineers and electronics technicians, and by many highly-qualified specialists in HP's sales representative organizations. This means that a significantly large number of people are specifically and directly available to HP customers, worldwide for pre- and post-sale rech. nical support.

To locate the HP Sales and Service Office rearest you, please see the listing. inside the back cover of this catalog.

HP-IB Identifies products having the Hewlett-Packard Interface Bus (HP-IB) capability. HP-IB is our implementation of the IEEE Standard 488 and the identical ANSI Standard MCI.1, "Digital interface for programmable instrumentation."

For the complete story, see pages 20-29.
Identifies newly introduced products or capabilities. New products are also indicated by bold-face listings in the Model Number Index.
ALPHABETICAL INDEX 1
MODEL NUMBER INDEX 10
PRODUCTS:
Amplifiers 30
Analog Voltmeters 33
Cabinets \& Measurement Aceessories 508
Calculators, Personal 566
Calibrators 352
Chemical Analysis. Instruments for 610
Civil Engineering/Surveying 616
Component Test Equipment 75
Computation: Computers. Systems/
Peripherals 572
CRT Displays 182
DC Power Supplies 200
Digital Circuit Testers 100
Digitad Voltmeters 44
Electronic Counters 259
Frequency Synthesizers 343
Frequency \& Time Standards 292
Hewlett-Packard Interlace Bus (HP-IB) 20
Logic Analyzers 111
Medical Instrumentation 608
Microwave Test Equipment 410
Network Analyzers 430
Oscillaters \& Function Generators 333
Oscilloscopes 128
Personal Calculators 566
Physical \& Optical Measurements. 601
Power \& Noise Figure Meters 402
Power Supplies 200
Pulse \& Word Generators 304
Recorders \& Printers 226
Signall Analyzers 463
Signal Generators 356
Sweep Oscillators. 381
Solid State Components \& Circuits 012
Telecommunications Test Equipment 526
Training/Video Tapes 617
Transceiver Test Equipment 524
X-Ray Systens, Scientific \& Industrial 607
After-Sale Service 623
Application Notes-a setected listing 621
Information Request Card back of catalog
Ordering Information 624
Sales/Service Oiffices inside back cover
Warranty 624

CATALOG CONTENT

This catalog is designed primarily to serve the needs of engineers, scientists and technicians who are concerned or work with electrical/electronic phenomena. It deals with the broad area of memsurement (plus generation and recording). as well as related computation.

Hewlett-Packard has many additional capabilities not detailed in this catalog, which are instead summarized on the last few pages. In the event your work is related to any of these other HP capabilities, we will be pleased tos send you specific product information on request.
A
AC
Calibrator 354-355
Current Probe 517
Digital Voltmeter 44-70
Divider Probe 516
Probes 516
RF 42
True RMS $41,52,53,58,70$
Voltmeters $34-43,46,52,58,70$
Accessories
380. 514
Cables/Connectors
177
Cameras
518
Carrying Cases
Connectors. Adapters 380. 515
Modular Power Supplies 223
Oscilloscope 171
Signal Generators 380
Spectrum Analyzer 501-504
Volimeter 65. 516
AC/DC Meter Calibrator 352. 517
Active Probes 174,449
Adapters
$50-75 \Omega$ 380, 445, 449, 501.515
Cabies/Conneclors 380. 514
Coaxial and Waveguide 423
Four Channel 330. 331
Sloned Line Sweep 415
Air Line Extensions 423
Alphanumeric LED Displays 614
Alphanumeric Printer 256
AM/FM Signal Generators 358, 362, 365, 370
Amplifiers
AC Calibrator/High Voltage 354-355
AC Camier Preamplifier 247
Broadband Preamp 31. 286
Digitally Programmable 597
Frequency Standard Distribution 302
General Purpose 30
IF 558
Loganthmic 43
Plug-Ins for Oscillographic Recorders ... 247-249, 251-253
Power 32
Power Supply 30. 219
RF/Microwave 31, 32
Analog-to-Digital Converter $28,44,600$
Analog Voltmeters General Information 33
Analytical Instrumentation 610
Automatic Calibration DMM 58
Analyzers
Automatic Network $435,446,458$
Automatic Spectnm 475,483
Audio Spectrum $476,492,504,505$
Bus System 25
Correlation 504, 505
Digital Signal 504, 505
Distortion 467-469, 504, 505
Fourier 504, 505
Frequency Stability 502, 504. 505
Gain-Phase $438,439,504,505$
Logic 111-127
Logic State, 16/32-bit Parallel 124
Low Frequency Spectrum 476. 492, 504, 505
Mechanical Impedance 504, 505
Network 430-459, 504, 505
Noise 504. 505
Power Spectrum 504, 505
Spectrum 165, 473-506
Signature 108
Telephone Line 530, 534
Transfer Funciion 504. 505
Vibration 504. 505
Wave 460. 472, 504. 505
Application Terminals 592
APC-7 Series Adapters 411, 515
Atomic Clock/Frequency Siandard 294-299
Attenuators
75 ohm General Purpose 558
Coaxial 411
Coaxial, Microwave, OEM 414
Decade 99
Resistive 99
Caaxial Step 412
Waveguide 414
Automatic Capacitance Bridge 75. 88-92
Automated Measurement \& Conirol Syst. 597
Automatic Microwave Counters 288-291
Automated Test Systems 435.446, 458, 475, 483, 597
Autonatic Data Acquisition System 73
Automatic Data Logger 72
Automatic Neiwork Analyzer ... 430, 435, 446. 458
Automatic Synthesizer 350-351
Automatic Spectrum Analyzer 475, 483
Automatic Transceiver Test System 524
Avionics Signal Generator 368
B
Balanced 2/4-wire Audio Channel Selector 565
Balancing Transformers 517
Bandpass Filters 380
Battery Operated
Counters 278-276. 286
DVM 47-51, 56, 68-70, 283
Hand-Held, Personal Calculators 566-571
Microwave Power Meter 405, 408
Multifunction Meter 47-51, 58-71
Voltmeter 47-51, 58-71
Bridge, Directional 426. 444, 449
Broadband Detectors 418
Broadband Sampling Voltmeter 42, 54
C
Cables/Connectors 514
Cabinet X-Ray Systems 607
Cabinets 508-523
Cabinets, System $1 I$ 508-513
Cable Assemblies 514-516
Calculators, Personal
Arithmetic 570
Business 570
Financial 570. 571
Printing 568-571
Programmable 567
Scientific 567-570
Calibraturs
AC 352, 353, 354, 355
Power Meter Calibrator for 432 Series Power Meters 409
Range Calibrator for 435A Power Meter 405
Peak Power 409
Cameras
Adapters 178
Oscilloscope 177
Oscilloscope Camera Adapter Table 179
Capacitance Bridges; Meters 75-91
Capacitive Voltage Divider 516
Capacitors. Decade 99
Card Readers 593
Card Reader for 1600A Logic State Analyzer 126
Carriage, Slotted Section 415
Carrier Preamplifiers 251
Carrier Testing 544
Cases, Combining 518
Cavity Frequency Meters 419
Cesium Beam Frequency Standard 294
Chromatographic Data Systems 610
Civil Engineering Products 616
Clips, Logic 104
Clip, IC Test 172
Clip-on. DC Milliammeter 36
Clip-on, AC Current Probe 517
Clock, Atomic 294
Coaxial Instrumentation
Accessories 423, 514
Attenuators $411-414$
Crystal Detectors 418, 419
Directional Bridge 426, 444, 449
Directional Couplers 416
Directional Detectors 417, 557
Dual Directional Coupler 416
Fixed Artenuators 411
Frequency Meters 419
Harmonic Mixer 421
Low-Pass Filters 421, 427
Pad. Attenuators 411
Power Splitter 426, 444 450
Stiding Load 420
Slotted Line 415
Slotted Section 415
Step Attenuators 412
Swept Slotted Line Systems 415
Switch 422
Termination 420
Thermistor Mount 409
Thermocouple Mount 406
Waveguide Adapters 423
Comb Generator 501
Combining Cases 518
Communication Test Equipment 526-565
Communications, Data 526
Communications Test Set 534
Comparator, Logic 105
Components, Microwave, OEM 414, 418, 422
Component Oscillators 301
Component Test 75
Auxiliary Capacitor 99
Digital IC Tester 94
Digital IC Test System 96
Digital IC Tester Lnterface Kit 97
General Information 75
Computers \& Peripherals 572-600
Application Terminals 592
Clock/Timer/Pacer Interface 585
Desktop 580-587
Disc Drivers 595
Display Terminals. CRT 588-591
Extemal Tape Memory 584
Plotter 582
Serial Interface 585
Computer-based Network Analyzer 435, 446, 458
Computer-based Spectrum Analyzer 475, 483
Computer (Desk Top)
Controlled Instrument Systems 597
Computing Controler 435
Compuling Controller 475
Computing Counter System 267
Connector Adapters 423. 514
Connectors. Microwave Precision 423
Constant Current Sources 218
Controller, Vibration 504
Controllers for HP-IB 28
Converters
A-to-D 28, 44-71, 600
D-to-A 28, 212. 285, 600
DC to DC Converters 222
HP-IB Programmable 26, 28
Modular DC to DC Converters 222
Series-to-Parallel Conventers 127
Correlator 504-506
Counters, Electronic 259-291
Auto. Freq. Conv. 262-265
Auto. Ranging 278-286
Compuing 267
CounterTinser 262-265. 270, 282
Counter/Tracking Generator 494
Delay Generator 276
Digital Mulimeler/Counter 276. 283
DVM 270. 272
Heterodyne Converter Plug-Jns 265. 268-269
Low Cosi 287
Microwave 266. 268, 288-290
Plug-In Adapters 265
Portable, Battery Operated 278, 286
Programmable .. 262, 270, 276-278, 285, 288-290
Reciprocal 262, 267, 277. 284
Time Interval 262, 267, 270, 277, 281, 284
Time Incerval Probes 275
Transfer Oscillator Plug-1n 267
Universal 270, 277. 281. 284
Video Amplifier Plug-In 269
Couplers, Directional (C'sax and Waveguide) 416, 417
CRT Teminits 588
Crystal Delectors 418. 419
Crystal Oscillators 300
Current
Divider 516
Probe 517
Sources 218,353
Curtent Tracer, Logic 103
DD/A Converter$212,285.600$
Data
Acquisition Systems 72. 73. 504
Communications 526. 527
Error Analyzur 528
Generator 326, 332, 562
Logger 72
Normalizer 443, 459
Transmission Tesi Set 526-531, 528, 538
Voice Channe! Test Sel 534-540
Deskiop Compulers 580-583. 586
DC
Amplifier 30. 219
Amplifier Plug-in Module 228
Attenuator Plug-In Module 229
Bridge Amplifier 247
Coupler Plug-In Module 228
Differentíal Volemeter 228
Digital Volimeter 46-51, 54-70
Milliammeter 36
Nullmeter 35
Offset Plug-In Module 229
Preamplifier Plug-In Module 229
Standard 353
Voltage Divider 516
Volmelers 33. 46
DC-to-DC Converters 222
DC Power Supplies 200
Amplifier/Power Supply 30, 219
Condensed Lisling 202
Constant Current Sources 218
Digitally Controlled $212,213,224,600$
Dual Tracking 214
General Information 200
General Purpose: 25 - 200 W Ourpul 206
General Purpose: 100 - 2000 W Outpul 208
General Purpose: 300 - 11.000 W 202
Output 210
General Purpose: $0-320 \mathrm{~V}$ 208
High Voltage 215
HP-IB Programmable 212, 213
Low Cost Lab 204, 205
Microprocessor 204, 222
Modular, DC-to-DC Converters 222
Modular, Single Output, Series Regulated 222
Modular, Dual Output, Series Regulated 222
Modular, $200-600 \mathrm{~W}$, Switching Regulated 222
Modular, 110 W Switching Regulated 222
Modular. Triple-Outpu Switching 222
Options 220
Precision Voltage Sources 216, 224
Programmable 352
Specifications Definitions 201
Decade Capacitors and Attenuators 99
Delay Generator/Frequency Divider 276, 308
Delay and Rate Plug-ins 322
Deskiop Computers and Peripherals 572
8 -bit Parallel Interface 585
16-bit Duplex Interface 585.597
BCD Inpui Interface 585
Binary Synchronous ROM 585
Cand Reader 584, 593
Data Communications Interface and ROM 585
Character Impact Printer 587
Desktop Computers 58()-583
Digitizer 584
Flexible Disk Drive 587
General Interface 585
HP-IB Interface 597
High-Speed Tape Reader Subsystem 584
Hopper Card Reader 584
1/O Expander 584. 597
Interactive ROM 585
Line Printer Subsystem 585
Mass Memory Subsystem 581
Paper Tape Reader 584
Serial Interface 585
RS-232-C Serial Interface 585
Tape Cassette 584
Tape Punch Subsystem 584
Thermal Printer 256, 585
X-Y Plotter 582, 585
Detectors
Coaxial, Microwave, OEM 418
Crystal, Coaxial and Waveguide 418,419
Directioual 417, 557
Error 562
Sloted Line 415
Digita
AC Volimeters 37-42, 47-71
Analyzer. Signature 108
Capacilance Meter 75-93
Circuit Test 100. 597
Comparator, Logic 105
Current Tracer 103
DC Volmeters 33-38, 47-71
IC Tester, Interface Kit 97
IC Tester 94
IC Test System 96
Interface (HP-IB, IEEE, ANSI) 20
I/O Sub-system 597
LCR Meter 84-86
Microprocessor, Troubleshooting 108
Multimeter 37. $38,47-71,283$
Ohametes 37-38, 47-51, 58-71
Oscillator 336
Power Meters (RF/Microwave) 404
Pressure Gauge 604
Printer 254-256
Programmable Power Supplies 212, 213, 224
Magnetic Tape Units 596
Signal Analyzers 504. 505
Signature Analyzer 108
Specinm Analyzers 504, 505
Storage Unit 443. 459
Tape Systems 596
Tesi Set, Digital Logic 106
Test Systeans 577
Thermometer 605
Vibration Controller 504
Volimeters 47-71
Digital-to-Analog Converters 47-71, 212, 600
Dimensional Measurement 602
Diodes 612
Disc Driver 595
Directional Bridge 426, 444, 449
Directional CouplersCoaxial416. 417
Waveguide 417
Directional Detectors 417, 557
Cartidge Disc Sub-Systems 595
DiSComputers 572
Display Terminal Interface 580
Displays, Cathode-Ray Tube 182-199
Small Screen 186-194
Large Screen 195-199
Distance Meter 616
Distortion Analyzers 505
Distribution Amplifier 302
Divider Probe 516
Double Balanced Mixers 380
Down Converter, 0.5 to 550 kHz 369
Dual Tracking, Power Supply 214
E
EIA Registered Visible Light Emitting Diodes 614
Electronic Counter 259-261
Electronic Total Station 616
Error Measuring Se1 ($1 \mathrm{~Kb} / \mathrm{s} \times 50 \mathrm{Mb} / \mathrm{s}$) 560
Error Rate Measurement 528, 560
Error Rate Measurement System 528, 560
Expander, //O 584, 597
F
Fasi Forran Processor 578
Faxitron ${ }^{\text {M }}$ X-Ray Systems 607
Filters
Bandpass 380.498
Coaxial and Waveguide 421, 427
High Pass 427
Low Pass 421, 427
Low Pass Plug-In Module 229
Four Channel Aclapler 331
Four Channel TTL-CMOS Translator 331
Fourier Analyzer 504
FM Signal Generators 370
Frequency
Counters 257. 259-291, 600
Counter/Track Generator 494
Doubler Probe 378
Doublers 377. 380
Meters. Coaxial and Waveguide 419
Response Test Sel 424, 505
Stability Analyzer 502
Synthesizer, Microwave 364
Frequency Standards
Cesium 294
Distribution Amplifier 302
General Information 292
Quarz 300
Rubidium 297
Standby Power Supplies 303
Frequency Doubler 380
Frequency and Time Standards 292-303
Frequency Selective Volımeter and Tracking Oscillator 532
Frequency Synthesizers 343-349
Function Generators 337-339
Fuseholder, RF 380
G
Gas Chromatographs 610
General Purpose Interface Bus Controllers 20
Generators
Data $326,332,520,560,562$
Noise 403, 505, 507
Partern 561
Pulse 304, 337
Signal 333, 342, 356-379
Spectrum 504
Square Wave 336
Sweep 338, 345-351, 381-401, 557
Tracking 484, 488, 492, 494. 496, 499, 550
Word 304
Graphic Plotrers 226, 227, 236-239
Graphic Plotters Temminal 236, 237, 238
Graphiss Translator 184
Group Delay (Network Analyzer) 440
Group Delay Network Computer 236, 237, 238
Guarded Digital Multimeter 59-62
H
Hammonic Analyzer 504. 505
Harmonic Mixer (Coaxial and Waveguide) 421
Hewlett-Packard Interface
Bus (HP-IB) 20-29, 212, 585. 597
High Gain Preamplifier 251. 286
High Resistance Meter 79
Hi-Rel Numeric Displays 614
HP-IB controlled Channel Selector 565
1
1C Tester, Digital 94, 97
IC Test System. Digital 96
Impatt Diodes 612
Impedance Meter 84-92, 98
Impedance Meter, RF Vector 98
Impedance Probe 449
Impedance Transformers (50-75ת) 501
InpulOutpui Computer Cards 600
Inspection Systems, X-Ray 607
Instrument Accessories 508-523
Insulation Resistance Meter 79
Insulation Tesi 79
Intelligent Terminals 588-591
Interface, Digital (HP-IB. IEEE. ANSI) 20-29
Interface Bus 20
Interface Cover for 1645A 528
Interface Kit, Digitally Controlled Power Supply 225
Interface Kit, Multiprogrammer 599
Integrating DVM 58-65. 272
Intermodulation Analyzer 473, 504, 505
LLaboratory, Strip Chan Recorders 226, 227, 240-246
Laboratory. X-Y Recorders 226. 227, 228-235
Laser Measurement 603
Laser Transducer 602
LCR Meter 84-88
Light Emitting Diodes 614
Limiter 501
Liquid Chromatographs 610
Loads/Termination, Coaxial and Waveguide 420
Logarithmic Preamplifier 252
Logarithmic Voltmeter 43
Logic
Analyzer 111-127
Analyzer, Personality Modules 121
Clip 104
Current Tracer 103
Comparator 105
Lab 110
Probes 101
Pulser 102
State Analyzers 111-127
Tracer, Current 103
Troubleshooting Kits 106
Low Distortion Generator 345
Low Frequency Specirum
Analyzer 476, 492, 504, 505
Low Gain Preamplifier 251, 247. 248
Low Resistance Meter 78
M
Machinery Analyzer 504, 505
Magnetic Tape Recorders. Analog 254
Magnetic Tape Subsystem, Digital 596
Magnetic Tape Units. Digital 596
Mark Reader, Opical 584. 593
Marker Generator 384
Mass Spectrometers 610
Mechanical Impedance Analyzer 504, 505
Medical Applications 608
Medium Gain Preamplifier 251. 247
Memory Systems 595. 596
Melers
AC 36-43, 47-71
Capacitance 84-92
Digital Mulimeter 43-71
Frequency 419
Gain Phase 438, 505
High Capacitance 89. 90
Impedance 82-87. 98
LCR 75-93
Logarithmic Voltmeters 43
Milliammerer, $A C$ 68, 517
Milliammeter, DC 36, 68
Milliohmmeter 70, 78
Multifunction 37, 38, 47-51
Noise Figure 403
Ohmmeter 37-38, 47-51, 58-71
Power (RF/Microwave) 404, 405
Selective VM 553
Standing-Wave-Ratio (SWR) 429
True RMS $41,52,58,62,70$
Microcircuit Interface 597
Microprocessor Troubleshooting 100. 108
Microprocessor Power Supplies 204. 222
Microwave
Catalog 410
Counters 288-291
Link Analyzers 554
Power Measuring Equipment 402-409
Radio Testing 553
Signal Generators 356-380
Synthesizzer 362. 364
Test Equipment 408, 410-429
Milliohmmeter 58. 70, 78
Mixers, Coaxíal and Waveguide 421, 501
Moded Analysis 504, 505
Modular Power Supplies 221
Modulators، PIN 378, 379
Motor Controller. Programmable 600
Multimeter 37. 38,4 - -51
Multiplc Span Plug-In Module 243
Multiplexer 74, 600
Muliprogrammer 597
N
Network Analysis, General Information 430-434
Network Analycus 430-459
Automatic 435
Computer-based $435,446,458$
Nuise.
Analyzer, Acoustic 504. 505
Figure Meter 403
Generator 403, 507
Source (IF) (UHF) (VHF) and Waveguide 403
Normalizer. (Data) 443. 459
Null Detector Plug-In Module 229
Null meter 35
Numeric LED Displays 614
0OEM
Component Oscillators 301
Compulers 572-600
Displays 182
Microwave Attenuators 411-414
Microwave Detectors 418, 419
Microwave Switches 422
Modular Power Supplics 221
Stip Chan Recorders 226. 227, 240-246
Switches, Coaxial, Microwave 422
X-Y Recorders 226, 227, 228-235
Ohmmeters $36,38,47-51,58,62,68,70$
Optical Mark Readers 584. 593
Oproelecironics 614
Oscillators
Audio 334-336
Function Generator 337-341
General Information 333
Low Frequency 334. 337-339
Quartz 300
Quariz Component 301
RF 378
Sweep 557
Telephone Test 537
Test 342
Tracking 470-47!
Wide Range 344
Oscillographic Recorders 226, 247-253
Oscilloscopes 128-181
Accessories 171
Cameras 177
Contrast Fileers 176
100 MHz Third-Channel Trigger View 139
100 MHz Variable Persistance/Storage. Third-Channel Trigger View 139
100 MHz Crystal Delta Time.
Third-Channel Trigger View 139
200 MHz Delta Time Measurements 136
275 MHz Deita Time Measurements 136
275 MHz Delta Time Measurements with Microprocessor 132
General Information 128-131
High Writing Speed Mainframe 152
Large Screed Mainframe 157
Light Shields 176
Low Frequency 166
Militarized $\{31$
Plug-1n, 180 series 153
Rack Mount Slides and Adapters 176
Sampling 160)-163
Specinm Analyzer Plug-In 165. 486,488
Testmobiles 180
Variable Pernistence/Storage 139, 1 168
Viewing Hoods 176
Output Amplifiers (8080 System) 310
Outpu: Plug-ins (1900 System) 322
Outside Plant Telecommunications
Test Equipment 541
p
Pad. Coaxial Attenuator 411
Pattern Generator/Error Detector 561
PCM Test Equipment 559. 564
Peak Power Calibrator 409
Peak Power Meter, Analos 409
Personality Modules 121
Phase Meters 440, 448, 450, 451,505
Phase Modulation, Signal Generator 358, 361
Phase Sensitive Demodulator Preamplifiers 252
Physical \& Optical Measurements 601
PIN Diodes 612
PIN Modulators. Microwave 378. 379
PIN Photodiodes 612
Plomer. Graphic 238. 239. 582
Plotter, X-Y 226, 227, 236-239, 582, 585
Plug-In Counters 262-266, 270-275, 278
Plug-In Oscilloscopes 146- 164
Plug-In Pulse Generator System 322
Point Plotser Plug-In Modules 229
Portable
Calculators 566-57|
Counters 278-286
Desktop Computers 580-583. 586
Instrumentation Tape Recorders 254. 255
Signal Generators 370
Strip Chart Recorders 226, 227. 240-246
Test Set 540
Volimeter 47-51, 68-71
X-Ray Systems 607
Power Meters, RF \& Microwave 404, 408
Power Sensors
405, 409
Power Meter Calibrators
Power Splitter $426,444,450$
Power Supplies 200-22.5
Amplifier/Power Supplies 30, 219
Atomic Clock 303
Condensed Listing 202
Constant Current Sources 218
Digitally Controlled 212, 213, 224. 600
Dual Tracking 214
Frequency Standards 303
Gencral Puppose: 25 - 200 W Output 206
General Purpose: 120 - 2000 W Output 208
General Purpose: 300 - 11,000 W Output 210
General Purpose: $0-320 \mathrm{~V}$ 208
High Voltage 215. 354
HP-IB Programmable 212. 213
Low Cost Lab 204. 205
Microprocessor 204, 222
Modular, DC to DC Converters 222
Modular, Single Output. Series Regulated 222
Modular, Dual Output Series Regulated 222
Modular. 200 - 600 W. Switching 222
Modular, 110 W, Switching 222
Modular, Triple-Output Switching 222
Precision Voltage Sources 216, 224
Programmable 212, 213, 224
Specifications Defïnitions 201
Standby 303
Transistor Bias Supply 456
Power Supply/Amplifier 30. 219
Preamplifiers 31, 251-253, 286
Precision Coaxial Connectors 420, 515
Precision Frequency Source 292
Precision Oscillator 300, 344
Precision Volage Sources 216. 224
Preselector 498
Printers, Instrumentation 356-258
Printer, Line 594
Probes
Accessories $172,176,516$
Active 174, 449
Curtent 36. 103, 175, 517
Digital Multimeter 47-71
Frequency Doubler 378
High Frequency 378, 516
Impedance 449
Logic 101
Miniature 171
Slotted Line 415
Trigeer (TTL) 127
Time Interval 275
Voltage Divider 171, 173
Process Control Interface 597
Processors 578
Programmable Counters 600
Programmable Data Logger 72
Programmable Signal Source 340
Programming, 1900 System 322
Pulse and Word Generators 304
Pulse Generators 276, 304
Pulse Modulator 378
Pulse Pattem Generator Plug-ins (1900 System) 322
Pulse/Word Generator System, $300 \mathrm{MHz} / 1 \mathrm{GHz}$ 308
Pulsers, Logic 102
Q
Q-Meter 93
Quartz Component Oscillator 301
Quarz Frequency Standard 300
Quartz Pressure Gauge 604
Quarz Thermometer 605
18
Random Noise Generator 504, 505
Range Calibrator (for 435A Power Meter) 405
Ratio Meter 62
Readers, Card 33\}, 584, 593
Real Time Application Terminals 592
Receiver Test System 524
Reciprocal Counters 262, 267
Recorders
Oscillographic 226. 247-253
Portable lnstrumentation Tape 226. 254. 255
Strip Char 226. 240-246
X-Y226, 228-235
Reflection/Transmission Test Sets 426, 444, 449. 455-457
Reflectometer Bridge 426
Relay Output Cards 600
Relay Register 600
Repetition Rate Generators (8080 System) 308
Resistance Meter 36, 37, 47-51, 58-71, 77-79
RMS Voltmeter 35-41, 47-51
Rotary Air Line, Coaxial 423
Rotary Joint, Coaxial 423
Rotary Vane Attenuators, Waveguide 414
Rotating Machinery Analysis 504
Rubidium Frequency Standard 294
S
S-Parameter Test Sets 444, 455, 456
Sampling Oscilloscopes 160-163
Sampling \& TDR Accessories 164
Scanner 74. 600
Scanner Plug-In Module 229. 600
Scientific \& Industrial X-Ray Systems 607
Selective Level Measuring Set 546
Selective Level Voltmeters 552
Selective Voltmeter 552
Self-Test Digital Multimeter 58, 62
Sensors, Microwave Power 406
Serial Dala Generator 326
Serial-to-Parallel Converter 127
Shorts, Coaxial and Waveguide 420
Signal Analyzers 165, 460-507
Computer-Based Spectrum Analyzer 475, 483
Digital 504, 505
General Information 460-466
Random Vibration Controller 504
Shock Vibration Controller 504
Sine Vibration Controller 504
Spectrum Analyzers 165, 473-506
Signal Conditioners 251-253
Signal Coupler Preamplifier 252
Signal Generators 356
Accessories 380
Down Conventer, 0.5 to 500 kHz 369
General Information 356
HF, VHF, UHF 370. 372-377
Microwave 358-378
Pulse Modulator 378
Synthesized 343. 358, 362
Signal Sources 343
Signal Source, Programmable 340
Signature Analysis 505
Signature Analyzer, Digital 108
Sinewave Generators 333
Sinewave Oscillator 333
Single Span Plug-In Module 243
Sliding Load (Coaxial and Waveguide) 420
Slotted Lines (Coaxial \& Waveguide) 415
Solid State Displays/Lamps 614
Spectrum Analyzers. General Information 460-466
Spectrum Analyzers 165, 473-506
Spectrum Analyzer Preselector 498
Spectrum Display 506
Square Wave Generators 337
Stability Analyzer, Frequency 502, 504, 505
Standards: Frequency and Time 292-303
Standing Wave Ratio (SWR) Meter 429
Stepping Motor Control 600
Step Attenuators, Coaxial 412
Storage Normatizer 443, 459
Strip Chan Recorder 226, 227. 240-246
Structural Dynamics 504, 505
Surveying Products 616
Sweep Oscillators, General Information 381-383
Sweep Oscillators 337. $344,381-401,557$
Swept Slotted Line 415
Switches 600
Switches, Coaxial, Microwave OEM 422
Swivel Adapter 423
Synchronizer/Counter 371
Synchronous Data Set Interface 526
Synthesizer. Automatic 350-351. 358, 362
Synthesizer, Frequency 343. 358. 362. 364
Synthesized Signal Generators 343. 358, 362
Synthesizers - General Informatiod 343-344 , 356
Synthesizers. Spectrum 504
System Digital Voltmeter 54-64
Systems Accessories 26
T
Tape Casseite, Punch, Reader Sub-systems 584
Tape Degausser 254
Tape Memory, Extemal 584
Tape Recorders, Analog Magnetic 254
Telecommunications Test Equipment 526-565
Access Switch 548
Amplifiers, Error Detector Input 564
Amplifier - IF 553. 558
Amplitude/Delay Distortion Analyzer 530
Attenuator - 75Ω General Purpose 558
Audio Channel Selector: HP-IB Controlled 565
BB Sweeper 558
Balanced 2/4-wire Audio Channel Selector 565
Carrier Testing 544
Controller: Switch 548
Converter, 75Ω Unbal/I $10 \Omega \mathrm{Bal}$ 564
Data Generator 332, 560. 562
Detectors, Error 560, 562
Down Converter 556
Error Measuring Sel ($1 \mathrm{~kb} / \mathrm{s} \times 50 \mathrm{Mb} / \mathrm{s}$) 561
Error Rate Measurements 560, 562
FDM Measurements 544
FDM Sysiem Testing 549
HP-IB Controlled Channel Selector 565
Isojator. PCM Test Equipment 564
Microwave Link Analyzers 554
Microwave Radio Testing 553
Pattern Generator／Eror Detector 561
PCM Testing 559
Selective Level／Meter 550－551
Selective VM 532，533，552
Selective Level Measuring Sel 546
Sweeper．RF 557
Switch：Access 548
Switch Controller 548
Telephone Line Analyzer 530， 534
Transmission Impairment Measuring Set 538
Test Sets 534－535
Upconverter Simulator for 557
Voice Data Testing 526， 527
Telephone Test Oscillators 537
Temperature Plug－In Module 243
Terminal．CRT 588
Terminals，Application 592
Terminations，Coaxial and Waveguide 164， 420
Test Leads 65， 514
Testmobiles，Oscilloscope 180
Test Oscillators 342
Test Sel，Voice Band 526
Test Sets，Digital Logic 106
Test Sets，Transmission $534,536,540$
Thermal Printer 256， 585
Thermistor Mounts，Coaxial and Waveguide 409
Thermocouple Power Meter 404
Thermocouple Power Sensors 406
Thermometer 606
Time Base Extemal Module 230
Time Domain Reflectometers 162
Time Interval
Counters 262，267，270，277，281 284， 600
Time Standard 294－299
TIMS 538
Total Station 616
Touch－Hold Probe 103
Tracer，Current 102
Tracking
Generators ．．．．．484．488．492，494，496，499， 550
Training／Video Tapes 617－620
Transceiver Test System 524
Transfer Function Analyzer 504． 505
Transistors，Siliconbipolar 610
Translator．Four Channel TTL CMOS 331． 330
Transmission Impairment Measuring Sel 538
Transmission Test Sel $534,536,540$
Transistor Bias Supply 456
Transistor Tesi Fixtures 455－457
Transistors 610
Triangle Wave Generator 336， 337
Trigger Countdown 164
True RMS Voltmeter $41,52,53,58,70$
Tuners，Microwave 421
Tuning Varaclors 612
TTL－CMOS Translator，Four－Channel 331， 330
TWT Amplifiers 32
Type N Shom 420
U
Universal Bridge 82－84
Universal Carriage（Slotted Section） 415
Universal Counters 286
Upconverter Simulator
for Microwave Link Analyzer 557
V
Variable Phase Function Generator 345
Veclor Impedance Meter 98
Vector Voltmeter 450
VHF Oscillator 378
Vibration Analyzer 504
Vibration Controller 504
Video Tapes 617－620
Voice Data Testing 526
Voltmeters 33－74
Voltmeter，Vector 450
W
Wave Analyzer 532
Wave Analyzer 504，505， 532
Wave and Distortion
Analyzers 467，468，473，504， 505
Waveform Analyzer，Fouries 504， 505
Waveguide
Attenuators 414
Coaxial Adapters 423． 515
Crystal Detectors 419
Directional Couplers 416， 417
Frequency Meters 419
Harmonic Mixer 42I
Holder 423
Low－Pass Filers 421
Movable Shorts 420
Precision Altenuators 414
Shorting Switch 420
Slide Screw Tuners 421
Sliding Loads 420
Sliding Shori 420
Slotted Section 415
Siand 423
Temminations 420
Themistor Mounts 409
Variable Attenuators 414
Waveguide－Waveguide Adapters 423
Word Generators 304
X
X－Ray Systems．Scientific \＆Industrial 607
X－Y Displays 182－199
X－Y Plotters／Recorders 226－239，585
HP-10 Hand-held Printing Calculator 570
HP-19C Hand-held
Programmable Prinilng Calculator §68
HP-21 Scientific Pockel Calculator 567
21 MX Compulers 351, 578
21 MX E-Series Computers 2109B, 2113 B Processors 578
2I MX K-Series 2108 K Prucessor Board 578
HP-22 Business Management Pocket Cathulator 570
HP. 35/C Sciemific Programmable Pockel Calculator 567
HP-27 Scientific/Plus Pockel Calculator 570
HP-29C Fland-held Programmable Calculator 568
HP-67 Fully Programmable Pocket Calculator 569
DTS-70 Digital Tesi Syntems 577
HP-92 Business Printing Calculator 571
HP-97 Fully Programmable Priniing
Cillculator 569
100
101 HP-1B Data Output and Remote Control 88
105A \& B Quartz Frequency Siandarós 300
123A Oscilloscope Camera 177
140T Specivan Analyzer Mainframe 491
1419 sjsiem Spectrum Analyzers 490
141 T Spectrum Analyzer Mainframe 491
180 series Plug-in Oscilloscopes 146
180C. D \& TR High Writing Specd Oscilluscope Mainframes 152, 428. 486, 488
181A.AR, T \& TR Variable Persistence/
Storage Mainfiames 149. 428. 486. 488
182C \& T Large Screen Oscilluscope Mainfrante $151,428,486.488$
184A High Speed Oscilloscope Mainframe 150
197A Oscilluscope Camera 177
200
200 CD Wide Range Oscillator 333
201 C Audio ()seillator 333
204C Oscilator 82. 333. 335. 540
204D Oscillator 335
209A ()scillator 333. 335
214A Pulse Generutor 320
236A Telephone Test Oscillator 333. 536
250B RX Meter 98
281 serics Comalal-Waveguide Adapters 423
292 series Waveguide-Waveguide \& Adaptors 423
300
312A \& 3I3A Frequency Selective Voltmeter and Tracking Oscillator 470
312D Selective Levelmeter \& Generator 550
331A Distortion Analyzer 468
332A Distortion Analyzer 468
333A Distortion Analyzer 468
334A Distortion Abalyzer 468
339A Distortion Measuring Set 469
340B Noise Figure Meleı 403
342A Noise Figure Meter 403
343A VHF Noise Source 403
345B IF Noise Source 403
347A series Noise Sources 403
349A Naise Source 403
3.50D Allenuator Sel 99
353A Patch Panel 540
355 series Coaxial Srep Attenuators 412
360 series Coaxial Low-pass Filters 421
362A series Waveguide Low-pass Fillers 421
375 scries Waveguide Vimiable Allenuators 414
382 scries Waveguide Precision Variable Atteniators 414
393A Coasial Variable Altenuator 414
394A Coaxial Variable Atrenuator 414
400
400E \& FL AC Volimeters 40
400F \& FI AC Volineter 40
400 GL AC Volumeter 40
4(13B AC Volmeler 39. 540
410 C Voltmeter 38
$415 E$ SWR Mcter 129
419A DC Null Volimeter 35
422A Series Waveguide Crystal Delectors 419
423A/B Coaxial Crystal Delectors 418
424A Series Waveguide Crystal Delectors 419
427A Volumeter 37
428B Clip-on DC Milhammeter 36
432 Series Power Meters 408
435A Power Meler 405
436A Power Meter 404
440A Detector Mount 415
442B Slotted I ine RF Probe 415
44dA Slotted I ine Detector 415
447B Sloticd I ine Detcctor 415
4483 Slolled Line Sweep Adaplers 415
456A Current Probic for volumelers 517
461 A Amplifier 30
465A Amplifier 30
467A Power Amplifier 30
478A Coaxial Thermistor Mount 409
486A Series Waveguide Thermistor Mounts 409
489A TWT Amplifier 32
491 C TWT Anplificr 32
493A TWT Amplifier 32
495A TWT Amplitier 32
500
\$15A Coax Adapler Kil (For 250B) 98
532 Series Waveguide Frequency Meters 419
536A Coaxial Frequency Meter 419
537A Coaxial Frequency Meler 419
545A Logic Prube. 101
546A Logic Pulser 102
547A Current Traces 103
548A Logic Clip 104
600
606B Signal Gencrator 372
608E Signal Generalor 373
612A Signal Generator 374
618C Signal Generator 376
620B Signal Generator 376
626A Signal Generator 377
628A Signal Generalor 377
651B Test Oscillator 333. 342
$652 A$ Test Oscillator 333. 342
653A Tesl Oscillator 333
654A Test Oscillator 333. 342
680 Sinip Charl Recorder 240

745A AC Cadibrator ．．．．．．．．．．．．．．．．．．．．．．．．．352． 354
746A Hi Voltage Amplíficr ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 354
752 Serie，Waveguide Directional Coupler，．．．．．．．．．． 417
774D Conxial Dual Directional Coupler ．．．．．．．．．．．．．．． 416
775D Cuaxial Dual Directional Coupler ．．．．．．．．．．．．．． 416
776D Coaxial Dual Directional Coupler ．．．．．．．．．．．．．． 416
777D Coaxial Dual Directional Coupler ．．．．．．．．．．．．．． 416
778D Coaxial Dual Directional Coupler ．．．．．．．．．．．．．． 416
779D Coaxiat Dual Directional Coupler ．．．．．．．．．．．．．． 416
784B Coaxial Directional Detector ．．．．．．．．．．．．．．．．．．．． 557
786 D Coaxial Directional Detector ．．．．．．．．．．．．．．．．．．．．．． 417
787D Coanal Directional Detcctor ．．．．．．．．．．．．．．．．．．．．． 417
788C C＇uaxial Directional Dercctor ．．．．．．．．．．．．．．．．． 417
789C Coaxial Directional Detector ．．．．．．．．．．．．．．．．．．．．．． 417
796D Coaxial Directional Coupler ．．．．．．．．．．．．．．．．．．．． 416
797D Coaxial Directional Coupler ．．．．．．．．．．．．．．．．．．．．． 416
798C Coaxial Directional Coupler ．．．．．．．．．．．．．．．．．．．．．． 416
800
805C Coaxial Slotted Line ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 415
809C L＇niversal Curringe ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 415
810B weries Wavenuide Slotted Sections ．．．．．．．．．．．．．．． 415
816A Slomed Conxial Section ．．．．．．．．．．．．．．．．．．．．．．．．．．．als
817A \＆B Coaxial Swept Slolted
Line Syদiems ．． 415
k70A series Waveguide Slide Serew Tuners ．．．．．．．．．．42I
895A DC Power Supply ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 208
900
905A Coaxiád Sliding Load ．．．．．．．．．．．．．．．．．．．．．． 420
907A Coaxial Sliding Load ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 420
908A Coaxial 50－Ohm Termination ．．．．．．．．．．．．． 164.420
909A Coaxial Termination ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 420
909A Oplion 012 50－Ohm Termination ．．．．．．．．．．．．．．．． 164
910 series Waveguide Teminatiuns ．．．．．．．．．．．．．．．．．．． 420
911A／C Coaxial Sliding Load ．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 420
914 series Waveguiue Sliding Leads ．．．．．．．．．．．．．．．．．．．． 420
920 sericx Waveguide Moving Shorns ．．．．．．．．．．．．．．．．． 420
923A Wiveguide Sliding Short ．．．．．．．．．．．．．．．．．．．． 420
930A Waveguide Shorting Switch ．．．．．．．．．．．．．．．．．．．．．． 420
932A Wavequide Harmonic Mixer ．．．．．．．．．．．．．．．．．．．．421
934A Coaxial Harmonic Mixer ．．．．．．．．．．．．．．．．．．．．．．．． 421
938A Frequency Doubler Sel ．．．．．．．．．．．．．．．．．．．．．．． 377
940A Frequency Doublcr Sel ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 377
970A Probe Digital Mullımeter ．．．．．．．．．．．．．．．．．．．．．．．．．． 46
1000
HP 1000 Systems ．．． 574
1007A Teumobile ．．． 180
1008A Fesimrobile ．． 180
1051A \＆1052A Combining Cases ．．．．．．．．．．．．．．．．．．．．．． 518
1080 High Performance Liquid Chromatugraph
Systems ．．． 610
I104A／1106B Opi $00118 \mathrm{GH} \neq$ Trigser
Countdown
1104 A／l 108 A 10 GHz Trigeer Cuuntdown ．．．．．．．．．．． 163
I 10SA／I 106B 20 ps Pulse Generator ．．．．．．．．．．．．．．．．．． 164
I $105 \mathrm{~A} / \mathrm{I} 108 \mathrm{~A} 60$ ps Pulse Gencrator ．．．．．．．．．．．．．．．．．．．．． 164
11098 High Pass Filter（Iype N）．．．．．．．．．．．．．．．．．．．．．．．．． 164
1110A Current Probe ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 175
1IIIA AC Curreni Amplifier ．．．．．．．．．．．．．．．．．．．．．．．．．．． 175
11L4A Testmobile．Oscilloscope ．．．．．．．．．．．．．．．．．．．．．．． 180
1117B Testmobile．Oscilloscope ．．．．．．．．．．．．．．．．．．．．．．． 180
II20A 500 MHz Active Probe ．．．．．．．．．．．．．．．．．．．．．．．．． 174
1121A AC Probe ．．． 449
1122A Probe Power Supply ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 174

II24A 100 MHz Aclive Probe ．．．．．．．．．．．．．．．．．．．．．．．． 174
1125A 250 MHz Impedance Converter Probe ．．．．．．． 175
1200A \＆B Dual Channel Oscilloscopes． $100 \mu \mathrm{~V} / \mathrm{div}$ 166
120｜A \＆B Dual Channel Storage
Oscilloscopes， $100 \mu \mathrm{~V} / \mathrm{div}$ 166.474

I205B Dual Channel Oscilloscopes． $5 \mathrm{mV} / \mathrm{div}$166
1220A Dual Channel Oscilloscope．I． MHz 168
122IA Single Channel Oscilloscope． 15 MHz 168
1222A Dual Chumucl．Delay Line Oscilloscope． 15 MHz 168
1223A Dual Channel．Variable Persistence／Storage Oscilloscope， 15 MHz ．．．．．．．．． 168
1230A Logic Trigger 127
1304A 32 cm ．（ 13 in. ）Display 195
1310A 48.3 cm （19 in．）Dixplay 195
1311A 35.6 cm （14io．）Display 195
1317 A 43.2 cm （ 17 in. ）Display 195
1321A 53.3 cm （21 in．）Display 195
1332A Small Scicen Display 188
1333A Small Screen Display 188
1335A Small Screen Display 188
1336A，P Small Screen Display 192
1340A Display Module 188
1350A Graphics Translalor 184
1430 C Sampling Head， 18 GHz for 1811A 160
1600 A $20 \mathrm{MHz}, 16$ Bit Logic Stale Analyzer 124． 526
I600S $20 \mathrm{MHz} .32 / 36$ Bit General Purpose
Logic State Analyzer 124
1602A Logic State Analyzer 188－120
1607A 20 MHz ． 16 Bit Logic State Analyzer 124
1610A General Purpose Logic State Anulyzer 115
16IIA Logic State Analyzer for
Microprocessor Based Systems ［2］
1645A Duta Error Analyzer 526－528
1645S Data Transmission Test Sel 528
1700 series Oscilloscopes 132
1715A $200 \mathrm{MHz} \mathrm{\Delta}$ TIme Oscllloscope 136
1722B 275 MHz Oscilloscope．Della with Microprocessor 132
1725A $275 \mathrm{MHz} \Delta$ Time Osclloscope 136
1740 A 100 MHz Oscilloscope，Trigger View 139
1741A 100 MHz Oscilloscope．Vasiable
Persistence／Storage．
Third－（＇hannel Trigger View 139
1743A $100 \mathrm{MB} \mathrm{\%}$ ：Time Oscilloscope． Third Channel Trigger View 139
180IA Dual Channel Verlical Amplifier． 50 MHz 154
1803A Differential DC Offsel Amplifier 154
1804 Four Channel Verrical Amplifier． 50 MHz 156
1805A Dual Channel Venicul Amplifier． 100 MHz 153
1806A $100 \mu \mathrm{~V}$ Dual Channel Differential Amplifier 154
1809A Four Channel Vertical Amplifier． 100 MHz 156
1810A 1 GHz Dual Channel Sampler 160
1811A 18 GHz Sampler 160
1815B TDRiSampler 162
1817A Sampling Head 12.4 GHz 162
1818A Time Domain Reflectometer， 170 ps is 162
1820C Time Base 158
1821A Time BaserDelay Generator 188
1825A Time Base and Dełay Generalor 159
1900A Pulse Generator Mainframe 322
1905A Rate Generator Plug-in 323
1915A Outpu: Amplifier Plug.in 323
1917A Outpur Amplifier Plug-in 323
1920 Output Amplifier
Plug-in 323
2000
2026 System 573
2240 A Measurement \& Control Processor 576
2640 B Interactive Display Temminal 589
2640C Cyrillic Display Terminal 590
2640N Danish/Norwegian Display Terminal 590
2640S Swedish/Finnish Display Terminal 590
2641 A APL Display Terminal 590
2645A Display Station 589
2645R Arabic Display Station 590
2645S Swedish/Finaish Dlsplay Station 590
2648A Graphiss Terminal 588
2649A Microprogrammable Terminal 589
2802A Digital Thermometer 66, 606
2804A Quartz Thermometer 605
28IIB Quartz Pressure Gauge 604
3000
HP 3000 Series 11 Systems 572. 573
3040A Network Analyzer 433. 435-437
3042A Nelwork Analyzer $433,435-437$
$465,473-475$
3044A Automatic Spectrum Analyzer 465, 473-475
3051A Programmable Dala Logger 72
3052A Automatic Datia
Acquisition System 55. 59. 73
3070A, 3071A Real Time
Applications Terminals 592
3200B VHF Oscillator 378
3310A Function Generator 133. 339
3310B Function Generator 333. 339
3311A Funclion Generalor 333. 3,37
3312A Function Generator 333. 378
3320A Frequancy Synthesizer 336. 348
3320B Frequency Synluesizer 336. 348
3320 C Level Gererator 335. 550
3330B Automatic Synthesizer 336. 350. 435
3335A Frequency Synthesteer 345-347
3350A Laboratory Automation Systens 610
3352A Laboratory Dala System 610
3380A Reporting Integrator 610
3400A RMS Volmeter 41
3403A True RMS Voltmeter 52
3406A Brondband Sampling Volimeler 42
3435A Digital Voltmeter 46, 50
3437A System Digital Voltmeter $46,54,59,73$
3438A S-Funcion DMM; HP-IB 56
3455A Digital Volimeter 46. 58-61, 72. 76
3465A Digital Multimeicr 46. 68
3465B Digital Voltmeter 46.68
3466A/B 41/2 Digit Autoranging DMM 70
3470A Digital Multimeter 66
3476A/B Digital Voltmeter 46.48
3490A Multimeter 62-64
3495a Scanier 55, 58. 72-74
3529A Magnetometer Probe 36
3550日 Communicalions Test Sel 526. 534
3551A Transmission Tesı Sel 527. 534
3552A Transmıssion Tesı Seı 527, 534
3553B Transmission \& Noise Measuring Set 536
3556A Psophometer 536
3570A Tracking Recelver 435
3575A Gain/Phase Meter 433. 438
3580A Spectrum Analyzer 465. 476
3581 A Wave Analyzer 472
3581 C Selective Volmeter 532
3591A Selective Volimeter 552
3594A Sweeping Locil Oscillator Plug-in 552
3710A IF Transmitter (70 MHz IF) 554
3720A Spectrum Display 466, 506
3721 A Correlator 466. 526
3722A Noise Generato 507
3730A Down Converter: RF to IF 556
3743A IF Amplilier 558
3744A BB Sweeper Accessory 558
3745A/B Selective Level Measuring Sel 546
3747A Selective Level Measuring Set 546
3747B Selectlve Level Measuring Set 546
3750A Altenuator: 7is 558
3754A Access Switch 548
3755A Switch Controller 548
3760A Dala Generator 332. 560
3761A Error Detector 560
3762A Data Generator 562
3763A Ertor Detector 562
3770A Amplitude/Delay
Distortion Analyzer 526. 530
3770B Telephone Line Analyzer 536. 530
3777A EP-[8-controlled Channel Selector 565
3780A Pattem Generator/Error Detector 561
3790 A IF Transmilter (140 MHz IF) 554
3805A Distance Meter 616
3810A Total Stalion 616
3820A Electronic Total Station 616
3964A Instrumentaxion Tape Recorder 254
3968A Insinmmentation Гipe Recorder 254
4000
4204A Oscillator 333. 336
4260A Universal Bridge 75.76.82.91
426IA Digital LCR Meler $75,76,84.91$
4262A Digital LCR Meter 80
4265B Universal Bridge 75.76. 83, 91
4270A Autoriatic
Capacilance Bridge $75,76,88,91$
42718 Component Test 1 MHz
Digital LCR Meter 86
4272A 1 MHz Prese1
Capacitance Meler $75,76.89$
4273A 1 kHz Presel C Meter 90
4282 A Digital High
Capacitance Merer 75. 76. 91. 92
4304B Ammeter 34
4328A Milliohmmerer 75. 78
4329A High Resistance Meler 75.79
4332 A LCR Meter 75-77
4333A Distorion Analyzer 467
4342A Q Meter 75. 93
4436A Altenuator 99
4437A Attenuator 99
4440 B Decade Capacitor 99
4800A Vector Impedance Meter 98
4815A Vector Impedance Meter 98
d904A Cable Fault Locator 543
4905A Ultrasonic Leak Detector 543
4910G Open and Split Locator 543
4930A Conductor Fault Locator SA）
4960A／4961A Automatic Pair Identifier 542
4940A Transmission Impairment Measuring Set 526． 538
4942A Transmission Impairment Measuring
Sel 526． 538
4943A Transmisshon Impairment Measuring Set 539
4944A Transmission Impairment Measuring Set 539
5000
5004A Signature Analyzer 108
5011 Logic Troubleshooling Kit 107
s015T Logic Troubleshooling Kít 107
502IA Logic Troubleshooting Kil 106
5022A Logic Troubleshooting Kil 106
5023A Logic Troubleshooling Kit 106
5035A Basic Logic Lab 110
50351 Logic Lab 110
5045 A Digital IC Tester 94
5046A Digital IC Tesi System 96
5050B Digital Recorder 258
5055A Digital Recorder 257
5060－Series Rack Frames and Adapters 518
K02－5060A Standby Power Supply 303
S06IA Cesium Beam Frequency Standard 294
5061A with Option 004 Tube 295
E2I－506］A Flying Clock（Cesium） 295
5062C Cesium Beam Frequency Reference 296
5065A Rubidium Frequency Standard 297
E21－5065A Portable Rubidium Time Standard 297
5085A Standhy Power Supply 303
5087A Distribution Amplifies 302
5150A Themmal Printer 256
5245L Electronic Counter 266
5252A Plug－in for 5245L \＆5345A 268
5253B Frequency Converter Plug－in 268
5254C Frequency Converter Plug－in 268
5255A Frequency Converier Plug－in 268
5256A Frequency Converter Plug－in 268
5257A Transfer Oscillator Plug－in 268
5261A Video Amplifier Plug－in 269
5262A Time Interval Plug－in 268
5267A Time Interval Plug－in 269
5300A Counter Mainframe 278
5300B Counter Muinframe 278
5301 A 10 MHz Counter Module 281
5302 A 50 MHz Universal Counter Module 281
5303 B 500 MHz Counler Module 282
5304A Timer／Counter Module 282
5305B 1300 MHz Counter Module 283
5306A Digital Mullimeter／Counter 283
5307A Frequency Counter Module 284
5308A Timer Counter Module 284
5310A Battery Pack Module 286
5311B Digital－to－Analog Converter 285
5312A ASCII Converter 285
5328A Universal Counter 270－274
5340A Microwave Frequency Counter 288－291
534）A Microwave Frequency Counter 288－291
5342A Mlcrowave Frequency Counter 290
5345A Electronic Counter 463
5353A Channel C：Plug－in for 5345A 265
5354A \＆GHz Frequency Converler 265
5359A Time Synthesizer 276
5360A Compuling Counter 267
5363A Time Interval Probes 275
5370 Time Interval Counter 277
5375A Computing Counter Keyboard 267
5379A Time Interval Plug－in 267
5381A Frequency Counter 287
5382A Frequency Counter 287
5383A Frequency Counter 287
5390A Frequency Stability Analyzer 502
5420A Digltal Signal Analyzer 505
5425A Digital Vibration Tesi Control System 504
5427A Digital Vibration Control System 504
5451 B Fouries Analyzer 504
5451B Opion 350 Vibration Conerol System 504
5501A Laser Transducer 602
5526A I．aser Interferometer 603
5700A Laboratory Gas Chromatographs 610
5840A Reporting Gus Chromalographs 610
5985A GC／Mass Spectrometer 610
5993A GC／Mass Spectrometers 610
6000
6002A Extended Range DC Power Supply 213
6110A－6116A Precision DC Power Supplies 216
6129C－613IC Digitally Controbled Voltage Sources 224
6140A Digital Current Source 224
6177C Precision DC Current Source 218
6181C Precision DC Current Source 218
6186C Precision DC Current Source 218
6200B－6209B DC Power Supplies 205
6211A－6218A Dual Range DC Power Supplies 204
6220B DC Power Supply 206
6224B DC Power Supply 306
6226B DC Power Supply 206
6227B Dual Tracking DC Power Supply 214
6228B Dual Tracking DC Power Supply 214
6236B Triple Outpul DC Power Supply 204
6237B Triple Output DC Power Supply 204
6253A Dual Outpur DC Power Supply 206
6255A Dual OupuI DC Power Supply 206
6259B DC Power Supply 208
6260B DC Power Supply 208
6261B DC Power Supply 208
6263B DC Power Supply 208
6264B DC Power Supply 208
6265B DC Power Supply 208
6268 BC Power Supply 208
6267B DC Power Supply 208
6268 DC Power Supply 208
6269B DC Power Supply 208
627IB DC Power Supply 208
6274B DC Power Supply 208
6281 A DC Power Supply 206
6282 A DC Power Supply 206
6284A DC Power Supply 206
6286A DC Power Supply 206
6289A DC Power Supply 206
6291A DC Power Supply 206
6294A DC Power Supply 206
6296A DC Power Supply 206
6299A DC Power Supply 206
6384A DC Power Supply 205
6427B DC Power Supply 210
6428 BC Dower Supply 210
$6433 B$ DC Power Supply 210
6434B DC Power Supply 210
6438B DC Power Supply 210
6439B DC Power Supply 210
6443B DC Power Supply 210
6448B DC Power Supply 210
6453A DC Power Supply 210
6456B DC Power Supply 210
6459A DC Power Supply 210
$6464 C$ DC Power Supply 210
6466C DC Power Supply 210
6469C DC Power Supply 210
$6472 C$ DC Power Supply 210
$6475 C$ DC Power Supply 210
6477 C DC Power Supply 210
6479 C DC Power Supply 210
6483 C DC Power Supply 210
651.5A High Volage DC Power Supply 215
6516A High Volage DC Power Supply 215
652IA High Voluge DC Power Supply 215
6522A High Volage DC Power Supply 215
6525A High Volage DC. Power Supply 215
6824A DC Power Supply/Amplilies 219
6825A DC Power Supply/Amplifier 219
6826A DC Power Supply/Amplifier 219
6827A DC Power SupplyiAmplificr 219
6920B AC/DC Meter Catibrator 353
6940B Multiprogrammer 597
69418 Multiprogiammer Extender 597
7000
7004B X-Y Recorder 228
7010 B X-Y Recorder 231
7015B X-Y Recorder 231
7034A X-Y Recorder 230
7035B X-Y Recorder 230.537
7040A X-Y Recorder 22
7041A X-Y Recorder 232
7044A X-Y Recorder 234
7045A X-Y Recorder 234
7046A X-Y Recorder 233
7047A X-Y Recorder 234
7100B Sirip Chart Recorder. 2 Pen 242
$7101 B$ Sirip Charl Recorder. I Pen 242
7123A Sirip Charl Recorder 241
7127A Surp Chart Recorder. : Pen 242
7128A Sirip Chan Recorder. 2 Pen 242
7130A Sirip Charl Recorder. 2 Pen 24.4
7131A Sirip Charl Recorder, I Pen 244
7132A Strip Chart Recorder. 2 Pen 245
7133A Strip Chart Recorder. I Pen 245
7143A Sirip Charl Recorder 241
7155B Portable Strip Chan Recorder 246
7202A Graphic Plonter 236
7203A Graphic Plotter 236
7210A Digital Ploner 237
7221A Digilal Plotter 238
7260A Oprical Mark Reader 593
726IA Oplical Mark Reader 593
7402A 2-Channel Oscillographic Recorder 247
7404A 4-Channel Oscillographic Recorder 247
7414A 4-Channel Oscillographic Recorder 250
7418A 6 to 8 Channel Oscillographic Recorder 250
7562A Log Volumeter/Converter 34. 43
7563A Log Voltmeter/Ampliner 34. 43
7702B 2-Chanacl Oscillographic Recorder 250
7906:7920 Disc Drives 595
7970 series Digital Magnetic Tape Subsystem 596
8000
8005B Pulse Generator 321
8006A Pulse Generator 325
s007B Pulse Generaior 319
8008A, see 8082A
8010A Pulse Generaror 321
8011 A Pulse Generator 314
8012B Pulse Genciator 315
8013B Pulse Generator 315
80 ISA Pulve Generdtor 316
Solga Pulse Generator 328
8018A $50 \mathrm{M} \mathrm{bits} / \mathrm{s}$ Serial Dala Generator 326
8080A Mainframe 309
8081A Repetition Rate Generator. 300 MHz 313
8082A Pulse Gcnerator 318
8083 A Output Amplilier. 300 MHz 310
8084 A Word Generator. 300 MHz 311
8091 A Repelition Rate Generator. I GHz 313
8092A Dclay Genemator/Freg. Divider 312
8093A Onlpul Amplitier. 1 GHz 310
8165، Proerammable Signal Source 340
8407A Modulator 379
8404 A Leveling Amplifier 401
8405A Vector Vohmeler 450
8405 A Conib Geneiator 501
8407A Network Analyzer 448
8409A Automatic Network Analyzer 458
8410B Nelwork Analyzer Mainframe 454
8410 S series Nelwork Analyzers 451
Rilla Harmonic Frequency Converter 454
8-12A Phase-Magnitude Display 448, 454
8413A Phase Gain Indicator 454
841 AA Polar Display 448, 454
8418A Auxhtry Power Supply 454
8443A Tracking Generalor 494
8444A Tracking Generalor 496. 499
8444A Option 058 Tracking Generator 484, 488
8 445 B Automalic Preselector 498
8447 series Amplifiers 31. 501
8470A Coaxiad Crystal Detectors 418
8471A Coaxial Crysial Detecior 418
8472A/8 Coavial Cristal Detector 418
8473B/C Coaxial Ciystal Detectors 418
8477A Power Meter Calibrator 409
8478B Cowial Thermistor Mounl 409
8481A/H Power Sensor 406
\$482A/H Power Sensor 406
8483A Power Sensur 406
8484A Power Sensor 406
8491A/B Coaxial Fixed Allenuators 411
8492A Coaxial Fixed Altenuator 411
8493A/B series Coaxial Fixed Allenuators 411
8494A/B/G/H series Coaxial Siep Altenuators 412
8495A/B/D/G/H/K series
Coaxial Step Altenuators 412
8495A/B/D/G/H/K series Coaxial Siep Anentuators 412
8496A/B/G/H series
Coaxial Step Altenuators 412
8501A Storage-Normalizer 443 443
8502A \& B Reflection Transmission Bridges 444
8503A \& B S-Parameter Test Sets 444
8505A Nerwork Analyzer 440
8507A Automatic Network Analyzer 446
8507B Automatic Network Analyzer 446
8542C Automatic Network Analyzer 577
8552A Spectum Analyzer-IF Section 49)
8552B Spectrum Analyzer-lF Section 491
8553B Spectrum Analyzer, Tuning Section 494
8554B Spectrum Analyzer. Tuning Section 496
8555A Spectum Analyzer, Tuning Section 498
8556A Spectrum Anslyzer, Tuning Section 492
8557A Specirum Analyzer 165. 486
8558B Spectrum Analyzer 165, 488
8565A Spectrum Analyzer 484
8568A Spectrum Analyzer 478
8580C Autornatic Specirum Analyzer 577
8581A Automate Spectrum Analyzer 483
8600A Digital Marker 384. 449
8601A Generator/Sweeper 384. 449
8614A Signal Generator 375
8616A Signal Generator 375
8620 system Sweep Oscillators 385. 557
8620C Sweeper Mainframe 386
8621B Multiband Sweeper Draver 396
8640A AM/FM Signal Generator 365
8640B AM/FM Signal Generator 365
8640B Option 004, Avionics Signal Generator 368
8640M Signal Generator 369
8654A Signal Generator 370
8654B Signal Generator 370
8655A Synchronizer/Counser 371
8660A Synthesized Signal Generator 358
8660C Synthesized Signal Generator 358
8671A Microwave Frequency Synthesizer 364
8672A Synthesized Signal Generator 362
8690 B Sweep Oscillator 398
8691B-8695B RF Units (PJN teveled BWO) for 8690 B 399
8691A-8697A RF Units (Grid Leveled BWO) for 8690 B 399
8698B. 8699B Solid State RF Units for 8690B 199
8705A Signal Mulhiplexer for 8690B 401
8706A Coniro) Unit for 8690B $40\}$
8707A RF Unil Holder for 8690B 401
8709A Phase-lock Synchronizer 401
8717B Transistor Bias Supply 456
8721A Coaxial Directional Bridge 449
8731-8735 series PIN Modulators 379
8740A Transmission Test Unit 456
8741A Reflection Test Unit 456
8742A Reflection Test Unil 456
8743A Reflection/Transmission Tesi Unit 455
8745 A S-Parameter Test Sel 455
8746 B S-Parameter Test Sel 456
8747A Waveguide series
ReflectionTransmission Tesı Units 457
8750A Storage-
Normalzer 428, 448, 454, 459, 484. 486, 488, 50
8755B Frequency Response Test Set Plug-in 428
8755S Frequency Response Test Sets 424
8761A \& B Coaxial Switches 422
8801A Low Gain Preamplifier 251
8802A Medium Gain Preamplifier 251
8803A High Gain Preamplifier 25
8805A Carrier Preamplifier 251
8805B Carties Preamplifier 251
8806B Phase Sensitive Demodylaror 252
8807A AC/DC Converser 252
8808A Logarithmic Preamplifier 252
8809A Signal Coupler 252
8820A DC Bank Amplifier 253
8821 A DC Bank Amplifier 253
8900B Peak Power Calibrator 409
8950B Automatic Transceiver Test System S24
9000
9500 series Automatic Test Systems 577
9815A Desklop Computer 580
9825A Deskiop Compuler 580
9830A Deskiop Computer 581
9830B Deskiop Computer 581
9831 A Desktop Computer 351, 582
9845A Desktop Computer 583
9862 A X.Y Ploner 76. 585
9863A Tape Reader 584
9864A Digitizer 584
9865A Tape Casselte 584
9866A Thermal Printer 585
9866 Thermal Printer 585
9868A 1/O Expander 584
9869A Hopper Card Reader 584
9871A Character Impact Printer 73. 587
9872A Four Color Plotter 239, 582
9877A Exteral Tape Memory 584
9878A 1/O Expander 584
9880B Mass Memory Subsystem 581
9881A Line Printer Subsysiem 585
9883A High Speed Tape Reader Subsystem 584
9884A Tape Punch Subsystem 584
9885M/S Flexíble Disk Drive 587
9896A Computation System 586
10000
10001a 10:1 Divider Probe 173
10001B 10:1 Divider Probe 173
10002A 50:1 Divider Probe 173
10002B 50:1 Divider Probe 173
10003A 10:1 Divider Probe 173
10004D 10:1 Divider Probe 173
10005D 10:I Divider Probe 173
10006D 10:I Divider Probe 173
10007B I:I Probe 65, 173, 516
10008B I:I Probe 65.173. 516
10011B BNC Adapter Tip 176
10013a 10:I Divider Probe 173
10014A 10:) Divider Probe 173
10015A 10:1 Divider Probe 173
100 16B 10:1 Divider Probe 173
10017 A Miniasure Divider Probe 173
10018A Miniature Divlder Probe 171
10020A Resistance Divider 173
10021A Miniature I:I Probe 171
10022A Miniature I:I Probe 171
10024A IC Tesi Clip 172
10026d Minlature I:I Probe 171
10027A Minlature 1:] Probe 171
10034A Probe Ground Lead Kit 176
10035A Probe Tip Kit 176
100368 Probe Tip Kit 38. 176
10037A Probe Tip Kil 176
10040A Miniature Divider Probe 171
10041A Mlalalure Divider Probe 171
10042A Miniature Divider Probs 171
10100B 100 ohm Feedthrough Termination 176
10100050 ohm Feedthrough Termination 176
10106A Camera Bezel Adapler 179
10IIOA BNC Male to Dual Banana Plug 515
10111A Shielded Banana Plug to BNC Female 37. 515
10113A Tripie Banama Plug to Dual BNC Female 515
10116A Light Shield (1220A. 1221A. 1222A) 176
10:17A Panel Cover (1220A, 122IA, 1222A) 170
10119A Rack Mount Kil (1230A, 1221A. (222A) 170
1014(1A Viewing Hood (1704A. 1741A, 1734A) 176
10173A RFI Filter and Contrast Screen (1740A. 1741A, 1743A) 176
10176 a Viewing Hoad 176
10178A Mesh Contrasl R FI Filter 176
10233 A Cable, 1645A to 5055A or 5150A 529
10235A Interface Covet for 1645A 526. 529
10250A TTL Trigger Probe 127
10253 A Card Reader for 1600 A Logic State Analyzer 126
10254A Serial-to-Parallel Converier 127. 527
102578 Personality Module for 1611 A 122
10258B Personallty Module for 1611 A 122
1025y, Personally Module for 1611A 123
10260A Personality Module for 161 LA 123
10352B Graflok Back 178
10353A Pack Film Back 178
10358B Camera Carrying Case 179
10360A Camera Bezel Adapter 178
10361A Camera Bezel Adapler 178
10362A Cameri Bezel Adapter 178
10363A Cameta Bezel Adapter 178
10366B Camera Bezel Adapter 178
10367. A Camera Bezel Adapter 178
10369A Camera Bezel Adapler 178
10370A Camera Bezel Adapter 178
10371A Camera Bezel Adapier 178
10372A Camera Bezel Adapter 178
10374A Camera Carring Case 179
10375A Comera Bezel Adapter 178
10376A (mera Bezel Adapter 178
10377A C mera Bezcl Adapter 178
10387A Isierface. Type 303 Modems (1645A) 529
10388A Interface. CCITT V 35 (1645A 529
10389A Interface, Breatout Box (RS-232C) (1645A) 529
10407 B Plug-in Extender (180 system) 176
10475A 3 in . Drawer for 1117 B 180
10476A 8 in. Drawer for 1117 B 180
10491B Rack Mount Adapter, 1700 series. 1600A 176
10511A Spectrum Generator 380
10514A Double Balanced Mixer 360
10525-60012 Tip Kits 101
10555T. \& 10525E Logic Probes 101
$10526 T$ Logic Pulser 102
10528A Logic Clip 104
10529A Logic Comparator 105
10534A Double Balanced Mixer 380
10541 A Reference Boards 105
K01-10541A Preprogrammed Reference Boards 105
10544A/BiC Component Orcillator 301
10844 A Programming Interface Kit (5045A) 97
10851A. 10852A Rack Mount Kits 337 337
11000
11000 A Cable Assembly 514
11001A Cable Assembly 514
11002A Test Leads 514
Il003A Test Leads 514
11004A Line Transformer 334. 336
11005A Line Transformer 334, 336
11021A Probe Accessories 516
11028 A Currem Divider 516
11035A Cabie Assembly 914
11036 A AC Probe for 410 C 38. 516
11040A Probe Accessory 516
$11045 A$ DC Vollage Divider for $410 C$ 516
11046 A Cartying Case 518
11047A Probe Accessory 516
I 1067A Test Lead Kit 37, 51
I 1068A Soft Carrying Case 65
11070 A/B/C Cable Assembly 65
11075A \& 11076A Instrument Cases 37-41. 335. 518
110968 High Frequency Probe 37. 51, 57. 65
11143A BNC to Clip LeidsCable Assembly88. 514
III70A/B/C Cable Assembly 514
11202 A 8-bit Parallel 1/O Interface Card 585
11203 A BCD Input Interface Card 585
11205A Serial Interface Card 585
11285A Data Communication Interface and ROM 585
11297B Binaty Synchronous ROM 505
11298B Interaclive ROM 585
11500 A/B Cable Assembly 514
11501A Cable Assembly 514
11507A Oupu Termination 380
11508A Terminated Oupul Cable 380
11509A Fuseholder 380
11511 A Type N Shorl 420
11512A Type N Short 420
11515 A Waveguide Adaprer 423
11516A Waveguide Adapter 423
11517A Mixer 501
11518A-11520A Waveguide Taper Scetions 501
11524 A APC-7 10 N Adapter 423. 515
11525 A APC-7 10 N Adapter 423. 515
11530A Probe 471
11531A Test Plug-in for 8690B 401
11533A APC-7 to SMA Adapter 423, 515
11533A APC-7 10 SMA Adapier 423.515
11536A Probe Tee for 8405A 450
11540A Waveguide Stand 423
11542A-11548A Waveguide Clamps 423
11549A Power Splitier for 8405A 450
11565 A APC-7 Shorl 420
11566A Air Line Extension 423
11567A Air Line Extension 423
11570A Accessory Kil for \$40.8 A 450
11581A Allenuator Sel 411
11582A Allenuator Sei 41
I1583A Altenuator Set 411
11587A Accessory Kit for 8410 series 457
11588A Swivel Adapter 423
11589A \& 11590A Bias Networks 457
11599A Quick-Connect Adapter for 8745A 457
l)600B Transisior Fixture 455
11602B Transistor Fixture 455
1)604A Universal Extension for 8745A 455
11605 A Flexible Arm for 8743A 455
11606A Rolary Air Line 423
11607A Small Signal Adaplet for 8745A 457
11608A Transisior Fixture 456
11609A Culble Kit for 84 10S 457
11650A Accessory Kil for 8410 S 457
11652A Reflection/Transmission Kit for 8407A 449
11654A Passive Probe Kit for 8407A 449
II655A Impedance Probe for 8407A 449
13658A Malching Resistor for 8407A 449
11661A Frequency Extonsion Module 360
11664 A Deteclor for 8755 428
11665B Modulator for 8755 426
11666A Reflectometer Bridge for 8755 426
11667 A DC- 18 GHz Power Splister 426
11668A 50 MHz High Pass Filter for 8755 427
11675 B Levoling Cable Assembly for 784B 577
11678A Low Pass Filter Kit 427
11679A/B Extension Cables for 875s 429
11683A Range Calibrator 405
11684/5/6/8/9A Low Pass Filters 427
11687A Adapler. 50 to 75Ω 380
11690A Frequency Doubler 380
13691D Coaxial Directional Coupler 416
11692D Coasial Dual Directional Coupler 416
11693A Limitar 501
11694A Matching Transformer. 50-75 Ω 501
11697A. B \& C Bandpass Filters 380
11703A Altenuator (for Calibrating of 8484A) 403
11710B Down Converter 369
11720A Pulse Modulator 378
11850A \& B Power Splituers 444
11851 A RF Cable Kil for 8505A 445
1)852A 50-75 Ω Minimum Loss Pad 445
11853A 50Ω Type N Accessory Kiq 445
$11854 \mathrm{~A} 50 \Omega \mathrm{BNC}$ Accessory Kil 445
11855A 75Ω Type N Accessory Kíl 445
11856A 75 Ω BNC Accessory Kil 445
11857A/B/C Test Port Extension Cables for 8503A \& B 445
11858A Rigid Interconnect Adapter 445
12000
12940A 20 Mbyle Disc Carlridge 595
12970A Magnetic Tape Subsystem 596
12971A Magnetic Tape Subsystem 596
12972A Magnetic Tape Subsystem 596
13000
13394A 50 M byte Disc Pack 595
1351SA Frequency Doubler Probe 378
$\$ 4000$
145I3A Rack Kir (for one unit, $31 / 2^{\prime \prime} \mathrm{H}$) 220
14515A Rack Kit (for one unit, $514_{4}{ }^{4} \mathrm{H}$) 220
1452lA Rack Kit. (for Bench Seríes) 220
14523A Rack Kit (for wo units, 31/2"H) 220
14535A Rack Kit (for two units. $51 / 4^{\prime \prime} \mathrm{H}$) 220
14533B Pockel Programmer 599
14534A Pockel Progrimmer Cable 599
14535A 3nteriace Kit, DCPS-10.21
MX Computer 225
14536A DCPS Chaining Cable 225
14539A Cable Assembly. DCPS 1021 MX Computers 225
14540 Cable Assembly. Mulisprogranmer-10 21 MX Computer 599
14541A Chaining Cable. 6940B or 69 d 1 B to 6941 B 599
14545A Casters 220
14550A Interface Kit. Multiprogrammer-\{o- 21 MX Computer 599
I4551A Mulliprogrammer Service Kı 599
14555A Muluprogrammer Card Conneclor 599
15000
J5263A Card Reader 330
15450A Four-Channel Adapter 330
1545LA Four-Channel TTL-CMOS Translator 330
15507A lsolator 564
15508A Impedance Converter 564
15509A Ampllifier 564
16000
16005 A Probes 78
16006A Probe 78
16007A Test Leads 78
16008 A Resistivity Cell 79
16011 A BNC Connector Test Fixtures 88
16012A. 16013A Test Fixtures 88
16014A Series Loss Test Adapler 93
16019A Test Fixlure 77
16021A Calibralion Connector 87. 89
16023A Tesi Fixture 89
16023A DC Bias Controller 87
16029A Tesi Fixture 83
16032A Test Leads (BNC) 87. 89
16033 A Tesi Leads 89
16034A Tesi Fixtures 87. 89
16035A Test Leads 92
16036A Test Leads 92
16037A Tesı Fixture 92
16038A Test Fiature 89
16039A Test Fixture 87
16045A Tesi Leads 90
16061A Test Fixture 81. 85
16062A Test Lead 81, 85
16063A Test Lead 81, 85
16117A Tesi leead 79
16138A Test Leads 77
16143A Probe Cable 78
16252A Matching Transformer 336
16411A HP-1B Interface Kit 88
16413A HP-IB Interiace Kir 93
16462A Auxillary Capacitor 93
16470A Reference Inductors 93
17000
17005A Chars Advance for 7004B Recorder 229
17012B Poin Ploter 229
17012C Point Plotter 229
17108A Time Base 230
17170A DC Coupler 228
17171A DC Amplifier 228
17172A Time Base 229
17173A Null Detector 229
17174B DC Offset 229
17175A Fil!er 229
17176A Scannes 229
17177A AC/DC Converter DC Preamplifier 229
17178A DC Attenuator 229
17400A High Gain Preamplifier 248
17401A Medium Gain Preamplifier 248
17402A Low Gain Preamplifier 248
17403A AC Carrier Preamplifier 248
17404A DC Bridge Amplifier 248
17500A Multiple Span 242
17501A Multiple Span 242
17502A Temperature Module 243
17503A Single Span 243
17504A Single Span 243
17505A High Sensitivily 243
17506A Single Span $24 \hat{3}$
18000
18641A PRT Tempcrature Probes 67
18642A PRT Temperature Probes 67
18643A PRT Temperature Probes 67
18644A PRT Temperature Probes 67
30000
33300 series Step Altenuators 414
33311B/C Coaxial Switches 422
33320 series Coaxial Step Attenuators 414
33321 series Coaxial Step Altenuators 414
33322 series Coaxial Step Attenuators 414
33330B/C Coaxial Crysial Detectors 418
34110A Carying Case 51.57. 65
34IIIA High Vollage Probe 51, 57. 65
34112A Touch-Hold Probe 51.57. 65
34702A Multimeter 66
34740A Display 66
34750A Display 66
40000
43501B X-Ray System 607
43804 X-Ray Syslem 607
43805 X-Ray System 607
43807 X-Ray System 607
50000
59301 A ASCll-Parallel Converter 26. 76
59303A Digital-to-Analog Converter 26
59304A Numeric Display 26
59306A HP-IB Relay Actuator 26
59307A HP-IB VHF Switch 26
59308A HP-IB Timing Generator 26
59309A HP-1B Digital Clock 26
59310B HP-1B Computer Interface 26
59313A HP-IB Analog-to-Digital Converter 26
59401A Bus System Analyzer 25
59403A HP-1B Common Carrier Interface 26
59405A HP-IB Calcudator Interface 26
59500A Multiprogrammer HP-IB Interface 597
s9501A HP-|B Power Supply Programmer 212
60000
61000 Modular Power Supplies (OEM) 222
61005C DC-to-DC Converter (single output) 222
$61315 \mathrm{D} D \mathrm{DC}$-10-DC Converter (triple output) 222
62000 \& 63000 Modular
Power Supplies (OEM) 222
62005A-62048G Modular Power Supplies 222
22I2A-62215G Dual Output Modular 222
62312D Triple Outpu! Modular Supply 222
62410A Modular Supply Rack Mounting Tray 223
62411A Rack Tray Blank Fronr Panel 223
62412A Rack Tray Blank Rear Panel 223
62413A Rack Tray Cooling Unit (45 cfm) 223
62414A Rack Slice Kit (for standard cabinets) 223
62415A Rack Tray AC Distribution Panel 223
62416A Rack Tray Cooling Unit (160 cfm) 223
62605J-62628J 200-300W Swilching Power Supplies 222
6260SL, 62605M, 62615M 300-600W
Switching Power Supplies 222
63005C llow Switching Power Supply 203
63315D Triple Output Switching
Power Supply 222
69321 B Multiprogrammer D/A Voltage Converier 600
69325A-69328A Amplifier Control Curds 600
69330A Relay Output Citrd 600
69331A Digital Output Cand 600
69332A Open Collector Output Card 600
69335A Stepping Motor Control Card 600
69351 B Voltage Regulator Card 600
69370A D/A Current Converter Card 600
69380A Breadboard Output Card 600
69421A Voltage Monitor Card 600
69430A Isolated Digital Inpur Card 600
69431A Digital Inpui Card 600
69433A Relay Output With Readback Card 600
69434A Event Sense Card 600
69435A Pulse Counter Card 600
69436A Process Inierrupt Card 600
69480A Breadboard Inpui Card 600
69500A Unloaded Resistance Oulpul Card 600
69501A-69513A Power Supply Control Cards 600
69600B Programmable Timer Card 600
69601 Brequency Reference Card 600
80000
85010A Bask Measwrement Program Pac for 850LA/8505A \& 9830A/B 447
85010B Basic Measurement Program Pac fог 8501A/8505A \& 9825A 447
850.10A Applications Pac for 8507A-9830A/B 447
850308 Applications Pac for $8507 \mathrm{~B}-9825 \mathrm{~A}$ 447
85031 A APC-7 Calibration and Verification
Kin for 8507A \& B 447
85032A 50』 Type-N Calibration Kil for 8507A \& B 447
85033A SMA Calibration Kit for 8507A \& B 447
85036A 75 2 Type N Calibration Klt
for 85097A \& B 447
85426A Bias Insertion Nelwork 449
85428B Minimum Loss Pad 449
86200 series Sweeper Plug-ins for 8620 C 394. 557
86222A \& B Sweeper Plug-ins for 8620C 392. 557
86240A/B/C Sweeper Plug-ins for 8620C 350, 557
86290 A \& 86290 Broadband Sweeper
Plug-ins for 8620 C 388
86300 series Sweeper Modules for 8620 C 396
86601A RF Section for 8660A/C 360
86602B RF Section for 8660A/C 360
86603 A RF Section for $8660 \mathrm{~A} / \mathrm{C}$ 360
86631B Auxiliary Section for 8660A/C 361
86632B AM/FM Section for 8660A/C 361
86633B AM/FM Section for 8660A/C 36
86634A Phase Modulation Section for 8660A/C 361
86635A ФM, FM Section for 8660A/C 361
90000
90100D Practical Transistor Series (Video Tape) 618
90420D Digital Troubleshooting (VIdeo Tape) 619
97001A Rechargeable Battery Pack for 970A 47
97002 A AC/DC Current ShundBench Cradle for 970A 47
97003A RF Adapter for 970A 47
97004 A Accessory Kil for 970A 47
97010A Battery Charger for 970A 47
98032A 16-bit Duplex Interiace 76. 585. 597
98033A BCD Inpul Interface 585
98034A HP-1B Interface 585
98035A Clock/Timer/Pacer Interface 585
98036A Serial Interface 585
98133A BCD Interface 585
98134A Generad Interface 585
981.35A HP-1B [nterface 585
98136A RS-232-C Serial Interface 585
0960-0054 SMA Female Shorı (5052) 420
0960-0055 SMA Male Short (5052) 420
1250-0076 90° BNC Male-Fernale 515
1250-0077 Type N Femate 10 BNC Male 515
1250-0080 BNC Female to Female 515
$125(0) 0082$ Type N Male to BNC Male 515
1250-0176 Type N Male to Type N Female 90° 515
1250-0216 BNC Male to Male 515
$1250-0559$ Type N Tee, 1 Male, 2 Female 515
1250-0777 Type N Female to Type N Female 515
1250-0778 Type N Male to Male 515
1250-0780 Type N Male to BNC Female 515
1250-0781 BNC Tee I Male, 2 Female 515
1250-0846 Type N Tree. 3 Female 515
$125(1-1158$ SMA Female to Female 515
1250-1159 SMA Male to Male 515
1250-1286 Right Angle BNC: ($)$ 515
1250-1287 BNC (f) to BNC (f) 515
1250-1388 BNC (m) to BNC (m) 515
1250-1454 BNC Adapter Tip for HP Miniature Probes 172
1250-1472 N (f) to N (f) Precision (50 $)$ 515
1250-1473 N (m) to BNC (m) Precision (50Ω) 515
1250-1474 N (f) to BNC (n Prectsion (50 Ω) 515
1250-1475 N(m) to $\mathrm{N}(\mathrm{m})$ Prectsion (50Ω) 515
1250-1476 N (m) to BNC (f) Precision (50) 515
1250-1477 N (f) to BNC (m) Precision (50) 515
1250-1528 N (m) to $\mathrm{N}(\mathrm{m})(75 \Omega)$ 515
1250-1529 N (0) to $N(f)(75 \Omega)$ 515
$1250-1530 \mathrm{~N}(\mathrm{~m})$ Short (75 420
1250-1531 N (5) Shorl (75) 420
1250-1533 N (m) to BNC (m) (75ת) 515
1250-1.534 N (f) to BNC (m) (75ת) 515
1250-1535 N(m) to BNC (f) (75ת) 515
1250-1536 N ($)$ to BNC ($(\mathrm{I})(75 \Omega)$ 515
1251-2277 Dual Banana plug to BNC Female 515
1251-2816 Dual Banana plug (for cable) 515
10004695 IS IC Probe Tip Adapter 176
10024-6950। Interlace Pen Kil for 10024A 172

- HP's implementation of IEEE Standard 488 and identi-

 cal ANSI Standard MC 1.1- Useful over wide range of problems, from simpie to very complex-add capabilities as your system requirements grow
- Very broad selection of HP-IB instruments and accessory devices-available now
- Wide choice of computing controllers for the reduction, analysis, storage and management of measurement data

Make accurate. problem-oriented measuremenis, coniroiled by computer.

There are many measurement applications where interactive instruments coupled with a controller can provide superior, emor-free results as compared with convenifonal manual methods.

Now, three things combine to reduce sig. oificantly the enginecring costs of pueting such a sysicm together. These are: (1) the Hewletl-Packard Interface Bus. also known simpls' as "HP-1B': (2) the growing number of "'smart' instruments having internal processor capability; and (3) the broad choice of compuling conerolucrs, ranging from individual "friendly" keyboard units through those capuble of multistation measurements and sophisticated data management.
Benefits of a systems approach
The decision to use a "system" instead of conventional manual methods musi be based on an engineering evaluation of benefits vs. costs. A mong the many benefits associated with a sysicms approach:

- More consistent results in repcated
measurements-a system is nol subject to operator fatiguc.
- Greater throughpul because systems are generally faster.
- More thorough testing because system speed allows more parameters to be measured in a shoner lime.
- Results expressed in engineering or scientific units since many systems controllers arc capable of on-line data manjpulation.
- Greater aceuracy because system errors can be measured atutomatically. stored. and accounted for in the resulis.
- "Adaptive" data acquisition wherein a system can be prugrammed to branch to other measurements to help pinpoint the problem when il senses an abnormal condition.
Relatlonshlp of HP-1B to present and proposed Interface standerds: HewlettPackind is committed to the overall advancement of measurement technology. and bas for quite some time bcen working on the
problems of simplifying and standardizing instrument interconnection.

Concurrent with the considerable practical experience HP has guined (wilh bolh HP-IB and interface techniques in general) over recent years has been the growing intemational interest in establishing a suitable slandard for programmable measuring apparalus - a standard that will allow instrument systems to be configurted from the products made by different manufacturers. European organizations, paricularly in Germany, have been instrumental in initiating an intemational standandization effort.

In mid-1972. HP began to paricipate in various national and intemational stimdardization bodies. The U.S. Advisory Commitee. composed of diverse intercsis represenled hy both users and manufacturers, Eirst established initial goals-and then adopted the interface concept utilized by the HP Inferface Bus as an appropriate starting point. A draft document was subsequenty writlen and evaluated by menbers of the Committee, and then submitted as the U.S. proposal to un IEC ([ntemational Elecirolechnical Commission) Working Group in the sutumn of 1972. Since then, the interface definition has undergone a number of minor changes to accommodate various needs at the intermational icvel.

In September 1974, the parent technical committee. IEC TC66. approved the main inlerface draft document for a formal ballot among the member nations of the IEC. Balloting look place in 1976, and it is anticipated that an IEC document witl the avaik able for publication is 1978. The present defintion of the $H P-I B$ is companible will the main IEC draff document.

Meanwhile, the lEEE Standards Board has approved LEEE Standard 488-1975 - Digital Interface for Programmable Instrumentation". as published in April 1975.' The IEEE standard is based on work initiated by the IEC. and follows the general concepts of the document now under consideration by IEC member nations. The HP Inerjace Bus is Hewlen-Poctiard's implemeniation of IEEE Slandard 488. (NOTE: In January 1976. The American National Standards Institute adapied the above and published it as ANSI Standard MC I.1).

The standardized interface concept is now well accepled, and more than 250 products utilizing the concepts articulated in JEEE 488 are today available from more ihiun 80 different manulacturers.
Why the HP Interface Bus name?
As the list of HP products available with the "new digital interface" has grown, our eustomers have in the past sought a convenient way to idenify those products having

[^0]the interface capability In response, we in 1974 sdopted the name "Hewlett-Packard Interface Bus" (commonly shorened to "HP Interiace Bus" or simply "HP-18"). We will conlinue to use the identifying name and this symbol:

Both will be used with appropriale HP products so that their interface capabilities may be readily identified.

As additional instrumentation intcriace standards become approved. HP will elearly indicate the relationship of the HewlettPackard Interface Bus to those standards just as we have done with IEEE Standard 488 (and identical ANSI Standard MC 1.I).

It should be pointed out that as a practical maller, devise-dependent operational characteristics have been exchuted from the IEEE and proposed IEC Standards definitions. In this way, users tetain masimum flexibility in selecting instruments from different manufaciurers and in utilizing each instument's paricular capabilities to best advanlage.

Relative to the great progress made in standardizing three of the four interiace syslem elements (meihanical, electrical. fimefional), understanding the remaining device-depeadenl operational parameters referred to in the IEEE document is a relatively small but essential ingredient necessary 10 ensure complete operational systems.

It would he presumptuous for HewletrPackard to speak for other manufacturers: however, it in our objective to reduce as much as practical any device-related ambiguities associated with HP products operaling per the IEEE Standand (and proposed IEC Standard). We expect to do this itraugh product design considerations: through new message concepts, as well as further code and tormat guidelines: and through various printed materials and training activitics.

How the HP Interface Bus operates

All active interface circuitry is contained within the various HP-IB devices. and the imterconnecting catste (containing 16 signal lines) is entirely parvive. The cable's role is limited to that of intereonnecting all devices logether in parallel, wherebs any one device may transier data to one or more other parhicipating devices.

Every paricipating device (instrument. contruller. accessory module) must be able to priform al least one of the roles of TALKER LISTENER or CONTROLLER. A TALKER can mansmir daka 10 other devices via the bus, and a $\angle S T E N E R$ can receive data from other devices via the bus. Some devices can perform both roles
(e.g. a programmable instrument can $L S S$ $T E N$ to receive its control insinuctions and TALK to send ils measurements.

A CONTROLLER manages the operaton of the bus system primarily by designating whish devices are to send and receive data, and it may also command specific actions within other devices.

A minimum HP-JB system configuration consists of one TALKER and onc LJS. TENER, but withoul a CONTROLLER. In this configuration, data manfer is limited to direat transfer between one device manuatly ses to "talk only" and one or more devices manually set to "listen only" (e, q. a measuring instrument talking to a printer, for semi-aulurnatic data logging.
The full flexibility and power of the HP-IB become more apparent. however. when one device which can serve as CONTROLLERITALKERILISTENER (e.g. calculator or computer) is interconnecled wilh olther devices which may be either TALKERS or LISTENERS. or both (c.g. frequency symbesizers. counlers. power meters, relay actuators, displays, prioters, etc.). depending on the application. An HP-IB computing comroller participates in the measurement by scheduling measurement tasks, selting up individual devices so that they can perform these tasks. monitoring the progress of the oneasurement as it proceeds. and interpreting the results of the measurement. (See page 28 for additional detaits about HP-1B computing controllers.)
HP-I日 cannections and structure
The 16 signal lines within the passive interconnecting HP-IB cable are grouped into three sets, according to their function.

Eight DaTA lines carry coded messages in bit-parallel, byte-serial form 10 and froas devices. with each byie being transferred from one TALKER to one or more LISTENERS. Data now is bidirectional in that the same lines are used both 10 input prosram data and to oulpul measurement data from an individual device. Data is exchanged asynchronously, enatling compatibility among a swide variety of devices. All interface messages (to sel up, maintain, and teminate an orderly flow of devicedependent messages) are 7 -bit coded. Device-dependent messages may be from I to 8 bits; however. the codes containing printable characters of the ASCII (American Siandard Code for Intiomation Interchange) code set are most commonly used. and messages containing numbers are lypically presented in scientific notation (FORTRAN-type) format.

Three DATA BYTE TRANSFER CONTROL (handshake) lines are used to effect the transfer of each byte of coded uata on the eight DATA lines.
The five remaining GENERAL INTERFACE MANAGEMENT lines ensure an

Interface connections and bus structure.

Rear panel swilches are sel so insirument will either be adoressable by controller in a multi-device system, or will simply "talk only" 10 another device such as a printer.
orderly flow of information withm the HP-IB system. One of these is called the "ATTENTION" line.
Several listeners can be aclive simultaneously, but only one calker can te active at a time. Whenever a talk address is pul on the DATA lines (while ATTENTION is low). dil other talkers are automatically unaddressed.
It is not possible in this limited space to go into detnil on each signal line's role. But you should note that every HP-IB device need nol be able to respond to all the lines. As a practical and cost-effective matter, each HP-IB device will esually be designed to respond only to those lines that are peninent 10 its lypical function on the bus. (Details appear in each device's operating manual.)

Products for "do-li-yourself" HP-IB

 system solutionsHewlelt-Packiard hits an extremely broad range of $\mathrm{HP}-\mathrm{IB}$ instruments and computing controbler capabilities, as indicated on the 1able below-capabilities you can use in asscmbling a wide variely of system solutions vin HP-IB.

Each bench instrument is. by itself, an exceptional performer in temm of providing signals, making meisurements, or recording results. Each hiv the additional capability
which allows its use in HP-IB instrumentation systems- either in "do it-yourself' stilems configured and assembled by users themselves, or in somi of the stinduid systems which are designed. preassembled and supported by HP. Whale the HP-IB interface is optional in many instruments. il is increasingly becoming "htindard" in some of the newer products.

Mosi principle functions on the instruments are HP-IB programmable. For specific detuils, please consull the appropriate catalog page, or the technical data sheel which is availible for ciach product.

Just as with the instruments. HP's computing conirollers (deskiop computers and compuler systems) which are available for ure with HP-lB are all proven performers. Regandless of your need for reducing. analyzing, storing or managing meatsuremeni dals, HP has a computing conisoller that should be right for your application.

Individual Hewlett-Packard products avallable with HP-IB (IEEE 488)

Pioducis ielsred to:		Model	Praduct namerabrictoristics	See Pago
Stmulus	$\begin{aligned} & 33208 \\ & 3330 \mathrm{~B} \\ & 3315 \mathrm{~A} \\ & 5359 \mathrm{~A} \\ & 6002 \mathrm{~A} \\ & 8016 \mathrm{~A} \\ & 8018 \mathrm{~A} \\ & 8155 \mathrm{~A} \\ & 8620 \mathrm{C} \\ & 8660 \mathrm{~A} \\ & 8660 \mathrm{C} \\ & \mathrm{~A} 511 \mathrm{~A} \\ & 8672 \mathrm{~A} \end{aligned}$	Option 007 Option OO Option 001 Option 001 Oytion 011 Option CO5 Option 005	Frequency Synthesizer: 0.01 Hz to 13 MHz Autornatic Synthesizeaisweeper: 0.1 Hz to $13 \mathrm{MiH}_{2}$ Synthesizer/Level Generator: 200 Hz to 80 KKi Jime Synthesizer: 1 ns accuracy DC Power Supply: 200 W extended range Hord Generator: 9×32 bit Serial Data Generator: 50 MHz , 2048-bit memory Arogrammable Signal Source: 0.001 Hz to 50 ! MHz Sweed Oscillator: 10 NHz to 1 S EHz Synthesized Signa! Generatot: 10 whic is 2.5 GHz Synthesized Signal Generator 10 kite to 2.6 GHz Hicrowave Frequency Synthesizer: 21062 GHz Synthesized Signal Generator: 2 io is 6.	348 350 345 276 213 328 326 3078340 386 358 358 364 362
Measurement		Oglian 022 Oplian 001 Opicn 010 Dolison 030 Option 101 Option 101 Oplior 101 Option 101 Option 101 option 010 Option 010 Oprion 010 Option 011 Optian 0S! Dption 011 Oplica 011 op!ion 011 Oplian 251 Oplion Coll Ontion 001	Power Meter -70 dBim to +35 dBam , is $18 \mathrm{GHz}_{2}$ Logic State Analyzer: 64×16 bit mernory Quartz Thermometer: $0.05{ }^{\circ} \mathrm{C}$ accutacy System Digital Voltmeter: Migh speed, $3^{1 / 2}$ digils Digital Volimeter; low-cost, $3 / 2$ digits. Digital Voltmeter: $5^{1 / 2}$ or $6^{1 / 2}$ digits, auto calibration Digital Voltmeter. 5 digits, self lest 25 MHz Selective Level Measuring Set: CCITT FOM systems 25 MHz Selective Level Measuring Set: Bell IDM systems; 90 MHz Selective Level Measuring Set: CCIT FDM systerns 90 Mhz Selective Level Measuring Set. Beil FDM systems Aubematic LCR Meter Autamatic Capacitance Bridge 1 Miz Digital LCR Meter 1 MHz Preset C Meter Digital High Capacitance Meter Itansmission Impairment Measurement System (TIMST Iransmission Impairment Measurement System (TIMS, Iransmission Impairment Measurement System (TMMS) HP-18 Interface (Talken) for 53008 Counter System Universal Counter: to $5!2 \mathrm{MHz}$, 10 ns time interval Autematic Mizowave Counter: 10 Hz to 18 GHz Automatic Microwave Counter: high speed, to 4.5 GHz Automatic Microwave Cosinter: 10 Hz to 18 GHz General Purpose Plug-In Counter Pime interval Probes Iime Interval Counter: ± 20 ps single-shot resolution Digital Signal Analyzer ("requires 10920A cards) Laser Iramsducer: for accurate positioning measurements \$torage Normalizer for 8505A Rf network analyrer S-Parameter Test Set: 50 or 75 Ohm , for 8505 A RF Networl Aoalyzer: 500 kHz 101.3 GHz Spectrum Analyzer: 100 Hz 10 1.5 GHz Alsu see Modetr 2240A and 69-10B.	404 188 605 54 56 58 62 546 515 546 545 881 88 78 89 91 534 534 588 278 270 288 288 290 262 275 277 505 602 440 443
Storsge	$\begin{aligned} & 3954 \mathrm{~A} \\ & 3968 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { Opifen } 007 \\ & \text { Option } 007 \end{aligned}$	Instrumentation Tape Recorder: 4 channel Instrimentation Tape Recorver: 8 channel Shorage alsa via Desktop Computers and Compmer Jjusenta	$\begin{aligned} & 254 \\ & 254 \end{aligned}$

Standard HP-IB measurement

 systemsMany application requirements can be satisfied with a standard HP-1B measurement system-already preassembled, tested, and documented by HewlethPackard. Preconfigured systems save you design and setup time, and HP guaramtees overall specified system performance. In. stallation and service contracts are available. See listing on the following page.

Warranty considerations
Every HP-IB device (instrument or computing controlier) carries the standard Hewlett-Packard wamanty appropriate 10 that individual produci-regardess of whether it is purchased separately is a stand-alone item for use in customerasseinbled HP.IH sysiems, or fumished as purl of a standaud IIP-1B sysiem assembled by Hewlen-Puekard.

HP additionally lakes responsibility for
slandard HP-/B sysiems performing as specified. However, software or interfacing which has not been provided by Hewlett. Packuid as pant of the standard system delivered by HP are nol coveted by this warranty.

In all eases, overall operational responsibility for those HP-IB sysuems ussembled by a cnstonnat from individual HP.IB devices shall rest with the customer.

Individual Hewiett-Packard products available with HP-IB (IEEE 488) capability

Probucts pelated io	Model	Product name/characteristics	See page
Display	$1350 A$ $315 A$ Option 001 9971 $9872 A$ 0 ption 0010 $39304 A$	Graphics Translator: for directed-beam CRT displays Alphanumeric Thermal Printer: 20 columns Character-mimpact Printer: 132 columns Graphics Plotter multicolor (4 colors) programmable Numeric Display: 12 LED characters, decimal point Display also via Desktop Compaterx and Computa Systems	$\begin{array}{r} 181 \\ 258 \\ 587 \\ 239 \\ 25 \end{array}$
Switching. Scanning Iranslation of Jiming		Measuremetnt and Control Subsystem Oata Entry Terminal 5 cannet: to 40 channels, !ow thermal and relay Access switch (*requires 3755A switch controllen Distribution Switch ("requires 3755A) Ielecommunications Channel Selector Multiprogzammet (*erequites 59500 A interface) Modular Switch ("**requires $941 / \mathrm{R}$ swilch controllen) VHF Switch (***requires 94]1d Matrix Switch (*uiriequires 9411As ASCII-to-Parallel Converter: string to 16 characters Digital-to-Analog Converter Relay Actuator: for programmable switches, attenuators VHF Switch: two 500 Hm , bidirectional, oc to 500 MHz timing Genetator Digital Clocke month, day, hour, minute, seeond Analog-fo-Digital Converter 4P-1B/Common Carrier Interface: RS232C or CCIT V24 Power Supply Programmer: isolated D-lo-A converter	576 592 74 548 546 569 597 577 577 577 26 26 26 28 28 28 26 266 26 212
Control mid Computallon	9815A 9825A 9830A/ 9845A 21MX K-series 2IMX M-series 21MX E-series HP 1000	Desktop Compulver (uses 98135A Interface) Desktop Computer (uses $9 \$ 234$ A Interface) Desitop Computer (uses 59405A Option 030 Interface) Desktop Computer System 45 (uses $98034 A$ Intertace) Computer-on-a-Board (21003 K \& 2109K; use 593108 Interiace) Computers (2105A, 2108A \& 2112A ise 593108 Interface) Wigh-performance Computers (2209A 82113 A ; use 593108) Computer Systems (use 593108 Interface)	$\begin{gathered} 288580 \\ 288580 \\ 288581 \\ 288563 \\ 578 \\ 578 \\ 578 \\ 298574 \end{gathered}$
Interlace Cablins	$\begin{aligned} & 10631 \mathrm{~A} \\ & 106318 \\ & 10631 \mathrm{C} \\ & 106310 \end{aligned}$	HP-IB Interconnection Cable: 1 m (3.3 in) HP-IE interconnection Cable: 2 m (6.6 fi$)$ HP-IB Interconnection Cable: 4 m (13.2 ft) MP-18 interconnection Cable, $0.5 \mathrm{~m}(1.6 \mathrm{ft})$ For distance extension, also see Modets 3070 ind sor03.A listed above.	$\begin{aligned} & 25 \\ & 25 \\ & 25 \\ & 25 \end{aligned}$
Design and Serviclas	594014	Sus System Ansigzer	23

Rear view of 5-device HP-IG bench system. Note single and stacked connections.

HP-IB specification summary

Interconnected devices: up to 15 maximum on one contiguous bus. Interconnectlon path; slat or linear bus network: cotal ransmission path length ? merres times number of devices or 20 metres, whichever is less (see HP59403A for extending operating dislanco).
Message transier scheme: byse-serial. bit-parallel asynchronous data (ransfer using interlocked 3-wire handshake leehnique.
Data sate: one megabyte per second maximum over limited distances: 250-500 kilobytes per second typical over fuil iransmission path (depends on device).

Address cepablilty: primary addresses. 31 TALK and 3) LISTEN; secondary (2-byte) addresses. 9\%I TALK and 961 LISTEN. Maximum of I TALKER and up to I4 LISTENERS at a tume.
Contral shift: in systemes with more than one controller. ody one can be aclive al a time. A curreauly active controller can pass conirol to another, but only designated systern controller can assume control over others.
Interlace clncults: driver and recemer circuis are TTL-compatible.
Connectar lock screw compalibility
HP-IB products defivered now and in re-
cent years are equipped with connectors having ISO metric-lhiseaded lock screws and slud mounts. Plense note that connector lock screws and stud mounts on very early HP-IB producis are, unless changed, incomparible with the now-standand metrie threading.
Two different metad finishes are used by HP to help you tell the difference between metric and non-metric connector parts. Whereas the oider non-metric pans have a shiny nickel finkh, all metric-hreaded lock screws and stud mounts have a black finish and the keter "M" stamped on them.
A special HP-1B Merric Conversion Kit (Part Number 5060-0138) is available at modest cost to assist customers in conver. ing connectors on older HP-1B products to be compatible with the standard metricithreaded connectors.

Standard HP-IB measurement systems

Application	Hodel	System name/characlarisula	Sue Pige
Date Lopraing Acquieflion	$\begin{aligned} & 3051 \% \\ & 30524 \end{aligned}$	Programmable Data Logger: economical data collection and analysis, interactive test capabinities. Automatic Data Acpufsition: fast and precise low-level measurements, powerful computation.	72 73
Networn Anslysts	$\begin{aligned} & 3040 A \\ & 30424 \\ & 8409 \mathrm{~A} \\ & 8507 \mathrm{~A} \end{aligned}$	Network Analyzer: complete amplitude and phase characterization, 50 kz to 13 MHz . Group delay optionsl. Automatiti Notwork anoizzer: same as 3040A and includes We faster $9825 A$ as computing controller. Automatic Misrowave Natworh Analyzer: measures transmtission and reflecticin parameters, 110 MHz to 40 GHz Sutomanlc RO Network Analyzer: measures complea imperfance, Iranster functions, broup delay, 500 kHz to 1.3 GHz .	435 $\therefore 35$ 458 46
Spectrom Analyzis	30046 3005A 85:	Spectum Amalyzer: precise amplitude and Trequency measurements, 10 Hz to 13 Mha . Automate Spectum Anolyzert same as 3044 A , and includes the faster 982.5 as computing contrallar. Automatic Spectrum Analyzer, covers 100 Hz lo 1.5 ditz; exceptional frequency tuning acculacy and resolution.	473 $: i=$ 483
Erequancy STablity Analysis	33904	Frequency Stability Analyzer: shion and lonk-term chat- to 18 Gily	502
Transcelva Texding	8950]	Automatic Transceiver Tes! System, lot AM and fM transceivers, 2 to 1000 MHz , Transmilling to 100 H	524
Olgital Cireuit Board lesting	DIS 70	Digital Test System: fast, zecurele taull localon on loaded primted circuil boseds.	577

59401A

59401A Bus system analyzer

The HP-1B (IEEE 488) concept has greatly simplified many of those things which have in the past made instrument interfacing a burdenionie tisk. Even so. software errors can occur is the system designer does not completely understand the bus systern or the capabilities of the instruments and other devices being interfaced. And hardware problems can occur if the instruments/devices are not functioning properly, or if they are not completely compatible with the bus standard.

The 59401A Bus System Aralyzer is especially useful in design and seivice work. It simplifies and speeds up the diagnosis of software and hardware problems by allowing the user to see the status of fill bus lines, including the actual characters on the bus data lines. Because the 59401 A can also drive all bus lines, it can completely exercise another Talker, Listener or Controller - which is especially useful in verifying compalibility of new or user-designed products with the HP-1B.

There are several choices of analyzer operating speed. 11 may be operated at one character al a time (useful for software debugging). at 2 claracters per second, or at regular bus speed. It may also be operated at a variable rale as determined by the external cloek input.
The analyzer's 32 character memory can be used to store bus characters in the Listen mode, or to oulput characters to the bus in the Talk mode. When the andlyzer is in the Compare mode, a stream of bus inflic may be stopped on a pre-selected chasacter - and at that lime. a trigger pulse is available, which is very useful when analyzing transient or timing problems related to the bus.

59401A Specifications

Display: monitors all bus lines. Represents daw lines. any memory locstion, or DIO front panel switch sesungs; in octak code and ASCII character.
Listen mode: slores up to 32 characters of bus traffic in memory for real time and repetitive lesting. In compare mode, halts bus traffic when a selected character is piesent, and user can display any one of the previous 31 characters stored in memory.

Timing: accept < 750 ns: ready < 750 ns.
Talk mode: bus lines can be driven direaly from front panel swithes: memory can be loaded from froot panel swithes for driving bus with a 32 chafacter sequence.

Tliming: (1) data changed >500 ns before DAV pulled low: (2) ATN driven low $>1 \mu$ s before DAV pulled low: (3) DAV driven high <700 ns after NDAC is false: (4) DAV driven low <700 ns after NRFD is false. if conditions 1 and 2 are mel.
Operating speods: one characier at a time, 2 characters per second. regular bus speed, or variable rate delermined by extemal clock mput; in either Listen or Talk mode.
External clock Input: 1 standard power TTL gate inpul: $\leqslant 10 \mathrm{MHz}$ repeution rate.
Compare output: provides I standard power TTL gate output (LOW TRUE) sync pulse when bus character is same as front pancl switches.
HP-IB load: 1 bus load (capable of driving 14 other bus devices).

General

Temperature ranges : operating, $01050^{\circ} \mathrm{C}$: storage. $-4010+75^{\circ} \mathrm{C}$. Humldity: 95% relative, $01040^{\circ} \mathrm{C}$.
Power requirements: $100,120.220$ or $240 \mathrm{~V}+5 \%,-10 \%$: 48 to 66 $\mathrm{Hz}:=42 \mathrm{VA}$.
Slize: $145.5 \mathrm{H} .205 .1 \mathrm{~W} .495 .3 \mathrm{~mm} \mathrm{D}\left(5.730^{\prime \prime} \times 8.075^{\prime \prime} \times 19.500^{\prime \prime}\right)$ Walght: net, 5.64 kg (12.44 Ib).
Opllons and accessories Price
5061-0089 front handle kit
$\$ 15$
TOB31B $2 \mathrm{~m}(6.6 \mathrm{f})$ bus cable, fumished
N/C

59401A Bus System Analyzer

$\$ 2700$

HP-IB Interconnection cables

Cables for interconnecting HP-IB devices are available in four different lengiths. The connector block at both ends of each HP-IB cable (pholo above) has a plug on one side and a matching receplacle on the other, so that scveral cables may be conveniently connected in parallel, thus simplifying system interconnection. Lock screws provide for secure mounting of each connector block to an HP-IB instrument. or to another cable connector block.
SPECIAL NOTES: (I) Merric lhrending is now siandard on collnector lock screnss; read she "Connector lock screw companibilig". message in this section of you are nsing older HP-IB products. (2) HP-IB cables are not included with individual HP-IB devices, and must be ordered stparatety fexception: HP-IB computing controller intryfaces inctude cable with connector).
Ordering Information Price.

1063 HA HP-18 Cable, Im(3.3 ft)
rice
(0631B HP-IB Cable. 2 m (6.6 A)
565
10631 C HP-1B Cisblc, 4 m (13.2 ft$)$
$\$ 65$
10631 D HP-1B Cable, 0.5 m (1.6 f)
$\$ 60$

HP-IB Accessory modules

Modules in the HP 59300, 59400 and 59500 -series are ideal building blocks for use with instruments to extend measurement capabilities. Momules listed here can be interconnected via the HP -IB to HP measuring insiruments, signal sources and recording devices capable of operating directly on the HP-IB. In addition. these modules frequently serve as useful ways 10 interconnect with devices which are not themselves capable of direct HP-IB opernlion.
Instrument requirements differ. Some only outpot or accept data on the HP-IB. Others can be remotely pnogrammed by ASCII characters sent along the HP-IB. These modules can work with insinuments on any of these levels wilh or without a controller. Each module hoving controls can be operated stand-ilione from its front panel, or it can be placed in aulomatic operation under progrm conirol.
Module provision for stand-山ione. local operation also has ithportant system benefils. The operator cas set up and check out the system under manual control, avoiding othervise complex and lime consuming error tracing. Each module has status indicator lights that make it easy to monitor operation.

59301 A

59306A

59307A

59308A

59313A

59501A

59304A

1350A graphics translator
Accepts digital information from the HP-IB (or optionally RS232 C) and convers it to X . Y . and Z analog volages for driving high-resolution, directed-beam, non-storage CRT displays. An intemal $2 k$ word digital memory (RAM) stores the data. and is continually accessed in order to generate vectors or characters for refreshing one or more CRT displays. Each digital word can be a vector coordinati, or a ROM-generated upper or lower case ASCII character. An opitional ROM provides an additional 512 userdefinable vectors for generating graticules and special characters. (Additional details on page 184.)
59301A ASCII-to-parallel converter
Accepts byle-serial ASCII characters from the HP-1B and converts them to parallel output. A string of up to 16 characters terminated by linefeed is converted to 1-2-4-8 BCD and placed on the output lines; the linefeed character signals executoon of a primo command (strobe).

With the $5930 / \mathrm{A}$. instnments with the HP -IB interface can be operated with HP 5050B/505SA Printers (requires two output cables, HP 562-16C, not fumished). Or. The 59301A can be used with HP 6128C thru 6145A (Option J99) digitally-cuntrolled power supplies, for HP-IB programmable voliage ind aurnent. The 59301A can additionally be ased to conimif)(her funclions uning its hexadecimal format.

59303A digital-to-analog converter

Accepts an ASClit string and converts any three conseculive digits to analog voitage accurate to 0.1% in $30 \mu \mathrm{~s}$. Futly programmable via the HP-1B or operates stand-alone from the fromt panci. Offers three oulput modes for conversion: nomal. offset, or plus-minus (9.99 volts to -9.99 volts) to make it convenient for operating strip chan recorders.

A primary application for the HP 59303A is to present on a logging device the data points being taken during a measurement, such as with the HP 5345 A . Counter. No controller is required for operation. Compatible logging devices include strip clarl recorders, X-Y ploters, and displays.

59304A numeric display

Provides a highly visible readout of up to 12 ASCll chamaters (0 thru 9E. -). It can be addressed to displas the eutput of measurement devices or the results from a caleviator'deskiop computer. It can also be used is a remote display in the "lisien only" mode.

59403A

59306 A relay actuator

Has six Form-C relajs that provide for control of external devices either manually from frome pancl pushbutions or retnotely from the HP-1B. Relay contacts are specified to switch 24 V dc or 115 V ac@ 0.5 A. Use the 59306A with HP 8761A/B SPDT switches for HP-1B programmable microwave switching do-18 GHz: use it with HP 8494 thmi $8496 \mathrm{G} / \mathrm{H}$ attenuators for HP-IB programmatle attenuation de- 18 GHz (extema) power supply required).

59307A dual VHF swifth

This module offers a pair of single throw 4 -pole switches (dc 10 500 MHz , ${ }^{50}$ ohm) optimized for fast risctinc (f ns) pulse waveforms. Switches are independent and bidirectional, and can be operaled either from from panel pushbutions or remotely from the HP-18.

59308A timing generator

Has two modes of operation--a pacing function which provides outpul at a specified rate, and a timing function which provides a delay with respect 10 a trigger for a specified period of time. Timed intervals can be selected by thumbwheel switches on the from panel. or can be programmed remotely from the HP-IB. Times from 1μ s to more than a day are available. Trigger inputs are available via front panel pushbution and rear panel connector. Timing outputs are avalable for loth TTL and ECL levels, with switch selection of a squarowave or pulse output positive or oegative-going edge. Output pulses are $300 \mathrm{~ns} \pm 100$ ns wide, and rise cime is <50 os.

59309A digltal clock

Displays month, day, hour, minute and seconds, and upon command will output time via the interface bus. Time can be set into the clock by local conirol, or by remote commands received from the HP-1B. The clock accepts a small intemal battery which can provide more than a day's standby during short power intermeptions. Altemately, an extemal source such as D-sized batteries can susiain the clock for up to one year.

59313A analog-to-dighal converter

This medium-speed 4-channel unit can accept a full scale iuput of $\pm 10 \mathrm{~V}$ de on each channel, individually selectable in fout ranges. It also has a program-controlled reverse channel for driving small kignal lamps, relays. or TTL circuis. An HP-IB controller can com-

The distance between HP-IE devices may be extended by up to 1000 netres, using two 59403A's: even further with modems.
mand this unit to perform a single conversion. or inituate a series of intemally-paced conversions at one of six selectable rates (up to $200 / \mathrm{s}$ if one channel; up $1050 / \mathrm{s}$ on each of four channels). Sampling can also be initiated extemally by TTL transition or contact elosure to ground.

59403 A HP-18 common carter interface

Provides a way to extend the separation of component parts in an HP-1B system by more than the 20 metre maximum transmission path length specified in various inierface Slandards, and it is especially useful for prosuction or remote site applications. Distances up to 1000 metres are possible by using avo 39403A modules (one at eacb location) interconnected by a dedicated and shielded two-iwisted-pair cable. And even longer distances can be achicved by using a telephone line (with appropriate modems) instead of the dedicaled cable.
Eveh 59403A modele convers HP-1B dola and control lines to a serial bir stream of digital iniormation for transmission over the dedicaled or itelephone lines, and viec versa in the reverse direction. In both cases. operation is full duplex, so thal (for example) one HP-1B device at a remole location can request service from the controller at the same time the controller is sending data to another HP-1B device at the remote location.
The recommended dedicated cable is avalable from HP as Part Number 8120-1197 (Belden type 8723). The 59401A is designed to operate with 110,300 and 1200 baud asynchronous or synchronous full duplex modems which are E3A RS232C or CCITT V24 comparible. In the U.S., Bell IO3A modems with "sont carier (um-off' are recommended for the direct dial iDDD) network. (Check your local selephone authorities regarding data communication regulations.) 59501A power supply programmer (isolated DAC)
This single-channel digital-io-analog convener can control a wide range of power supplies toutpul vollage, or current), as well as other analog programmable devices. It may also be used as a low level signal source. depending on the speed of the coniroller. It has iwo oulput ranges ($0-1$ and $0-10 \mathrm{Vdc}$ in unipolar mode: -1 to 1 and -10 $10+10 \mathrm{~V}$ dc in bipolar mode). as well is photo-isolators which electrically separate HP-1B control and data lines from power supply cireuitry by up 10600 V de. (Additional details on page 212),

Model	Dextriplion	Dimensiant—mar haigh' \times with \times widh \times depih mim (inchex)	Hel Waiph k(1 B)	Shippine Weizh He (B)	Price
13504	Graphics Translator	$101.6 \times 425.5 \times 498.8(4 \times 16.18 \times 19$ (i)	955 (21.0)	11.8125 .01	53000
$65303 A$	ASCli-to-parallel Convertes	$101.6 \times 212.9 \times 294.6(4 \times 8.31 \times 11.6)$	1.70 (3,78)	232 (5.16)	\$575
580014	Digital-to-analog Converter	$401.6 \times 105.9 \times 294.6(4 \times 4.17 \times 31$ E	2.61 (5,80)	$3.1717 .04)$	\$950
593044	Numeric Display	$101.6 \times 105.9 \times 294.6(4 \times 4.17 \times 11.5)$	1. 23 (2.73)	1.58 (3.51)	5800
593081	Relay Actuator	$101.6=212.9 \times 294.644 \times 8.38 \times 11.61$	2.64 (5.87)	3.73 (7.18)	\$700
393014	VHF Switch	$101.6 \times 211.9 \times 294.6(4 \times 8.38 \times 11.61$	264 (5.87)	3.23 (i.18)	5750
\$93308A	İming Generator	$101.6 \times 212.9 \times 294644 \times 8.38 \times 1161$	2104.67	S E3 (8.51)	51150
593094	HF-18 Digital Clock	101 b $\times 105.9 \times 294.64 \times 4.17 \times 116]$	1.703 .781	$2.84163: 1$	\$1025
583134	Anslog-to-digital Convertee	$101.6 \times 2129 \times 345.414=8.3 \hat{6}=13$ 6)	545 (170)	635 (14.0)	\$1500
594031		$101.6 \times 2429 \times 430.0(4 \times 838 \times 169)$	45011000	6. 10 (13.5)	\$1500
595014	Power Supply Projammer	$104.6 \times 2129 \times 294.64 \times 8.38 \times 14.94$	261 (380)	317 (7.04)	\$500

'Height above includes feet, whin feel romoved height is $\left.88.1 \mathrm{~mm}(3.4)^{\circ}\right)$.
bD HEWLETT-PACKARD INTERFACE BUS

Versatile interconnect system for instruments and controllers Computing controllers/interfaces

HP 9815A desktop computer (HP 98125A Interface)

HP 9825A desktop compuier (HP 98034A interface)

System 45 desktop computer (HP 98034 A Interlace)

A separate controller js nol required for simple HP-IB configurations (e.g. data logging). However, the full fexibility and porential of the Hevlen-Packard Interface Bus are more obvious when used with HP compuing controllers.

Role of a computing controller

In addition to managing the flow of information over the bus, the computing controller in an operaling measurement sytern aciively participates by scheduling measurement tasks. by selting up individual devices so they can perform the tasks, by monitoring the progress of the measurement as it proceeds, and by interpreting the resulis of the measuremene.

HP computing conerollers serve another important function by providing access to a large number of display, input/output and data storage peripherals. These include plotters, line printers, floppy disks, lape cassettes, etc. Additionally. HP computing conlrollers can perform the job of interfacing with other instuument subsystems or computer sysiems using serial communication links-i hereby gaining access to common dala buses, sharing results, etc.

Finally, a computing controller can provide the tools for program development. These will normally include an editor that can be used in generaling source progirms. debug aids that can be used in analyzing and modifying program now, and a means of storing and recalling prograrns andior results.

Wide choice of HP computing controllers

Hewlell-Packand has a conlinuum or HP-IB (IEEE 488) computing conlrolleis from which to select. If your interfaced-system application is of the "lab bench" variety (as in engineering design or metrology). you may prefer to use one of the desktop keyboard unifs such as the 9815 A . $9825 \mathrm{~A}, 9830 \mathrm{~A} / \mathrm{B}$ or System 45 . On the other hand, if your application calls for complex or high volume production testing at mutiple locations. simultaneously, and in several programming languages, your choice will probably be orie of the solucons offered by the HP 1000 (incopporating a 21 MX computer).

HP-IB interfices for each computing contraller are described below. For more comprehensive delails on the compuling conrollers please consult pages 574 and $578-583$.
98135A HP-1日 Interface for 9815A
HP's most economical computing controller is the 9815A deskiop unit. for handiing the less complex tasks associated with small syslems. If you are familiar with HP's hand-held personal calculators. you'll feel at home with the $9815 A$'s Reverse Polish Notation (RPN) language. The keyboard has a 10 -key numeric pad. 15 special funcion keys. program language and control keys, editing keys, and 28 scientific function keys. The 9815A has a 16 -character numeric display. a thermal printer, and a high-speed bidirectional magnetic lape data carridge system.

For HP.1B applications, the 9815A can accept one MP 98135A Jaterface, which allows the 9815A to communicate with up 10 a maximum of 14 HP-1日 instruments or peripheral devices. If your application requires an mterrupl capability. please see other HP computing controllers, since interrupt is nol available with the 9815A/98135A.

98034A HP-IB Intertace for 9825A or System 45

The 9825A desktop eomputing controller is an extremely \{lexible performer. It uses HPL, a high level, formula-oriented programming language which offers power and efficiency for bandling equations, data manipulation, and input/output operations. HPL provides for subroutine nesting and Aags, and allows 26 simple variables and 26 multidimensional array variables. limited only by the size of the 9825A's memory. Also. HPL has a language compatibility with the HP 9820A and HP 9821A, permitung programs for thesc casticr models to be converted for use with the 9825A.

Significant capabilities of the 9825A include two-level priority intemupt (for controling several instrments or peripherals requiring allention at unprediclable rates or times), live keyboard, direct memory access, mulii-dimensional arrays, butomatic memory record and load. and an extended range of internal computation. The 8825A has a typewniter-like keyboard wilh upper/lower casc. a numeric pad, and 12 special function keys (shiftable to 24). I(has a

HP 1000 compuler system (ulilizing a 21MX controller and one or more HP 593108 intertaces)
built-in 32-character alphanumeric display. a 16 -character printer (both upper/lower case), and a high-performance data cartridge sys1 cm . There are three I/O slols and four ROM slots.
The 9800 Sysiem 45 (Mendel 9845A) is in integratal deshrop computer for such applaciations as mathelyalical mordeling, design analysis, production est conimb, ext processing and linear prosamming. It provides fifieen levels of programmable primity insermpe and il uncludes a CRT dinplay. an optional 80 -characier thermil line pmater, enliamocd BASIC lingudge, und s uniliod nass storage syatem wilh lwo lape diatridge úrive.

In the alpha mode, the CRT lists programs for vicwing and editing. or displays daca, keyboard inputs, user prompls and system messages. In the graphics mode, the CRT displays plots within a 560 $\times 455$ dut matrix and allows dot-for-dot duplication of the graphic data in hard-copy form using the optional high-speed thermal printer.

System 45's language uses the same sel of comunitnds to address amy selceted storage medium, such as the HP 9885 Flexible Disk Drive, llot HP 7900 Series large fixed disk drives, and the bult-in 217 k -hyte tape cartridges.

The HP 98034A Interface is required for operating the 9825A or 9845 A in HP-IB applications. A 9825A equipped with a General I/O ROM can handle fundamental HP-IB input/output operations. With an Exiended I/O ROM. the 9825A is capable of complete HP-IB conirol. All of these operations are available for the 9845A with just the Opt $3201 / 0$ ROM. Up to four interfaces can be plugged directly into the 9800 System 45 's $1 / 0$ stots-ind as many as 12 inlerioces (up to 14 devices each) can be connected to a System 45 using a 9878 A VO Expander.

59405A HP-IB interface for 9830A/B

BASIC language is used also with $9830 \mathrm{~A} / \mathrm{B}$ desktop computing concrollers. Since BASIC is a standard computer language, programs you develop initially for 9830 A/B HP-1B systems can be later adapled with minimum effort for use with a 21 MX compuling controlles-if your HP-IB system requirements expand to require full computer capabilities available via the 21 MX .

User-available read/write memory within mainframe ranges from a minimum of 3520 (8-bii) bytes in the standard HP 9830 A . up 10 a maximum of 30.144 bytes in the HP 9830 B with option 001. An extemal mass memory subsystem is avaikable for allowing $9830 \mathrm{~A} / \mathrm{B}$ computing controllers to handle up to 4.8 million bytes of informstion. Standard $9530 \mathrm{~A} / \mathrm{B}$'s have 4 I/O slots. and many peripherals are available.

A 9830 A or 9830 B can control up to 14 HP -IB devices via an HP 5940SA Option 030 inrefface. plugged inlo one $1 / 0$ slot—and an
appropriate ROM provided with the interface) also plugged into the computing contsoller.

59310 HP -IB interface for HP 1000 (\& 21MX-series)

The HP 1000 computer system is especially well suiled for broad measurement and data management requirements such as those found in quality assurance, production testing, etc. This is because the HP 1000 (combining a 21 MX computer and Real Time Executive Software) is capable of concurrently conirolling multiple cluslers of HP-IB test and measuring equipment which may be organized into separate physical or finctional groupings, each of which may have up 10 iA HP-IB devices per cluster. The HP 1000 also: (I) makes it possible to develop new programs while exisuing programs are actively contralling and communicating with the businterfaced devices: (2) can be programmed in HP Real Time BASIC, FORTRAN, and HP Assembly language; and (3) can be linked to distnbuted computer networks to achieve centralized test recor̃d mainienance, yield analysis, and work order scheduling and tracing.
Each separate bus chuster (of up to $14 \mathrm{HP}-1 \mathrm{~B}$ devices) connected to the HP 1000 requires one 59310 B Interface. The 59310 B is supponed by a driver, ufility software and a manual supporing operation in HP's memory-bssed RJE and dise RTE-II and RTE.Ill Real Time fxecutive sysicms. A diaghostic nouline for quickly confirming correce operation is included with the interface. and each interface has a 4 metre cable temminated in an HP-IB connector with metric fasteners. Compatibilities between various HP computer sywtems, computers, and operating systems arc indicated below. The 21 MX Series computers include the HP 2105A, 2108.2109 .2112 , and 2113. Note thale the 59310B interface misy also be used with HP 2100NS computers.

	HP 1000	HP 2105A	$\begin{gathered} \text { HP } 2108109 \\ 211213 \\ \hline \end{gathered}$	MP 21000/5
R1E-M:	Yes	Yes	Yes	Ho
STE-115	Yes	H_{0}	Yes	Yes
PIEML	Yes	Ho	Yes	Ro

HP-IB Interface ordering information	Price
59310B: Interface. RTE-[I/III for HP 1000	$\$ 600$
S9405A Opt 030: interface for $9830 \mathrm{~A} / \mathrm{B}$	$\$ 1500$
98034A: Interface for 983 SA or 9845 A	$\$ 400$
98135A: Interface for 9815 A	$\$ 600$

461A Description

This general purpose amplifier can be used as a preamplifier to raise the level of a signal or as a buffer.
The solid-state HP amplifier Model 461A provides stable 20 and 40 dB gain over a wide frequency ravge with fast rise time.

461A Specifications

Frequency response: $=1 \mathrm{~dB}, 1 \mathrm{kHz}$ to 150 MHz when operating into a 50Ω resistive load (500 kHz reference).
Galn at $500 \mathrm{kHz}: 40 \mathrm{~dB}=0.5 \mathrm{~dB}$ or $20 \mathrm{~dB} \pm 1.0 \mathrm{~dB}$. selected by front panel switch (inverting).
inpul Impedence: nominal 50Ω.
Maximum input: 1 V rms or 2 V p-p pulse.
Maximam de input: $=2 \mathrm{~V}$.
Maximum output: $0.5 \vee$ rms inco 50Ω resistive load.
Equivalent wide-band Input noles level: $<40 \mu \mathrm{~V}$ in 40 JB position when loaded with 50 .n.
Distortion: < 5% al maximum outpur and rated load.
Overload recovery: < 1 ss for 10 times overload.
Dlmenglons: $76 \mathrm{~mm} \mathrm{H} \times 130 \mathrm{~mm} \mathrm{~W} \times 279 \mathrm{mmD}\left(3^{\prime \prime} \times 51 \mathrm{~m}^{\prime \prime} \times 1 \mathrm{I}^{\prime \prime}\right)$. Weight: net. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $2.7 \mathrm{~kg}(6 \mathrm{lb})$.

465A Description

HP's 465 A amplifier provides 20 dB or 40 dB gain (X 10 or X 100) with flat frequency response from 5 Hz io 1 MHz with floating inpuls.

465A Specifications

Voltage galn: 20 dB (X10) or 40 dB (X100). open circuit.
Gain accuracy: $=0.1 d \mathrm{~B},(\pm 1 \%)$ at 1 kHz .
Frequency response: $\pm 0.1 \mathrm{~dB}, 100 \mathrm{~Hz} 1050 \mathrm{kHz}:<2 \mathrm{~dB}$ down al 5 Hz and 1 MHz .
Outpurt: >10 V rros open circuit: $>5 \mathrm{~V}$ mas into 50Ω (0.5 W).
Distortion: $<1 \%$. 10 Hz to $100 \mathrm{kHz} ;<2 \%$. 5 Hz to 10 Hz and 100 kHz to 1 MHz .
Input impedance: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Outpul impedance: 50Ω.
Nolse: $<25 \mu \mathrm{~V}$ ras referred to input (with $1 \mathrm{M} \Omega$ source resistance). DImensions: $76 \mathrm{mmH} \times 130 \mathrm{mmW} \times 279 \mathrm{mmD}\left(3^{\prime \prime} \times 51_{\mathrm{k}^{\prime \prime}} \times 11^{\prime \prime}\right)$. Welght net. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. 3.2 kg (7 lb).

467A Description

HP's 467A Power Amplifier/Supply is a 10 watl peak power amplifier and $-20 \mathrm{~V}(10+20 \mathrm{~V})$ de power supply. The wide band width offers low de drift from de to 1 MHz and 0.3% gain. With continuously variable gain and floatipg inputs. HP's 467 A can also be used as a power supply.

467A Specifications

Power ampilifer
Voltage galn (non-Inverting): fixed steps: X1, X2, X5, X10. Variable: $0-10$, resolution is better than 0.18 of full output.
Accuracy: $\pm 0.3 \%$ from dc to $10 \mathrm{kHz}=1.0 \%$ from 10 kHz to 100 $\mathrm{kHz}:=10 \%$ from 100 kHz 10 1 MHz with load of $>40 \Omega$. Output: $\pm 20 \vee \mathrm{p}$ at 0.5 A p .
Distortion: $<0.01 \%$ at $1 \mathrm{kHz}:<1 \%$ al $100 \mathrm{kHz} ;<3 \%$ at 1 MHz .
Input Impedanca: $50 \mathrm{k} \Omega$ shunted by 100 pF .
DC power supply
Voltage range: $> \pm 20 \mathrm{~V}, \pm 10 \mathrm{~V}, \pm 4 \mathrm{~V}, \pm 2 \mathrm{~V}, \pm 1 \mathrm{~V}$ with adjustable vernier. Resolution: belter than 0.1% of full oulput.
Current: ± 0.5 A p.
Load regulation: (front panel) $<10 \mathrm{mV}$, no load to full load.
Line regulation: < 10 mV for a $=10 \%$ change in linc voltage.

General

Output Impedance: (front panel): $5 \mathrm{~m} \Omega$ in series wilh $\mid \mu \mathrm{H}$.
Current limit: $<800 \mathrm{~mA}$.
Dimensions: $159 \mathrm{mmH} \times 130 \mathrm{mmW} \times 279 \mathrm{~mm} \mathrm{D}\left(61 / 4^{\prime \prime} \times 5 \% \mathrm{~m}^{\prime \prime} \times\right.$ 11").
Weight: net, 4.5 kg (10 lb). Shipping. 6.8 kg (15 lb).
Orderling Informatlon Price
461A Amplifier
465 A Amplifier
\$375
467A Power Amplifier/Supply $\quad \$ 875$
-
Wide Band
Flat Response

- Low Noise

The HP 8447 series of general purpose amplifiers combines high relinbility and convenience.
High performance.
The performatice of these amplifiers qualifies theor for a number
of users: to improve the sedsitivity of counters. spectrum analyzers, RF voltmeters, EMI meters, power meters and olher devices with. out distortion or degradation of amplítude aceuracy; 10 increase the maximum power avalable from a signal generator or sweeper.
Broadband frequency coverage
The 8447 serics olfers an amplifier for nearly every application in the 100 kHz 101.3 OHz frequency range. The wide bandwidths are compatible with other wideband instruments and accommodate wideband specira.

Options

A variety of options are available: a 75Ω impedance model 〈Op(ion 002) for applications such as television/FM broadcasting and CATV: iwo dial channel versions (Option 00t-BNC connectors and Option 0ll-Type N connectors) which operate with dual chatr nel systems such as oscilloscopes or aelwork analyzers (or the channels may be cascaded for increased gain); Type N conncetors rather than the standard BNC connectors (Option 010).

General

Welght: net, 1.56 kg (3 pounds. 7 ounces). Shipping, $2.30 \mathrm{~kg} \mathrm{\{ } \mathrm{Sb}, 1$ OZ).
Slze: $85.8 \mathrm{H} \times 130 \mathrm{~W} \times 216 \mathrm{mmD}\left(3 \% \%^{\mu} \times 51 \mathrm{~m}^{*} \times 81 /{ }^{\prime \prime}\right)$.
Power requlrements: 110 or $230 \mathrm{Vac} \pm 10 \% 0,48-440 \mathrm{~Hz}, 15$ watts.
Ordering information
Price
8447A Preamp
$\$ 650$
B447C Power Amp
$\$ 550$
8447D Preamp
$\$ 725$
8447E Power Amp
$\$ 775$
8447F Preamp-Power Amp $\$ 1300$

Specifications

| | |
| :---: | :---: | :---: | :---: | :---: | :---: |

Microwave TWT Amplifiers

Amplification of frequencies from I to 12.4 GHz is accomplished in four ranges by the Hewlett-Packard medium-power, microwave amplifiers. Each delivers at leas! I watt for a 1 -mi)liwat input - a gain of at least 30 dB .

All four TWT amplifiers have provision for amplitude modulation, and since the internal modulation amplifier is de-coupled, remole programming and pou'er leveling are possible. Sensilivity is high for large outpue power changes from relatively small modulation signals. obviating the need for an external modulation amplinier.
The de amplifier has a gain of 20 dB and exhibits a passband from de 10500 kHz when modulation index is in the neighborhood of 1 dB . as might be encountered in RF leveling. Whest the modulating levels are high, in the region of 20 volis. the passband will be a minimum of 100 kHz a 20 -volt change al the MOD INPUT produces a midimum of 20 dB off/on ratio.

Cathode current is the TWT is monitored by a front panel meter and can be conveniendy conirolled by the GAIN adjusument for rated power oulpu, or for reducing tube current to extend tube life when full output power is not required. And helix. collector, and anode curtent can be measured at an easily accessible test point board. Combined with the 8620 or 8690 Sweep Oscillator they make an excellent high power swept source.

Advantages

DC coupled modulation circuitry allows power leveling and remote programming.
Periodic-permanent-magnet focusing means fewer alignment problems.

Applications

Antenna efficiency and pattern measurements.
Exiends attenuation measuring systems capability by at least 30 $d \mathrm{~B}$.

RF1 susceptibility tests.

489A-495A Specifications

Output power: I wat for an input of $\leqslant 1$ row.
Gain: 30 dB at rated output.
Input/output: impedance. 50S: connectors, type N femsile.
Nolse figure: $\leqslant 30 \mathrm{~dB}$.
Amplitude modulation:
Sensitivity: modulation input of $>-20 \mathrm{~V}$ peak reduces RF outpul by $\leqslant 20 \mathrm{~dB}$ from de to $50 \mathrm{k} \cdot \mathrm{Hz}$.
Frequency response: dc to $500 \mathrm{kHz}(3 \mathrm{~dB})$.
Pulse response: <l μ s rise and fall limes.
Size: $140 \mathrm{H}, 426 \mathrm{~W}, 467 \mathrm{~mm} \mathrm{D},\left(5 / \mathrm{g}^{\prime \prime} \times 16^{9} \%^{\prime \prime} \times 183^{\prime \prime} \mathrm{g}^{\prime}\right)$.
Welght: net, 14.9 kg (33 lb). Shipping. 18.0 Kg (40 ib).

	4694	491 C	4034	4994
Freguancy rgnge (CKz)	1.2	2-4	48	7-124
Galn vanation wilm treq. al rated output small signal soouss any 10% of band deross full Band	$\begin{aligned} & 56 \mathrm{~dB} \\ & =5 \mathrm{~dB} \\ & \approx 12 \mathrm{~dB} \end{aligned}$	$=668$ $\$ 508$ $=1288$	$\begin{aligned} & =6 \mathrm{~dB} \\ & =5 \mathrm{~dB} \\ & \leqslant 12 \mathrm{~dB} \end{aligned}$	$\leq 6 d B$ $\begin{gathered} \begin{array}{c} 35 \mathrm{d8} \\ 100 \\ 300 \mathrm{MHI} \\ \leqslant 10 \mathrm{de} \end{array} \\ \hline \end{gathered}$

[^1]

Figure 1. Four different rypes of meter scales avallable. (a) Linear 0-3 V and $0-10 \mathrm{~V}$ scales plus a dB scale. (b) Linear dB scale plus non-linear (logarithmic) voltage scales. (c) dB scale placed on larger arc for greater resolution. (d) Linear - $20: 00$ αB scals useful for acoustical and communlcations applicalions.

Analog voltmeter conslderatons
Accuracy-Before we can díscuss meter accuracy. we mut have a familiarity with the various meter scales availatlle. Many instruments have meter scales marked in both volts and decibel (dB) unies. It should bet noted that dB and voltage are complements or each other. That is. if a vollage scale is made finear, the $d 7$ scale on the same meter face will be logarithraic or nonlinear. Likewise, if the $d B$ scale is made linear. the voltage scale becomes nonlinear. The term "linear-log scale" is applicd to an instru. ment that has a linear dB scale and, there. fore, a nonlincar voluge scale. Several different types of meter races are illusirated in Figure 1.

Analog meters (Figure 2) usually have nonlinearities and/or offsets present in the attenuators and amplifiers. The meter movement itself can have nonlinearities! even with individually calibrated meter scales. Nonlinearities cause percent of read-
ing errors, and offsets cause percent of full scalc ertors. Percent of reading emors are constant no matter where the meter pointer is. Pescent of full-scale error increases as the pointer goes further down scale.

Looking al instrument specification sheets, accuracy specifications are usually expressed in one of three ways: 1. percent of the fulf-scale value, 2. percent of the reading. 3. (percent of reading + peceeni of full-scale). The first is probibly the mos? commonly used accuracy specitication. The second (percent of reading) is more commonly applied to meters having a logarithmic scale. The last method has been used more recenly to oblain a tighter accuracy specilication on a lincar-scale instrument.

Hewlett-Packard wes the Iwo-part accuracy specification to take advantage of the upper-scale accuracy and yel maintain a reasonable specification for the lower portion of the scale.

Figure 2. Non-linearltles cause \% of reading errors. Olfsets cause \% of tull scale ertors.

For a thorough evalualion of accuracy. the following should be considered: Does it apply at all input-voltage levels up to maximum overrange point? (Linearizy specteticalions may be added to qualify this point.) Does it apply to all frequencies throughout is specified bundwidth? Does it apply on all ranges? Does it apply over a useful temporature range for the applica. ion? If not. is temperature coefficient specified?

Selecilng an enalog voltmeter

1. For measuremens involving de applications, sclect the inslument with the broadest upability meeling your requirements. 2. For íc me:abtrements smolving sine waves with only modest amounts of distortion ($<10 \%$), the average-responding volimeler can perform over a bsandwidth extending to several megahentz. 3. For highfrequency measurenuents ($>10 \mathrm{M} \mathrm{Hz}$). the peak-responding vollmeter with the diode. probe input is the most ccodomical choice. Penk-responding circuits are acceplable if inaccuracies caused by distorion in the inpul wavefom can be toleratod. 4. For measurements where it is imporiant to determine the effective power of waveforms that depart from n true sinusoidal form, the true rms-responding volimelel is the sppropriale choice. In general, liue-rms meters reveal only the jms value of an ac signad. Because they are ac coupled, mosi volimelers have a frequency cut-off around 20 Hz . This restriction keeps the fhe-mis voltmeler from accomting for any low frequencies or de components in a signal.

The 3403C RNS Digital Volemeter measures dc plus ac from 2 Hz to 100 MHz . See page 52.

For very wide bandwidths (up to 1 GHz) and high-sensitivily measurements of sinusoidal or nonsinusoidal waveforms. The HP 3406A is the proper choice. Although the 3406 A is average-responding. it has a sample hold oulput which makes andysis of waveforms possible.

For applications requiring monitoring signals with large excursions and in applicalions requiring log values 10 be plolted on a graphic recorder, the HP 7562A and HP 7563 A \log volimeters provide a large dynamic range (110 dB) and displays the input on a single meter mange while provid. ing an outpu: voliage that is the log of the iлput.

Table 1. HP analog instruments

dC vaitmeters	Vohaze ranga	Frogutacy fange Accurasyal f5*	Inpul Impoúance	Hocel	$\begin{aligned} & \text { Set } \\ & \text { Page } \end{aligned}$
DC NHL VOLTMETER		$\begin{gathered} \alpha c \\ =7 \alpha+1 \mu v \end{gathered}$	$100 \mathrm{k}-100 \mathrm{mn}$ dejending on rang: (sinimite wheti nulled)	418\%	35
OC YOLI-AMMEER	$\begin{gathered} D C=1 \mathrm{mV},=300 \mathrm{~V} \\ (12 \text { manges) } \\ =1 \mathrm{DA}=300 \mu \mathrm{~A}(12 \\ \text { ranges) } \end{gathered}$	$=3 \%$ dc	10 MrI ald Ianges	43048	see Sheet
ac volthitics	Vollate range	froquency Rage Typical Aocuracy	Rexponse Input Impadsnce	Model	$\begin{aligned} & \text { Ser } \\ & \text { Page } \end{aligned}$
	$1 m v-300 v$ (12 tanges.	$\begin{aligned} & 5 \mathrm{Hr}-2 \mathrm{MHz} \\ & =2 \%--5 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 2 \mathrm{MO}<30-<60 \text { of } \end{gathered}$	4038	39
PAST-RESPONSE AC VOLIMAEP 100 kHy low-pass inter it amplitier	$\begin{gathered} 100 \mu V-30 \pi v-90 \\ d 8-52 d \mathrm{~dB} \end{gathered}$	$\begin{aligned} & 20 \mathrm{H}_{\mathrm{i}}-4 \mathrm{MHz}-=1 \% \\ &-=4 \% \end{aligned}$	$\begin{gathered} \text { Average } \\ 10 \mathrm{MQ} / 10-25 \mathrm{pr} \end{gathered}$	$\begin{gathered} 400 \mathrm{~K} \\ 400 \mathrm{IL} \end{gathered}$	40
		$\begin{gathered} 20 \mathrm{~Hz}-4 \mathrm{MHz}=0.2 \\ 0 \mathrm{R}-0.4 \mathrm{~dB} \end{gathered}$	$10 \mathrm{M} \Omega<15-<30 \mathrm{pr}$	800cl	40
HIGH ASCURACY AC VOLTMLDER has de pulpul $\in 0$ S\% lor drang recorder	$\begin{gathered} 1 \pi v-300 \vee-70 d 8 \\ +5208 \end{gathered}$	$\begin{gathered} 10 \mathrm{~Hz}-10 \mathrm{Mmk}=1 \% \\ =5 \% \end{gathered}$	$10 \mathrm{Mn} /<12-\mathrm{c}^{2} 25 \mathrm{OF}$	$\begin{aligned} & 400 \mathrm{E} \\ & 400 \mathrm{E} \end{aligned}$	40
RMS VOLIMELR provites ims readings of complax signals Hss dc ouliput lor urimifis Dw's ar recorders	$\begin{aligned} & 1 \mathrm{mV} \text { - } 300 \mathrm{v} \\ & \text { (12 ranges) } \end{aligned}$	$\begin{gathered} 10 \mathrm{HZ}-10 \mathrm{MHz} \\ =7 \%-25 \% \end{gathered}$	$10 \mathrm{Maj} 15-40$ of	3400A	11
SAMPING RI volmatir provides the gins measuraments When used with 3a00. Many accessaries		$\begin{gathered} 10 \mathrm{kKR} \text { to }>12 \mathrm{GHz} \\ =3 \% \cdot \mathrm{GH}- \pm 13 \% \end{gathered}$	Stuliblical Aversget: thiput Z depinds on probe tio used	3406A	42
VECTOR YOLIMEER phase and ampatude measurements	$100 \mathrm{\mu v}-10 \mathrm{~V}$ (Stinges)		$\begin{aligned} & \text { Nugrage } \\ & 01 \text { mol2.5 of } \end{aligned}$	84054	450
MLLIOHMMETER; Wro probes used when making 4 ierminal measurements	0.001 to 1001 IS (11 Ranyes)	$\begin{aligned} & 1 \text { int: i\{x=d\}} \\ & =2 \% \text { is } \end{aligned}$	Mar oulrel voltare 20 nil	43284	78
HiGH RESISTANCE MLITR and plooammeter	$0.5 M \Omega 102 \times 10^{18} n$ FS 7 ranges) 0.05 pA -20 н	$\begin{aligned} & \text { Voltage }=10 \% \\ & \text { Current: }=3 \% \end{aligned}$	Max. output YoltageI ky	4329A	79
MUITIFUNGTION METEAS	Volfage hance iAccuracyi	Currens Range (Accurscy)	Hosisunce Range (heculacy)	Model	$\begin{gathered} \text { Ser } \\ \text { facte } \\ \hline \end{gathered}$
BATERX UFERAIED MULYIFUKCTION METER lise 10 	$0 C_{1} \pm 1100 \mathrm{my} \text { to }$ 1000 V CーT\% G ranges AC: 10 T $\mathrm{m}-$ 300 Y $10 \mathrm{~Hz}-1$ MN 62\%) 10 ranges		$\begin{aligned} & 10 \mathrm{n}-10 \mathrm{Mn} \text { mid- } \\ & \text { scale } \pm 5 \% \text {, from } 0.3 \\ & 103 \text { an the meter } \\ & \text { scale } 77 \text { ranges) } \end{aligned}$	427 A	37
VERSAIIIE VQLTMETER has 100 MS de input inpedanco jnd $10 \mathrm{Mn} / \mathrm{L}$. 5 ol ac impedance		$\begin{gathered} D C= \pm 1.5 \mu A \text { to } \\ =150 \mathrm{~m} \dot{t}=3 \%) 11 \\ \quad \text { ranges } \end{gathered}$	10n-10 Mn isenter scales 0 to midscale $\approx 5 \% \text { or }=2 \% \text { of }$ midscale (whichever is greater) 7 tanges	4100	38
CURPENT METEAS	Current gange	Lecamay	Freguency honge	Mabel	$\begin{gathered} \text { See } \\ \text { Paye } \end{gathered}$
OC MIDAMmeter wiln clig-on prife chiminates difect connection	$\begin{aligned} & 1 \text { miA-16 A IS } \\ & \text { lG:aripe; } \end{aligned}$	$\pm 3 \%$		S288	36
Log Vallmeter	Voluge Aange	Aecuracy ficquency Response		Madel	$\begin{aligned} & \text { See } \\ & \text { Page } \end{aligned}$
Loganthmic Volfmetes/Convorier true RMS responding	$\begin{aligned} & 808 \mathrm{E}(2 \text { ynges } \\ & 1 \mathrm{mv}-10 \mathrm{yor} \\ & 10 \mathrm{mv}-100 \mathrm{y} \end{aligned}$	$\begin{gathered} 0.5 \mathrm{~Hz}-100 \mathrm{kHz} \\ =0.5 \mathrm{~dB}-3 .+108 \\ \mathrm{dc}= \pm 0.25 \mathrm{~dB} \end{gathered}$	de mode: $100 \mathrm{KQ} /<100 \mathrm{nf}$ sc mode. $1 \mathrm{ma} /<100 \mathrm{pr}$	756边	$\Delta 3$
Lorarithmic Voltmetel/Amplifier	$110 \mathrm{~dB}(1$ range $315 \mu v-100 \times d e$	$\begin{aligned} \mathrm{dr} & = \pm 0.25 \mathrm{~dB} \\ & - \pm 1.5 \mathrm{~dB} \end{aligned}$	$100 \mathrm{k} 15<100 \mathrm{dF}$	75634	43

-For exad acsuracy refer to page designaled.

Description

Eighteen voltage ranges with $0.1 \mu \mathrm{~V}$ resolution on the lowest range. Accuracy or this rechargeable ballery-opemaed insirument is $\pm 2 \%$ of end scale $\pm 0.1 \mu \mathrm{~V}$ on all ranges. Noise is less ihan $0.3 \mu \mathrm{~V}$ $\mathrm{p}-\mathrm{p}$. and drift is less than $0.5 \mu \mathrm{~V} /$ day.

An internal nulling voltage allows ingut voltages up to 300 mV to be nulled giving an infinite input impedance. Input impedance above 300 mV range is $1(0)$ megohms.
Seven pushbutions allow rapid function selection. This de null voltmeter operates from ac line or from intemal rechargeable batreries. During operation from ac line, balleries are trickle-charged. A fast-charge pushitution is provided to increase the charging rate, rechanging batleries in approximately 16 hours. Battery voltage may be checked with the battery-iest pushbution. The zero pushbution allows compensation for any internal offsets before measurement. When this pushbution is depressed, the positive leg of the volemeter is disconnected from the positive input terminal.
When the voltmeter pushbution is depressed. HP 419A functions as a zero-center scale $3 \mu \mathrm{~V}$ to 1000 V dc volimeter.
When the AM pushbulton is depressed. HP 419A functions us a zero-center scale 30 pA to 30 nA ammeler.

Specifications

DC null voltmeter

Ranges: $\pm 3 \mu \mathrm{~V}$ to $\pm 1000 \vee \mathrm{dc}$ in 18 zero-center ranges.
Accuracy: $\pm(2 \%$ of range $=0.1 \mu \mathrm{~V})$.
Zero control range: $> \pm 15 \mu \mathrm{~V}$.
Zero drift: $<0.5 \mu \mathrm{~V} /$ day after 30 min warm-up.
Zero temperature coetficlent: $<0.05 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.

Response time: 3 s to within 95% of final reading on $3 \mu \mathrm{~V}$ range: Is to within 9 sce of final reading on $10 \mu \vee$ to $1000 \vee$ ranges. Nolse: $<0.3 \mu \mathrm{~V} p-\mathrm{p}$, input shorted. Noise amplilude approsimates Gaussian distribulion. RMS value (standard deviation) is <0.075 $\mu \mathrm{V}, \mathrm{p}-\mathrm{p}$ noise vilue is $<0.3 \mu \vee 95 \%$ of the time.
Input characteristics
At null: infinite resistiance on $3 \mu \mathrm{~V}$ through 300 mV ranges in sel null mode. Negative input terminal can be floated $10 \pm 500 \mathrm{~V}$ de from power line ground.
Off null

Volfage range	smpul resistinca
$3 \mu \mathrm{~V}-3 \mathrm{mV}$	100 kn
$10 \mathrm{mV}-30 \mathrm{mV}$	1 MII
$100 \mathrm{mV}-300 \mathrm{mV}$	10 mll
$1 \mathrm{~V}-1000 \mathrm{~V}$	100 mll

Negative input terminal can be floated up to $\pm 500 \mathrm{~V} \mathrm{dc}$ from power. line ground.
$A C$ nomal mode rejection: ac voliages 50 Hz and above and 80 dB greater than end scate affoct rending $<2 \%$. Peak ac voleage not to exceed maximum overload vollage.
DC ammeter
Ranges: $\pm 30 \mathrm{pA}$ to $\pm 30 \mathrm{nA}$ in 7 zen-center ranges.
Accuracy: $=(3 \%$ of range $+1 \mathrm{pA})$.
Zero control range: > $\pm 150 \mathrm{pA}$.
Zero drift: <5 pa/day after 30 min warm-up.
Zero temperature coefficient: $<0.5 \mathrm{pA} /{ }^{\circ} \mathrm{C}$.
Nolse: <3 pA p.p. inpul shoried.
Input resistance: $100 \mathrm{k} \Omega$ on all ranges.
Amplifler
Gain: 110 dB on $3 \mu \mathrm{~V}$ range, decreases 10 dB per tange.
Output: 0 to $=1 \mathrm{~V}$ al ImA maximum for end-scule reisting. Oulput level adjustable for convenience when used with recorders.
Output resistance: depends on setring of output level control. $<35 \Omega$ when output control is set to maximum.
Nolse: 0.01 Hz 105 Hz : kame as volimeler (referred to inpul), >5 $\mathrm{Hz}:<10 \mathrm{mV}$ mems (refecreal to output).

General

Overload protection: the following voltages can be applicd without darnage to instrument.

1 V 101000 V range: 1200 V dc .
10 mV to 300 mV range: 500 V dc.
$3 \mu V$ to 300 mV range: 50 V dc .
Operating temperature: instrument will operate within specificalions from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Operating humidity: $<70 \%$ R.H.
Storage temperature: $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V}=10 \%$. 48 Hz to $440 \mathrm{~Hz}, 2 \mathrm{VA}$ max. or 4 internal rechargeable batteries (furnished). $30-\mathrm{hr}$ operation per recharge. Operation from ac line permissible during recharge.
Stye: 156 H (without removable feel), $197 \mathrm{~W} .203 \mathrm{~mm} \mathrm{D}\left(6 \frac{1}{1 / 1} \times\right.$ $7^{4 / 4} \times 8^{\prime \prime}$).
Welght: nel. $3.7 \mathrm{~kg}(8.3 \mathrm{lb})$. Shipping. 5.4 kg (12 lb).
419A DC Null Volt-Ammeter

ANALOG VOLTMETERS
1 mA to 10 A clip-on dc milliammeter Model 428B

- No circuit interruption
- No circuit loading

Description

Direct current from I muliampere to 10 amperes full scale can be measured witholl internupting your measured circuit or producing loading eriors. With the HP Model 428B Clip-on Milliummeter, cutting wire, for insertion of current meters and calculating current from voltage and resistance readings are eliminated. All that is required for fast, accumate readings is to clip around the wire and select the proper current range.

The 428 B measures current by utilizing a clip-on (ransducer Lat converts the mapnctic field around the conductor to an ac voltage proportional to de current. This vollage is detected and displayed as direct current on the 428 B 's meter. Since there is no direct contact with the circuit being measured. complete de isolation is assured.

The meter responds to de current only and is therefore not suscepuble to common made curtents. However. low frequency currents up to fK$) \mathrm{Hz}$ can be measured by connecting an oscilloscope or vollmeter to the convenient front panel output; or this ouspul can be used to drive a sirip chate recorder for permaneni long term reconds.
For even greater sensuivily, several locps of the measured conductor can he put through the probe. increasing sensitivity by the same fietur in the number of tums used.

Soecifications

DC current range: 1 mA to 10 A fulf scale. nine ranges. Aceurscy: $=3 \mathrm{~m}$ of full scale $=0.15 \mathrm{~mA}$, from $0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}$ (when instrument is calibrited to probes).
Probe Inductance: $<0.5 \mu \mathrm{H}$.
Probe Inducted voltage: $<15 \mathrm{mV} p$ (worst case al 20 kHz and harmonics).
Output: variable linear outpu level with switch position for calibraled IV into open circuit (corre sponds to full scale deflection). I.5
V max. into open circuit in uncalibrated position. $0.73 \pm .01 \mathrm{~V}$ into 1 $k \Omega$ in calibreted position.
Noise: I mA range. <15 mV ms across $1 \mathrm{kil} ; 3 \mathrm{~mA}$ range, $<5 \mathrm{mV}$ rms across I $\mathrm{k} \Omega$: 10 mA through 10 A ranges, $<2 \mathrm{mV} \mathrm{mms}$ across I kll.
Frequency range: dc 10400 Hz (3 dB point).
$A C$ rejecilon: signals above $S \mathrm{~Hz}$ with p value <full scalc aflecı meter accuracy <2 er (cxcept at 40 kHz címier frequency and its harmonics) On unc 10 A ringe. ac p value is limited to 4 A .
Power: Il5 or $230 \mathrm{~V} \pm 10$ rim. 50 to 60 Hz . approx. 75 VA max.
Operaling temperature range: $-30^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$
Storage temperature: $-40^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C}$.
Probe Insulatlon: $\mathbf{3 0 0} \mathrm{V}$ maximun.
Probe tlp size: approximatcly $1 / 夕^{\prime \prime}$ by $11 / 3 z^{\prime \prime}$ aperme diameler " $1 / 2 z^{\prime \prime}$.

Welght: ner. $8.6 \mathrm{~kg}(19 \mathrm{lb})$. Shipping, 10.9 kg (24 lb) (cabinct): $n \in 1$, 10.8 kg (24 lb). Shipping, 14.4 kg (32 lb) (rack mount).

Accessories available

3529A Magnetometer Probe: this probe measures magnetic field strength and direetion. The component of magnelic lield sensed is pratlel to the cylindrical axis of the probe. Applications include the testing of magnetic materials for air shipment.
Range: 1 mG to 10 G full scalle. nine ranges. $1 \mathrm{mG}=1 \mathrm{~mA}$ conversion faclor.
Accuracy: $=3 \%$ of full scale $\left(0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\right)$ afier calibaion.
Frequency range: DC to 80 Hz (A dB point).
Welght: nel 0.45 kg (1 |b). Shipping 0.91 kg (2 (b).

Ordering information

Price
3529A Magnetometer Probe
428B Analog Millammeter (cablnet)
$\$ 119$
$\$ 1050$

Overload protection: 1200 V dc.
AC voltmeter
Ranges: 10 mV io 300 V in 10 ranges in 10 dB steps.
Frequency range: 10 Hz to 1 MHz .
Response: responds to average valuc, calibrated in rms.
Accuracy

frequency	Range	
	0.01 V 1030 V	100 V 10300 V
10 Hz 10.100 Hms	2% of range	2% of ange
100 kHz 101 MHz		

Input impedance: 10 mV to I V range, $10 \mathrm{M} \Omega$ shunted by $<40 \mathrm{pF}$: 3 V to 300 V range, $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$.
Overioad protection: 300 V ms momentarily. I V range and bclow: $425 \vee$ rms max above $I V$ range.

Onmmeter

Ranges: 10Ω to $10 \mathrm{M} \Omega$ center scalc in 7 decade ranges. Accuracy (from 0.3 to 3 on scale): $\pm 5 \%$ of reading.
Source current (obms terminal posilive)

Rarle	Open circuilt vollaze	Short circult Curient
$\times 10$	0.14	10 mf
$\times 100$	0.17	1 mA
	IY	1 mA
$\times 10 \mathrm{k}$	IV	$100 \mu \mathrm{~A}$
$\times 100 \mathrm{k}$	IV	$10 \mu \mathrm{~A}$
$x \mid M$	1 V	$1 \mu \mathrm{~A}$
$\times 10 \mathrm{M}$	1 V	0.1 M

General

Input: may be floated up to $=500 \mathrm{~V} d \mathrm{c}$ above chasis s.round. Ohms input open in any function except ohms. Volts input open when instoment is off.
Operating temperalure: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: >300 hs operation per baltery.
HP 427A: 22.5 V dry cell battery. Evcready No. 763 or RCA VS102. HP 427A Oplion 001: ballery operation or ac line operation. selectable on rear pancl. 115 V or $230 \mathrm{~V} \pm 20 \%$. 48 Hz to 440 H , 2 \checkmark A max.
Size: (slandard $1 / 3$ module): 159 H (without removable feel). 130 W . $20.3 \mathrm{~mm} \mathrm{D}\left(6 / 1^{7} \times 5 / \mathrm{H}^{\prime \prime} \times 8\right)^{12}$.
Welght: nel, $2.4 \mathrm{~kg}(5.3 \mathrm{lb})$. Shipping. $3.6 \mathrm{~kg}(8 \mathrm{lb})$.

Accessorles avallable

HP 11096 A High Frequency AC Probe exiends range $10>500$ MHz. With the 11096 A , you can measure 0.251030 V rms signals out 10500 MHz with better than $\pm 1 \mathrm{~dB}$ accuracy. Usable relative measurements can be made up to 1 GHz (3 dB point at 700 MHz). The 11096 A is a peak-rexponding detector calibrated to produce a de outpll proportional to the rms value of a sine wave input. Input impedance is $4 \mathrm{M} \Omega$ shunted by 2 pF .
Optlons and accessories
Price
11075A High Impact Case. A rugged case for carty- $\$ 115$
ing, stoning and operating the 427A
11096 B High Frequency AC probe
r1001A 45" iess lead, dual banana plug to male BNC $\$ 17$
$11002 \mathrm{~A} 60^{\prime \prime}$ test lead. dual banana plag to alligator clips
11003A 60 " iest lead. dual banana plug to pencil probe and alligator clip
10111A BNC female to dual bannata adapicr
11067A Test lead kit

Orderlng information

427A Multi-function Metcr (ineludes batteries)

Description

HP's Madel 410 C is a versatite general purpose instrument for use anywhere electrical measurements are made. This instnment measures de voltages from 15 mV to 1500 V , direce curtent from $1.5 \mu \mathrm{~A}$ to 150 mA full scale, and resistance from $0.2 \Omega 10500 \mathrm{M} \Omega$. With a standard plug-in probe. ic voltages al 30 Hz to 700 MHz from 50 mV to 36 V and comparative indications to 3 GHz arc atainable.

Speciflcations

DC voltmeter
Voltage ranges: $\pm 15 \mathrm{mV}$ 10 $\pm 1500 \mathrm{~V}$ full scale in 15,50 sequence (11 ranges)
Accuracy: 2% of full scale on any range.
Input resistance: $100 \mathrm{M} \Omega=1 \%$ on 500 mV range and above. 10 $M \Omega=3 \%$ on 150 mV range and below.
$A C$ voltmeter
Voltage ranges: 0.5 V to 300 V foll scale in $0.5,1.5$. 5 sequence 17 ranges)
Frequency range: 20 Hz to 700 MHz .
Accuracy: $=$? 9 , of full scrile al 400 Hz for sinusoidal voluiges from 0.5 V - 300 V rms. The ac probe responds to the positive peak-above-average value of lue applied signal. The meter is calibrated in rms.
Frequency response: $=2$ Sir fiom 100 Hz to $50 \mathrm{MHz}(400 \mathrm{~Hz}$ ref.): 0 to -4\% from 50 MHz to $100 \mathrm{MHz}: \pm 10 \%$ srom 20 Hz to 100 Hz and $=1.5 \mathrm{~dB}$ from 100 MHz to 700 MHz .
Input Impedance: inpul capacilance 1.5 pF . input resistance >10 Mn at low frequencies. At high frequencies, impedance drops off due to dielectric loss.
Satety: the probe body is grounded to chassis at all times for safety. All ac measurements are referenced to chassis griund.

DC ammeter

Current ranges: $\pm 1.5 \mu \mathrm{~A}$ 10 $\pm 150 \mathrm{~mA}$ full scale in 1.5 .5 sequence (II ranges).
Accuracy: $\pm 3 \%$ of full scale on any range.
Input realstance: decreasing from $9 \mathrm{k} \Omega$ on $1.5 \mu \mathrm{~A}$ range to approximately 0.1Ω on the 150 mA range.
Speclal current ranges: $=1.5=5$ and ± 15 nA may be measured on the 15.50 and 150 mV ranges using the de valtmeter probe. with x 5% accuracy and $10 \mathrm{M} \Omega$ inpul resistance.

Ohmmeter

Resistance range: resistance from 10Ω to 10 Mn center scalc (7) ranges).
Accuracy: zero 10 midscale: $\pm 5 \%$ of reading or $\pm 2 \%$ of midscale. whichever is greater: $\pm 7 \%$ from midscale to scale value of $2: \pm 8 \%$ from scalc value of 2 to $3 ; \pm 9 \%$ from scale value of $3105 ; \pm 10 \%$ from scale value of $\$$ to 10 .

Amplifer

Voltage galn: 100 maximum.
$A C$ relectlon: 1 dB al $0.5 \mathrm{hz:}$, pporoximately 60 dB at 50 Hz and higher frequencies for signills $<1600 \mathrm{~V} p$ or 30 tumes full sarile. whichever is smaller.
Isolation: impedance becween common and chassis is $>10 \mathrm{M} \Omega$ in parallel with $0.1 \mu \mathrm{~F}$. Common may be floated up to 400 V dc above chassis for de and resistance meanurements.
Output: proportional to meter indications: 1.5 V de al full scale. maximum current. 1 mA.
Oulput impedance: $<3 \Omega$ al dc.
Nolse: $<0.5 \%$ of full scale an any range ($p-p$)
DC drift: <0. 5% of full scale/yr at constant lemperature. $<0.02 \%$ of full scale $/{ }^{\circ} \mathrm{C}$.
Overload recovery: recovers from 100:1 overload in <? s.

General

Maxlmum Input: (see overioad recovery). DC: 100 V on 15. 50 and 150 mV ranges. 500 V on 0.5 to 15 V ranges. 16100 V on higher ranges. AC: 100 limes full scule or $450 \mathrm{~V} p$ whichever is less
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz}, 17 \mathrm{VA}$ (30 VA with 11036 A AC Probe).
Size: 165 H (without removable feet), $\times 1302 \mathrm{~W} \times 320.7 \mathrm{~mm} \mathrm{D}$

Weight: nel, 4 kg (8 lb). Shipping, 5.44 kg (12 lb).
Accessories furnlshed: delachable powcr cord, NEMA plug. 11036 A AC Probe.
Accessorles a vallable: sec Pages 514-517.
Ordering information Price
410 C Oplion 002 (less AC probe)
HP 410 C with HP I 1036 A Detachahle AC Probe
less $\$ 44$
$\$ 950$

Description

The Hewlett－Packard $A(13 B$ AC Volmeter is a vervate．seneral purpose instrument for laboritery and production work yél is ideal for use in the field since it is solid－state，battery＇operated．and porta－ ble．
11 measures from 100 microvolts to 300 volts，covering 5 Hz 102 MHz．It operates from internal batieries and thus may be com－ pletely isolated from the power line and extemal grounds，permitting accurale measurements al power line frequency and its harmonics withou concem for beat effects．Isolation from external ground also permis use where ground loops are troublenome．Tumover effect and waveform crrors are minimized because the meter responds to the average value of the input signal．
The 403B operates from an ac line as well as from the intemal ballery pack，and baltelies recharge during ac operation．Battery charge may be easily checked with a froml－panel switch o ioncure reliable measurements．Normally，about 60 hours of ac operation recharges the batteriex；but an intemal adjustment is provided which nearly doubles the charging rate．The Model 403B can be used while its batteries charge．A sturdy taut－band meter eliminates friction and provides greater precision and repeatabitily．
For improved resolution in dB measurements，the 403B Option 001 is available．This version spreads out the dB scale by making is the lop scale of the neter．

Speciflcations

HP Madel	403日	4038 Opfion 005
Rsnpe		
Meles	fiespends te zverage walue of libut wavelorm，calitrated th the tme value of a sine wave．	
fiequency Нลกge	5 Hz to 2 MML	$5 \mathrm{~Hz}_{3}$ io 2 MHz
Axeلuras	within $z 2 \%$ of fult scale from 10 fz to 1 MHz ，within $二 5 ? \%$ of full scale lrom 5 to 10 Hz and 1 to 2 MHz ，wespt $=10 \mathrm{~cm}$ 1 to 2 MHz on the 300 V range t0 to 50 CJ ．＇	within $\pm 0.20 \mathrm{~dB}$ of full scale from 10 Hz to I Mit：within $\pm 0.4 \mathrm{~dB}$ of full scale from 5 to 10 Hz and 1 10 2 mPiv ． except $=0,8 \mathrm{MHz}$ on the 300 V range（ 0 to $5 \mathrm{E}^{\mathrm{C}} \mathrm{C}$ ）．
Inout impedance	2 Mn ；shunted by $<60 \mathrm{pF} ; 0.001100 .03 \mathrm{~V}$ ranges：-.30 dS ． 0.110300 V tanges．	same as $\mathbf{5 0 3 0}$
MaxImum Ingut	Tuso protectod（signal ground can be ± 500 v oc from chassis）．	same as 6 SJB
Powr	4 rechargeable hatteries， 40 hr ．operation per recharge， up to 300 rechasging cycles；self－contained recharging circuil lunctlons guning operation from ac line．	same as 4038
Slic	159 H （wílhout removable teel）$\times 130 \mathrm{~W} \times 203 \mathrm{~mm} 0\left(5 \%_{4}{ }^{\circ} \times 61_{4}{ }^{\prime \prime} \times 8{ }^{*}\right)$ ，	same as 4037
Weight	nel． 29 kg （ 5%（0）．Shlpping 3.6 kg （8 18）	samb as 4038
Plat	Q䢒	940 3010

Specifications

	400 EEL '	s00F/FL'	4000L
Volugge ianga	1 my to 300 V S.S. 12 ranges		$\checkmark 80$ ob to - bio d i f 8 ranges
Ir aquancy range	10 Hz - 10 MHz	$20 \mathrm{~Hz}-4 \mathrm{MHL}_{2}$	$20 \mathrm{HL}-4 \mathrm{MHz}$
lubut inloudance	10 Mn on ah ranges $=25$ of $10<12$ pi depending 	10 Mn on all ranges. $<25 \mathrm{pF}$ to $<10 \mathrm{pf}$ dapending on rangers	$10 \mathrm{M} \Omega$ on all ranges $\because 300 \mathrm{pF} 10<15 \mathrm{pF}$ depending on ranges
mecuracy			.6068 isnge $20 \mathrm{~Hz}-60 \mathrm{kHz}= \pm 0.4 \mathrm{de}$ 40 , thz $-100 \mathrm{bHz}=0.2 \mathrm{~dB}$ -60 dB thy + 40 d8 ranges $20 \mathrm{~Hz}-40 \mathrm{~Hz}: \pm 0.4 \mathrm{~dB}$ $40 \mathrm{~Hz}-500 \mathrm{kHz}:=0.2 \mathrm{~d} \mathrm{k}$ $500 \mathrm{kHz}-2 \mathrm{MHz}:=0.409$ $2 \mathrm{MHz}-4 \mathrm{MHz}+0.2-0.8 \mathrm{~dB}$ - BO de range $30 \mathrm{~Hz}-60 \mathrm{~Hz}=0.468$ $60 \mathrm{~Hz}-100$ Wha: $=0.2 \mathrm{~d} 5$ 100 hate-500 $\mathrm{kHz}+0.2-0.8 \mathrm{~dB}$
Recovery	<2510080 dB overlozd		
Owerlard	-500 V ims ace. 300 Y de		- L200 Vims max input: 1000 v dc max inpul
Calibration	Scale - 10 to +2 dB, 10 de belween ranges. 100 divisions on 0 to 1 scale. The 08 scaic reads -10 to $+268 ; 10 d B$ between ranges.		Linear ab scale, 100 divisians fiem - 20 to 0 dB . Long voltage scale $0 \mathrm{~dB}=1 \mathrm{~V}$
Weight	Hef, 27 kg (5 [D]. Stupplag, $4.1 \mathrm{~kg} \mathrm{(9} \mathrm{1b)}$		
Sise	159 H (w/ihoul iamerable feelf $\times 130 \mathrm{~W} \times 279 \mathrm{mmD}\left(6^{\left.1 / 4^{\prime \prime}-51 / \mathrm{m}^{-} \times 11^{\prime}\right)}\right.$		
Power	AC 135 or $230 \mathrm{~V}=10 \%, 48$ to $440 \mathrm{~Hz}, 6$ VA max. (心) Exterasl batteries. did - voltages between 35 V and 55 V		
Pilcer	4006, $3525,400 \mathrm{KL} 565 \mathrm{~d}$	400F, 55 ? , 400 \% , 5950	100 UL 5550

- HOYE 400 eq same as 400 E , and 400 FL same as 400 F , excepl for cabbration. Unear 0 B scale 10 Ita
$10+2 \mathrm{~dB}, 10 \mathrm{ob}$ between ranges. Leg voltage scates 0.3 to 1 and $\mathrm{D} .810 \mathrm{3}, 120$ divisions from -10 dE
$\therefore 2 \mathrm{~dB} \quad \mathbf{4 0 0}$ FL accuracy is $\%$ of reading in of onls.
- AC overload voltage increases. with increasing freguency

ANALOG VOLTMETERS hip

- 10 MHz bandwidth
- High crest factor for accurate pulse measurements
- Stable, linear de outpuif

Description

The Hewlett-Packard Model 3400A is a true root-mean-square (mas) voltmeter. providing a meter indication proportional to the de heating power of the inpul waveform.

Six-decade frequency toverage makes the 3400A exiremely flexible for all audio and most if measurements and permits the measurement of broadband noise and fast-rise pulses.

Puses or other non-sinusoids with crest factors (ravio of peak to fms) up to $10: 1$ can be measured full scale. Crest factor is inversely proporional 10 meter deflection, permititing up to $100: 1$ crest factor at 10% of full scale.
Permonent plots of measured data and higher resolution measurements can be obtained by connecting an X - Y ploter, stríp char recorder or digital voltmeler 10 the convenient rear-panel de output. The de outpul provides a linear 0 to 1 voli drive proportional to meter deflection.

- 1 mV full-scale sensitivity
- $10 \mathrm{M} \Omega$ input impedance
- Taut-band individually calibrated meter

AMS current

True rms cuitent measurements can be made convenienty by using the HP Model 456A Curreni Probe with the Model 1400A. Sce page $\$ 17$.

Specifications

Voliage range: I mV to 300 V full scale. 12 ranges.
DB range: - 72 to $+52 \mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
Frequency range: 10 Hz to 10 MHz .
Response: responds to rms valuc (hea(ing value) or the input signal for all waveforms.
Meler accuracy: \% of full scale $\left(20^{\circ} \mathrm{C} \text { 10 } 30^{\circ} \mathrm{C}\right)^{*}$

1 OHz	50h7		IM HI	2MH3	3 mky	IOMH
	$=5 \%$	=1\%	二2\%	-3\%	-5\%	

Ac-to-dc converter accuracy: \% of full scale ($20^{\circ} \mathrm{C}$ to $\left.30^{\circ} \mathrm{C}\right)^{*}$

1012	50 Hz		$1 \mathrm{ImHz}^{\text {S }}$	2Mn	3 mkz
	- 5%	=0.75\%	$\pm 2 \%$	$\pm 3 \%$	-5\%

Crest factor: (ratio of peak to ras amplitude of input signal): 1010 I at full scale (except where limited by maximum input) inversely proportional to meter deflection (e.g. 20 to 1 at half-scale. 100101 at lenth scale).
Maximum continuoua input voltage: 500 V ac peak al 1 kHz on all ranges; 600 V de oo all ranges.
inpul impedance: from $0.001 \vee 100.3 \mathrm{~V}$ range: $10 \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$. From 1.0 V to 300 V range: $10 \mathrm{M} \Omega$ shunted by $<20 \mathrm{pF}$ ac coupled inpot.
Response time: for a step function, <5 s to final value.
AC overload: 30 dB above full scale or 800 V p. whichever is less. on each range.
Output: negative IV dc into open cireuit at full-scale deflection. proportional to meter deflection from $10-100 \%$ of full scale. 1 mA maximum; nominal source impedance is 1000 . Oulput ooise <1 mV rms.
Power: 115 or $230 \mathrm{~V}=10 \%$, 48 to 66 Hz , is VA max.
Slee: 159 H (without removable feet) $\times 130 \mathrm{~W} \times 279 \mathrm{mmD}\left(6 \%{ }^{\prime \prime} \times\right.$ $51 / R^{\prime \prime} \times 11^{\prime \prime}$; ${ }^{1 / 2}$ module.
Welght: net, $3.3 \mathrm{~kg}(71 / 4 \mathrm{lb})$. Shipping, 4.5 kg (10 lb).
Accessorles furnished: 10110A Adapter. BNC io dual banana jack.
Accessorles availadie Prlce
11001A Cable, 45 in. long. male BNC to dual banana plug
10503 A Cable. 4 ft long, made BNC connectors Sis
11002A Test Lead, duail banana plug to alligator clips \$12
$11003 A$ Test Leads. dusl banana plug to probe and alligator clip
11076 A Carrying Case $\$ 135$
Orderling Iniarmation
3400A Opt 001 spreads out the dB scale by making it the top seale of the meter. Rear terminals in parallel with fromt panel terminals and linear log scale uppermost on the meter face are available on special order.

3400A RMS voltmeter

[^2]Model 3406A

Description

High frequency voltagen ean be measmred easily with HP's 3406A Sampling Valimeter. Emplaying sampling techniques. the HP 3406 A has extremely wide bandwidth ($10 \times 1-17.101 .2 \mathrm{GHz}$) with high input impedance. Signals as small as $50 \mu \vee$ can be resolved. Full scale sensitivity from 1 mV to 3 V is selected in eight 10 dB steps and may be read directly from $-62 \mathrm{dBm} 10+23 \mathrm{dBm}$. Accessipry probe tips conver the HP S.406A for voltuge measurements in applications such as receivers, amplifiers and coaxial transmission lines.

Measurement can be retained on the 3406 A meter by depressing a pushbution located on the pen-iype probe. This is useful when measurcinents are made in awkward positions where the operator cannot observe the meter indicalion and probe placement at the same time.

Specifications

Voltage range: 1 mV to 3 V fill scale in 8 ranges: decibels from $-5010 \mathrm{k} 20 \mathrm{dBm}(0 \mathrm{clBm}=1 \mathrm{~mW}$ into $50 \Omega)$: avemge-responding inslrumenl calibrated to rms value of sine wave.
Frequency range: 10 kHz to 1.2 Givz: useful sensilivity from I kHz to beyond 2 GHz .
Fult-scale accuracy (\%) with appropriale accessory (afier probe is properly calibrated)

${ }_{4 \mathrm{H},}^{20}$		$\underset{\substack{\mathrm{Hz} \\ \hline}}{25}$	$\begin{aligned} & 100 \\ & \mathbf{k H z} \end{aligned}$	$\begin{aligned} & 100 \\ & \text { H14 } \end{aligned}$	$\begin{aligned} & 700 \\ & \mathrm{MHz} \end{aligned}$	${\stackrel{1}{\mathrm{G}} \mathrm{H}_{2}}_{1}$	1.2
± 13	-8	± 5	$=3$	± 5	n 3	$\simeq 13$	

Input Impedence: inpul capacity and resistance will depend upon accessory tip used. 100.000Ω shunted by $<2.1 \mathrm{pF}$ al 100 kHz with bare probe; $<10 \mathrm{pF}$ with 11072 A isolator lip supplied.

Sample hold output

Provides ac signal whose unclumped portion has statistics that are namowly disiribuled about the slatinlies of the inpul. inverted in sign
(operating into >200 $\mathrm{k} \Omega$ load with <l(N00 pF). Outpul is 0.316 V al i.s. on any range.

Nolse: $<175 \mu \mathrm{~V}$ mis referred 10 inpus.
Accuracy (alter calibratton): 0.01 V range and above: same as full scale accuracy of instmment. $0.001 \vee 100.003 \mathrm{~V}$ range: value of input signal can be computed by taking inlo account the residual noise of the instrument. Jiller: meter indicates within $=2 \% \mathrm{pk}$ of reading 95% of time (as measured with HP 3400A True RMS Voltmeler).
RMS crest factor: $0.001 \vee 100.3 \vee .20 \mathrm{~dB}:!\mathrm{V} .13 \mathrm{~dB}: 3 \vee .3 \mathrm{~dB}$. Mêer
Meter scates: lincar voltnge, 0 to 1 and 0 to 3 : decibel. -12 to +3 Individually calibrated tatut-band meter.
Response time: indicates within specified aceuracy in <3 s. Jitter: $=1 \%$ peak (of reading).

General

DC racorder output: adjuscable from 0 to 1.2 mA into 1000 ohms at full scalc, proportional to metcr deflection.
Overload recovery time: meter indieates within specilied accuracy in $<5 \mathrm{~s}(30 \vee \mathrm{p}-\mathrm{p}$ max.).
Maximum Input: $\pm 100 \mathrm{~V}$ dc. 30 V p-p.
RFI: conducled und radialed leakage limits are below those specitied in MIL-6181D and MIL-1-I6910C except for pulves emithed from probe. Spectral intensily of these pulses is nominally $50 \mathrm{nV} / \sqrt{\mathrm{Hz}}$: spectrum extends beyond 2 GHz .
Temperature range: insirument. $0^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$: protre. $+10^{\circ} \mathrm{C}$ 10 $+40^{\circ} \mathrm{C}$
Power: 115 or $230 \mathrm{~V}=10 \%$. $48 \mathrm{~Hz} 1066 \mathrm{~Hz}, 25 \mathrm{VA}$ mux.
Slze: I59 H (withoul removable feet). $\times 197 \mathrm{~W} \times 279 \mathrm{mmD}$ (6.25" $\times 7.75^{\prime \prime} \times 11^{\prime \prime}$): 1/2 module.
Welght: nel, $5.4 \mathrm{~kg}(12 \mathrm{lb})$. Shipping. 6.8 kg (IS lb).
Accessorios: refer to data sheet.
3406A RF Voltmeter

7563A

Description

Hewlet1-Packard Model 7562A is a wide range (80 db), single channel legarithmic volimeter/converter designed to produce de output vohages in a logarithmic relationship to de input voltages or the true RMS value of an ac input voltage. It contains it tric RMS detector which is not dependent on pure sinusoidal signals to achieve measurement accuracy. A self-contained meter ciblibrated in volts and dB results in an accurate voltmeter. A constam nmplitade oscilloscope output makes the conventer compulible with a varicty of oscilloscope readout and phase meter applications.

The Model 7563 A Logarithmic Vollmeter/Amplifier is a low cost. single chammel, de logarithmic amplifier with a very high dynamic ramge (110 dB) designed to produce a logarithmie-related de output voltage for a very wide range of de input voltages. A single input range of $316 \mu \mathrm{~V}$ to 100 V is zoupled with an input polarity switch for ease and verspality of operation. A high input impedance (100 kS) and a low outpul impedince (less than 5Ω) allows the 7563^ to be used in systems or on the bench. A front panel meter calibrated in dB and mV provides instantaneous visual indication of operaling levels. Applications melude log scaling of recorder axes, pulse height analyzers, scope dieplays, and almosi any circumstances where log compression of de voltage ranges is required. Dual or single mounting capability is afforded by a field installable rack mounting adap(er, utilizing a minimum of rack space.

7562A Speciflcations

Performance spectilcatlons
$A C$ and OC modes
input
Dynamic range: 80 dB .
Voltage range: 1 mV to 10 V or 10 mV to 100 V selectable by front pancl switch. Accepts either ac or positive signals.
Oulpul
Voltage: 0 to 800 mV dc corresponding to $10 \mathrm{mV} / \mathrm{dB}$
Output Imperdance: 100 ohms.
DC mode
Accuracy: $\pm 0.25 \mathrm{~dB}$ al $25^{\circ} \mathrm{C}$.
Input Impedance: 100 k ? , shunted by kess than 100 pF : single ended.
Temperature coetflcient: $\pm 0.02 \mathrm{JB} /{ }^{\circ} \mathrm{C}$ maximum
Zero slabltty: $=0.35 \mathrm{~dB}$.

AC mode
Input Impedance: I M Ω. shunied by less than 100 pF ; single ended.
Accuracy and frequency response: (al $25^{\circ} \mathrm{C}$).

Temperature coefficlent: $\pm 0.04 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum. Slewing speed:

Range setting	Minimum slewing speed
0.5 Hz	$1 \mathrm{~dB} / \mathrm{s}$
5 Hz	$10 \mathrm{~dB} / \mathrm{s}$
50 Hz	$60 \mathrm{~dB} / \mathrm{s}$

Osellloge ope output: approx. 0.5 V ms regandless of input.
Cresi factor: $5: I$ unless linited by misx. inpur völtage.
Meximum peik input voltage: $=25 \mathrm{~V}$ on 1 mV to 10 V range: $\pm 250 \mathrm{~V}$ on 10 mV to 100 range.
General specifleations
Oparating temperature: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Warm-up Ilme: 20 minutes nominal.
Connectors: front and rear input and output BNC connectors.
Power requlrements: $115 / 230 \mathrm{Vac}, 5010400 \mathrm{~Hz}, 40 \mathrm{VA}$.
 11/ $"^{\prime \prime}$).
Welght: net, $3.6 \mathrm{~kg}(8 \mathrm{lb})$. Shipping 5.4 (12 lb).

7563A Specifications

Performance speciflcations
Inpu!
Dynamic range: 110 JB .
Vollage range: $316 \mu \mathrm{~V}$ to 100 V . Accepts ciuher positive or negalive signals, selectable by front pand switch.

Output

Voltage: 0 to 1.1 V de corresponding to $10 \mathrm{mV} / \mathrm{dB}$. Rear terminals; adjustatle to $110 \mathrm{ln} \mathrm{mV} / \mathrm{db}$.
Output impedence: less than 5Ω from pancl, 300Ω rear.
Meter aceuracy: reading accurate to $\pm 1.5 \mathrm{~dB}$, referred to output. Input Impedance: $100 \mathrm{k} \Omega$, shunted by less than 100 pF , singlc ended.
Accuracy: (al $25^{\circ} \mathrm{C}$).

Temperature coefficlent: $\pm 0.02 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ maximum and $\pm 3 \mathrm{pV} /{ }^{\circ} \mathrm{C}$ refericd to inpul.
Zero stablifty: $=0.25 \mathrm{~dB}$ al constant femperature.
Rise Tlme

Maximum Ple Time	
Signal Leval	$1 \mathrm{mv}-10$ Y Range
$315 \mathrm{~F} \mathrm{~V}-1 \mathrm{mv}$	2000 H23
1 mv - 10 mV	$400 \mu \mathrm{~s}$
$10 \mathrm{mV}-100 \mathrm{mV}$	40 Hs
$100 \mathrm{nz-1V}$	4 \%s
$1 \mathrm{~V}-100 \mathrm{~V}$	2 as

General specificatlons
Operating temperature: $10^{\circ} \mathrm{C}$ 10 $400^{\circ \prime} \mathrm{C}$.
Warm-up time: 20 minutes nominal.
Connectors: front and rear inpul and outpul BNC comnectors.
Power requlrements: $115 / 230 \mathrm{~V}$ ac. 50 to $400 \mathrm{~Hz}, 40 \mathrm{VA}$.
Dimensions: $88.1 \mathrm{~mm} H \times 197 \mathrm{mmW} \times 292 \mathrm{~mm} \mathrm{~m}\left(37 / 1 \mathrm{~s}^{\prime \prime} \times 77^{\prime \prime} / \mathrm{m}^{\prime \prime} \times\right.$ | $\mid 1 /{ }^{n}{ }^{n}$).
Welght: nel. $3.6 \mathrm{~kg}(8 \mathrm{lb})$. Shipping. $5.4 \mathrm{~kg}(12 \mathrm{lb})$.
Ordering Information
Price
7562A Logarithmic Volmeter/Convener
$\$ 1700$
7563A Lognnithenic Volemetcr/Amplifier
$\$ 1280$

DIGITAL VOLTMETERS

Digital volumeters (DVM's) offer many advantages over other lypes of volimeters. Among the advanlages of DVM's are grearer speed, increased accuracy and reso. lution. reduction of operalor errors and the ability to make automatic measurements.

Digital voltmeters display measurement resuls as discrete numerals rather than as a pointer deflection on a continuous scale. Human emor and tedium are reduced by direct numerical readout, and operator training is minimized by automatic polarity and range-changing fearures of some DVM's.

Digital vollmeters are available to measure $A C$ and DC volages, current and resistance. Appropriate transducers can be used to measure other parameters such as sirain or temperalure. A popular use of DVM's is in automatic measurement systems. A syslem can be as simple as connecting the DVM digital output to a digital printer or as powerful as a calcularor or compuler conrolled system that provides automatic data reduction and unatlended operation.

A new generatlon of DVA's

Now a greater range of capability than ever before is avaidable in a new generation of digital voltmeters. The technology of integrated circuits and microprocessors has resulted in new solutions ranging from a hand-held unil where the reading is at the point of measurement to powerful new systesms voltmeters which can measure al thousands of readings per second.

New technology was developed 10 meet today's expanding measurement needs. For example, hybríd technology has allowed many functions to be placed on a single substrate. This has made possible instruments such as the 970A probe where the complete instrument is in a hand-held unit.

Other instruments such as the $3476 \mathrm{~A} / \mathrm{B}$. 3435A, 3438A. 3466A and the 3465A/B have benefited by another new process-tantalum nitride on sapphire. Most digital voltmeter desiens require a precision attenuator to scale the input voltage. Now a single chip replaces the attenuator which used up to 20
precision wirewound resistors. The benefits are lower coss, improved reliability, excellent stability. and beller than $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ racking.
To meet the expanding reeds of our system users. HP has developed three new voltmeters. The heart of these volimeters is a bigh-speed microprocessor tailored especially to system instrument requiremeats. An example of the resulting capability is automatic calibration that compensates for lemperalure changes and aging. Other benefits are self-test, self-diagnosis, and intermal math capabilisy which allows direct display in engincering units.

Abuse testing

DVM's are often subjected to accidental abuse. To assure survival. our insirumenis are designed to a new and tougher sel of standards. For example, static discharge can be fatal to some integrated circuits so HP tests their designs by discharging $>10 \mathrm{~V}$ to any exposed mesal. Isput circuits should
be accident proof, HP DVM designs are lested by applying $240 \vee$ RMS to all input terminals and all combinations of input conditions. Some units are routincly exposed 10 rough use in field service applications requiring design and test lo shock levels of 100 G's.

HP-IE

Hewlett-Packard offers three volumeters which lave HP-IB" data interface. This versatile interconned system allows communication with a growing number of instruments, calculators, and computers. Historically the high cost of interfacing related to the lack of interface standardization. Interfacing methods proliferated as each engineer designed custom links between instrumentation devices-fesulling in different codes. formats. levels. and timing facsors. Today there is a new interface concept tailored to general purpose instrumencation. II is commonly referred to as the IEEE 488 Bus, Hewlet-Packard Interface Bus (HP(B). Industry acceptance is widespread for there are currently 200 Bus compatible instruments from 56 manufacturers and the list is growing.

Nolse rejectlon

Source and type of noise are important in determining the lype of noise rejection needed. There are two types of noise which may affeel accuracy and sensitivity of a DVM: normal mode and common mode.

Normal mode noise enters the DVM with the signal and is super-imposed on it. Filtering is the simplest way to cut down on noise but il slows measurement speed. Integration "calculates" noisc out of the measurement by looking at the input signal over a period of time equal to the period of expected noise. Fillering is advantageous for rejecting broadband noise, while integration is better for rejecting linc related noise. Figure 1 shows typical noise rejection for filtering and integrating me hods.

Common mode noise appears belween the

Flgure 1. Normal mode noise rejection for two DVM's, one using lliering and the orher using integration.

DVM's input acminals and ground. 11 is usually caused by grounding differences between the DVM and the device being measured.
Errors caused by common mode noise may be reduced by a passive lechniquc called "guarding." Guarding shunts the noise 10 ground and away from input terminals. By proper connection of the guard (Figure 2). a remarkable improvernent can be seen in a DVM's ability to reject common mode noise.
"Effective" common mode rejection is the specification that usually appears io data sheets. Effecive refers to the final reading. Effective CMR is the combined result of "pure" CMR due lo guarding plus normal mode rejection of the instrument.

Specifications

Resolution and sensitivity

DVM's are classified according to the number of full digits. An overrange dight is an extra digit added to allow the user io read beyond full seale. This overrange digit is ofien called a "one-half" or a "partial" digit since it canool display all numbers through 9. Overranging sreally extends a DVM's usefulness by maintaining resolution up to, and beyond, full seale. For example, if a signal changes from 9.999 V to $10.012 \mathrm{~V} . \mathrm{a}$ four-digit DVM without overranging could measure the first voltage as " 9.999 V ." bur would require a range change to make the second measurement with a resuling reading of " 10.01 V ." The 0.002 V change would not be seen. With overranging, the second measurement could be made as " 10.012 V "with no loss of resolution.

Overrange can be expressed as either a percentage of full scale or as par of the range itself. A four-digis DVM with 100% overrange would have a maximum display of "19999." Alternatively, the range can be described as $2 \mathrm{~V}, 20 \mathrm{~V}$. etc., with no overrange specification. The maximum display remains " 19999. " A specification of 20%
overranging would have a maximum reading of " 11999 ." This can also be expressed as 1.2 $\mathrm{V}, 12 \mathrm{~V}$. etc., range with no overrange.

Resolution is the ratio of the maximum number of counts that can be displayed to the least number of counts. Full-scale resolution of a five-digit DVM is 100,000 to 1 . or 0.001%. Overranging is generally ignored in resolution.
Sensitivity refers to the smallest incremental voltage change that the DVM is able 10 detect. Mathematically, it is the lowest full-scale range multiplied by the resolution of the DVM. Sensitivity of a five-digit DVM with resolution of 0.001% and a 100 mV lowest ful-seale range is $0.001 \% \times 100$ $m V=i \mu \mathrm{~V}$.

Accuracy

Accuracy is the exactness to which a voltage can be determined, relative to the Legal Volt maintained by the U.S. National Bureau of Standards. Accuracy specifica. tion equals errors involved in iraceability to N.B.S. as well as errors made by the instrument.
To be meaningful, accuracy must be stated along with the condilions under which it will hold. These conditions should include time. temperature, line variations and humidity. Conditions specified should be realistic relative to intended use. For example. a DVM specified with a temperature range of $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ would require a highly controlled environment. whereas $\pm 5^{\circ} \mathrm{C}$ would cover the majority of environments.
The period of tine over which accuracy hoids is especially important since it indicates the DVM's stability and how often it will have to be calibrated.
Accuracy is usually expressed ar $=\mathrm{X} \%$ of reading, $\pm Y \%$ of range. or preferably, as $=\mathrm{X} \%$ of reading $\pm \mathrm{N}$ digits. To be meaning. ful. accuracy specifications musi always consider the effects of time, temperaturc and humidity.

Figure 2. Best CMA connection-guard connected to low at source.

DVM SELECTION GUIDE

970A

3435A

3466A

3455A

Description

Hewlett-Packard's 970A Probe Digital Multimeter is completely self-conlained and autoranges through five ranges of $A C$ and $D C$ volts and ohms. This pocker-sized multimeter is ideal for faeld, lab. or bench application. All electronics. including display and batIenies, arc in one seven-ounce package. The basic 970A multimeter is provided with a set of batteries and the bathery charger. the shon probe tip and the bell carrying case as standard accessories.

HP's 970A Probe Digital Multimeter can be converted into a fivefunction bench instrument with optional 97002A Current Shuni/ Bench Cradle. A six-position manual switch sclects five ranges of $A C$ and $D C$ volss and ohms. Two general purpose binding posis accept wraparound. screw-down. clip-on or banana plug terminations.
The H.P 97003 A RF Adapter measures AC voltage over a frequency range of 100 kHz to 500 MHz from $0.25 \vee$ to 30 V . A broad fine of tips. adapters and tees are also available.

Specifications, Model 970A

DC voltmeter
Ranges: $0.1 \mathrm{~V}, 1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}(500 \mathrm{~V}$ max inpu().
Accuracy $\left(20^{\circ} \mathrm{G}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$: $\pm(0.7 \%$ of reading 42 digils)).
Input reslstance: $10 \mathrm{M} \Omega, \pm 5 \%$.
Input profection: $\leqslant 750 \mathrm{~V}$ peak.
Temperature coefliclent: $\pm\left(0.05 \%\right.$ of reading +.02 digits) $/{ }^{\circ} \mathrm{C}$.
AC voltmeter
Ranges: $0.1 \mathrm{~V}, \mathrm{IV}, 10 \mathrm{~V}, 100 \mathrm{~V}, 1000 \mathrm{~V}(500 \mathrm{~V}$ rms sine wave max inpul).
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$

Rated	45 Hz L 1 LHz	1 HH 103.5 dHs
1 V 101000 V	$\begin{gathered} =(2 \% \text { of reatl } 1 \text { ng } \\ \quad 5 \text { digits }) \end{gathered}$	$\begin{gathered} =13 \% \text { of reading } \\ +5 \text { digits }\} \end{gathered}$
- 1V 23 mv$)$	$\begin{aligned} = & \text { (2\% uf reagme } \\ & +5 \text { digits) } \end{aligned}$	$\begin{aligned} & =15 \% \text { of readirs } \\ & +5 \text { digits) } \end{aligned}$

Input resistance: $10 \mathrm{M} \Omega, \pm 5 \%$.
Input capacitance: $\leqslant 30 \mathrm{pF}$.
Inpul protectlon: $\leqslant 750 \mathrm{~V}$ peak.
Temperature coefficlent: $\pm\left(0.05 \mathrm{cc}\right.$ of reading +.05 digits) $/{ }^{\circ} \mathrm{C}$.

Ohmmeter

Ranges: ik $\Omega, 10 \mathrm{k} \Omega, 100 \mathrm{k} \Omega .1000 \mathrm{k} \Omega .10 .000 \mathrm{k} \Omega$.
Accuracy: $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right): \pm(1.5 \%$ of reading +2 digits).
Input voltage protection (reaistor fused-elip mounted): ≤ 115
V rons for up to 1 minutc. 5250 V rms for up 1010 seconds.
Temperalure coetitclend: $工\left(0.05 \%\right.$ of reading +.02 digits) $/{ }^{\circ} \mathrm{C}$.

- Puts a complete DMM in the palm of your hand
 - Autoranging, autozero, autopolarity

General
fanging: automatic.
Sample rate: $3 /$ second.
Overrange: 10%.
Callbration cycla: 1 year.
Operating environmental conditions:
Temperature range: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Humidity: $=95 \%$ RH.
Power: rechargeable batreries.
Typleal operating time using fully charged battery: 2 hours consinuols at $28^{\circ} \mathrm{C}$.
Typlcal battery charging time: 14 hours at $25^{\circ} \mathrm{C}$. (Indefinite charging will nol damage baltery).
Welght (with battery pack): net, 200 g (7 oz). Shipping. 1.8 kg (4 lb)
Size: $165 \mathrm{~L} \times 45 \mathrm{~W} \times 30 \mathrm{mmD}\left(662^{2} \times 134^{\prime \prime} \times 1 \mathrm{~s}^{\prime \prime}\right)$.

97002A Specificatlons

DC ammeter
Renges: $0.1 \mathrm{~mA}, 1 \mathrm{~mA}, 10 \mathrm{~mA}, 0.1 \mathrm{~A}, 1 \mathrm{~A} F S$.
Accuracy ($20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$): $=(2.5 \%$ of reading +2 digits).
AC ammeter
Aenges: $0.1 \mathrm{~mA} .1 \mathrm{~mA} .10 \mathrm{~mA}, 0.1 \mathrm{~A}, 1 \mathrm{~A} F S$.
Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$, $>3 \%$ of range): 45 Hz lo $) \mathrm{kHz}:=(4 \%$ of reading +5 digiss), 1 kHz 103.5 kHz : -7% of reading +5 digis). DC V, AC V, OHMS: same as 970A specifications

General

Full range Insertion voltage: $<0.25 \mathrm{~V}$.
Input protection: 2 amp fast acting fuse.
Wetght: net. $170 \mathrm{~g}(6 \mathrm{oz})$. Shipping. $1.8 \mathrm{~kg}(4 \mathrm{lb})$.
Size: $95 \mathrm{~L} \times 95 \mathrm{~W} \times 51 \mathrm{mmD}\left(34^{\prime \prime} \times 34^{\prime \prime} \times \mathbf{2 "}^{\prime \prime}\right)$.

97003A Specifications

Response: the 97003A is a peak responding detector and is calibrated to read ms value of a sine wave.
Voltage range: $0.25 \vee$ to 30 V ms.
Max jnput: 30 V ms ac; 200 V dc .
AC to DC transtar accuracy when operating tito HP 970A

 Stales National Bureat ol Standards over that range.
Inpul Impedance: inpul resisiance: $>25 \mathrm{k} \Omega$.
Shut capaetiance: <3 pF for plastic lips. <4 pF for metal high frequency adapter tip.
General
Accessories supplled: ground lead, straight tip, baltery charger, sof carrying case.
Accessories avallable: 11063A, 50-ohm lee: $11536 \mathrm{~A}, 50$-ohm tee: 10218A, BNC Adapter: 10219A. Type 874 Adapter: 10220A. Microdol Adapter. See data sheet for information on ordering chargers.

Ordering information

Price
970014 exira rechargeable batsery pack
$\$ 27$
97002A ac/dc current shunt/bench cradie \$49
97003A RF adapter
$\$ 88$
97004 A accessory kit
$\$ 36$
970 a Digial Multimeter (includes soff carrying case. $\$ 425$
battery and charger)

Description

If you measure current, voltage or resirunce. you can use the 3476A/B to make these measuncments faster and with fewer reading errors. This versabile instrument incorporates autorange to lel you concentrate on your measurement, nol the range or range muliplier With attorange. readings always have the same multiplier: voltage always in volts, cument in amps, and resistance in kiliohms. In addition 10 aulorange the 3476 A/B has auto-zero and avio-polarity. Auto-zero eliminales the need to zero the instrument prior 10 a test. and aulo-polarity lets you messure both positive and negative vollages without the inconvenience of reversing lest leads.

The $3476 \mathrm{~A} / \mathrm{B}$ saves you time by combining the five mosi common measurements in one instrument. Jt measures $A C$ voliage, $D C$ voltage. $A C$ corrent. $D C$ current and resistance. In addition to these five basic measurements. the 3476A/B has additional features to save you time and effort. For example, there are (wo units to choose from. The lower cost 3476A operates on AC for your bench measurements. The 3476 B will operate on either AC or nickel-cadmum batteries. Under battery operation you car break ground loops resuling in quieter readings or make measurements in remote locayions. The 3476 B will give you eight hours of continuous service before a recbarge is required. Keep it plugged in and il will charge ovemight and be ready for your next trip.

Convenlence

An instrument designed to make your most common measurements should be convenient 10 use. The $3476 \mathrm{~A} / \mathrm{B}$ was designed to be convenient. An example is the replacement of the input protection fuses. Replacement is easy-no disassembly or re-calibration is necessary-simply slide back the input lemminal cover plate to expose the defective fuse. Convenience means altention to design detail. A mulriposition bail allows convenient positionmg. There is even a verical detent for viewing from above. Another convenient detail is the shape of the case. Small instruments with pushbutions have irouble staying pul when the buttons are pressed. The 3476A/B solves this problen with a finger grip ridge allowing one-handed operation.

3476A/B specifications DC Vollmeter

Ranges:	$\pm 0.1100 \mathrm{~V}$	Maximum display:	$\pm 0.1098 \mathrm{~V}$
	$=1.100 \mathrm{~V}$		$=1.098 \mathrm{~V}$
	$\pm 11.00 \mathrm{~V}$		$\pm 10.98 \mathrm{~V}$
	$\pm 110.0 \mathrm{~V}$		$\pm 109.8 \mathrm{~V}$
	$\pm 1100 \mathrm{~V}$		$\pm 1098 \mathrm{~V}$

Maximum input: 1000 V (DC + Perk AC).
Accuracy ($20^{\circ} \mathrm{C} 1030^{\circ} \mathrm{C}$)*

Hante	Ассurscr ${ }^{\circ}$
0.1100 V	$=0.3 \%$ of reating -2 digits)
$\begin{aligned} & 1.100 \mathrm{~V} \\ & 11.00 \mathrm{~V} \end{aligned}$	二 0 (0.3\% of reading - 1 dipit $)$
$\begin{aligned} & 1100 \mathrm{~V} \\ & 1100 \mathrm{~V} \end{aligned}$	$=\left(0.4 \%_{6}\right.$ ol leading +1 diglt

Common mode rejectlon: (1 k Ω unbalance) $>100 \mathrm{~dB} @ 50 \mathrm{~Hz}, 60$
Hz .
Jnput reslstance: $10 \mathrm{M} \Omega=5 \%$.
Input protection: $<1100 \mathrm{~V}$ peak
Temperalure coefficlent: $\pm(0.05 \%$ of reading $\div 0.2$ digit $) /{ }^{\circ} \mathrm{C}$.
AC Voltmeter
Ranges: 0.1100 V
Max1mum Dlsplay: 0.1098 V
1.100 V
1.098 V
11.00 V
10.98 V
110.0 V
109.8 V

1098 V
Maxlmum Input: 700 V ims.
Accuracy: converter is average responding calibrated in $5 m s\left(20^{\circ} \mathrm{C}\right.$ $\left.1030^{\circ} \mathrm{C}\right)^{\circ}$

Ranpers	45 Hz 102 kHz	2 kHz 105 k 4 z	5 kHz 2010 kHz
$\begin{aligned} & 1100 \mathrm{Y} \text { to } \\ & \text { I } 100 \mathrm{~V} \end{aligned}$	$\begin{aligned} & =(1.50 \mathrm{~s} \text { of leading } \\ & \text { \& digis) } \end{aligned}$		$\begin{aligned} & =18 \% \text { of reant ng } \\ & +10 \text { digits) } \\ & \hline \end{aligned}$
0.1100 Y	$\begin{aligned} & =(20 \% \text { ol reading } \\ & +5018.15) \end{aligned}$		$\begin{aligned} & =18 \% \text { ol reading } \\ & =10 \text { dighs } \end{aligned}$

[^3]Common mode rejection: (1 k Ω unbajance) >80 dB@ 50 Hz .60 Hz .
Input resistance: $10 \mathrm{M} \Omega \pm 5 \%$.
Input capacitance: <30 pr.
Input protection: < 1100 V peak.
Temperature coefficlent: $\pm(0.05 \%$ of reading +0.5 digit $) /{ }^{\circ} \mathrm{C}$.
OC ammeler

$$
\begin{array}{rlrl}
\text { Ranges }: & =0.110 \mathrm{~A} \\
& \pm 1.100 \mathrm{~A} & \text { Max. display: } & =0.109 \mathrm{~A} \\
& \pm 1.098 \mathrm{~A}
\end{array}
$$

Accuracy: $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)=(0.8 \%$ of reading +2 digits $)$.
impedance: l-1.5 ohm constant.
Current protected: 1.5 A fuse.
Temperalure coeffcient: $\pm(0.05 \%$ of reading +0.2 digit $) /^{\circ} \mathrm{C}$.
AC ammeter
Ranges: $0.110 \mathrm{~A} \quad$ Max. display: 0.109 A

$$
1.100 \mathrm{~A}
$$

$$
1.098 \mathrm{~A}
$$

Accuracy $\left(20^{\circ} \mathrm{C} \text { to } 30^{\circ} \mathrm{C}\right)^{*}$

fanges**	45 t 10 20 HL	2 kHzatos 5 chl
1. 100 A	-t (2\% of maeding - 4 digis)	$\begin{gathered} =(3.5 \% \text { of reading } \\ -\delta \text { digits) } \end{gathered}$
0.110 A	$\begin{aligned} &=12.50^{\circ} \% 0^{\prime} \text { reading } \\ &+6 \text { digits) } \end{aligned}$	$\begin{gathered} =(5 \text { 5\% of treading } \\ 1 \cdot \frac{\text { g digits })}{} \end{gathered}$

* Ranges usable fom 3": of lenge to mill range

Impedance: I-1.5 ohim consiant.
Current protected: 1.5 A fise.
Temperature coefficlent: $=(0.05 \%$ of reading +0.5 digit $) /{ }^{\circ} \mathrm{C}$.

Ohmmeter

Ranges: $1.100 \mathrm{k} \Omega \quad$ Max. display: | $1.098 \mathrm{k} \Omega$ | |
| ---: | ---: |
| $11.00 \mathrm{k} \Omega$ | $10.98 \mathrm{k} \Omega$ |
| $110.0 \mathrm{k} \Omega$ | $109.8 \mathrm{k} \Omega$ |
| $1100 \mathrm{k} \Omega$ | |
| | $11000 \mathrm{k} \Omega$ |

Accuracy $\left(20^{\circ} \mathrm{C}\right.$ to $\left.30^{\circ} \mathrm{C}\right)$

Aanges	Accuracy
110.0 kO .1100 ho	$=10.3 \%$ al reading - I digit)
$\begin{gathered} 11000 \mathrm{ks}, \mathrm{~L} 100 \mathrm{ks} \mathrm{l} \\ 11 \mathrm{~K} \end{gathered}$	$=105 \%$ ol reading +1 dgid

-90 day cal. cycle add $10-2 \%$ al reading 10 all funcianst 1 bigil for AC Y and hCo for one yoar cal. cycie.

Open clrcult voltage: $<4 \mathrm{~V}$.
Input voltage protection: $<30 \mathrm{~V}$ rms continuous, fuse protected from 30 V so 250 V ms .
Temparature coefficlent: $=\left(0.05 \%\right.$ of reading +0.2 digi $\left.\|^{\circ} \mathrm{C}\right)$.

General

Ranglng: Automatic, Range Hold.
Common to ground: $<500 \mathrm{~V}$ (pesk).
Sample rate: $\boldsymbol{s} 3 /$ second.
Overload indication: horizontal bars.
Operating environmental conditions
Temperature range: $0^{\circ} \mathrm{C}$. $1040^{\circ} \mathrm{C}$.
Humidify: <95\% RH.
Power: 3476A AC line, 3476B AC line and balteries, <6 VA
Standard, $104-127 \mathrm{Vac} ; 54-66 \mathrm{~Hz}$
Option 001, 86-106 V ac; $54-66 \mathrm{~Hz}$
Option 002. 86-106 V ac: 48-54 Hz
Option 003. 190-230 V ac; 48-54 Hz
Option 004. 208-250 V ac; $48-54 \mathrm{~Hz}$.
Note: No charge for options 001 through 004. Power options may be changed in field by rearranging jumpers. See manual for details.

Batterles: 4 rechargeable Nickel Cadmium Sub C size. Typical continuous operating time using fully charged batteries: 8 hours al $25^{\circ} \mathrm{C}$. Typical battery charging time: 14 hours ai $25^{\circ} \mathrm{C}$ with instrument curned off. Trickle charge with instrument on.
Welght: $3476 \mathrm{~A}-$ net $0.77 \mathrm{~kg}(1 \mathrm{lb} 11 \mathrm{ck})$; shipping. $1.68 \mathrm{~kg}(3 \mathrm{lb}$ I loz). 3476 B - nel. $0.97 \mathrm{~kg}(2 \mathrm{lb} 20 \%$): shipping. 1.88 kg (4 lb 2 oz). Size: $3476 \mathrm{~A} / \mathrm{B}: 5.8 \mathrm{H} \times 16.8 \mathrm{~W} \times 20.6 \mathrm{~cm} \mathrm{D}\left(2.3^{\prime \prime} \times 6.6^{\prime \prime} \times 8 . \mathrm{l}^{\prime \prime}\right)$.

11068 A

11067 A

Description

The 343SA is a $31 / 2$ digit multioneter providing five functions of ACV. DCV. ACI. DCI and Ω. It is available with rechargeable batteries or AC line power only. The 34113A Touch-Hold probe provides "eyes-on" probing of AC and DC voltages by bolding the 3435A display using a button on the probe. The 3435A case is rugged with a delent position carrying bandle which is used also as a tilt stand.

Specifications

DC vollmetar
Aanges: $=200 \mathrm{mV}$

$$
\begin{aligned}
& =2 \mathrm{~V} \\
& =20 \mathrm{~V} \\
& =200 \mathrm{~V}
\end{aligned}
$$

$$
\text { Maximum display: }=199.9 \mathrm{mV}
$$

$$
=1.999 \mathrm{~V}
$$

$$
=19.99 \mathrm{~V}
$$

$$
=199.9 \mathrm{~V}
$$

$$
=1200 \mathrm{~V}
$$

$$
\pm 1199 \mathrm{~V}
$$

Maximum input: 1200 V (DC + Peak AC).
Ranging: automatic or manual.
Sensitfulty: $100 \mu \vee$ on 200 mV range.
Polarity: automatically sensed and displayed Accuracy: 1 year. 15 to $30^{\circ} \mathrm{C}$.
Range

200 mV	$=(0.1 \%$ ol reading +2 digits $)$
$2 \vee 101200 \mathrm{~V}$	$=(0.1 \%$ of reading +1 digit $)$

Temperature cosfficient: (0 to $15^{\circ} \mathrm{C}$ and 30 to $\left.55^{\circ} \mathrm{C}\right) \geq(0.018 \%$ of reading $+0.1 \mathrm{digit}) /{ }^{\circ} \mathrm{C}$.
Input reslatance: $10 \mathrm{M} \Omega \pm 1 \%$.
Input type: nloating, 500 V maxinum. com. 10 ground.
Normal mode relection: 40 dB at $50 \mathrm{~Hz} / 60 \mathrm{~Hz}=0.1 \mathrm{~Hz}$.
Response time : <0.7 second to within 1 digit of final value on one range. Add 1 second for each range change.
Etfectlve common mode rejectlon: ($1 \mathrm{k} \Omega$ unbalance) $>120 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}=0.1 \%$.

DC Current
Ranges: $\pm 200 \mu \mathrm{~A} \quad$ Maximum display: $\pm 199.9 \mu \mathrm{~A}$

$$
\begin{array}{ll}
\pm 2 \mathrm{~mA} & =1.999 \mathrm{~mA} \\
=20 \mathrm{~mA} & \pm 19.99 \mathrm{~mA} \\
\pm 200 \mathrm{~mA} & \pm 199.9 \mathrm{~mA} \\
\pm 2000 \mathrm{~mA} & \pm 1999 \mathrm{~mA}
\end{array}
$$

Maximum Input: current: 2 amp (fuse protected). Voltage: 250 V . Ranging: manual only,
Sensitivity: 100 nA on $200 \mu \mathrm{~A}$ range.
Polarly: automatically sensed and displayed.
Accuracy; 1 year, 15 to $30^{\circ} \mathrm{C}$.

Ranse	Specilications
$200 \mu \mathrm{~A} 1020 \mathrm{~mA}$	- (0.39\% of reading +2 digls
2000 mA	$=(0.5 \%$ of res 6 ing +2 d (gits)

Temperature coefficlent: (0 10 $15^{\circ} \mathrm{C}$ and $\left.301055^{\circ} \mathrm{C}\right) \pm(0.028 \%$ of reading +0.1 digit $/{ }^{\circ} \mathrm{C}$.
Voftage burden

Ranta Mazimumi Burden al Full Scale	
$200 \mu \mathrm{to} 20 \mathrm{~mA}$	$<220 \mathrm{mV}$
200 mA	$<240 \mathrm{mV}$
2000 mA	$<400 \mathrm{mV}$

Response tme: 0.7 second on any range 10 within I digit of fina value.
$A C$ valmeter
AC converter: aug, responding rms calibrated.

Fanges: | 200 mV | Maximum display: |
| :---: | :---: |
| 2 V | 199.9 mV |
| 20 V | 1.999 V |
| 200 V | 1999 V |
| 1200 V | |
| | |
| | 1199 V |

Maximum Inpul: 1700 V (DC + Peak AC), 10^{7} yoll-Hz max. Ranglng: automatic or manual.
Sensllivity: $100 \mu \mathrm{~V}$ on 200 mV range.
Accuracy; (with display of $\geqslant 20$ digits) I year, 15 tu $.30^{\circ} \mathrm{C}$.

Qunge	Spacifications
$20 \mathrm{~Hz}-50 \mathrm{ht}$	$\pm(1.5 \%$ of reading -3 cigits $)$
$50 \mathrm{~Hz}-20 \mathrm{kHz}$	$=(0.3 \%$ of reading $\div 3$ digils $)$
$20 \mathrm{kHz}-100 \mathrm{kHz}$	$=(1.55 \%$ of reading +10 digits $)$

Temperafure coefficlent: (0 to $15^{\circ} \mathrm{C}$ and 30 vo $\left.55^{\circ} \mathrm{C}\right) \pm(0.04 \%$ of reading +0.2 diga $) /{ }^{\circ} \mathrm{C}$.
Input Impedence: resistance: $3 \mathrm{M} \Omega$. Shunt capacitance: 650 pF . Pesponge time: 1.6 seconds to within 3 digits of final value on one range. Add 1.2 seconds for each range change.
Input type: lloaling, 500 V maximum com. 10 ground.
AC curfent

Ranges: | $200 \mu \mathrm{~A}$ | Maximum display: | $199.9 \mu \mathrm{~A}$ |
| :--- | :--- | :--- |
| 2 mA | | 1.999 mA |
| 20 mA | | 19.99 mA |
| 200 mA | | 199.9 mA |
| 2000 mA | | 1999 mA |

Maximum Input: current: 2 amp (fuse protected). Voltage: 250 V . Ranglng: manual only.
Sensilivity: 100 nA on $200 \mu \mathrm{~A}$ range.
Accuracy: (with display of $\geqslant 20$ digirs) - 1 year. 15 10 $30^{\circ} \mathrm{C}$.

Temperature coelficlent: (0 to $15^{\circ} \mathrm{C}$ and $301055^{\circ} \mathrm{C}$) $\pm(0.05 \%$ of reading +0.2 digil) $/{ }^{\circ} \mathrm{C}$
Voltage burden

ganse	Maximum Burdan 21 Full Scale
$200 \mathrm{H}_{4} 1020 \mathrm{~mA}$	$\cdots 220 \mathrm{mV} \mathrm{mm}$
200 mA range	$\because 240$ my mis
2000 mA range	<400 my ras

Response Ume: 1.6 seconds on any range 10 within 3 digits of finas value.
Input type: floaling. 500 V maximum com. to ground.
Ohmmeter
Ranges: 30Ω
200Ω
Maximum dlspiay: 19.99 n
199.9Ω
$2 \mathrm{k} \Omega$
$1.999 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$
$19.99 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$
199.9 kS !
$2000 \mathrm{k} \Omega$
$1999 \mathrm{k} \Omega$
$19.99 \mathrm{M} \Omega$

Jnpul protection: 250 V rms.
Ranging: automatic or manual.
Sensitivity: 10 milliohm on $20 n$ range.
Accuracy: 1 year, 15 to $30^{\circ} \mathrm{C}$.

Hange	Specifications
$20 n$	$=$ (0.5\% of reading +10 digits)
2000-2000 kn	$=\{0.2 \%$ of reading +2 digits)
20 MII	$=(08 \%$ ol fezdiag +2 did (s)

Temperature coelficlent: (0 $1015^{\circ} \mathrm{C}$ and $30105^{\circ} \mathrm{C}$)

Range	Specilicerions
200-2000 411	$=100 \%^{2} \%$ of reading +0.2 nizin)
20 Nm	\therefore (0. 18\% of reading +0.2 digidic

Conflguration: 2 wire.
Open circult voltage: $=5 \mathrm{~V}$.
Current through unknown
Range: $20 \Omega, 200 \Omega, 2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 200 \mathrm{k} \Omega, 2 \mathrm{M} \Omega, 20 \mathrm{M} \Omega$.
Current: $5 \mathrm{~mA} .5 \mathrm{~mA}, 500 \mu \mathrm{~A}, 50 \mu \mathrm{~A}, 5 \mu \mathrm{~A}, 500 \mathrm{nA} .50 \mathrm{nA}$.
Response time: 0.8 second to within 1 digit. Add 0.8 second for each range change.

General

Calibration: data sheel specifications guaranteed for I yeas.
Display: 7 segment red 0.3 inch high LED's. Function and range annunciation.
Reading rate: $2.4-4.7 /$ s depending on inpul level.
$A-D$ converslon: dual slope.
Integration time: 100 ms .
Rangling: automalic or manual on ACV, DCV and ohms. Manual only on AC \& DC enrrent.
Storage temperature: $A \bar{C}$ line power obly, -40 to $+75^{\circ} \mathrm{C}$; with batteries, $-4010+65^{\circ} \mathrm{C}$.
Operaling temperature: (0 to 55) C .
Humldity: 95% RH. $+1510+40^{\circ} \mathrm{C}$.
Power: AC line: $48-440 \mathrm{~Hz}, 86-250 \mathrm{~V}$ (see confoguralion). Batlery: rechargeable lead-acid 10 hours minimum continuous operation with full charge. Recharge time; 16 hour operating, 12 hous nonoperating. Batterits and changer avaiable separately: consult operating manual. Tolal instnment power dissipated: AC only; 3 walts; with charger: 8 walls
Slze

3435	3435\% Optian 002
23.81 cm (9)s") wide	
9.80 ctm (S)' high	8.57 cmi 13 浐 7 tigh
$27.62 \mathrm{~cm} 110^{\circ} \mathrm{k}$) tons	26.67 cm (10\%9 ${ }^{\text {\% loag }}$

Welghts: $3435 \mathrm{~A} 2.41 \mathrm{~kg}(5 \mathrm{lb} 5 \mathrm{OR})$
3435 A Opt. $0011.84 \mathrm{~kg}(4 \mathrm{lb} 107$.
3435 A Opt. 0021.81 kg (4 lb)
Conitguration
Prlce
3435A, streamined portable casc with handie, AC line
power. Batleries and charger included.
3435A Opt. 001, streamlined portable case. AC line power only.
less \$65
3435A. OpI 002, Rack and Stack case, AC line power
only. (Rack mount kit not included.)
less $\$ 35$
All orders must include one of the power options: 86-106 V Opı. 100; 190-233 V Opt. 210; 104-127 V
OpL 115: 208-250 V OpI. 230.
N/C

* Accessorles

11000 A Tesi leads. dual banana both ends.
110024 Tesi leads. dual banana 10 dual alligator, $\$ 12$
11003A Test leads, dual banana to probe and allipator. \$12
17096 RF Probe. 10 kHz to 700 MHz .
34110A Soft vinyl carrying/operating case.
34111 A High-voltage probe 40 kV DC.
34112A Touch-Hild Probe.
11067A Test lead kit.
$\$ 75$

Opl 002 oniy).
Ordertng information
3435A
3435A Opi $001 \quad$ less $\$ 65$
3435A Op 1002

- Domastic U.S. prices anly.
- $3^{1 / 2}$ digit

Description

The Model 3403 C is usable from de to 100 MHz . True rms is especially valuable for measurements of noise, multiplexed signals. modulated waves and signals with high harmonic content. dB display

The dB display option provides readings directly in dB . a major convenience to ac users. The dB reference to which the measurement is made is conveniently adjustable from the front panel to provide reterenced dB measurements, or to provide a conveniens means to offset the reading by as much as 13 dB for unreferenced measurements.

Specifications

Ranges

Full range display: 10.00 mV (ac only): 100.0 mV : $1.000 \mathrm{~V} ; 10.00$ V : $100.0 \mathrm{~V}: 1000 \mathrm{~V}$.
Overrange: $>90 \%$ on all ranges except as limited by max input vollage.
Ranging Information: fronl panel annunciators indicate overrange (approximately 190% of full rages). or underrange (approximately 17% of full mange) conditions.

Performance

AC frequency range

Slow response: 2 Hz to 100 MHz .
Fast response: 25 Hz to 100 MHz .

Response time
Fastresponse: 1 s .
Slow response: 10 s.
Insirument reads final reading $\pm 0.1 \%$ of inpul change in stated response time.
Display rate
Fast responge: 4 readings pers.
Slow response: 2 readings pers.
READING $= \pm \%$ OFRANGE $+3 \%$ OF READING $* *$

prequencies and ranges in this ana may resule in invalud reàdingr without ranging indication.

* $D C+A C$ function and stow response time only
** \% of reading specification la representative of ivpical Hianness.

Functions

DC: responds to de component of input signal.
AC: responds to true rms value of ac coupled input signal
$A C+D C$: responds 10 true rms value of de and ac input signal; reading is $\sqrt{(d e)^{2}+(a c \text { rass })^{2}}$.
Temperalure coefficlent: $: 0.1 \times$ reading accuracy $/ /^{\circ} \mathrm{C}$ outside the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ temperature range.
Accuracy: 90 days $\left(25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C} .<95 \%\right.$ RH. 17% of range to 190% of range).
Input characteristics
Input impedance: $<10 \mathrm{MHz}$.
$1 \vee 101000 V$ range: $10 \mathrm{Mn}=10 \%$ shunted by $19 \mathrm{pF}=10 \%$.
10 mV and 100 mV range: $20 \mathrm{M} \Omega \pm 10 \%$ shunted by $16 \mathrm{pF} \pm 10 \%$. 10 MHz to 100 MHz the followiog table gives maximum loading due to inpul shunt impedance across a lemminated source.

Systen Inpedance	Frequancy	
scurce and load $)$	10 mHz	100 MHz
$50 \cap$	1%	10%
$75 \cap$	20%	20%

Crest factor

$2 \mathrm{~Hz}_{2}$ to 25 Hz	2:1 al full iange Inpul.
$>25 \mathrm{~Hz}$	10:1 at full range inpul.

Maximum input voltage

High to low: 1000 V rms, 1500 peak or $10^{\circ} \mathrm{V} \cdot \mathrm{Hz}$ on any range. Maximum de voltage in ac mode: 500 V de.
Low to chassis: $\pm 500 \mathrm{~V}$ de, when floated with special banana to BNC adapter.

Options

Autoranging (3403C optlon 001)
Automatic ranglng: uprange al approximately 190% of full range; downranges at approximately 17% of full range.
Autorange time: fasl response: 1 s per range change. Slow response: 10 s per range change.
Remoie contral+ diglal output + autoranging $\{3403 \mathrm{C}$ optlon 003): Provides remote control of all front panel functions. ranges. digital outpul and autoranging.
dB display (3403C option 006)
Messurement range: $108 \mathrm{~dB}(-48 \mathrm{dBV} 10+60 \mathrm{dBV})$.
Callbrated d日 reference: $0 \mathrm{~dB}=1.000 \mathrm{~V}$: reforence level may be set for $0 \mathrm{dBm}(600 \mathrm{n})$ by adjusting front panel dB calibration adjustment.
Varlable dB reference: reference level may be shifted downward from calibrated position $>13 \mathrm{~dB}$.
dB recorder output: ousteut voltage: 200 mV for 30 dB . Output resistance: $1 \mathrm{k} \Omega=500 \Omega$.
Accuracy: 90 days $\left(25^{\circ} \mathrm{C}+5^{\circ} \mathrm{C},<95 \% \mathrm{RF}\right)$.

CAUTION: Prequencies and ranges in this area may result in invalid readings without ranging indication.

* $D C+A C$ lunction and slow response time only
** specification is representalive of lypical liatness.
General

Operating conditions

Temperature range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Humldity: <95\% RH.

Recorder output

Output volfage: I V óc open circuit for full range input.
Output resistance: $1 \mathrm{k} \Omega \pm 10 \%$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$. 48 Hz io $440 \mathrm{~Hz}, 35 \mathrm{VA}$ max. (including all options).
Input terminals: BNC front panel connector standard for low 10 high terminals: rear panel connector available by intemally reversing position of as converter module.
Welght: including all options: net, 5 kg (11 lb). Shipping, including all options: Net. $7.2 \mathrm{~kg}(16 \mathrm{jb})$.
Slze: $127 \mathrm{H} \times 234.9 \mathrm{~W} \times 196.8 \mathrm{~mm} \mathrm{D}\left(5^{\prime \prime} \times 91 /{ }^{\prime \prime} \times 71 / \mathrm{s}^{\prime \prime}\right)$.
Accessorles furnlshed: floating adapter-banana to BNC.
3403 C True RMS Voltmeter
Opt 001 autoranging add $\$ 156$
-Opt 003 remote conirol + digital oulput + autorang. ing
add \$355
-Opt 008 dB display
add $\$ 315$
*Opilans 003 and 006 are sualable only as foctory instatled options.

Description

The Hewlen-Packard 3437A System Volimeler has been designed to be used in systems. II is a $31 / 2$ digu high specd de volimeter with sample and hold. The standard unil measures: DC volts, provides trigger delay. Burst reading capability and Hewletl-Packard Interface Bus (HP -IB).
There are three DC noating inpul ranges: $0.1 \mathrm{~V}, 1.0 \mathrm{~V}$ and 10.0 V full scale with a maximum display of "1999". Sample and Hold allows the 3437A to be an inmantaneous reading volumeter. The trigeer delay can be sel from $0.1 \mu s 101.0$ second and the number of readings can be set from 0 to 9999 readings.

Typlcal operation

Example: sel Delay 10) ms and Number of Readings is set to 1000. The 3437 A will now take 1000 readings spaced I ms apart upon receiving one trigger.

Data output

All front pands switches are programmable from the HP-18. Two data oulpur formats anc available: (1) ASCII oulpul (Serial ASClI characters) and (2) Packed oupt (two \&-bit bytes on the BP.IB to send the complete reading).

High speed

The Packed oulpul mode allows more dala to be slored in the calculator or compucer as well as increasing the maximum reading rate from 1000 readings/second to greater than 5000 rendings/ second.

Systems capabllity

The user may select the mode for which the volimeter requests service from the conimiler (calculator or computer). Request Service can be programmed manually or automatically to request service for: (I) Data Ready. (2) Trigger Ignore, or (3) Invalid Program. Any combination of these three can be sclected.

Applicatlons

Wavefom unalysis-The 3437A can be used to analyze a wide variety of waveforms. The delay and burst reading capability allows frequency, positive or negative peak values, RMS value and harmonic disiorion to be measured. The accuracy of these measuremonts is comparable to more traditional meatiurement techriques.
Transient signal analysis-The 3437 A is cipable of measuring tansient signals because of the wide bandwidth inpul ($>1 \mathrm{MHz}$), higls measuring speed and sample-and-hold.
Fast AC measurements-Simusoidal signals of known frequency can be measurid in less than one cycle of the signal. Very low frequency measurements can be made more quickly than with conventional techniques.

Figure i shows a signal to be measured by both an oscilloscope and the 3437A. The oscilloscope delayed sweep is used to intensify the point of interest. The delayed gate output is used to trigger the 3437A at the same point in tIme as Indicated on the oscilloscope display. The vollage at the point of interest is now known to the accuracy of the 3437A.

High speed acanning: multiple inpul measurement applications can be salistied with the 3437A and the HP 3495A Scanner. Resding rates of greater than 100 charnels/second can be atcained.

Gench measurements: in addition to systems applications, the 3437 A can be used to improve osciloscope amplitude and measurement accuracy.

Data-sheeted systems

The 3437A is part of 1be 3052A Data Acquisition System. (Refer to page 73). The 3052A includes the 3437A. $345551 / 8 / 6 / / 8$ digit DVM. 3495A Scanner and 9825A Computer. The combination of the 3437A and 345SA voltmeters provides systems veriatility such as high specd, sysicm timing and high sensilivity measuremenls. The delay generator in the 3437A is used to provide timing eriegers for the 3455A DVM. The 3455A provides $1 \mu \mathrm{~V}$ sensilivity and high speed DC measurements with greater than 60 dB normal mode noise rejection.

Specifications

DC volis

Mangas	Mar. olsplay	Overlosd quadipy
10 V	± 19.98	± 99.99
1 V	± 1.958	$=9.999$
0.1 V	$\pm .1998$	$=.9999$

Ranging: Manual or Remote.

Pertormance

Static accuracy (90 days, $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$)
10 V range: $\pm 0.05 \%$ of reading ± 1.6 digits.
1 Vrange: $\pm 0.03 \%$ of reading ± 1.6 digits.
$0.1 \vee$ range: $\pm 0.06 \%$ of reading $=1.8$ digits.
Static accuracy (1 year, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
$10 \vee$ range: $\pm 0.05 \%$ of reading ± 2 digits.
1 V range: $\pm 0.03 \%$ of reading ± 2 digits.
0.1 V renge: $=0.0 \% \%$ of reading $=2.2$ digits.

Static accuracy lemperature coetfelent ($0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$) : $\pm 0.002 \%$ reading $/{ }^{\circ} \mathrm{C} \pm 0.05$ digits $/{ }^{\circ} \mathrm{C}$.

Input characterlstlcs

10 V range: $\mathrm{R}=1 \mathrm{M} \Omega=30 \% ; \mathrm{C}<75 \mathrm{pF}$.
1 V range: $\mathrm{R}>10^{*} \Omega$; $\mathrm{C}<75 \mathrm{pF}$.
0.1 V range: $\mathrm{R}>10^{*} \Omega: C<75 \mathrm{pF}$.

Maximum Input voltage high to low on all ranges: $< \pm 30 \vee$ peak.
Maximum voltage low to chassis: $\pm 42 \mathrm{~V}$ peak.
Number of Readings (N Readings): 3) to 9.999.
-Reatings are not internally stored.
"For $\mathrm{K}=0$ the 3437 operates in delay made only.
Maximum reading rate (Remote, N Rdgs. >1, and a zero delay Ilstener")

ASCII: 3600 Readings/s.
Packed: 5700 Readings/s.
-htuit Reading Rate is given ty
ASCII- $\frac{3600 \text { (listen rate })}{3500+\text { listen rate? }}$
PACKCO: $\frac{5700 \text { (listen rate }{ }^{\text {t }} \text {) }}{5700+\text { listen rate }}$
'Listen rate is maximusi speed that lictener can accept dala brees.
Delay
N Adgs. $=0$ or 1
DELAY (setting): 0 to 0.9999999 s id $0.1 \mu 5$ steps.
N Rdgs. >1 (Remole and a zero delay liatener")
ASCII: $0.0002778 \mathrm{~s} \leq$ DELAY $\leqslant 0.9999999 \mathrm{~s}$.
PACKEO: 0.00017545 EDELAY $\leqslant 0.9999999 \mathrm{~s}$.

- Mimmun deby is a Iunctibn of listenet delay relaled by

ASCII: $277.8 \mu 5+$ listener delay.
PACKED; $175,4 \mu \mathrm{~s}+$ listener delay,
Accurscy (EXT. TRIG 10 DELAY OUT, $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$)
Delay offset: $100 \mathrm{~ns}=25 \mathrm{~ns}$.
Delay accuracy: $\pm 0.008 \%$ DELAY + Delay offsel.
Delay repeatability (ilter) for $\mathrm{N} \mathrm{Rdgs}=0$ or 1
DELAY of 0 or $0.1 \mu \mathrm{~s}:=2 \mathrm{~ns}$.
DELAY or $0.2 \mu \mathrm{~s} 1050 \mathrm{~ms}:=10 \mathrm{~ns}+0.0002 \%$ DELAY seuting.
DELAY of $>50 \mathrm{~ms}:=110 \mathrm{~ns}$.
Input bandwidth (3 dB)
10 V range: 1.0 MHz .
1 V range: $1.1 \mathrm{M} . \mathrm{Hz}$.
0.1 V renge: 40 kHz .

Setting time
10 V range: a 10 V step 10 within 20 mV of final valuc $\mathrm{t}=7.5 \mu \mathrm{~s}$; a 10 V step 10 within 200 mV of final value $\mathrm{t}=700 \mathrm{Bs}$.
1 V range: a 1 V step to within 2 mV of final value $\mathrm{t}=1,5 \mu \mathrm{~s}: \mathrm{a}$ I V step to within 20 mV of final value in 700 ns .
0.1 V range: a 0.1 V step to within $200 \mu \mathrm{~V}$ of final value $\boldsymbol{z}=25 \mu \mathrm{~s}$; a
$0.1 V$ step 10 within 2 mV of fingl value in 700 ns .

General

Operating temperature: 0 to $55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
Humidity range: $>95 \%$ R.H., $0^{\circ} \mathrm{C} 1040^{\circ} \mathrm{C}$.
Power: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}=5 \%,-10 \%, 48 \mathrm{~Hz} 10400 \mathrm{~Hz}$ line operation, $<60 \mathrm{VA}$ with all options.
Dimensions: $88.9 \mathrm{H} \times 212.7 \mathrm{~W} \times 527.1$ ram $\mathrm{D}\left(31 / 2^{\prime \prime} \times 89 / \mathrm{m}^{\prime \prime} \times 20^{1 / 4} \mathrm{~A}^{\prime \prime}\right)$. Welght: net. $5.6 \mathrm{~kg}(17 \mathrm{lb} 4 \mathrm{oz}$). Shipping, $7.6 \mathrm{~kg}(16 \mathrm{lb} 12 \mathrm{oz}$).

Description

The 3438 A is an avtoranging $31 / 2$ digil Multimeter with 5 functions of $A C V$. DCV. $A C I, D C 1$, and Ω. II interfaces to the HP-IB providing bouh audressable and talk-only modes.

The addressable mode allows triggering either from the Calculating Controller (remote) or intemally (local). Function and range are selected manually on the front panel with autoranging of volts and ohms.

Speciflcations

DC Voltmeter

Ranges: | | $\pm 200 \mathrm{mV}$ | Maximum dlsplay: | $=199.9 \mathrm{mV}$ |
| ---: | :--- | ---: | :--- |
| | $=22 \mathrm{~V}$ | | $=1.999 \mathrm{~V}$ |
| | $=20 \mathrm{~V}$ | | $\pm 19.99 \mathrm{~V}$ |
| | $\pm 200 \mathrm{~V}$ | | |
| | $\pm 1200 \mathrm{~V}$ | | $\pm 1199 \mathrm{~V}$ |

Maximum Input: 1200 V ($\mathrm{DC}+$ peak AC).
Aanglng: Aulomatic or manual.
Sensitivity: $100 \mu \mathrm{~V}$ on 200 mV range.
Polarlty: Aulomatically sensed and displayed
Accuracy (1 year, 15 to $30^{\circ} \mathrm{C}$)

Fange 200 mV 2 V to 1200 V	$=\left(0.1 C_{i}\right.$ of reading +2 digis $)$
	$=(0.1 \%$ of reading +1 digit $)$

Tomperature coafflclent: (0 to $15^{\circ} \mathrm{C}$ and 30 to $55^{\circ} \mathrm{C}$) $\pm(.018 \%$ reading + 0.1 digii) $/{ }^{\circ} \mathrm{C}$.
Input resistance: $10 \mathrm{mcg} \Omega \pm 1 \%$.
Input Type: floating. 500 V maximum, com. 10 ground.
Normal Mode Rejectlon: 40 dB al 50 Hz and $60 \mathrm{~Hz} \pm$. I Hz.
Response time: <0.7 seconds to within I digit of tinal value on one range. Add 1 second for each range change.

Ellective common mode rejectlon: ($1 \mathrm{k} \Omega$ unbalance) $>120 \mathrm{~dB}$ al $50 / 60 \mathrm{~Hz} \simeq 0.18 \%$.
DC Curreni

$$
\text { Ranges: } \begin{array}{rlrl}
& \pm 200 \mu \mathrm{~A} & \text { Maxlmum dlsplay: } & \pm 199.9 \mu \mathrm{~A} \\
& \pm 2 \mathrm{~mA} & & \pm 1.999 \mathrm{~mA} \\
& \pm 20 \mathrm{~mA} & & \pm 19.99 \mathrm{~mA} \\
& \pm 200 \mathrm{~mA} & & \\
& \pm 2000 \mathrm{~mA} & & \\
& & 199.9 \mathrm{~mA} \\
\mathrm{~mA}
\end{array}
$$

Maximum Ingut: curreni: 2 amp (fuse protected); volage; 250 V Ranging: manual only.
Sensillvity: $100 \pi A$ on $200 \mu \mathrm{~A}$ range.
Polarlty: aumomitically sensed and displayed.
Accuracy (1 year, 15 to $30^{\circ} \mathrm{C}$)

Range

200μ A to 20 mA 2000 mA

Speciflcations

$=(0.3 \%$ of reading +2 digits $)$
$=\left(0.6^{\prime \prime}\right.$ of reading +2 digils $)$

Temperature coetilclent: (0 to $15^{\circ} \mathrm{C}$ and 30 to $55^{\circ} \mathrm{C}$) $=(.028 \%$ of reading +0.1 digits $)^{\circ} \mathrm{C}$.
Vollage burden:

Range	Maximum Burden at Full Scale
$200 \mu \mathrm{~A}$ to 20 mA	$<220 \mathrm{mV}$
200 mA	$<240 \mathrm{mV}$
2000 mA	$<400 \mathrm{mV}$

Responge fime: 0.7 seconds on any range to within I digit of final value.
AC Voltmeter
AC Converter (average responding RMS callbrated)
Ranges: 200 mV
Maximum Dlsplay: 199.9 mV

2 V	1.999 V
20 V	19.99 V
200 V	199.9 V
1200 V	1199 V

Maximum Input: 1700 V (DC \div Pcak AC). 10^{7} Voli-Hz max.
Ranging: Automalic or manual.
Sensitivlty: $100 \mu \mathrm{~V}$ on 200 mV range,
Accuracy (with display of $\geqslant 20$ diglts 1 year, $151030^{\circ} \mathrm{C}$)

Range
$30 \mathrm{~Hz}-50 \mathrm{~Hz}$
$50 \mathrm{~Hz}-20 \mathrm{kHz}$
$20 \mathrm{kHz}-100 \mathrm{kHz}$

Specilfications
\pm (1.5% of reading ± 3 digits $)$
\pm (0.3% of reading ± 3 digits)
$=(1.9 \% \%$ of reading $=10$ digits $)$

Temperature coefficient: (0 to $15^{\circ} \mathrm{C}$ and 30 to $\left.55^{\circ} \mathrm{C}\right) \pm(0.04 \%$ of reading +0.2 digit $/{ }^{\circ} \mathrm{C}$.
Input Impedance: resistance; 5 meg Ω; shunl capaciance: 550 pf ,
Responge tlme: 1.6 secends to within 3 digits of final value on one range. Add 1.2 seconds for each range changc.
Input type: floating, 500 V maximum com. 10 ground.
AC Current

Ranges:	$300 \mu \mathrm{~A}$	Maximum dlsplay:
2 mA	$199.9 \mu \mathrm{~A}$	
20 mA		1.999 mA
200 mA		19.99 mA
2000 mA		1999 mA

Maximum Input: current: 2 nmp (fuse protected; voltage: 250 V .
Aanglng: Manual only.
Sensitivity: 100 nA on $500 \mu \mathrm{~A}$ range.
Accuracy (Wilh display of $\geqslant 20$ diglts 1 year, $151030^{\circ} \mathrm{C}$)
Temperature coelficlent: (0 to $15^{\circ} \mathrm{C}$ and 30 to $\left.55^{\circ} \mathrm{C}\right)=(0.05 \%$ of reading +0.2 digits) $/{ }^{\circ} \mathrm{C}$.
Voltage burden

Response tlme: 1.6 seconds an any range 10 within 3 digits of final value.
Input type: Øloating, 500 V maximum cont. to ground,

Ohmmeter

Ranges:	20Ω
200Ω	Maximum display
$2 \mathrm{k} \Omega$	19.99Ω
$20 \mathrm{k} \Omega$	199.9Ω
$200 \mathrm{k} \Omega$	$1.999 \mathrm{k} \Omega$
$2000 \mathrm{k} \Omega$	$19.99 \mathrm{k} \Omega$
$20 \mathrm{M} \Omega$	$199.9 \mathrm{k} \Omega$
	$1999 \mathrm{k} \Omega$
	$19.99 \mathrm{M} \Omega$

inpul protectlon: 250 V RMS.
Ranging: automatic or manual.
Senstuvity: 10 milliohm on 30Ω range.
Accuracy (1 year, 15 to $30^{\circ} \mathrm{C}$)

$$
\begin{array}{cl}
\text { Range } & \text { Speciflcations } \\
20 \Omega & \pm(0.5 \% \text { or reading }+10 \text { digits }) \\
200 \Omega 102 \mathrm{M} \Omega & \pm(0.2 \% \text { of reading }+2 \text { digits }) \\
20 \cdot \mathrm{M} \Omega & =(0.8 \% \text { of reading }+2 \text { digiss })
\end{array}
$$

$\begin{array}{cc}\text { Temperature coefflcient }\left(010 \quad 15^{\circ} \mathrm{C} \text { and } 30 \text { to } 55^{\circ} \mathrm{C}\right) \\ \text { Range } & \text { Speclfcatlong } \\ 20 \Omega-2 \mathrm{M} \Omega & \pm\left(0.04 \% \text { of reading }+0.2 \text { digits) } / \mathrm{F}^{\circ} \mathrm{C}\right. \\ 20 \mathrm{M} \Omega & \pm(.18 \% \text { of reading }+0.2 \text { digits }) / \circ^{\circ}\end{array}$

Configuratlon: 2 wire.
Open clrcult voltage: $<S V$.
Current through unknown
Range: $30 \Omega, 200 \Omega$. $2 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 2 \mathrm{M} \Omega, 20 \mathrm{M} \Omega$.
Current: $5 \mathrm{~mA}, 5 \mathrm{~mA}, 500 \mu \mathrm{~A} .50 \mu \mathrm{~A}, 5 \mu \mathrm{~A}, 500$
nA. $50 \mathrm{n} \wedge$.
Response tlme: 0.8 seconds to within 1 digit. Add 0.8 seconds for each range change
HP-1B
Data output format:
$\pm X . X X X \quad E=X . \quad$ CR LF (13 byic. fixed)

DISPLAY EXPONENT FUNCTION

Function Code: DCV. 1: ACV, 3: DCI, 3: ACI, 4; 9, 5
Overload Indleation: $=1$. XXX E + 9
Talk Modes (Selected by Internal switch)
Addressed to lalk
Local: continuously sampling input: oulputs on Bus when addressed to latk.
Remote: samples impui only on command from controller.
Talk only (used wlthout controller)
Input: switch selectable, front or rear.
Reading rate: is function of inpul level and ranging (2.5 to 4.7) sec. if in proper range).
With Range change
ACV, ACI: add 1.2 seconds for each range change. Afier arrival on proper range, the fist six readings are always discarded. The seventh reading is oupput on Bus. Allow 1.6 seconds additional for first reading on Bus.
DCV, DCI, $k . \Omega$: Add I second for each range change. After arrival on proper range, the first reading is always discarded, Allow 310 nis additional for first reading on Bus.

General

Callbratlon; data sheet specifications guaranteed for 1 year.
Dlaplay: 7 segment red 0.3 inch high LED's. Function and range annunciation.
Readling rate: 2.4-4.7/sec. depending on input level.
A-D Converslon: dual slope
Inlegration time: 100 mscc .
Ranging: automatic or manual on ACV. DCV. and ohms. Manual only on AC \& DC eurtent,
Storage temperature: -40 to $+75^{\circ} \mathrm{C}$.
Operating temperalure: (0 io 55$)^{\circ} \mathrm{C}$.
Humjalty: 95% RH at $+40^{\circ} \mathrm{C}$.
Power: $48-440 \mathrm{~Hz}, 12$ walts; 86-106 V Opl 100: $104-127$ V Opl 115 : $190-233$ V Opt $210 ; 208-250 \vee$ Opt 230.
Slze: $85.7 \mathrm{H} \times 209.6 \mathrm{~W} \times 292.2 \mathrm{mmL}\left(3^{3 / s^{\prime}} \times 81 / 6^{\prime \prime} \times 11^{1 / 2}\right)$.
Welght: $2.8 \mathrm{~kg}(6 \mathrm{lb} 5 \mathrm{oz})$.
Orderlng Information Price
11000 A Tesl leads, dual banana both ends $\$ 17$
11002 A Test leads. dual banami to dunl alligator \$12
11003A Tesil leads, dual banana to probe and alligator $\$ 12$
11096 B R Probe 10 kHz to $700 \mathrm{MHz} \$ 87$
34110A Soft vinyl carrying/operaling case \$25
34111A High-voltage Probe 40 kV DC $\$ 75$
34(12A Touch-Hold Probe $\$ 40$
11067d Test load kil \$5
$5061-00541 / 2$ moduic rack mount kil (available on Opl .
002 only)
10631 A I m (39.37") \$60
10631 B $2 \mathrm{~m}\left(39.37^{\prime \prime}\right) \quad \$ 60$
1063 IC 4 m ($39.377^{\prime \prime}$) \$60

3438 A $\$ 875$
Opl 100, 116, 210, 230 N/C

- AutoCal
- Self test
- Bench/system
- AD/DC/OHMs
- High speed
- Removable reference

Description

Hewlett-Packard's 3455八 Digita! Volimeter is a microprocessor consrolled $5 y_{2}$ - or $61 / 2$-digit integrating voltmeter for bench or systems applications. The standard instrument measures DC volts. AC volis, and resistance. HP-IB $1 / 0$ for systems applications is also standard.

Measurlng apeed

The 3455A is fully guarded and has greater than 60 do nomal mode noiss rejection at reading rates of up to 24 reikings per second on all $D C$ ranges. Ohms reading rates are up to 12 readings/se'cond and an AC fasl mode gives reading rates of up to 13 readings/sccond al frequencies above 300 Hz .

Performance

DC measurements can be made wilh up to $1 \mu V$ sensitivity. Ohms measurements are made with either it 2 -wire or 4 -wir mode. The High Resolution (6^{1} adgit) mode gives $D C$ and Ohms measurements with greater than I part per million resolution. AC voltage measurements can be made from $30 \mathrm{H} \geqslant 10250 \mathrm{kHz}$ with the oplional average responding conventer.

True sms

The standard inverms converter gives AC measurements from 30 H z 101 MHz . Complex signals wilh cresi factors of up to $7: 1$ al full seale can be measured.

Nath

The math functions provide the user with unique computational capability. The Scale mode ($\frac{X Y}{Y}$ I allows the user to offset. anke ratios, or scale readings to give readouts in physical units. The \% Error mode ($X \times Y \times 100$) converts readings into percenlage change from Y which is entered as a reference. For the math functions X is the present reading. Y and Z are previously entered readings or numbers entered from the froni panel or by remote program.

Auto Cal

The auto cal fealure gives the user accurate DC volls and ohms measurements and simplifies calibration of these functions. The DC and ohms opemting circuik are checked against intemal references and any errons are corrected digitally. All de and ohms adiustments are in a removable seference assembly.

Serviceability

The self-lest fealure is used 10 aid in iroubleshooling as well as verifying operation of the 3455 A . Text verifies proper operation of the $D C$ measuring circuits by comparing their parametess against predetermined limits. If a problem is found, the display is used to assusi in finding the problem area by indicaling which parameter is in crror. Detailed troubleshooting can then be used to quickly isolate the problem.

Routine maintenance and calibration has been simplified with the removable reterence askembly. Calibration of DC and ohms funclions can be done by replacing the reference assembly with a recenily calibrated one. Exira reference assemblies are available as HP accessory number III77A. A spare asscmbly is ideal for one ur more 345SA's. Calibrate DC and ohms in a $3455 A$ without remsoving it from the bench or system. Just reium the extra reference assembly 10 the cal lats or HP for calibration and trave it back in time to calibrate the 3455 next time.

Data-sheet systems

The 3455A is included as pan of two standard systems. The 305IA and 3052A are fully integrated. tested, verified and specified as syslems and come with complete systems software and documentation. These sysiems provide complete solutions to many of your measurement problems.

3051 A Programmable Data Logger

The 305iA Programmable Data Logger has been specificully de. signed to solve your dedicated. long term data logging problems.

The 3051A consists of:

- 3455a DVM
- 3495a Scanner
- 9815A Calculator
- Special Data Logger ROM

Your dala logeing problems can simplified with such feanures as:

- Thermucouplc linearization
- Themocouple referenu junction
- Dita analysis and processing
- Decision making and control capabilities
- Dala fomating and storage
- Power fail-resiart

Typical applicitlons areas are:

- Planl monitoring
- Process monitoring
- Paraneter testing

3052A Automaflc data acqulaition system

The 305:A Automatic Datu Acquisition System has been designed to solve your data acquisition, control and automatic testing problems.
The 3052A consisls of:

- 3455A DVM
- 3437A Sysicm Voltmeter
- 3495a Scanner
- 9825 A Desktop Compuler \& ROMs

These 2ns2A features give you a wide range of problem solulions:

- Signal diyiliping (>5000 readings/second)
- High speed scanning (>100 channels/second)
- System tinting
- Vectored intemupt syntem for simultaneous control and processing of multiple tasks
- High speed data access and storage
- Alphanumeric display for casy interaction with the operator

Typicul application areas are:

- R\&D
- Production testing \& QA

For further informbation on either of these iwo systems refer to pages 72 and 73 or contact you locial HP fictd enginecr.

HP Technology

HP has developed an instrument oriented microprocessor to provide the high perfomance of the 3455 A . The mietoprocessor has a parallel arehitecture to give the high speed necessary 10 control the meastirement processes of a buch/syntems voltmeter. Two microprocessors are used: one for control of the mensurement and the second for interface to the HP-1B and computation of the math functions.

Auto cal is a process by which the 3455A internally checks its DC and ohms operating circuits ngainst internal references and cormets for emors. The benethts of auto cal are high accuracy and simpliticd calibration. Only four adjusuments for calibration of DC and ohms are required and theye are in the removable reference assembly. The microprocessor in also used to control the atuto cal process and compute the correction factors.

The HP-developed fineline tantilum nitrade resistor technology used in several HP digital voltmerens is also used io the 3455A. This technology provides accurate iemperature tracking resistors that result in excellent long tem DC accuracy.

Specifications

DC Voltage

Ranges		Maxmum Display	
$\begin{gathered} \mathrm{H}(\mathrm{gl}) \\ \text { Resolitlan } \\ 0 \mathrm{HI} \end{gathered}$	$\begin{gathered} \text { High } \\ \text { Resalation } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { Hyeh } \\ \text { Resolution } \\ \text { OH } \end{gathered}$	$\begin{gathered} \text { Higi } \\ \text { Resolition } \\ \text { On } \end{gathered}$
$\begin{gathered} 0.1 \\ 10 \\ 100 \\ 1000 \end{gathered}$	$\begin{gathered} \overline{1} \\ 10 \\ 100 \\ 1000 \end{gathered}$	$\begin{aligned} & =1149999 \mathrm{y} \\ & =149999 \mathrm{y} \\ & =14.9999 \mathrm{y} \\ & =149.999 \mathrm{y} \\ & =1000.00 \mathrm{y} \end{aligned}$	$\begin{aligned} &-1499394 \mathrm{~V} \\ &=1499999 \\ &=1459999 \mathrm{~V} \\ &= 1000.0000 \mathrm{~V} \end{aligned}$

Performance

(High Resolution OT)
Accuracy
24 hours $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
10 V range $: \pm(0.002 \%$ of reading +1 digit $)$.
1 V range: \pm (0.003% or seading +1 digit $)$.
0.1 V range: $=(0.004 \%$ of reading +4 digits $)$.
$100 \& 1000 \mathrm{~V}$ range: $\pm(0.004 \%$ of reading +1 digil).
90 days $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
$10 \vee$ range: $=(0.005 \%$ of reading +1 digit $)$.
1 V range: $\pm(0.006 \%$ of reading +1 digit $)$.
0.1 V range: \pm (0.007% of reading +4 digils).

100 \& 1000 V range: $\pm(0.007 \%$ of reading +1 digit $)$.
6 monits $33^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
10 V range: $\pm(0.008 \%$ of reading +1 digil).
$1 \vee$ range: $\pm(0.009 \%$ of reading +1 digit $)$.
0.1 V range: $\pm(0.010 \%$ of reading +5 digits $)$.
$100 \& 1000$ V range: $\pm 0.010 \%$ of reading + I digit).
1 year $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
10 V range: \pm (0.013 \% $\%$ of reading +1 digit).
1 V range: $=(0.014 \%$ of reading +1 digit $)$.
0.1 V range: $\pm(0.015 \%$ of reading +6 digits $)$.
$100 \& 1000 \mathrm{~V}$ range: $=(0.015 \%$ of reading +1 digil).
(High Resolution On)
Accuracy
24 hours $23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
10 V range: $\pm(0.002$ er of reading +3 digits $)$.
100 \& 1000 V range: $*(0.004 \%$ of reading +3 digirs).
1 V range: $\pm(0.003 \%$ of readine 4 digits).
90 days $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
10 V renge: $\pm(0.005 \%$ of reading +3 digits).
$100 \& 1000 \vee$ range: $\pm(0.007 \%$ of reading +3 digits).
1 V range: $=(0.006 \%$ of reading +4 digits $)$.
6 monthe $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
10 V range: $=\underline{(0.008 \%}$ of reading +3 digits $)$.
$100 \& 1000 \mathrm{~V}$ range: $=(0.010 \%$ or reading +3 digils $)$.
1 V range: $=(0.009 \%$ of reading +5 digits).
1 year $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
$10 \vee$ range: $\pm(0.013 \%$ of reading +3 digits).
$100 \& 1000 \mathrm{~V}$ range: $\pm(0.015 \%$ of reading +3 digits).
$1 \vee$ range: $=(0.014 \%$ of reading +6 digits) .
Input characterlstics
Input resistance: 0.1 V ihrough 10 V range: $>10^{10}$ ohros. 100 V and 1000 V range: 10 megohm $=0.1$ \%\%

Maximum Input valtage

Hlgh to low Input terminals: $\pm 1000 \mathrm{~V}$ peak.
Guard to chessis: $\pm 500 \mathrm{~V}$ peak,
Guard to low terminal: $=200 \mathrm{~V}$ peak.
Normal mode rejectlon (NMR): NMR is the ratio of the peak nommal-mode voltage 10 the peak crror voltage in the reading.
NMR at 50 or $60 \mathrm{~Hz}=0.1 \%$: $>60 \mathrm{~dB}$.
Effectlve common mode rejectlon (ECMR): ECMR in the ratio of the peak conmino-mode voltage to the resultant peak error voliage in the reading.
ECMR with $1 \mathrm{k} \Omega$ unbalance in low lead at
$D C:>140 \mathrm{db}$.
50 Hz or $80 \mathrm{~Hz} \pm 0.1 \%:>160 \mathrm{db}$.
Maximum reading rate

Local
Remole

60 Hy Gate Longin	
High Resolinion OH	$\begin{gathered} \text { High } \\ \text { Resolulion } \\ 0 \eta \end{gathered}$
$5 \mathrm{~d} \mathrm{~g} / \mathrm{s}$	$3 \mathrm{rgg} / \mathrm{s}$
$24 \mathrm{rap} / \mathrm{s}$	$6 \mathrm{tag} / \mathrm{s}$

AC Voltage (rms converter)
(HIgh Resolution On or Off)
Ranges: 1.00000 V Maximum Dlsplay: 1.49999 V
10.0000 V
100.000 V

Range selection: Manual. Automatic or Remote.
Function selection: ACV or Fast ACV.
Input characteristics
Inpul Impedance
Front terminals: $2 \mathrm{M} \Omega \pm 1 \%$ shunted by less than 100 pr .
Rear terminals: $2 \mathrm{M} \Omega \pm 1 \%$ shunted by less than 75 pf .
Maximum input voltage
High to low terminals: $=1414$ volts peak....*
Guard to chassls: $\leq 500 \vee$ peak.
Guard to low terminal: $=200 \mathrm{~V}$ peak.
". 'Subject toa 10" volts-Hz limhallon.
Maximum reading rate

	60 HL Csta Lencih		50 Hz gata lempls	
	ACV	fast Aev	ACY	SAST ALV
Lacal	$1.310 \mathrm{~d} / 5$	$4.516 \mathrm{ck} / \mathrm{s}$	$1.1 \mathrm{rgg} / \mathrm{s}$	$3.5 \mathrm{t} 0 \mathrm{~g} / \mathrm{s}$
Ramole	$13 \mathrm{rdp} / \mathrm{s}$	$13 \mathrm{rfg} / \mathrm{s}$	$1.1 \mathrm{rdg} / \mathrm{s}$	$12 \mathrm{rdg} / \mathrm{s}$

Response time

$A C V$ and FAST ACV
First reading to $<0.1 \%$ of slep size when triggered coincident with slep change when on correct range (for AC signals wilh no DC components.
AC valtage (average converter) Opt 001
(High Resolution On or Off,

Ranges:	1 V	Maximum Display:	1.49999 V
	10 V		14.9999 V
	100 V		149.999 V
	1000 V		1000.00 V

Range selection: Manual, Automalic or Remote.
Functlon selection: ACV or Fasi ACV.

Input characteristics
Input Impedance: Front Terminals - $2 \mathrm{M} \Omega=1 \%$ shunied by less than 100 pf . Rear Terminals $-2 \mathrm{M} \Omega=1 \%$ shunted by less than 75 pf.
Maximum input voltage
High to low terminals: ± 1414 volts peak.***
Guard to chassls: $=500 \mathrm{~V}$ peak.
Guard to low terminal: $\pm 200 \mathrm{~V}$ peak.

- "Subjact to a 10^{7} volts -H limitation

Maximum reading rate

	60 Hz Gale Lenght	
	ACH	SAST ICV
Local	1.7 $1 . \mathrm{gg} / \mathrm{s}$	$5.5 \mathrm{tag} / \mathrm{s}$
Remide	$1.3 \mathrm{dg} / \mathrm{s}$	$13 \mathrm{dg} / \mathrm{s}$

ack	rast Acy
1.1 rods	$3.5108 / \mathrm{s}$
1.1 rdp/s	$12 \mathrm{dg} / \mathrm{s}$

Ohms

Ranges		Wzximum Display	
$\begin{gathered} \text { High } \\ \text { RLsululion } \\ 0 H \end{gathered}$	$\begin{aligned} & \text { High } \\ & \text { Resciulion } \\ & \text { 0n } \end{aligned}$	$\begin{gathered} \text { Hlgh } \\ \text { Resolusion } \\ \text { OH } \end{gathered}$	$\begin{gathered} \text { HIgh } \\ \text { Resolulian } \\ \text { On } \end{gathered}$
	$\begin{aligned} & 1.000000 \times \Omega \\ & 10.00000 \mathrm{kO} \\ & 100.0000 \mathrm{kR} \\ & 1000.000 \mathrm{kN} \\ & 10000.00 \times 0 \end{aligned}$	$\begin{aligned} & \text { a. } 149999 \mathrm{kn} \\ & 149999 \mathrm{kO} \\ & 149999 \mathrm{kn} \\ & 149999 \mathrm{kO} \\ & 149599 \mathrm{k} \\ & 14999.9 \mathrm{kn} \end{aligned}$	$\begin{aligned} & 1.499999 \mathrm{kn} \\ & 14.99999 \mathrm{kG} \\ & 149.9999 \mathrm{kl} \\ & 1499.999 \mathrm{kI} \\ & 1499999 \mathrm{ks} \end{aligned}$

Range selection: Manual, Automatic, or Remote.
Function selection: 2-wire $k \Omega$ or 4 -wire $k \Omega$.

Performance

(High Resolution Orn)
Accuracy: 4 -wire $\mathrm{k} \Omega$
24 hours: $3^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}$
$0.1 \mathrm{k} \Omega$ range: $=(0.003 \%$ of reading +4 digits).
$1 \mathrm{k} \Omega$ range: $\pm(0.003 \%$ of reading +1 digit $)$.
$10 \mathrm{k} \Omega$ range: $\pm(0.005 \%$ of resding +2 digits $)$.
$100 \mathrm{k} \Omega$ range: $=(0.002 \%$ of reading +2 digits).
$1000 \mathrm{k} \Omega$ range: $=(0.012 \%$ of reading +5 digits).
$10000 \mathrm{k} \Omega$ range: $\pm 0.1 \%$ of reading +5 digits).
90 days: $73^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$0.1 \mathrm{k} \Omega$ range: $\pm(0.005 \%$ of reading +5 digits).
$1 \mathrm{k} \Omega$ range: $\pm(0.005 \%$ of reading +1 digit).
$10 \mathrm{k} \Omega$ range : $=(0.007 \%$ of reading +2 digits $)$.
$100 \mathrm{k} \Omega$ range: $\pm(0.004 \%$ of reading +2 digiss .
$1000 \mathrm{k} \Omega$ range: $\pm\{0.0\} 4 \%$ of reading +5 digits $)$.
$10000 \mathrm{k} \Omega$ range: $=(0.100 \%$ of reading +5 digits $)$.

Performance (rms converter)
Accuracy $\pm(\% \text { of reading }+ \text { digits })^{*}$

$\begin{gathered} \text { rast } \left.\begin{array}{c} \text { ACV } \\ A C V \end{array}\right) \end{gathered}$	4 C couplinn 300 Hz 30 $30 \mathrm{~Hz}-20 \mathrm{bHz}$ \square	$20 \mathrm{kHz-100} \mathrm{kHz}$		$250 \mathrm{kle}-500 \mathrm{kH2}{ }^{\text {- }}$	
 90 days: $23^{\circ} \mathrm{C}=1 \mathrm{se}^{\circ} \mathrm{C}$ \{year: $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$	$0.07 \%+70$ digits				

-guard mest be connected to tow on the 1000 V range add $0.01 \mathrm{apm} / \mathrm{volt}$ - whty.
$A C<1 \%$ of range and $A n, D C:$ adt 20 digits.
Performance (average converter)
Accuracy $=(\%$ of reading + digits)*

FAST ACV ACV	$\begin{gathered} 300 \mathrm{~Hz}-500 \mathrm{~Hz} \\ 30 \mathrm{~Hz}-50 \mathrm{~Hz} \end{gathered}$	$\begin{aligned} & 500 \mathrm{~Hz}-1 \mathrm{kHz} \\ & 50 \mathrm{~Hz}-100 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} 1 \mathrm{xHz}-100 \mathrm{xHz} \\ 100 \mathrm{~Hz}-100 \mathrm{kHz} \end{gathered}$	$\begin{aligned} & 100 \mathrm{KHz}-250 \mathrm{kHz}{ }^{\prime} . \\ & 100 \mathrm{kHz}-250 \mathrm{hHz} . \end{aligned}$
	017\% - 70 6igls	$032 \%_{0}+50$ digis	009\% - 25 digirs	0.70% - 60 digits
50 days $23^{\circ} \mathrm{C}=5^{\prime} 6$	$0.05{ }^{\circ} \mathrm{c}$ - 70 di215	035% - 50 26icits	0.1\% - 23 012	$0.75 \%+60$ digits
6 mos. $230 \mathrm{C}=5{ }^{\circ} \mathrm{C}$	6. 50% - 70 dipits	0.40% + 60 cirits	$0.1 \%+30$ digils	0.75% + 70 digis
1 yr.: $233^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$	$0.50 \%+70$ dels	0.40\% + 70 dighs	0.12\% + 35 digits	0.75\% - 80 digits

-Guard must be connected to Low. An the 1000 V iange, add 0.01 ppm/wott kHz . Specificallons ire for
*frepuencles greatet than 100 kh spectived an 1 and 10 V ringes only.
drput levels sbove $1 / 100$ th of iange

6 months: $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
$0.1 \mathrm{k} \Omega$ range: $\pm(0.005 \%$ of reading +6 dight $)$.
$1 \mathrm{k} \Omega$ range: $=(6.005 \%$ of reading +1 digit.
$10 \mathrm{k} \Omega$ range: $\pm 0.007 \%$ of reading +2 digis).
$100 \mathrm{k} \cap$ range: $\pm(0.004 \%$ of reading +3 digiss).
$1000 \mathrm{k} \Omega$ range: $\pm(0.014 \%$ of reading +5 digits).
$10,000 \mathrm{k} \Omega$ range: $\pm(0.100 \mathrm{~m}$ of reading +5 digits $)$.
1 year: $23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$
$0.1 \mathrm{k} \Omega$ range: $=(0,006 \%$ of reading +7 digits $)$.
$1 \mathrm{k} \Omega$ range: $\pm(0.006 \%$ of reading +2 digits).
10 kS renge: $\pm(0.008 \%$ of reading +3 digis $)$.
$100 \mathrm{k} \Omega$ range: \pm (0.005\% of reading +4 digits).
$1000 \mathrm{k} \Omega$ range: $=\{0.015 \%$ of reading + (t digits).
$10,000 \mathrm{k} \Omega$ range: $\pm(0.100 \%$ of reading +6 digics $)$.

4 wire k Ω

HIgh Resolution On
24 hours: $23^{\circ} \mathrm{C}=1{ }^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$ range: $=(0.0025 \%$ of reataing +4 digis).
$10 \mathrm{k} \Omega$ range: $\geq(0.0045 \%$ of reading +4 digits $)$.
$100 \mathrm{k} \cap$ range: $\pm(0.0030 \%$ of reading +5 digits $)$.
$1000 \mathrm{k} \Omega$ range: $=(0.0120 \%$ of reading +4 digits $)$.
$10,000 \mathrm{k} \Omega$ range: $\pm(0.1000 \% \mathrm{i}$ of reading +4 digits $)$.
90 days: $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$ renge: $\pm(0.0035 \%$ of reading +5 digils $)$.
$10 \mathrm{k} \Omega$ range: $\pm(0.0060 \%$ of reading +5 digits).
$100 \mathrm{k} \Omega$ range: $\pm(0.0035 \%$ of reading +6 digits $)$.
$1000 \mathrm{k} \Omega$ range: $\pm(0.0135 \%$ of reading +5 digits $)$.
$10,000 \mathrm{k} \Omega$ range: $\pm(0.1000 \%$ of reading +5 digits $)$.
6 months: $23^{3} \mathrm{C} \pm 5^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$ renge: $\pm 0.0040 \%$ of reading +6 digits $).$
$10 \mathrm{k} \Omega$ range: $\pm(0.0063 \%$ of reading 46 digis).
$100 \mathrm{k} \cap$ range: $=(0.0040 \%$ of reading +7 digits)
$1000 \times \Omega$ range: $\pm(0.0140 \%$ of reading +6 digits $)$.
$10,000 \mathrm{k} \Omega$ range: $=(0.1000 \%$ of reading +6 digits),
1 year: $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$
$1 \mathrm{k} \Omega$ range: $\pm(0.0045 \%$ of reading +7 digits).
$10 \mathrm{k} \Omega$ range: $\pm 0.0070 \%$ of rending +7 digitsi.
$100 \mathrm{k}[$ range: $\pm(0.0045 \%$ of reading +8 digits $)$
$1000 \mathrm{k} \Omega$ range: $\pm(0.0145 \%$ of reading 47 digits).
$10,000 \mathrm{k} \Omega$ range: $\pm(0.1000 \%$ of reading +7 digis).
2 -wire $k \Omega$: all accuracy specifications are the same is 4 wire $k \Omega$ except add 0.0004 kJ to all readings.
input characteristics
Maximurn voltage generated across unknown: <5 volts for open circuit: <4.7 volis for valid reading.
Signal source driving unknown \{nominal\}: $0.1 \mathrm{k} \Omega, 1 \mathrm{k}\{2$ \& $10 \mathrm{k} \Omega$ ranges.

Overlaad protection

Non-Destruction: $\pm 350 \mathrm{~V}$ peak.
0.1 kS . $1 \mathrm{k} \Omega \& 10 \mathrm{k} \Omega$ fanges

100k Ω

ims \& iomstanges

Maximum reading rate

	60 Hz Gate Length		50 Kz Gate Length	
	$\begin{gathered} \text { High } \\ \text { Gosolution } \\ \text { Oif } \end{gathered}$	$\begin{gathered} \text { High } \\ \text { fegolvition } \\ \text { On } \end{gathered}$	$\begin{gathered} \text { High } \\ \text { Resolulion } \\ \text { off } \end{gathered}$	
Local	$4.5 \mathrm{rdz} / \mathrm{s}$	$2 \mathrm{rdp} / \mathrm{s}$	$4 \mathrm{ram} / \mathrm{s}$	1,8 ragis
Remote	$12 \mathrm{rdg} / \mathrm{s}$	3 fitis	$11 \mathrm{rdg} / \mathrm{s}$	2.5 deg/

Math
Scale ($\frac{X-Z}{\mathbf{Y}}$): X is present reading. Y and Z are previously entered readings. or numbers entered from the front panel or by extemal program.
Maximum number (entered or displayed): $\pm 199.999 .9$.
Accuracy: \pm (Accuracy of X reading ± 1 digit or displayed answer).
$\%$ Error ($\frac{X-Y}{Y} \times 100 \%$): X is present reading. Y is a previously entered reading, or number entered from the front pancl or by extermal program.
Maximum number (enlered or displayed): $=199.999 .9$.
Accuracy: =(Accuracy or x reading $=1$ digil of displayed answer).
How to enter numbers in " r " or " Z "
From a current displayed reading: press STORE " Y " or " Z ".
From front panel: press ENTER " $Y^{\prime \prime}$ or " Z ". The front pancl is now set for numerical entry. These numbersare in blue next to the
keys. Enter number and press STORE ${ }^{-} \gamma^{\prime \prime}$ or ${ }^{\prime} Z^{\prime}{ }^{\prime}$
By remote program: send program codes for equivalent from1 panel operations.
General
Power: 100 V. 120 V, $220 \mathrm{~V} \pm 10 \%$. $240 \mathrm{~V}+5 \%-10 \mathrm{~m} .48 \mathrm{~Hz} 10$ 400 Hz line operation, -60 VA with all options.
Slze: $85.7 \mathrm{H} \times 425.4 \mathrm{~W} \times 520.7 \mathrm{mmD}$ (3)" $\times 16^{3} \% \times 20^{3 / 4}$ "),
Welght: nel. $9.38 \mathrm{~kg}(20 \mathrm{lb} 11 \mathrm{oz}$). Shipping, $11.79 \mathrm{~kg}(26 \mathrm{lb})$.
Optlons
Price
001: Average converter
3455A Dlgital Voltmeter

Five-digit digital multimeter with self test

Model 3490A

Description

Hewlett-Packard Model 3490 A Multimeter is a five-digit integrating digital voltmeter. The basic insenment measures de volurpes, at voltages. and resisfances. Additional measurement capithlity is achieved by the addition of low cosi options.

HP's 3490 A uses a dual slope integrating tecbriques and is fully guarded, providing excellent noise immunity at live readings per second on all de rangex. Ranging is automatic over all ranges on all functions. DC measurements can be made with $1 \mu \mathrm{~V}$ resolution on the 100 mV range. AC voltage measurements can be made from 20 Hz to 250 kHz in four ranges. The I V range provides $10 \mu \mathrm{~V}$ of ac voltage resolution. Ohms measurements can be made. utitizing the four-wire conversion techinique which eliminates errors due to test lead resistances. Six manges of ohms, including a 100Ω raoge, are provided. All funclions and ranges include 20% overranging except the 1000 V range.
Display
The 3490A uses Hewlett-Packard's light emiting diodes (LED's). These display digits are the seven segment type. The extremely high reliability of this LED display assures maximum life.

Self-test

At the गip of a switch. Hewletr-Packard's 3490A Digital Multimeter seguences ituelf through 10 tests that check timing signals and autoranging circuits. validate the performance of most logic-circuit IC's and check the six-digit LED display. These tests, wid six others provided by six additional front-panel switches, cul calibration costs and ensure the DMM is ready to make accurate measuremenls.

DC functlons

The standard 3490A includes five ranges of de measurement capability from 100 mV to 1000 V . Measurements are made from the front panel at precise five readings/s, and at slower rates. using digitally controlled sampled ralc selector. High igput resistance. $>10^{10} \mathrm{~S}$ on 100 mV . 1 V . and 10 V range, assures accurate measurement of high impedance sources.

AC functlons

Four ranges or ac measurements are provided. The average ac value is accumtely detected, and the rms value is displayed with five digits of resolution. Full autoranging, wide frequency response, und 20% ovenranging are designed-in fealures co permil easy operation.

Ohms
Six ohms ranges are standard, and all ranges provide true fourwire ohms measurement cupability. Maximum current through the unknown is approximately; mA. Over-voltage protection for ohms sensing terminals insures maximum protection against inadvertent application ot a high voltage to ohms terminals. Over-voltage protection is provided 10250 V and fuse protection to 1000 V .

Serulceablity

HP's 3490A has been 'designed for serviceability." Inside, the 3490's low parts density provides casy access for servicing. Tesı poinis and jumpers are keyed io derailed diagnoslics.

Several diagnostic aids are available to further minimize 3490A repair lime. A service video uape, Accessory No. 11128 A, will demonstrate use of self-test and front panel symptoms 10 isolate foilures. The 11126 A accessory provides a set of IC reference bourds with mosi of the 3490A logic 1C's for use with HP 10529A Logic Comparator. Using these boards with the Logic Comparator, a faulry IC can be isolated in seconds withoul removing it from the circuit. Also. a spare parts set. Accessory No. 11127 A , containing most critical components of the 3490 A , will be gvailable.

Options

Systems applicalions
Model 3490A offers buikt-in flexibility for systems applicalions. HP's 3490A offers both HP-IB interrace and a bit parallel (BCD coded) interface. This combination provides the necessary versaullisy to condigure the lowest cost instrument system.

Ratlo, opt 080

$D C / D C$ and $A C / D C$ three-wire ratio measurements can be conveniendy added to the 3490 A . This capability offers both autopolarily and a selection of $1 w o$ reference ranges. The 1 V and 10 V ranges are specified from 10% $10 ; 20 \%$ of selected range. Ratio function is nol programmable.
50 Hz operation, opt 050; 80 Hz operatton, opt 060
Maximum noise immuoity is avhieved when power line frequancy is harmonically related to the sample period of the integraling DMM. Oplion 050 will maximize normal and common mode rejection for 50 Hz power line frequency, and Option 060 will provide this rejection for 60 Hz .

Sample/hold, optlon 040 and 045

Sample/Hold provides HP's 3490A with extra and unique measurement capability.
The Sample/Hold option has two modes of operation to solve difficult measurement problems.

Trick and hold: in this mode. inpul voluge is held insiandy upon recieving an external command. This mode is useful in digitization of reperitive or transient waveforms.

Acquire and hold: in this mode, a known delay is inserted 10 permit the input amplifier to settle to a specified accuracy. This is useful in measuring pulse height or any similar step inpus.
Digltal output, opt 021 and remote control, opt 022
These options provide digital control and data oulput in the parallel BCD code of 8-4-2-1, either negative or positive tne logic. Selection is accomplished by positioning an intemal switch. The remote control option provides complete conirol of all funcitons, ranges. and external irigges commands. The digital outpui option provides nine columns of information which include function, polarily, data, and range. These options may be purchased separately to meet specific application requirements. Either of these options require Option 020 Systems Expand.

日CD/remoie

Both Option 021 and 022 require Option 020. BCD/Remote Expand. This option provides the required intemal and extemal connectors to pentit user installation of Digital Outpul. Op1 021 and/or Remole Conirol. Opt 022 and should be ordered as an initial opion on HP^{-}s 34901 . This option includes rear ierminals in parallel (switchable front/rear teminals are available as a ispecial - HI9).
HPalB data inpul/output, opt 030
The HP-1B option permits HP Model 3490A 10 operate on a single data/control bus with up to 14 other instruments. This serial code is an eight-bit byte typically using an ASCII-type coding. A unique '"bikerflistener" address structure makes the system's hardware more economical and associated software mueh simpler. The HP-IB is compalible with Hewlell-Packard Models 9815 A , $9820 \mathrm{~A}, 9821 \mathrm{~A}, 9825 \mathrm{~A}$ and 9830 A colculators as well as HewleltPackard computers.

Specifications

DC vollage ranges
Full range display: $\pm .100000 \mathrm{~V}, \pm 1.00000 \mathrm{~V} . \pm 10.0000 \mathrm{~V}$. $\pm 100.000 \mathrm{~V},=1000.00 \mathrm{~V}$.
Overrange: 20% on all ranges excepl 1000 V range.
Range selectlon: manul, autonatic, or remole (optional),
DC voltage performance
Accuracy \pm (\% of reading $+\%$ of range $)$

		Q 18 fante	17 10 1000 V Range
		$\%$ ridg $\%$ rig.	 $=10.004+0.0011$
21 nrs 30 Ifys	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.005+0.001)$ $=(0.01+0.005)$	$\begin{aligned} & =(0.004+0.001) \\ & =(0.001+00 \mathrm{~m}) \end{aligned}$
90 doys	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$=(0.01+0.005)$	$=(0.01+0.002$
is months	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.013 \cdot 0.005$	$=10.013+0.002$
1 yapr	$123^{\circ} \mathrm{C}=5{ }^{\circ} \mathrm{C}$,	$\pm 10015+0.005)$	$=(0.015+0.002)$

DC voltage Input characterlatics: fully guarded with 140 dB ECMR at de and $60 \mathrm{~Hz}=0.1 \%$ with $I \mathrm{k} \Omega$ imbalance berween guard and low.
Maximum inpul voltage
0.1 V to 1000 V ranges: $\pm 1500 \mathrm{~V}$ peak.

Guard to chasels: $\pm 500 \mathrm{~V}$ pcak.
Guard to low: $=200 \mathrm{~V}$ peak.
Input resistance
$0.1 V$ to $10 V$ rangers: $>2 \times 10^{\prime 4} \Omega .(<70 \%$ R.H.).
100 V and 1000 V ranges: $10 \mathrm{M} \Omega \pm 0.15 \%$.
Maximum reading rate: 5 readings/s.
Normal mode rejection rallo: $50 \mathrm{~Hz}=0.1 \% ; 60 \mathrm{~Hz}=0.1 \% ;>50$ dB.
Noles:
I. On the 1000 V range, add $0.04 \mathrm{ppm} / \mathrm{vol}$ to the $\%$ of reading specification.
2. Thermal EMF's generated external to the DVM may be compensated to achicve the $\%$ of range accuracy specified by vitizing the rear panel zero adjust provided in the 3490 A .
AC voltage ranges
Full range display: $1.00000 \mathrm{~V}, 10.0000 \mathrm{~V}, 100.000 \mathrm{~V}, 1000.00 \mathrm{~V}$. Overrange: 20% on all ranger except 1000 V range.
Range selectlon: manual, automatic, or remote (oplional).

AC voltage performance
Accuracy \pm (\% of reading $+\%$ of range)

		$20 \mathrm{~Hz}-50 \mathrm{8z}$	$50 \mathrm{~Hz}-100 \mathrm{kHz}$	100 kH
24 Mrs 30 days 90 days 6 months 1 yeas	$\begin{aligned} & \left\{23^{\circ} \mathrm{C}=1^{\circ} \mathrm{Cl}\right. \\ & \left(23^{\circ} \mathrm{F}=5^{\circ} \mathrm{C}\right. \\ & \left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right) \\ & \left(23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right. \end{aligned}$	$\begin{aligned} & \pm(0.32+0.05) \\ & \pm(0.35+0.05) \\ & =(0.35+0.05) \\ & =(0.40+0.06) \\ & \pm(0.45+0.07) \\ & \hline \end{aligned}$	$\begin{aligned} & =0.09+0.0259 \\ & =01+0.0251 \\ & =01+0251 \\ & =012+00353 \\ & =010035 \end{aligned}$	$\begin{aligned} & =-10.7+0.967 \\ & +(0.75-0.06 \\ & =(175-0.06 \\ & -10.75-0.07 \\ & -(0.72=0.08) \end{aligned}$

AC voltage inpul impedance
Without rear terminals: $2 \mathrm{M} \Omega=1 \%$ shunted by $<65 \mathrm{pF}$.
With rear terminals: $3 \mathrm{M} \Omega \pm 1 \%$ shunted by $<90 \mathrm{pF}$.
$A C$ voltage maximum reading rate: 1 reading/s.
AC voltage response time: < 1×10 within rated accuracy for a slep
inpul applied coincident with encoder trigger.
AC maximum input voltage: 1000 V rms: $\pm 1500 \mathrm{~V}$ peak.
Notes:

1. Guard musi be connecied to low.
2. On the 1000 V range, add $0.01 \mathrm{ppm} /($ volt -kHz).
3. Frequencies $>100 \mathrm{kHz}$ specified on I V and 10 V ranges only.
4. Specifications are for inpul levels above $1 / 100$ ith of fill seale.

Ohms ranges
Full range display: $100000 \mathrm{k} \Omega, 1.00000 \mathrm{k} \Omega, 10,0000 \mathrm{k} \Omega .100 .000$
$\mathrm{k} \Omega, 1000.00 \mathrm{k} \Omega, 10000.0 \mathrm{k} \Omega$.
Overrange: 20% on all ranges.
Range selectlon: minual, automatic, or remote (optional).
Ohms performance
Accuracy \pm ($\%$ of reading $+\%$ of range)
Note: Thermal EMF's generated external to the DVM may be compensaled to achieve the \% of range accuracy specified by utilizing the rear panel zero adjust provided in HP's 3490 A .

		$0.1 * \Omega$	$1 \mathrm{n} \cap-100 \mathrm{kf}$	$1000 \mathrm{k} \cap$	10.000 4 ก
		$\%$ rag. \% ing	\% rde. \% The	\% ide $\quad \% \mathrm{mg}$.	\% ray \% \%re
24 hrs	(23 $\left.{ }^{\circ} \mathrm{C}+1^{\circ} \mathrm{C}\right)$		\therefore (2.005 - 00001)	$\pm(0007 \cdot 0001)$	$\pm\{0.025+0.001\}$
30 diys	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$=10.012+0.005)$	- 00.010 - 0.002	$=(0,012-1002)$	$=10.035+0.002$
90 days	$\left(23^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}\right)$	$=(0.012+0.005)$	$=10012+0.002)$	$\because(0015+0.002)$	$-10.035+0.0027$
0_{i} months	$\left(23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$	$\pm(0.015+0.005)$	$=(0.015+0.002)$	$=10020+0.002)$	$\pm 10.040-0.002$
1 yeal	(23 $\left.{ }^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right)$	$=(0.018+0.005)$	$=(0.018-0.002)$	$=(0.025+0.002)$	$\pm(0.050+0.002)$

Ohms ierminal characterlstics

Maximum voltage generated across unknown: 20 V for over-
load; 13 V for valid reading.
Ohms current thru unknown

$$
0.1 \mathrm{k} \Omega \text { to } 10 \mathrm{k} \Omega \text { range: } 1 \mathrm{~mA} \text {. }
$$

$100 \mathrm{k} \cap$ to $1000 \mathrm{k} \Omega$ range: $10 \mu \mathrm{~A}$.
$10,000 \mathrm{k} \Omega$ range: I $\mu \mathrm{A}$.
Ohms overioad protectlon
Nondestructive: 350 V pms.
Fuse destructlve: $\pm 1000 \mathrm{~V}$ peak.
Ohms maximum reading rate
$0.1 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$ range: 5 readings $/ \mathrm{s}$.
$1000 \mathrm{k} \Omega$ range: 4 readings/s.
10,000 k Ω range: 2 readings/s.

General

Data outpu((BCD), option 021
Data output is $1-2-4-8$ TTL oulput which is compatible with HP 562A. 5050B, and 5055A Digital Recorders. Either high true or low true logic code can be selected with an intermal switch.
Storage femperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.

Power: 100 V, 120 V. $220 \mathrm{~V}, 240 \mathrm{~V}+5 \%,-10 \%, 48 \mathrm{~Hz}$ to 400 Hz line operation $\leqslant 60 \mathrm{VA}$ with all options.
Slee: $85.7 \mathrm{H} \times 425.4 \mathrm{~W} \times 466.7 \mathrm{~mm} \mathrm{D}\left(3^{3} / \times^{\prime \prime} \times 16^{3} / \mathrm{c}^{\prime \prime} \times 18^{2} / \mathrm{m}^{\prime \prime}\right)$.
Woight: net. $9.38 \mathrm{~kg}(20.7 \mathrm{lb})$. Shipping. $11.79 \mathrm{~kg}(26 \mathrm{lb})$.
Options
Price
020: BCD/remote expand, ineludes rear terminals in parallel
021: BCD"- inll parallel. 1-2-4 8 code
022: Remote*-full parallel, 1-2-48 code
030: HP-1B remore control and data outpur \$1045
040: Sample-und-hold ${ }^{\text {a }}$
045: Sample-and-hold (without Op1 020 or 030)
050 or 080: 50 Hz or 60 Hz operation $\quad \mathrm{N} / \mathrm{C}$
080: Three-wire ratio
$\$ 245$
Rack mounling kit fumished
34904 DIgital Muitimeter (includes ac. de. \& ohms) $\$ 2200$
Op1 050: Noise Rejection for 50 Hz
N/C
Op1 060: Noise Rejection for 60 Hz
N/C

Thase aption requlie BCD:Remota Expand ODllan 020 or hP-18 Opr 030.
Nols: Rach inoum川ly tequires suddad in rear of lnstimment.

DIGITAL VOLTMETERS
 Voltmeter accessorles
 Probes，dlviders，carrying cases

11067A Test lead kit

10007日，10008日 Probe

The 10007 B and 10008 B are straight－thru BNC probes will a re－ Iractable book lip and 20 cm （ 8 in ．）ground lead with alligator lip．

	Poak Vohaga	ShunI Capadiance	Langth
100078	600 V	40 pI	$1.1 \mathrm{~m}(3.5 \mathrm{It})$,
100088	500 V	60 oF	$1.2 \mathrm{~m}(6 \mathrm{IL})$

10067A Test lead klt
Includes lwo leads with many interchangeable lips 10 accommo－ dale various applicauions．
71068A
Soff carrying case for 3476 A and B DMM．Has shoulder stra ρ and zippered opening for instrument and accessory pouch．
11096 H High frequency probs
Convers de volsmeter with 10 Mn input to high－frequency ac volimeter．Works with any de voltmeter with $10 \mathrm{M} \Omega$ input imped－ ance．

11096B Speciflcations

Voltage range： 0.25 to 30 V ms ．

Trensfer accuracy（when used with $10 \mathrm{M} \Omega=10 \%$ de vollmeter）

Response：peak responsing．Calibrated to read ims valuc of sine wave．
Input Impedance： $4 \mathrm{M} \Omega$ shunied by 2 pF ．
Maxlmum Input： 30 V mis ac： 200 V dc ．

Cable length： 4^{\prime} long（ 1219 mm ）．
Accessorles furnlshed：High－Frequency Adapter；Seraight Tip： Hook Tip：Ground Lead．
Accessorles avallable：HP 10218A BNC Adapler HP 10219A Type 874 Adapter，HP 10220A Microdor Adapter：HP IIO63A 50』 Tee．
34110 A
Carrying case for $1 / 2$ rack size instruments．Inside dimensions of $25.4 \mathrm{~cm} \times 22.9 \mathrm{cc} \times 10.2 \mathrm{~cm}$ or $10^{\prime \prime}$ deep $\times 9^{\prime \prime}$ wide \times f＂$^{\prime \prime}$ thick． Zipper llip lop lid and zippenod accessory pouch．Has shoulder car－ rymg strap．
34111 A DC Mi－voltage probe
1000：I divider will acept up 1048 kV ．Input $Z=10^{9} \mathrm{n}$ ，divider accuracy．Meets specifications when connceled to $10 \mathrm{M} \Omega$ inpur resisfance instrument．

$0-20 \mathrm{kV}$	$<4 \%$	
$30-40 \mathrm{kV}$	$<2 \%$	Divider has interchangeable hook
$20-30 \mathrm{kV}$	and pointed up．	

34172A Touch－hold probe
Allows user 10 hold DMM display by depressing button on probe body．Both AC and DC vollage up to 1200 V max．DC or AC RMS may be measured and held．L＇aible on the 343sA and 3465A nnd B ．

Orderlng Information	Price
10007B Probe	\＄27
10008B Probe	\＄27
11067A Tist Lead Kit	\＄S
11068 A Solt Carrying Case for 3476A and B DMM	\＄20
11096 B High Frequency Probe	\＄90
34110 A Carying Case for $1 / 2$ Rack Size Instruments	\＄25
34116 DC Hi－Voltage Probe	\＄75
3u112A Touch－Hold Probe	\＄40

Description

Hewlet-Packard's 3470 is a low cost linc of DVM's using a llexible smap-logether package. Two display sections provide a choice of four ar five digils, both with l(0)\% overmaging and LED display. These displistileck onto an ac/dc/ll multimeler. In addition, a lem. perature module is avilable for use with the four-digit display sec. ion.

34740 A Dlsplay

This $41 / 2$-digil display locks onto the 34702A volimeter module 10 form it complete DVM using a clear, LED display with four full. digls plus 100% overranging.

34750 Display

This S1:-dig it display offers five-digit resolution with any 34702A volimeter modulc. As with the 34740 . it uses a LED display with 100% overranging.

3470:A Multimeter

This plug-on provides four ranges of both ac and de plus six ranges of ohms. AC function covers 45 Hz to 100 kHz . Ohms ranges are 100Ω to $10 \mathrm{M} \Omega$ ful scale.

2802A Thermometer

This unit includes a thermomodule (lower unit) which conlams remperalure measuring circuits, probe connections and operating conirols: HP's 34740A 41/2-digil display is included. Oplion 001 deleles the display for those that want to use uheir own $4 / 2$-digil display.

34702A Specifications

DC voltage

Range: ± 1 V $10 \pm 1000 \mathrm{~V}$ full scale in four dceade ranges. Display: 4 digit (34740A) or S-digi((34750A).

Full range display

Pange	4-4ipit dixplay	Supil dieplay
If 1	$=!(111) \mathrm{V}$	\pm ¢. Hexex V
$=10 \mathrm{~V}$	$=10000 \mathrm{~V}$	$=10.0 \mathrm{mar} \mathrm{V}$
$=100{ }^{1}$	$=100.008 \mathrm{~V}$	$=1001000 \mathrm{~V}$
$=1000$	$\pm 1000.0 \mathrm{~V}$	\pm HMW

Overrange: 100% excepi 30% on $1000 \vee$ mage.
Range selection: mánual pusimbuttons.
Accuracy (30 days, $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} . \leqslant 95 \%$ R.H.)
4-diglt display: $=(0.03 \%$ rdg $\div 0.01 \% \mathrm{mg})$.

Temperature coefflcient ($0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$)
4-dlgit display: $\pm(0.0035 /, \mathrm{rdg}+0.001 \% \mathrm{mg}) /^{\circ} \mathrm{C}$.
5-digh display: $\pm(0.0025 \% \mathrm{rdg}+0.0002 \% \mathrm{mg}) /{ }^{\circ} \mathrm{C}$.
Siabllity (24 hours, $+23^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$)
4-diglt display: $\pm(0.01 \% \mathrm{rdg}+0.005 \% \mathrm{mg})$.
$5-\mathrm{dlgll}$ dlsplay: $=(0.008 \mathrm{rdg}+0.004 \% \mathrm{mg})$.
Reading rate

Dleplay option	A-ulpit display	9-dipil alspuy
Opt 0ff 18il Hz lejectumil	jie	5/3
O.p 050 (50 H2 rejection	8/3	4/5

Input terminals: floating pair.
Input resistance: $11.11 \mathrm{M} \Omega \pm 0.2 \%$ on $1 \vee$ and 10 V ranges: 10.1
$\mathrm{M} \Omega=0.2 \%$ on 100 V range: $10 \mathrm{M} \Omega=0.2 \%$ on 1 kV range.
Elfectlve CMR: $1 k \Omega$ unbalance: $>80 \mathrm{~dB}$ al dc .
Normal mode rejection: $>60 \mathrm{~dB}$ al $50 \mathrm{~Hz}=0.1 \%_{a}$ (Opı 050) or al $60 \mathrm{~Hz} \pm 0.1 \%$ (Opt 060).
Maximum Input voltage: $\pm 1200 \mathrm{~V}$. high to low: $\pm 500 \mathrm{~V}$ low to chassis.

AC Vollage

Voltage range: I V ac to 1000 V ac full scale in four decade ranges. Full range display

Renge	4-digh displey	s-diph displyy
1 V	1.0000 V	1.00000 V
10 V	10.000 V	10.0000 V
100 V	100.00 V	100.000 V
1000 V	1000.0 V	1000.00 V

Becuuse the Internal temperature ditlers on life and battery opmatian, relerences mus! be adjusted to relain this specification whin fyge of power source is changed.
Detector: average-responding.
Scale: miss for a sinewave.
Frequency range: 45 Hz to 100 kHz .
Accuracy (30 days, $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \leqslant 95 \% \mathrm{RH}$)

Display	45 t to 20 kKz	20 hte 10100 htr
A-bigit	$\pm(0.25 \% \mathrm{rdg}, 0.05 \%, \mathrm{ng})$	
S-digll	$=1025 \% \mathrm{rag}+0.05 \%$ (ng)	

Temperature coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$: $\pm(0.03 \% \mathrm{rdg}+0.001 \%$ ($\mathrm{m} / \mathrm{g}) /{ }^{\circ} \mathrm{C}$.
stabllity (24 hours, $+23^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}$):
45 Hz to $20 \mathrm{kHz}:=(0.15 \% \mathrm{rdg}+0.05 \% \mathrm{mg})$.
20 kHz to $100 \mathrm{kHz}: \pm(0.4 \% \mathrm{rdg}+0.05 \% \mathrm{rng})$.
Response time: <2 s to within $+0.3 \%$ of final value or 20 counts, whichever is greater.
Input impedsace: $11.11 \mathrm{MA} \pm 0.2 \% .80 \mathrm{pF}$ shunt of IV and 10 V ranges: $10.1 \mathrm{M} \Omega \pm 0.2 \%, 80 \mathrm{pF}$ shum on 100 V range: $10 \mathrm{M} \Omega$ $=0.2 \%, 80 \mathrm{pF}$ shunt on 1000 V range.
Input terminals: lloating pair.
Maximum Inpul voltage: 1200 V rus high to low, except 2.5×10^{3} VHz limit on I V range with minimum protection of 300 V rass and maximum of $1200 \mathrm{~V} \mathrm{p}: \pm 500 \mathrm{~V} . \mathrm{g}$. de to 440 Hz low 10 chassis.
Reslstance
Range: 100Ω to $10 \mathrm{M} \Omega$ full scale in 6 decade ranges Full range dieplay

Range	4-dinit display	Sutut display
1000	100.000	1000000
$1 \times$	1.0000 kg 1	1. 00000 kn
10 kl	$10.000 \mathrm{kl2}$	$10.0000 \mathrm{kl1}$
$100 \mathrm{k} \Omega$	10000 ma	100000 kO
1 Mn	1.0000 mn	1.00000 Mn
10 \$4	10.000 Hn	10.0000 HCl

Overrange: 100\% on al ranges.
Accuracy (30 days, $+23^{\circ} \mathrm{C}, \pm 5^{\circ} \mathrm{C} \leqslant 95 \%$ RH)

Ranpa	4- 미헤 daplay	5.615] 1isolay
10 Mn	二 $10.25 \% 188 \mathrm{gr} 0.02 \% \mathrm{mg})$	- 0.0 .25 m id8 $+0.015 \% \mathrm{ma}$
Ohers		$\pm 10.045 \%$ \% dg + $0.015 \% \mathrm{mg})$

Temperature cosfflclent $\left(0^{\circ}\right.$ to $+50^{\circ} \mathrm{C}$)
10 Mn range: $\pm(0.035 \% \mathrm{rdg}+0.00 \mathrm{I} \% \mathrm{rng}) /{ }^{\circ} \mathrm{C}$.
Other ranges: $\pm(0.006 \% \mathrm{rdg}+0.001 \% \pi \mathrm{mg}) /{ }^{\circ} \mathrm{C}$.
Stabllity (24 hours, $+23^{\circ} \mathrm{C}$):
$10 \mathrm{M} \Omega$ range: $\pm(0.1 \% \mathrm{rdg}+0.01 \% \mathrm{mg})$.
Other ranges: $\pm(0.02 \% \mathrm{rdg}+0.02 \% \mathrm{mg})$.
Input terminals; floating pair (different from volegge input terminals).
Current through unknown: 10 mA on 100Ω range decreasing one decade per successively higher range.
Overlodd protection: $\pm 350 \mathrm{Vp}(248 \mathrm{~V}$ sioe wave).

2802A Specifications

2802A Digital Thermometer is complete with 414-digin HP 34740A display, less probe. Opt 050 for 50 Hz or Opt 060 for 60 Hz opera. tion must be specified.

These specifications are "total system specifications" meaning they apply to botb the instrument and the probe working logether (oot just the best electronic specifications for the instrument by itself), HP 2802A Thermoneter specifications relate direaly 10 sysiem performance under aclual working conditions.

Ranges: $-200^{\circ} 10+6000^{\circ} \mathrm{C}$ and -100° to $+200^{\circ} \mathrm{C}$.
Fres olution: $0.1^{\circ} \mathrm{C}$ on $-200^{\circ} \mathrm{C}$ to $+600^{\circ} \mathrm{C}$ range. $0.01^{\circ} \mathrm{C}$ on -100° to $+200^{\circ} \mathrm{C}$ range.
Accuraoy: $\pm\left(0.5^{a} \mathrm{C} \pm 0.25 \%\right.$ of reading $)$ on both ranges.
Dleplay: $4 / 2 / 2$ digits LED on HP 34740A module.
Stabillty: $\pm 0.2^{\circ} \mathrm{C}$ for seven days ($23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ armbient).
Unear anelog output: $1 \mathrm{mV} /^{\circ} \mathrm{C}$ on -200° to $+600^{\circ} \mathrm{C}$ range (-0.2 V $10+0.6 \mathrm{~V}$ FS $) .10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ on -100 to $+200^{\circ} \mathrm{C}$ range $\langle-1.0 \mathrm{~V}$ to +2.0 V FS). Vollage aceuracy equal to that of digital display. Output impedance $1 \mathrm{k} \Omega$ on both ranges.
Environmental standard: HP 2802A Thermometer operates within these specifications in environments of 0° to $50^{\circ} \mathrm{C}$ and up to 95% relative humidity over most of this temperature range. After calibration in some arbitrary ambient temperature, instnument calibration remains valid with umbienl temperanre changes up to $10^{\circ} \mathrm{C}$.

For the following probes, time constant is determined using water flowing al I miper second.

18641A Probe contains the sensor in the tip of a 13 cm (5 in .) stainless steel sheath, $6.4 \mathrm{~mm}\left(1 /{ }^{*}\right)$ diameter, with) grmored cable 1.8 $\mathrm{m}(6 \mathrm{n}$.$) long. It operates from -200$ to $+500^{\circ} \mathrm{C} .10+600^{\circ} \mathrm{C}$ short term. Cable movement must be prevented above $250^{\circ} \mathrm{C}$. Time conslant is five seconds.

18642A Probe is the same as the 1864 \{A except that it has a Tellan-insulated cable 1.8 m long. This cable musi be kept below $250^{\circ} \mathrm{C}$.

18643A Probe contains the sensor in the tip of a 13 cm staindess steel sheach. For fast response, the lasi $5.1 \mathrm{~cm}\left(2^{\prime \prime}\right)$ of the sheath ip is reduced to $0.32 \mathrm{~cm}\left(0.13^{\prime \prime}\right)$ diameter. This probe operates from $-200^{\circ} 10+500^{\circ} \mathrm{C}$, $10+600^{\circ} \mathrm{C}$ stort term. It has a 1.8 m Tefloninsuiated cable. This cable musl be kept below $250^{\circ} \mathrm{C}$. Time constant is 1.8 seconds.

18644A Probe Kit includes platinum sensor carnidge, $1.3 \mathrm{~cm} \times$ 0.25 cm ditmeter, having two nickel leads. $1 \mathrm{~cm} \times 0.03 \mathrm{~cm}$ diameter, cable connecior, wiring diagram for four-wire hook-up. Time constant 0.5 sec.

General

Operating Iemperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $74^{\circ} \mathrm{C}$.
Power: $\leqslant 8.7 \mathrm{VA}$ al $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V},+5 \%,-10 \%$ switchable: 48 Hz to 440 Hz .
Welght
34740 A 4 -diglt display: net, 1.36 kg (3 lb). Sbipping. 1.92 kg (4 lb $40 Z)$.
34750A 5 -digh display: nel، 1.36 kg (31b). Shipping, 1.92 kg (4 lb $40 Z$).
2802A Thermomodule + display: net, 2.27 kg (5 lb). Shipping. $3.39 \mathrm{~kg}(7 \mathrm{lb} 8 \mathrm{oz}$).
Size:
Display + meter: $98.4 \mathrm{H} \times 158.8 \mathrm{~W} \times 247.7 \mathrm{~mm} \mathrm{D}\left(37 / \mathrm{h}^{\prime \prime} \times 61 / \mathrm{c}^{\prime \prime}\right.$ $\times 93 / 47$.
Accessaries avallable: 11096 B High Frequency Prabe, measures to 700 MHz . Accepts 0.25 V to 30 V signals with input ímpedence of $4 \mathrm{M} \Omega$ shunted by 2 pF ; 11456A Read Out Test Card for testing and 1roubleshooling either display. 1854|A Probe; 18642A Probe; 18643A Probe: 18644A Probe Kit.
Optlons and accessorles Price
2802A Opt 001 bolton module only (less display) less $\$ 420$
Opt 05050 Hz rejection
Opt 06060 Hz rejection specify one
N/C
11096 High Frequency Probe $\$ 90$
114584 Read Out Test Card $\$ 70$
66A-16C Cable for operating 5055A Digital Recorder $\$ 60$
10641A Temperalune Probe $\$ 165$
18642A Temperature Probe
18643A Temperature Probe
186444 Temperature Probe Kit \$105
Ordarlng Intormation
2802A Digital Thermometer (includes 4/2-digit dis- $\$ 895$ play)
34702A Mulimeter
$\$ 475$
34740A 4-digit display
$\$ 475$
34750A 5-digit display \$775

3465A

Description

The 3465A and B are $41 / 2$ digit multimeters providing live functions nit ACV. DCV, ACI. DCI and Ω. They feature both pontabilily :urd bench applications by offering a choice of line and battery power options. The 3465A is offered in the half-module rack and stack case. The 3465 B is offered in the rugged streamlined symthetic case with a carrying bandle. Both units accept the 34112A touchhold probe for "eyes-on" measurements of AC and DC voliage.

Specifications

DC Voltmeter
Vohage ranges: $\pm 20.000 \mathrm{mV}$ $\pm 200.00 \mathrm{mV}$ $\pm 2.0000 \mathrm{~V}$
$\pm 20.000 \mathrm{~V}$
$\pm 200.00 \mathrm{~V}$ $\pm 1000.0 \mathrm{~V}$
Maximum Input: 1000 VDC and peak $A C$.
Senalifulty: I microvali on lowest range.
Polarlty: automatically sensed and displayed.
Accuracy (1 yeir $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$).

Hange	Specilications
20 mV	$=003 \%$ ot reading $\pm 2 \mathrm{drgils}$
200 mV thru 200 V	$=0.02 \%$ of readine ± 1 digil
1000 V	$\pm 0025 \%$ oi leading $\pm 1 \mathrm{digh}$

Temperature coefficlent: $\left(0^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \text {): }=0.003 \% \text { of reading }\right)^{\circ} \mathrm{C}$. Input reslatance:

Range	Spacifications
20 mV thru 2 V	$\geq 10^{\circ} \mathrm{O} \mathrm{n}$
20 V thru 1000 V	$10 \mathrm{Ma} \pm 1$

Normal mode relectlon: $>60 \mathrm{~dB}$ at $50160 \mathrm{~Hz} \pm 0.1 \%$.
Effective common mode re)ection: ($1 \mathrm{k} \Omega$ unbalanced) $A C:>120$ $d B$ al $50 / 60 \mathrm{H}$? $\pm 0.1 \%$
DC current
Current ranges $\pm 200.00 \mu \mathrm{~A}$.
$\pm 2.0000 \mathrm{~mA}$ $=20.000 \mathrm{~mA}$ $\pm 200.00 \mathrm{~mA}$ $\pm 2000.0 \mathrm{~mA}$
Maximum Input: 2A. from <250 V source (fuse protected).
Sensitivity: 10 nA on lowes! range.
Polarlty: automacically sensed and displayed.
Accuracy (lyear $+23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$)

$3465 B$

Rango	Speciflcations
$200 \mu \hat{R}, 2 \mathrm{~mA}$	$\pm 0.07 \%$ of raading $=1$ digit
20 mR	$\pm 0.11 \%$ ol raading ± 1 digit
200 mA .2000 mA	$=0.6 \%$ of reading ± 1 digit

Temperature coefficient $\left(0^{\circ} \mathrm{C}\right.$ to $50^{\circ} \mathrm{C}$)

Range	Spacifications
$200 \mu \mathrm{~A}$	$\pm 0.005 \%$ ol reading/ ${ }^{\circ} \mathrm{C}$
$2 \mathrm{~mA}, 20 \mathrm{~mA}$	$=0.004 \%$ of raading $/{ }^{\circ} \mathrm{C}$
200 mA 2000 mA	$\pm 001 \% \mathrm{ol}$ reading $/{ }^{\circ} \mathrm{C}$

Vollage burden
HIghest range: $<700 \mathrm{mV}$ FS.
All other ranges : $<250 \mathrm{mV}$ FS.
Ohmmeter
Onms ranges: 200.00Ω
$2.0000 \mathrm{k} \Omega$
$20.000 \mathrm{k} \Omega$
$200.00 \mathrm{k} \mathrm{\Omega}$
$2000.0 \mathrm{k} \Omega$
$20.000 \mathrm{M} \Omega$
Prolection: $350 \vee$ ($D C$ - peik ACs: 250 V rms.
Sensituvity: 10 milliohm on lowest range.
Accuracy (I year $+23^{\circ} \mathrm{C}: 5^{\circ} \mathrm{C}$)

Range	Specificaflons
$200 \cap$	$=0.02 \%$ of reading $=2$ diglis
$2 \mathrm{k} \Omega \mathrm{mhn} 2 \mathrm{M} \Omega$	$\pm 0.02 \%$ ol reading ± 1 digit
$20 \mathrm{M} \Omega$	$=0.1 \%$ of reading $=1$ digit

Temperalure coefficlent $\left(0^{\circ} \mathrm{C}\right.$ 10 $\left.50^{\circ} \mathrm{C}\right)$.

Range	Specilicalions
2000 thru $2 \mathrm{M} \Omega$	$=00015 \%$ ol reading $/{ }^{\circ} \mathrm{C}$
$20 \mathrm{M} \Omega$	$=0.004 \%$ of reading $/{ }^{\circ} \mathrm{C}$

Confligurallon: 2 wire.

Open clrcuit voltage: < $5 V$ max.
Current through unknown

A1ap:	1
2000	1 inh
2 km	1 ma
200 kg	$10 \mu \mathrm{~A}$ $10 \mu \mathrm{~A}$
2000 kg	$1{ }^{\text {\% }}$
20 mn	$0.1 \mu \mathrm{~A}$

AC voltmeter
Vollage range: 200.00 mV
2.0000 V
20.000 V
200.00 V

300 V
Maximum input: full scale 1010 kHz decreasing linearly to 50% of fall scale at 20 kHz ; except on 500 V range, 2 kHz .
Overtosd protection: 600 V DC max.

$$
300 \vee \mathrm{AC} \mathrm{rms}
$$ 800 V peak.

Sensitivity: $10 \mu \mathrm{~V}$ on lowest range.
Accuracy: converter is average responding calibrated to ms (\} year $+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Temperature coelfolent: $\left(0^{\circ} \mathrm{C}\right.$ to $\left.50^{\circ} \mathrm{C}\right): \pm 0.005 \%$ of reading + 0.2 digit.
Input Impedance: resistance: $1 \mathrm{M} \Omega,<100 \mathrm{pF}$ shunt.
AC current
Current range: $200.00 \mu \mathrm{~A}$
2.0000 mA
20.000 mA
200.00 mA
2000.0 mA

Maximum input: full scale to 10 xHz decreasing linearly to 50 cie of full scale al 30 kHz .
Maximum Input: 2 A from $<250 \mathrm{~V}$ source (fire protected).
Sensitivity: 10 na on lowest range.
Accuracy: $\left(1\right.$ ycar $\left.+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$

Euntem Ingut frapuency	$\begin{aligned} & 20 \mathrm{kHz} \\ & 10 \mathrm{~Hz} \end{aligned}$	$\begin{gathered} \pm 0.6 \% \text { Reading. } \\ =15 \text { digits } \end{gathered}$		$\begin{gathered} =0.65 \% \text { Reading } \\ =5 \text { digits } \end{gathered}$
		$\begin{gathered} =0.25 \% \text { Reading. } \\ =5 \text { digits } \end{gathered}$		
	doru	$\begin{aligned} & =0.4 \% \text { Reading } \\ & =5 \text { digits } \end{aligned}$		$\begin{aligned} & =\mathrm{U} .8 \% \text { Reading. } \\ & =5 \mathrm{digits} \end{aligned}$
		$200 \mu \mathrm{~A}$	20 m	200 ma

 Vollage burden:

1A range: < 700 mV FS
All other ranges: - 240 mV FS.

General

Integration time: 100 ms .
Reading rate: $21 / 2$ readings per second.
Display: light-emitting diodes.
Overload indication: display blanks.
Humidity range: $95 \% .40^{\circ} \mathrm{C}$.
Operating temperatura: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$. (Nickel Cadmiam Ballerics $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$).
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$. (Nickel Cadmium BaIteries $-40^{\circ} \mathrm{C}$ io $+40^{\circ} \mathrm{C}$.

Ste:

34650: $101.6 \mathrm{H} \times 212.7 \mathrm{~W} \times 279.4 \mathrm{mmD}\left(4^{\prime \prime} \times 8^{\left.33 / \mathrm{m}^{\prime \prime} \times 11^{\prime \prime}\right)}\right.$
34658: $97 \mathrm{H} \times 228 \mathrm{~W} \times 276 \mathrm{mmD}\left(3.82^{*} \times 8.92^{\prime \prime} \times 10.86^{\circ}\right)$
Weights: net. 2 kg (4.5 lbs). Shipping. 4.5 kg (10 lbs).
Power (see Options):
3465A: batteries or AC line: built in battery charger.
AC Une: 8610127 V or 176 to 254 V .4810480 Hz .
Battenes: 2 rechargeable Nickel Cadmium battery packs (HP 8200 (A's), provide 6 hours continuous use when fully charged. I4 hours to recharge betteries fully (instrument off).
3465日: batteries or AC linc; built-in battery charger, batterics when fully charged prowide 6 hours contínuous operation. 8 hours to recharge batteries fully (instnimem off). Must order one power line option.
Options, accessories \& parts (3465A)
Price
Opt: 00i: AC opcration oniy (no battery packs supplied; battery charger built-in)
less $\$ 20$
Opt 002: 4 lype D alkaline dry cells, in lieu of
$82001 A^{\prime}$'s. provide 60 hours continuous use at $23^{\circ} \mathrm{C}$;
has receptacle for HP 82002A batiery eliminator. 82002 A not included
less $\$ 100$
02001A buttery pack (uses 2 pack $)$) $\$ 10$ ea.
82002A Battery eliminator (hind-hels calculator charger)
\$20
1420-0224 Type D Alkaline cell (equal to U-2): 4 required
$\$ 1$ ea.
34658 options (must specify one)
100: 86 to 106 VAC line: 48 to 440 H
N/C
115: 104 to 127 VAC line: $4810440 \mathrm{H} \quad \mathrm{N} / \mathrm{C}$
210: 190 to 230 VAC line: 48 to $440 \mathrm{H} \quad \mathrm{N} / \mathrm{C}$
230: 208 to 250 VAC line; $4810440 \mathrm{H} \quad \mathrm{N} / \mathrm{C}$
Ordering information
Price
365 A DMM with two 8200IA's \& charser $\$ 550$
34658 DMM with batteries and charger"
$\$ 525$

- Murse order one pown line aption

```
- 1 }\mu\textrm{V}\mathrm{ do sensitivity
- True-Rms (DC + AC)
```

- 1 milliohm sensitivity
- Diode Test

Description

The 3466 A is a $41 / 2$ digil Mulimeter with autoranging volls and ohms. Functional capability includes ACV. DCV. (AC + DC) V, $\wedge C I . D C l,(A C+D C) 1, \Omega$ and diode lest. $A C$ measurements are irue-rns with selectahle AC or DC coupling. Availuble with rechargeable balteries or $A C$ power ooly, il has $1 \mu V D C$ and $1 \mathrm{~m} \Omega$ sensitiviry with zero adjustment on lowest ranges to compensate for external offsels.

Speclfications

DC Volimeter

Vollage Range

$\pm 20 \mathrm{mV}$

$=200 \mathrm{mV}$
$\pm 2 \mathrm{~V}$
$\pm 20 \mathrm{~V}$
$=200 \mathrm{~V}$
$\pm 1200 \mathrm{~V}$

Maximum Display
10.999 mV
199.99 mV
1.9999 V
19.999 V
199.99 V
1199.9 V

Maximum Input: $\pm 1200 \mathrm{~V}$ maximum $D C$ and peak $A C$.
Rengling: automatic or manual.
Sengitivity: $1 \mu \mathrm{~V}$ on 20 mV range.
Accuracy: $\left\{1 \mathrm{yr} ., 18\right.$ to $28^{\circ} \mathrm{C}$ assuming rear panel zero adjustment on low esitwo ranges)

Specification
Range $\quad \pm$ ($\%$ of reading $+\#$ diglts)

20 mV

200 mV
$2 \mathrm{~V} \rightarrow 200 \mathrm{~V}$
$(.05+3)$
$(.04+1)$
$(.03+1)$
$(.035+1)$

Input resistance: 10 meg $\Omega \pm 0.5 \%$ all ranges.
Normal mode rejection: $\geqslant 60 \mathrm{~dB} @ 50 / 60 \mathrm{~Hz} \pm 0.1 \%$.
Effecrlve comman mode rejection ($1 \mathrm{~K} \Omega$ unbalance): $D C \geqslant 140$
$\mathrm{dB} @ 50 / 60 \mathrm{~Hz}=1 \% \leqslant 120 \mathrm{~dB}$
Input type: floaling, 500 V maximum commen to ground.

DC Current

Current Range
Maximum Dlsplay
$\geq 200 \mu \mathrm{~A}$
$199.99 \mu \mathrm{~A}$
$=2 \mathrm{~mA}$
1.9999 mA
$\pm 20 \mathrm{~mA}$
19.999 mA
$\pm 200 \mathrm{~mA}$
199.99 mA
$\pm 2000 \mathrm{~mA}$
1999.9 mA

Maximum Input: 2 amp from $<250 \mathrm{~V}$ sousce (fuse prolection).
Ranglng: manual only.
Senslifity: $10 \pi \mathrm{~A}$ on $200 \mu \mathrm{~A}$ range.
Accuracy (7 yr., 18 to $28^{\circ} \mathrm{C}$):
$\left.\begin{array}{cc}\text { Speclication } \\ \text { Range } & (\% \text { roadlng } \\ \text { \# diglts) }\end{array}\right\}$

Input type: Doalíng 500 V maximum Common 10 ground.

AC Voltmeter	
AC Converter: True-ms Responding Truc-ms Calibrated	
Range	
Maximum Display	
200 mV	199.99 mV
2 V	1.9999 V
20 V	19.999 V
300 V	1.9 .99 V
1200 V	1199.9 V

Maximum Input: $(A C+D C): \pm 1700 \mathrm{~V}(D C+$ Peak $A C) .10^{7} \mathrm{~V}$. $\mathrm{Hz}, \mathrm{AC}: \pm 600 \mathrm{~V} D C: 1700 \mathrm{~V}$ (Peak AC+DC), $10^{7} \mathrm{~V} . \mathrm{Hz}$.
Rangling: autonatic or manual.
Sensitlvity: $10 \mu \mathrm{~V}$ on 200 m V range.
Crest factor: $4: 1$ at Full Scale.
Accuracy (with display of $>16 \%^{\circ}$ of range); I yr. . 18 so $2 K^{\circ} C^{C}$ sinusoid waverorm.
AC TRMS ($\mathbf{2 0} \mathbf{~ H z ~ t o ~} \mathbf{1 0 0} \mathbf{k H z}$)

Frequency Range	Specifleation $\pm \text { (\% of reading + \# diglts) }$
20 Hz 1030 Hz	$(2+50)$
30 Hz to 50 Hz	$(1+30)$
50 Hz to 20 kHz	$(0.3+20)$
20 kHz to 50 kHz	$(1+40)$
50 kHz to 100 kHz	$(2+150)$

$D C+A C$ TRMS: $D C+(20 \mathrm{~Hz}$ to 100 kHz$)$.
Specification

DC + Frequency Aange	$=$ (\% of reading $+\#$ digits $)$
20 Hz to 50 kHz	$(1+80)$
50 kHz to 100 kHz	$(2+200)$

Input Impedance: resistance $2 \mathrm{M} \Omega$. $=2 \%$ Shunt Capacitance $<50 \mathrm{pF}$.
Input type: Floating, 500 V Maximum common to ground.

AC Current

Current Range	Maximum Dlsplay
$200 \mu \mathrm{~A}$	$199.99 \mu \mathrm{~A}$
2 mA	1.9999 mA
20 mA	19.999 mA
200 mA	199.99 mA
2000 mA	1999.9 mA

Detector: true RMS.
Crest lactor: $4: 1$ at Full scalc with 4.5% accuracy al foll scale. Maximum Input: 2 Amp RMS from <350 V source (fuse prolected).
Aangling: manual only.
Sensituity: 10 aA on $200 \mu \mathrm{~A}$ range.
Acouracy: (with display $\geqslant 10 \% \%$ of range) 1 yr.. $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}$ sinusoid waveform.
ACI RMS: 20 Hz to 10 kHz .
Speclication
$=(\%$ of reading $+\#$
diglts $)$
$2+50$
$0.9+35$
$2+50$
$1.2+20$
(DC + AC) I RMS: $D C+(20 \mathrm{~Hz} 1010 \mathrm{kHz})$.
All ranges: 20 Hz to 10 KHz , $\pm(1.5 \%$ of reading +80 digits $)$.

Input type: floating, 500 V maximum common lu ground.
Ohms

Range	Maximum Display
$20 \Omega 1$	19.999Ω
200Ω	$199.94)$
$2 \mathrm{k} \Omega$	$1.9999 \mathrm{k} \Omega$
$20 \mathrm{k} \Omega$	$19.999 \mathrm{k} \Omega$
$200 \mathrm{k} \Omega$	$199.99 \mathrm{k} \Omega$
$2040 \mathrm{k} \Omega$	$1999.9 \mathrm{k} \Omega$
$20 \mathrm{M} \Omega$	$19.999 \mathrm{M} \Omega$

	Speclication $\pm(\%$ of reading $+\#$ digits
Range	$.08+2$
$20 \Omega-200 \Omega 1$	$.03+1$
$2 \mathrm{k} \Omega-200 \mathrm{k} \Omega$	$.04+1$
$2000 \mathrm{k} \Omega$	$.15+1$

Input protection; 250 V RMS or 350 V (DC + peak AC).
Rengling: atlomitic or manual.
Sensitivity: 1 millishm on 20 ohm range.
Accuracy: I уг.. 18 to $28^{\prime} C^{\prime}$ (assuming use of front panel zero on lowest two ranges).
Conflguration: 2 wire
Zero adjustment: range of 700 mn . Use on 20Ω, and 200 n ranges.
Open clicult voltage: < 5 V maximum.
Current through unknown:
Range $20 \Omega 200 \Omega \quad 2 \mathrm{k} \Omega \quad 20 \mathrm{k} \Omega \quad 200 \mathrm{k} \Omega \quad 2000 \mathrm{k} \Omega \quad 20 \mathrm{M} \Omega$
Currents mA $5 \mathrm{~mA} \quad 1 \mathrm{~mA} \quad 100 \mu \mathrm{~A} \quad 10 \mu \mathrm{~A} \quad 1 \mu \mathrm{~A} \quad 100 \mathrm{nA}$
Dlode Test ta
Function: $+4-(k \Omega)$.
Current source: 1 mA $\pm 1.5 \%$.
Diode voltage drop digplayed in volts: 1.9999 volts maximum,
Open circult vollage: < 5 volts miximum.
Overload protection: 350 V (DC. + peak AC).
General
Dlaplay; 7 segments red 0.3 in high LED. Function and range annunciated.
Reading rate: 2.4 to $4.7 / \mathrm{sec}$. depending on inpul level.
Remote trigger: shorting COM to A slops sampling in Volis functions.
Storage lemperature: AC only. $-55^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$: with balleries.
$-55^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Operating temperature: $(0 \text { to } 55)^{\circ} \mathrm{C}$.
Humidlty: 95\% RH a1 $+40^{\circ} \mathrm{C}$.
Powar: AC line: 48-440 Hz: 86-250 V.
Battery: rechargeable lead-acid 8 hours maximum continuous operation with full charge. Recharge time; 16 hourn operaling. I? hours non-operating. Batteries and charecr available separately, consult operating manual. Tolal power dissipated: AC only. 4 wats: with charger, 9 watls.
Size: $98.4 \mathrm{H} \times 238.1 \mathrm{~W} \times 276.2 \mathrm{mmL}\left(3^{7 / g^{\prime \prime}} \times 9 \mathrm{9} / \mathrm{h}^{\prime \prime} \times 10^{7} / \mathrm{s}^{\prime \prime}\right)$.
Weight: $3466 \mathrm{~A}: 2.9 \mathrm{~kg}$ ($6 \mathrm{lb} \mathrm{5} \mathrm{oz)}$. 3466A Opl 00): 2 kg (4 lb 7 oz).
Conflguration: 3466 A streamlined portable case with handle. AC line power. batteries and charger included- $\$ 650$; 3466A Opt 001, eliminate battery and cbarger, AC line power only-less \$75, Al orders must include one of these line power options: Opt 100, 86-106
V: OpI IIS. 104-127 V: Opi 210. 190-233 V: Opt 230. 208-250 V.
Accessories: one puir tesl probes fumished.
Options
Opt 001 less $\$ 30$
Opt 100, 115. 210, 230 N/C
3466A

- Data collection
- Data analysis
- Decision making

General description

A programmable data logger is a system which can collect and analyze data. make decisions based on the data and interice with the test. process.experiment. instrument or system which generates the data.

The 305IA Programmable Data Logger consists of:

- 3495A Inpul Multiplexer
- 3455A High Accuracy/Resolution DVM
- 9815 A Calculator with 2008 Step Memory
- System ROM The 30S1A is designed to provide a cosi efteclive solution to:
- Your plant monitorng requirements for energy conservation. environmental impact and security.
- Your produclion prncess monitoring requirements for envirommental impact, independent process cvaluation and safery.
- Your dedicated parameter testing requirements for coumponent cest, subassembly icsi and daca collection
- Your quality assurance requirements for componenı rest subassembly test, equipment environmental rest and data collection.
In the above spplications the information may be about pressure. emperalure, level, flow. facts about the environment, equipment status or equipment performance. The information can be processed providing that it exists or can be made to exist as an electrical signal. Several devices are arailable to iransilate the information into elec. trical signals (i.e. transducer oulpuis, sensor uufputs, equipment outpui or insirument output). The electrical signals need to be measured in a time sequence, analyzed, recorded and limit decisions made. The signals may be either local or scattered over the lengith of a plant. The 3051 A combines the features of a data logger and a programmable calculator into a low cost solution to these requirements.

Hardware description

The hardware is fully integrated. specified. documented and lested as a system. The system is capable of measuring de from I μ volh to 200 volts, ac from IO μ volis to 200 volts. and ohms from I milliohm to 10 Megobms. It can measure $: \mu$ voli de signals al a six channels per second rate in the presence of noise. The system's greater than 120 dB effective common mode rejection and greater than 60 dB normal mode rejection effectively cincel ollt unwanted offsels or supcrimposed noise signals. The 1μ volt sensitiviry in conjunction with the system's ROM allows temperature evesolution to belter than $0.3^{\circ} \mathrm{C}$. The system can measure thermocouples and periorm reference junction compensation at at rate of three channels

- Thermocouple linearization
- File compiler

per second. The less than $\boldsymbol{y} \mu$ volt differential thermal e.m.f. of the low thermal ten channel ecanner card provides reliable measurcments with minimum thernad uncentuinty. A ten channel relay actuatur ard provides alarm and multiple swisching functions. The systemin can scan from 1 t) 80 channels of analog data. The number of data channels decreates by 10 for each relay actuator card used. A 9 channel low thermal reference junction seanner card which provides themsecouple meaburement without external reference junctions is also atralable. The high spred data carridge provides high speed file access and storage. Up to 10,000 six digit readings can be slored on the data cartridge. The user can communicale with the system via an aphatllumeric keyboard. The system can communicalc with the user by a numeric display and an alphanumeric themal stip printer. This conversational miteraction capability allows the system to be operaled by personnel with no formal knowledge of programming or data loggmg The auto restan capability allows the system to operate unatended. The auto restur and the optional 59403A Common Carrier Interface altows remote distributed system configurations.

Firmware description

The syvem ROM contains J, K and T 山ermocouple linearization lables. a general linearization rousine, four lypes of split precision data storate and string manipulation. The ROM allows the system to easily make thermocouple temperalure measurements. lincarize manducer dala. store the dita in an efficient manner and format alpha messages for oulput.

Soltware

The filc compiler adlows cusy application progran generation by atutomatically combining programs and subroutines from separate tape files. For example, the dati logger can be programmed withoul writing software. The user selects set-up routines (scan sequence, coan interval, channel ringe and function and scan mode). operazing tuvines (check limits, conven to meaningful units, record). Then the user calls the file compiler which assembles the routines into an application program. Instrument verificalion sofiware provides for easy system chectioul and proor that the instruments are proper), functioning. The calculator has buill-in program ediling. synlix checking and errar message penembion.

A repori generator is supplied to format the dara for the optional HP 9871 A Ploller Printer.
For more informithon contact your local HP field engineer or nearest HP Sales Oflice for complete details ancout this low cost solution to measurement. analysis and decision mitking problems. 3051A Programmabie data logger
from $\$ 9550$

- Improve productivity in research and manufacturing
- Increase throughput and lower the cost in Q.A. testing

Description

The 3052A Automatic Data Acquisition System combines speed. precision and repeatability in low level measurements with powerful computation and analysis capabilities. This system provides a highly capable yet economical solution to parameter testing, stimulus response and signal analysis upplications in production lest, laboralory and process monitoring/conirel areas.

System conflguration

The 3052 A consists of the following:
3455A High Accuracy/High Resolution DVM
3437A High Speed Sampling DVM
3495A Input Multiplexer
9825A High Performance Calculator and ROMS
Oplional 9871A Printer/Plotier
Two digital vollmeters in the 3052 A provide a unique combination of high specd and high accuracy measurements.

Measurement

DC measurement rates up to 20 channeth/secend are possible with $1 \mu V$ resolution on the tot mV range. This sensilivity and dynamic range are required for example in thennocouple measurements with a $0.5^{\circ} \mathrm{C}$ or better resolution.
Excellent noise rejection and very low thermal uncenainty make the 3052 A particularly suited for sccurate, repeatable, low-level measurements even in the presence of noise. The $>120 \mathrm{~dB}$ effective common-mode rejection of the $3455 \mathrm{~A} / 3495 \mathrm{~A}$ effectively cancels out unwanted offsets or superimposed noise signals.

AC measurements can be made up to 1 MHz with the standard AC True RMS converier or up to 250 kHz with the uptional average converter. A programmable Fast AC mode provides an AC measurement rate of up to 10 channelsisecond for inputs above 300 H .7 .

Repetitive waveforms up to 1 MHz of low frequency transients (below 1 kHz) can be digitized by the 3437A High Speed Sampling DVM. With this DVM and 9825 A Calculator, up 105000 readings, second on a single high speed channel can be stored for furher analysis.
By multiplexing the 3437A inpot with the Scanner, up to 125 channelstsecond can be measured with $100 \mu \mathrm{~V}$ resolution and 3% digits. The sample-and-hold measuring technique of the 3437 A makes it more suited for high quality inpuls with minimum noise and common mode signals.

Resistance measurements can be made with either easy-loconnect 2 -wire technique or the more accurate 4 -wire method. Multiplexed high resistance measurements up to is megohms an be
made with ise full accuracy of the 345 A .

Data analysis

The 9825 A Calculator can be programmed to periorm any mathematical calculation required, from minsducer linearization to statistical analysis. A new feature of the 9825 A . multiadimensional artays, allows logical data organization and storage for complicated resting and a high speed bi-directional data cartridge provides bulk data storage.

Output and control

A high degree of operator interaction with the system and its progan is provided by the 32 character alpha-numeric display and the 16 charicier thembal printer. Program inpuls, intermediate test conditions, or final results can be displayed or printed for more efficient testing.
The optional 9871 A Character Impact Printer is ideally suited for producing finished test reports. complenely documented problem solutions or typing on pre-printed forms, all onder automatic conirol of the calculator. Simple chars: and graphs can also be plonted with the bi-directional motions of the platen and print mechanism.
The system can assume an acilive role in application process by performing control, alarm, and multiple switehing functions with the relay actuator cands in the 3495 A. Fach of these cards provides ten deuble-pole single-throw contati closures for connection to external devices.

Software

In most systems, application sof ware is expensive and time consuming to develop. With the 3052A. however, programming is greatly simplified and the system can be operationad in a much shorter time.
The easy-to-leam programming language of the 9825A and the supplied instrument contrel routincs allow the user withonl a sophisticated programming background to develop his own lest sofiware. For easy system installation and verification, the 3052A documentation and sonware package provides step-by-step insiructions. In addition detalled operating instructions and modular example programs enable fast system slar-up and easy operation. The 3n52A is fully integrated, tested, verified, and specitied as a system with complete software and documentation supplied to ensure that the system is ready 10 perform your specific lask.
For more information, conlact your local HP Field Engineer or nearest HP Sales Office.
3052A Automatle data acquisition system from $\$ 16,000$

- Switched guard
- Multichannel closure
- Relay actuation

Description

General
Threc types of assemblies are available for the HP 3495A Scanner. A Low Thermal Scanner for connection to low level sources such as thermocouples and strain gauges; a Relay Actuator assembly for disurbuting de or ac voltages and for external control; a Low Thermal Reference Junction Relay assembly for ithermocouple measurement withour the need of external reference Junctions. Each assembly concains 10 channels and the 3495A can hold up 10 four of these assemblies for a maximum of 40 channels. Multiple 3495A's may be used on the HP-IB 10 provide more than 40 channels.

Low thermal assembly

The Low Themal Assembly is a Uree-wire 10 to 1 muluplexer for consection to low level sources suct as thermocouples and strain gauges. The signal swicching relays for each channel are low thermal dry seed relays consiructed in such a way as to minimize temperature gradients between high and low imputs. An unceraninty of $<2 \mu V$ thermal EMF is maintained through the Low Thermal Assembly. Each chanacl has a separate guard relay to minimire the effect of common mode vollage on low level menatienents.

The Low Thermal Assembly has a break-before-make feature which assures that only one channel is closed at a time to prevent the possiblity of connecting two inpuls. However, the 3495a has a flexible addressing scheme between relay assemblies which pernits multiple wire seansing for applications such as four-wire ohms medsurements.
Applications: low level de measurements: $\langle c$ volits. ac volis, and resistance scanning.
Transducer seneling: thermocouples, thermistors, strain gauges, pH meters.
Relay actuator assembly
The relay actuator assembly provides 10 independently programmable two-wire closures for conirolling higher current relays. distributing low cument de ar ac volages, or extemal control functions. Each channel contains a swo-pole armature type relay capable of switching up to two amps rms. This relay is more swited to higher current. lower voltage applications than the low thenmal assembly.

Two normally open contacts for each relay gre available on the channel terminal connector. Any combination of channels on this assembly may be closed or opened simultaneously.
Applications: process control. actuate visual or audio indicators. control higher current rclays. 8×10 Matrix switching.

Specifications, 3495A scanner

Low-thermal channels, optton 001
Number: 10 to 40 fully guarded. multuplexed channels available in each scanner. Addiuional scanners can be used for more channels. Type: threc-pole, low-thermal dry reed relays. Third pole switches guard and is nol low-thermal.

Actuator channels, option 002
CAUTION: for use in circuits fused at swo amperes or less.
Number: 10 to 40 noncommon channels avalable in each scanner. Additional scanners can be used for more channels.
Type: (wo-pole armalure relay; four terminals per channel. Single unswitched guard for 10 channels. Ten independently controlled relays pemit any number of channels to be closed simultaneously.
Low-thermal reference junction channels, option 003
Number: 9 to 36 fully guarded, multipicxed channels for thermocouple inputs are available in each scanner.
Type: similar to oplion 001 low- thermal channels, except channel 0 , is reserved for a tomperature sensing thernistor that measures reference junction temperalure.

Option
Maximum contact ratings
Voltage
Curren
Power
Isolation
Maximum input vollage
Between any two terminals
Guard 10 chassis
Guard to low
Uncertalnty (differential EMF)
Switching time
See data sheet for 003 l < 0 ms

General

Operating temperature; $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Humldity range: $<95 \%$ R. H.. $0^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
AC power: 100.120 .220 . or 240 volis $(+5 \%-10 \%) 100 \mathrm{VA}$ max. 48 1066 Hz
Slize: 190.5 H (including feet) $\times 428.6 \mathrm{~W} \times 520.7 \mathrm{~mm} \mathrm{D}\left(7.5^{\prime \prime} \times\right.$ $16.875^{\prime \prime} \times 20.5^{\prime \prime}$).
Welght: 3495 A : nct, 17.9 kg (38.5 lb). Shipping, 21.1 kg (46.5 lb).
Options and accessories
Pilce
Order one or more Option 001, 002, 003 to oblain desired oumber of low thermal or actuator channels. Option 001. 002 and 003 may be used in any combination up to a total of four relay ussemblies for each 3495A.
001: ten channel low thermal relay assembly
002: \{en channel relay actuator assembly
003: nine channel reference junction relay assembly
907: Front Handle Kit
908: Rack Flange Kit
909: Rack Flange \& Froot Handle Combination Kit

General information
C, R, L, D, Q, Z, U and IC's

Component Test Selection Guide

Impedance/Z/Q, C, R, L, D \& Q

Hewlett-Packard's famuly of impedance measurcment instruments combine the familiar null measurement techniques with digital logic and feedback eircuits to achieve simple and rapid operation without a sacrifice in precision. The basic specifications for Hewlett-Packard's impedance family is summarized on the opposite page. Frequency. Q. capacitance. inductance. resistance and basic accuracy can be traded off 10 select the most suitable instrumert. For some insinuments. capacitance and inductance are not the principal parameters but are secondary to the primary readout.
Impedance considerations
There are two basic types of impedance measuring instruments: bridges and meters. In general, bridge sype instrumenes have the best necuracy specificalions. This type of insirument has found wide application and is the basis for the HP 4260A/4265B Universal Bridge. 4270A Aulomatic Capacitance Bridge, and 250B RX Meter,

In the past, bridge instruments have required considerable operator skill to obtain consistent results. However. the Universal Bridge was specifically designed to achieve rapid and consistent audio frequency measurements.

The evolution of bridge measurements has created the need for completely automatic instruments to rapidly characterize muli-conductor cables. variable capacitor diodes. and diserete capacitors. To salisfy these customer requirements, the 4270 A Abtomaric Capacitance Bridge was developed. This instrument is completely programmable and displays capacitance and disisipation factor/conductance in digital form. BCD oulputs are available for remole processing.

Impedance meters, in zeneral. utilize constant curren/vollage sources to excite the unknown impedance. Amplitude and phase sensilive voltmeters delect the real and reactive voltage/current components of the unknown. The display for most impedance meters is an analog meler. Although impedance meters do not have the accuracy of bridge instruments, they are less expensive and easy tu use. The 4800A Vector Impedance Meter, and the 4332A LCR Meter utilize this principal. Impedance meters have analog outputs proponional to the displayed iunction.
The wide measurement ranges of the 4261 A allow easy measurements of various kinds of components. This applicarions area is extended even more by the new HP 4262 A with its additional frequency and
measurement ranges. The 427IB is particularly useful for measuring microcircuit parameters. The new 4272A and 4273A, with their builtin limúl comparators, are especially convenient when measuring small and medium range capacitors respectively. Integration Into HP-I日 system

Adding the HP-lB option to a component tesa instrament enables the instrument to be systemized into an HP-IB system. This permits high speed measurement of many components along with arithmeric processing of the data.

The HP-IB option (Op1 101) for LCR measuring insuruments is available for HP models 4271B. 4270A. 4262A, 4272A and 4282A. Two functions are provided: talker (measured data transfer) and listener (measurement remote comiral). System coniroller may be an HP model 9830A with bus interface ki1 (HP 59405A OPT. 021. 030), or an HP model 9825A with HP-IB card (HP 98034 A). If other system components such as a ploter, printer, scanner or measurement instrument arc added to the system. the integrated system reaches a high level of usefulness. For example, it would provide a componem manufacurer with inspection/ reliability test capabilities in the qually conirol or in-process test/inspection departments. In semiconductor device measurements, the combidation can process the especially needed complex arithmetic manipulation of the measured dita for the various device characteristics.

Figure 1 is the block diagram of a semiconductor device characteristic measurement system using the 4271B Opt 101. This calcutator conerolled system graphicaly shows the relationships between either bias vollage (measured with digital multimeter) and copacitance (measured with the 4271 B). or between impurity concentration and deplection layer width, on a graphic plotter. Bias is automatically applied to the device
capacitance measured is directed by the calculator.
Summary
To help you select an impodance meter suitable to your needs the following quidelines may be used:
(I) For a desired accuracy and cost range, select the insirument with the broadest capability in C. L, R \& D or Q.
(2) Bridge instnments will provide the best accuracies (0.1% to 1%). However, only the higher priced bridges offer the speed and convenience in measurement available in meter type instruments.
(3) To oblaln meaningrul results, a pans user should muke measwements al the same frequency and voltage level specified by the manufacturer.
For additional information on component measurements. Hewlett-Packard offers for sale a tutorial RCL video tape. The cape has uhree pars:
Parr 1-Resistance (7 min.)-explains basic resistance measurements.

Par 2-Capacirance (1) min.)-format similar to Part $\}$-explains capacitance measurements.

Par 3-Inductance (II min.)-develops the theory of inductors and their functions in circuits.

You may preview this video tape al your nearesı HP Sales Office. Please call for an appointment. The tape (ID $\# 90249 \mathrm{C} / \mathrm{D}$) is avalable in $1 / 2^{4}$ ElAJ format (C) or $3 / 1_{1 " 1}$ video cassette (D).

Hewlert-Packard's impedance insiruments have been used in numcrous diverse applications, from the measurement of the diclectric constant of liquids, to the wing to fuselage conimuity of sircrafi. If you have an unusual application or oeed assistance. contact your nearest Hewlett-Packard sales office for application information.

Figure 1. Measuring Semiconductor Characteristics (Typical System)

COMPONENT TEST

- Touch and read operation
- Wide range
- Low test voltage
- Guarded measurement

Description

Hewlett-Packard's Model 4332A LCR Meler measures induc. tance, capacitance, and resistance with speed and accuracy. The instrament provides direct-readings of L, C, and R with linear meter scales. The 4332λ is exiremely usctul for measurements of both linear and non-linear components such as semiconducior capacitor values. inductance of coils with 「errite core.

Specifications

Indwctance measurement
Mesaurement equlvalent circuit: scries.
Range: $3 \mu \mathrm{H}$ to 1 H full scalc. 12 ringes.
Measuring frequency
$3 \mu \mathrm{H}$ to $1000 \mu \mathrm{H}$ ranges: $100 \mathrm{kHz} \approx 5 \%$.
3 mH to 1000 mH ranges: I $\mathrm{kHz}=5 \%$.
Voltage across sample: <1.5 mV ms.
Accuracy (al $\left.25^{\circ} \mathrm{C}\right): \pm 11 \%$ reading $+(1.5+3 / \mathrm{Q}) \%$ of full scale + $0.03 \mu \mathrm{H}$).
Capactiance measurement
Measurement equivalent clrcult: parallel.
Range: $3 \mathrm{pF} 101 \mu \mathrm{~F}$ fill scalc. 12 ranges.

Messuring frequency

3 pF to to00 pF ranges: $100 \mathrm{kHz}=5 \%$.
3 nF io 1000 nF ranges: $\mathrm{lkHz} \pm 5 \%$.
Voltage across sample: approximately 70 mV rms.
Accuracy (at $\left.25^{\circ} \mathrm{C}\right): \leq 15 \%$ reading $+(1.5 \div 3 / \mathrm{Q}) \%$ of full scale + $0.03 \mathrm{pF}]$.
Resistance measurement
Range: $3 \Omega 101 \mathrm{M} \Omega$ full scale. 12 ranges.
Measurling frequency: I $\mathrm{kHz}=5 \%$.
Voltage across sample: $<1 \mathrm{mV}$ rms.

Accuracy (at $25^{\circ} \mathrm{C}$)

3Ω to $30 k \Omega$ ranges: $=(0.5 \%$ reading $+2 \%$ ful scale $+0.03 \Omega)$.
$100 \mathrm{k} \Omega$ to $1000 \mathrm{k} \Omega$ ranges: $\pm(1 \%$ reading $+2 \%$ full scalc $)$.
Aralog outputs: 1.0 V de full scale, independent of range in use and
1.0 V or 0.3 V dc full scale. corresponding to the range in use.

Output Impedance: approximately 500 n .
Accuracy: bether than meter reading accuracy by 0.5% full scale. Overrange: 110% of full scale.
General
Response time: typically 0.35 s for analog outputs. Typically 1.0 s for meler.
Operating temperature: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
Temperafure coetficlent: $=0.05 \%$ of full scale $/{ }^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}\right)$.
DC blas: 100 V de maximum can be applied from extemal source.
Power: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%, 48 \mathrm{~Hz} 1066 \mathrm{H} x, 8 \mathrm{VA}$.
Size: $130 \mathrm{H} \times 155 \mathrm{~W} \times 279 \mathrm{~mm} D\left(51 / \mathrm{m}^{\prime \prime} \times 63 / 3 \mathrm{~m}^{\prime \prime} \times 1 \mathrm{I}^{\prime \prime}\right)$.
6!1:"
11").
Walght: nct. 3.5 kg (7 Jb II oz).
Accessories Jumished: 16138A Test Leads. Powcr Cord 8120 1348.

16019A

Accessories avallable: 16019人 Test Fixfure

- $20 \mu \Omega$ resolution on $1 \mathrm{~m} \Omega$ range
- Four terminal measurement
- Low test voltage

4328A (wish 16005A Probes included)

16006A Probe (2 each included)

16007A/8 Test leads (1 each included)

Description

HP's 4328A Milliohmmeter is a portable instroment for measurement of low resistances. It uses a Kelvin Bridge method to obtain its high sensitivity bul has incorporaled both the curfent and voltage drives into one probe. so that only two probes are needed in actual measurement.
The range of the 4328A extends from оле milliohes to 100 ohms full scale. Maximum sensitivity is 20 micro ohms. making it ideat for measuring contact resistance of switches. relays, and connectors.
A unique phase discriminator in the meter circuil permits accurate resistive measurements on samples with a series reactance up to (wice full scale resistance.
The milliohmmeter is inemally driven by a one kiloherzz sigad. With an ae drive sienal. de bias up 10150 volis can be superimposed without affecring accuracy of measurement. Hence, HP's 4328A can make dynamic resistance measurements in forvard-biased diodes.
Maximum voltage across any sample with proper range selection is less than 200 microvolis peak. In case of incorrect range setting. a maximom volage of 20 millivolts peak will never be excceded, so that explosive devices such as fuses and squibs can be safely checked.
The beasic 4328A is line operated. Wihh Opt 001. it can be operated from four rechangeable batteries for is continuous hours. A recorder output provides an output proporional to meter deflection.

Specifications

Range: 0.001 to 100 ohms full scale in a 1,3 sequence.
Accuracy: $\pm 2 \%$ of full scale. No additional crror is caused by series reactance of samples up to two times full scale.
Measuring frequency: $1000 \mathrm{~Hz}=100 \mathrm{~Hz}$.
Voltage across sample: $200 \mu \mathrm{~V}$ peak at full scale.
Maximum voltage across sample: 20 mV peak in uny casc.
Superimposed dc: $150 \mathrm{~V} d e$ maximum may be superimposed on samples from an extermal source.
Recorder oulput: 0.1 V dc outpul al full scale meter defection. outpul resistance approx $1 \mathrm{k} \Omega$.

$\begin{gathered} \text { Ravize } \\ \text { (Innm:5) } \\ \hline \end{gathered}$	Apelion Current (mA 150	Maxintum Dissipation In Samples ${ }_{(1)} W_{i}$
11008	150	23
0.003	50	8
0.01	15	2.3
003	5	0.8
0,1	1.5	0.23
0.3	0.5	0.08
1	015	0.023
3	005	0.0018
10	0.015	0.0023
30	0.005	0.0008
100	0.0015	0.00023

General

Power requirements:115 or 230 V switch $=10 \%$. 50 to 60 Hz .1 .5 VA.
Welght: $3.2 \mathrm{~kg}(7 \mathrm{lb})$.

Accessorles furnlshed: Model 16005A Probe, 16006 A Probe and $16007 \mathrm{~A} / \mathrm{B}$ Test leads. 16143A Probe Cable. Detachable Power Cord.
Ordering Information
4328λ Milliohmmcier
Opt 001: Rechargeable batlery operation
add $\$ 54$
add \$12.50

Description

The HP 4329A is a solid-state insulation resistance meter designed for easy, accurate and direct readings of the very high resistance values typically found in synthetic resins. porcelain, insulating ods and similar materials. It is also usefui for measurements in elecirical components like capacitors, Iransformers, switches and eables. Seven fully regulated de lest voltages (between 10 and 1000 V) are provided as test sources.

Selected scales are identified by illuminated indicators on the meter face. Selected resistance or current multiplying factors are also illuminated for rapid, error-frec measurement. Three resistance seates and one current scale are provided. The HP 4329A is instantly convertible from ungrounded-to grounded-sample operation via a simple relocation of the front panel ground strap from "guard" $10{ }^{"}+$ " position. The instmment eabinet itself is always at ground potential, Test vollage shorss or sample breakdown currents will nol damage insirument circuiry.

The HP 4329A also has n current measurement capability. Minute currents as low as 0.05 pA can be readily measured. The standard instrument package includes HP 16117A Low Noise Test Leads: these are used in most types of measurement.

4329A Specifications

Reslslance measurement

Aange: $500 \mathrm{k} \Omega$ to $2 \times 10^{1 \pi} \Omega$.
Accuracy: lotad accuracy is determined by test voltage and range used. Al low resistiance end of each soale. aceuracy is $\pm 3 \%$. near center scale $=5 \%$, and near the specified upper limit on the meter scale (see lable below). accuracy is $\pm 10 \% / 2$. Accuracy is nol specified above these limits. On all voltage ranges, if mulliplier is set 10 Rmax , an addilional $=3 \%$ is included.

- Selectable test voltages: 10 V to 1000 V

Current measurement

Range: $5 \times 10^{-14} 102 \times 10^{-8} \mathrm{~A}$ in 8 ranges.
Meter scale: 01020 in 40 linear divisions.
Input resistance: 10^{4} to $10^{\prime \prime} \Omega \pm 1 \%$, depending on range.
Accuracy: $\pm 5 \%$ of foll scale deflection (there can be an additional $\pm 3 \%$ error at the top decades.
General
Pecorder outpul: 0 to 100 mV de. proportional to meter deflection: $1 \mathrm{k} \Omega$ output revistance.
Power: $115 / 230 \mathrm{~V}=10 \%, 50-60 \mathrm{~Hz}$, approximately 3 VA .
Slze: 166 H. 198 W, 224 com $D\left(6^{1 / 2^{7 n}} \times 7^{75 / 32^{71}} \times 8^{75} / 4 z^{7}\right)$.
Welght: $3.5 \mathrm{~kg}(7.7 \mathrm{lb})$.
Accessory fumished: HP 16117A Low Naine Test I eats.
Accessory avallable: Model lgolisa Resintivily Cell.

16008A Description

The HP 16008 A can sifely, rapidly and conveniently measure the volume and suriace resistivity of sheet insulation materials. Conversion from volume 10 surface resistivity measurement requires operahon of one swisch only; no lead interchange or discomnection is necessary. Designed for use with the HP 4329A Resistance Meter (other voltage supplics and picoammelers may be used). the complete system allows direct meahurement of volume resistivity up 10 approximately $4 \times 10^{16} \Omega$ (an samples 0.1 cm ihick)-ind surface resistivity up to approximately $4 \times 10^{17} \Omega$. Test voltuges up to 1000 \checkmark may be used.

16008A Specifications

Inner electrode: 50 mm diam.
Guard eleclrode: 70 mm diam.
Auxiliary electrode: $100 \mathrm{~mm} \times 120 \mathrm{~mm}$.
Maximum sample size: $125 \mathrm{~mm} \times 125 \mathrm{~mm} \times 7 \mathrm{~mm}$.
Maximum teat voltage: 1000 Vdc .
Size: $49 \mathrm{H}, 198 \mathrm{~W}, 152 \mathrm{mmD}\left(2^{\prime \prime} \times 7^{\left.123 / 11^{\prime \prime} \times 61 / 8^{\prime \prime}\right)}\right.$,
Wolght: 1.4 kg (3 lb).
Ordering information Price
Opt 810: extrámanual add $\$ 12.50$
16008A Resislivity cell
$\$ 455$
$\$ 1435$

Tesi vollage	10 V	25 V	50 V	100 V	250 V	SDOV	1000 V
Annulable rasconanco reading	$\begin{gathered} 5 \times 10^{3} 19 \\ 102 \times 10^{4} 11 \end{gathered}$	$\begin{aligned} & 125 \times 10^{8} 9 \\ & 65 \times 10^{54} \\ & \hline \end{aligned}$	$\begin{array}{r} 2.5 \times 10^{0} 0 \\ 101 \times 10 \times 0 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 10^{2} \end{gathered} \times 10^{10} 0$	$\begin{aligned} & 1.25 \times 10^{7} 9 \\ & 105 \times 10^{15} 11 \end{aligned}$	$\begin{array}{r} 25 \cdot 161! \\ 101 \cdot 10^{\prime} 69 \end{array}$	$\begin{gathered} 5, ~ J u: 10 \\ 102 \times 1 C^{\prime o}!! \end{gathered}$
Meter seale	51020	.125105	25 to 10	51020	. 225105	251010	. 51020
Uppe $1 \mathrm{~m} / \mathrm{t}$	5	1.25	2.5	5	1. 25	2.5	5

[^4]－Fully automatic balancing，ranging and circuit mode selec－ tion
－Test frequencies of $120(100) \mathrm{Hz}, 1 \mathrm{kHz}$ and 10 kHz
－HP－IB，BCD and Comparator options available
－Microprocessor control features self test and deviation mieasurement capabilities

Description

The HP 4262A is a $32 / 2$ digit microprocessor based Digital LCR meter that meets today＇s requirements for component measure－ ments in the lab．on the production line and in the QA inspection area．The 4262A fealures fully automatic operation over a wide range of measurements．Simply select the function and loss parame－ ler，one of three test frequencies and inser the device to be mea－ sured．The instrument does the rest－automatically selecting the proper measurement range and equivalent circuit mode．

In addition to automatic measurements and wide range．the 4262A realures high accuracy（typically 0.2% of reading）． 120 （ 100 ）Hz． 1 kHz ，and 10 kHz measurcment frequencies，IV lest signal level（1） V or 50 mV in Cp mode）．three internal DC bias levels（plus exter－ nal）and series and parallel equivalent circuit modes．The micro－ processor control allows other features such as in automatic self test capabiliy and deviation measurements．These features make the 4262 A capable of meering the measurement needs of the diversified electronics industry by measuring such things as the parameters of semiconduetors，pulse iransformers，filter coils，electrolytic and film capacitors，or determining the intemal resistance of a dry cell．

The arrangement of the front panel keyboard switches insure craximum operating convenience and error－free operation．When the instrument is tumed on．the mucroprocessor automatically selects capacitance，dissipation factor， 1 kHz test signal，aulorange， auto circuit mode selection，intemal trigger and normat tesi voltage mode of operation．Individually LED lighted keys allow the user to easily detemine the selected functions al a glance．

Several options are available for the user that needs systems capability．A BCD output of LCR and DQ data is svailable for use with a printer or calculator．If both data outpul and remole control
are required， H P－1B compalibility is available．A comparator option （for both LCR and DQ data）is also available．

Specifications

Parameters measured：C－D or C－Q（＇ID）．L－D or L－Q（1／D）．R （ESR）．
Dlsplay：dual $31 / 2$ digi，maximum display of 1999 For D value grealer than 10，maximum D display is 199
Measurement terminals： 5 －terminal configuration．
Messurement clrcult modes：auto，parallel and series．
Test frequencles： $120(100) \mathrm{Hz}, 1 \mathrm{kHz}$ and $10 \mathrm{kHz}=3 \%$ ．
Range mode：LCR－Auto and manual（up－down），D／QAuto and manual（step）．
Trigger：internal，extemal or manual．
Devlation measurement：when the $\triangle L C R$ switch is depressed．the measurement value is stored in memory as a standard value．At the same time．The range is set to＂Hold＂and the display is offset 10 zero．Deviation is displayed as the difference between the stored value and subsequent measurement data．Deviation is in counts from－999 to 1999.
Offset adjustments：front penel adjusuments are provided to com－ pensate for stray capacitance and residual inductance of the test fixtures．
C： $01010 \mathrm{pF} . \quad \mathrm{L}: 0$ to $1 \mu \mathrm{H}$ ．
Self test indicators；when the SELF TEST function is selected． the results of the test are displayed in the LCR and DQ window． Results are indicated by PASS．FAIL I，FAIL 2 or FAIL 3.
DC blas：internal： $1.5 \mathrm{~V}, 2.2 \mathrm{~V}$ and 6 V （selectable on front panel）． Accuracy $=5 \%$ ：extemal：Provision for extemal DCbias（ 0 to $\div 40 \mathrm{~V}$ ）．

L－D and L－Q Measurement

Ra4				$\begin{gathered} 7168 \text { ny } \\ 1608 \\ 1008 \text { nix } \end{gathered}$			$\log _{0}$ $1500 \mathrm{~min}$	
	a							
	0 － 1	空－1000 ${ }^{\text {a }}$						
	7 －				－			
	，	M m	10，	1 mm	$100 \mathrm{\mu} \mathrm{~h}$	10 m		
	\pm（T0）							
serembir	－－				190－1 Eteum		15， 2 enem	
		$1{ }^{10} 0$					tsount	inu
	－－m．．．	0ッ－7cauta					\＄100000 W， 1004	
		$\begin{aligned} & 0 \times 1 \\ & 9 \text { exum } \end{aligned}$	$020-2$ evilt				415 We	
	2100	－Saxa a－Meat					Sace 0 －	
	\％						whe	
		b： 0 Ne			c）			为
	\cdots	1：8．0．300w mants						
							$118 \mathrm{~m}_{4}$	
	N10					sement $=1$－Mati		

R／ESR＂Measurement

Rango	$\begin{gathered} 120(100) \mathrm{Hz} \\ 1 \mathrm{kN2} \\ 10 \times \mathrm{Hz} \end{gathered}$	$1000 \mathrm{ml}{ }^{\text {a }}$	10.00%	100.0 n	1000 亿	10.00 kg	100.0 \％ 1	1000 ks	10.00 Ma
$\begin{gathered} \text { Tert } \\ \text { Signal } \\ \text { Level } \\ 41 \\ \hline \end{gathered}$	4 －				1 V				
	Some	40 mh	10 mA	1 min	100μ	$10 \mu \mathrm{~A}$	－		
	תиTO	Same as $\mathrm{H}^{\text {ammen }}$ ．Mode				Same di－－			
Mecuracy	5^{-1}				$03 \%+2$ counls 3				
	－	$0.2 \alpha_{0}-2$ counts							
$\cdot 2$	AUTO	Same as an mone				Samp as $-\cdots$－Mode			

－ 1 Tybital data，varies wilh number of counts
$-2=$ is of reading + mounts；
$-32\{5 \%+2$ counts 0 on 10.00 Mg range at 10 kHz fest frequency．
 the series capacitance or inductance value al tha device undur last．
$C-D$ and $C-Q$ Masurement

Runge	c	$\begin{gathered} 120(1000) \mathrm{Kz} \\ 1 \mathrm{kHz} \\ 10 \mathrm{kHz} \end{gathered}$	1000 pf 100.0 pF 10.00 pf	10.00 of 1000 os 100.0 p	$\begin{aligned} & 100.0 \mathrm{nf} \\ & 10.00 \mathrm{nf} \end{aligned}$ 1000 pf	$\begin{aligned} & 1000 \mathrm{n} 5 \\ & 100.0 \mathrm{n} \\ & 10,00 \mathrm{n} 5 \end{aligned}$	10.00μ 1000 nr 100.0 nf	$100.0 \mu \mathrm{~F}$ $10.00{ }^{2} \mathrm{~F}$ 1000 nF	1000μ $1000 \mu \mathrm{~F}$ 10.00μ	10.00 mF $1000 / 4 \mathrm{~F}$ 100.0115
	0		．001－19．9（2 Rangrsi							
	D	1	．050－1000［4 RanRes）							
$\begin{aligned} & \text { Tent } \\ & \text { signal } \\ & \text { level } \\ & \hline 2 \end{aligned}$		$\xrightarrow{7}$	1 V or 50 mv							
		－m．				10 mA	100μ	i ins	10 ins	\＄0 ma
		AUTO	Same as $-\mathrm{Ca}^{\text {a }}+\mathrm{L}$ Hode				Sume us－u－u－mods			
$\underset{\substack{\text { accuracy } \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}{\text { C }}$	n边		0．2\％－ 2 counls					Tesi signal levat． 1 h		
			$\begin{aligned} & 0.5 \% \\ & +3 \text { Counts } \\ & \hline \end{aligned}$	0．3\％＋ 2 00unks				（Test sighal level 50 mn		
		\cdots	S： 120 （100） $\mathrm{K} 2,1 \mathrm{kKz}$ he so hrs			0．3\％－2 count				
		auto	Some as $t_{\text {－}}^{\text {＂}}$－- Made				Soime 3s \rightarrow n－n Mode			
0 （1）${ }^{2}$ ${ }_{-3}{ }^{\text {Accury }}$	\square^{3}		$0.2 \%+(2+200$ cex counls					At 120 （100） $\mathrm{Hz}, \mathrm{kHz}$ （fiest signal levelı I V ） Al 10 kHz		
			$0.5 \%+(2+20010 \times 1$ couats							
			$\frac{0.3 \%+12-1000 /(x) \text { counts }}{1.0 \%+(2+1000 /(x) \text { counts }}$					At 120 （ $1000 \mathrm{~Hz}_{1} 12 \mathrm{H}_{2}$ （Test signal levell 50 ind At 10 kHz		
	4		AE 120 （1007 H2， $1 \times \mathrm{HL}$			$0.3 \%+(2, ~ C x / 500)$ count				$1 c_{e}-5-$ C． 5 51） couils
				AI $10 \times$		0 S\％	12－Cx／50	counts	$\begin{aligned} & 1 \% \%(5+(5) \\ & c \times(500) \\ & c o u n t s \end{aligned}$	$5 \%+63$ ． ［x／500） zeunts
		auto	Same as－「－				Same as $\rightarrow \cdots-\cdots$ mado			

－1．Calculated fem D value as a seciprocal number．
－2．Typical fata，varies with value of D and number of counts
3 ．$=$（ $\%$ of reading + counts） C_{n} is capacitance readous in counts．Accuraties in this table apply when $0<1.959$ ．
$4.5 \%-2$ counts at 1 khth ．
Accuracy：All accuracies apply over a tem－ peralure range of $23^{\circ} \mathrm{C}: 5^{\circ} \mathrm{C}$（at $0^{\circ} \mathrm{C}$ to $59^{\circ} \mathrm{C}$ ．error doubler）

General

Messurement time（typical）for a 1000 count measurement on a low loss component on a fixed range：
$1 \mathrm{kHz}, 10 \mathrm{kHzC} / \mathrm{L} \quad 220-260 \mathrm{~ms}, \mathrm{R} 120-160 \mathrm{~ms}$
$1 \geq 0(100) \mathrm{Hz}: \mathrm{C} / \mathrm{L} 900 \mathrm{mls}$ ．R 700 ms
When autorange is selected，the following tumes per range step must be added to the above time：
1 kHz ． $10 \mathrm{kHz} 45 \mathrm{~ms} / 180 \mathrm{~ms}$ per minge sicp
$120(100) \mathrm{Hz}: 150 \mathrm{~ms} / 670 \mathrm{~ms}$ per range sicp
When the uncal lamp is lit，the favier ranging time is selected．
Reading rate：INT（Intermal Trigger）approximately 30 ms belween the cnd of a measurement cycle and the stan of the next cycle．EXT （Exlemal Trigger）measurement cycle is initiated by a remote Irigges inpus．
Operatling temperature and humidity： $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ；to $40^{\circ} \mathrm{C}$ al 95% RH．
Power requirements： $100 / 120 / 220$ VAC $\pm 10 \%$ ． 240 Vac $+5 \%-10 \%$ ： $48-66 \mathrm{~Hz}$ ．
Power consumptlon：$\approx 55 \mathrm{VA}$ with ony option
Slze： $147 \mathrm{H} \times 426 \mathrm{~W} \times 345 \mathrm{~mm} D\left(5^{3 / s^{\prime \prime}} \times 16^{3 / 4^{\prime \prime}} \times 13^{4} / 4^{\prime \prime}\right)$
Weight：Approximately $8 \mathrm{~kg}(17.5 \mathrm{lbs})$.

Accessorles avallable： 16061 A：test fixlure，direct coupled， $5-1 e m$ inal；16062A：test leads with alligator clips．4－temminal（for low impedance measurements）；16063A：test leads with alligator clips． 3－terminal（for high impedance measurements）．
Optlons avallable Opt OOI：BCD data output of LER and DQ data．Op1 004：Digital comparator for LCR and DQ data．Compári－ son oulpul（H1GH，IN，LOW）：visual，relay conlacl closure and TTL level．Not compatible with Opt 101．Opt 101：HP－IB Data Ouiput and Remotc Conirol．Nol compatible wish Ope 001 and 004.
Options and accessorles Price
001：BCD Oulput $\$ 240$
004：Digilal Comparator $\$ 580$
010： 100 Hz Test Frequency 0
101：HP－IB Intertace $\$ 395$
908：Rack Flange Kit $\$ 10$
910：Exira Martual \＄15
16061A Test Fixiure $\$ 95$
18062A Tesi（cibles $\$ 49$
16063A Tesi（ables

- Electronic autobalance-single control nuil
- Digital readout for C, R, L
- Direction indicators for fast range selection and balance

Description

Measurements of C, R, L, D (dissipation factor of capacitors). and Q are easily made with Hewlet1-Packard's Model 4260A Univ. crisal Impedance Bridge.

Readout for C, R, and L is digital with the decimal point automatically positioned. Units of measurement and equivalent circuit allomatically appear with a suist of the function switch. There are no mulipliers or confusing norlinear dials which need interpolation.

Operation is simple. Sel the function knob for the parameler to be measured, adjust minge switch for an on-scale indication, and obtain a null with CRL control. There are no interacting controls to adjust and readjust, nor any false nulls. A unique clectronic autobalance cireuit solves all these problems. Components with low Q or high D are as eosy to measure as those without loss.

For D or Q measurements, swith out of auto and tum DQ conrol until another null is obtained. Only one adjustment is needed for each measurement.
Five bridge circuils are incorporated in HP's 4260A; each is composed of slable, high-quality components for good accuracy and linearity. An istemal 1 kHz drives the bridge.

Nulling is easy. Illuminated pointers ($<$ CRL $>$) sulomatically tell whether a null is up-or down-scale. Both range and CRL convols can be sel watching these pointers.

Components may be biased by connecting a batlery to rear terminals. An extemal oscillator and detector can be used for measurements in the $20 \mathrm{~Hz}-20 \mathrm{kHz}$ range.

Specifications

Capacitance measurement
Aange: 1000 pF to $1000 \mu \mathrm{~F}$. in 7 full scale ranges.
Accuracy: $\pm(1 \%+1$ digit $)$, from / $\mathrm{nF} 10100 \mu \mathrm{~F} .=(2 \%+$) digit $)$. from I pF to nF and $100 \mu \mathrm{~F}$ to $1000 \mu \mathrm{~F}$.
Dissipation factor

Range

Low D-(ol series C): 0.001 to 0.12.
HIgh D-(of paralle) C): 0.05 to 50.
Accuracy: for $C>100 \mathrm{pF}$.

Add ± 1 dial division for frequencies other than 1 kHz .
Induclance measurement
Range: $1000 \mu \mathrm{H}$ to 1000 H . in 7 full scale ranges.
Accuracy: $\pm(1 \%+1$ digit $)$, from 1 mH to $100 \mathrm{H} .=(2 \%+1$ digit $)$. from $1 \mu \mathrm{H} 10) \mathrm{mH}$ and 100 H to 1000 H .
Quality factor

Fange

Low Q-(al serles L): 0.02 to 20.
High Q-(of parallel L): 8101000.
Accuracy: for $\mathrm{E}>100 \mu \mathrm{H}$.

High $Q \ldots \ldots=2 \sqrt{Q \text { of reading } \sigma_{0}}$.
Add $=1$ dial division for frequencies other than IkHz .

Auto-balance

Eliminates need for $D Q$ adjusements in parallel C and series L measuremenis al 1 kHz .
Accuracy: for $\mathrm{D}<1$ and $\mathrm{Q}>1$ add $\pm 0.5 \%$ to C and L accuracy specifications.
Fesistance measurement
Ranga: 10Ω to $10 \mathrm{M} \Omega$, in 7 full scale ranges.
Accuracy: $10 \mathrm{~m} \Omega$ to $10 \Omega=(2 \%+1$ digit $)$. 10Ω to $1 \mathrm{M} \Omega=(1 \%+1$ digit). $1 \mathrm{M} \Omega$ to $10 \mathrm{M} \Omega \pm(2 \%+1$ digit $)$.
Oscillator and detector
Internal oscillator: $1 \mathrm{kHz}=2 \%, 100 \mathrm{mV}$ rans $\pm 30 \%$.
Internal detector; tuned amplifier at I kHz; functions as a broadband amplifier for measurements with extemal oscillator.
General
Power; IIS or 230 volts $\pm 10 \%$. $50-60 \mathrm{~Hz}$, approx. 7 VA.
Slze: $166 \mathrm{H} \times 198 \mathrm{~W} \times 279 \mathrm{mmD}\left(6^{17} / 32^{\circ} \times 7^{25} / 32^{\prime \prime} \times 11^{\prime \prime}\right)$.
Welght: net. 5 kg (ll lb). Shipping, 6.8 kg (15 lb).
Options Price
Opt 910: extra manual
4260A Universal Bridge

- High accuracy: 0.2%
- Wide range

C: 0.1 pF to $1111 \mu \mathrm{~F}$
L: $0.1 \mu \mathrm{H}$ to 1111 H
R: $0.1 \mathrm{~m} \Omega$ to $1.111 \mathrm{M} \Omega$

16029 Test Flxiure

Description

Hewlet-Packard's Model 4265B Unjversal Bridge provides an economical way to nake high precision measurements of L. C. or R and D or Q . Components can be measured in ranges of $0.1 \mu \mathrm{H}$ to 1111 H in inductance. $0.1 \mathrm{pF} 10111 \mathrm{\mu F}$ in capacitance and $0.1 \mathrm{~m} \Omega$ to $1.111 \mathrm{M} \Omega$ in resistance. L and C measurements are performed over a wide range of loss with either series or parallel equivalent circuits selected by the function switeh. Basic measurement aceuracy is 0.2% of reading for L. C. and R.
Measureanenf frequency range is 50 Hz to 10 kHz with an exiernal oscillitor, and 1 kHz with internal osciliator. A de measurement for resistince is also available with external de power supply and null delector.
The front panel design provides appropriate spuce and convenient positioning of knobs for casy balancing. The rugeed handle is used as the till stand at angles or 0 . 40 . or 60 degrees.

Specifications

Peslstance measurement
Full scale range: $1000.0 \mathrm{~m} \Omega$ to $1.0000 \mathrm{M} \Omega .7$ ranges.

Overrange: 11.1%.

Minimum resolution: $0.1 \mathrm{~m} \Omega$.
*Accuracy (at 1 kHz$): \pm(0.2 \%$ of reating $+0.01 \%$ of F.S. $= \pm(0.4 \%$ of reading $+0.01 \%$ F.S.) for $1000.0 \mathrm{~m} \Omega$ range.
Residual resistance: $1 \mathrm{~m} \Omega$.
Inductance measurement
Full scale range: $1000.0 \mu \mathrm{H}$ to 1000.0 H .7 ranges.
Overrange: 11.1\%.
Minimum resolution: $0.1 \mu \mathrm{H}$.

- Acturacy (at 1 kHz): $=(0.2 \%$ of reading $+0.01 \%$ of F.S. $)=(0.4 \%$ of reading $+0.01 \%$ F S.) for $1000.0 \mathrm{~m} \mu$ range.
Residual Inductance: $0.04 \mu \mathrm{H}$ (in series with $1 \mathrm{~m} \Omega$).
Loss factor range: (al 1 kHz).
Q of serles L; 0.001 to 10 , accuracy $=(5 \%$ of reading +2 minor divisions).
Q of parallel L: 1 10 1000 , accuracy $£(5 \%$ of reading +2 miner divisions) for I/Q.
Capacltance measurement
full scale range: 1000.0 pF to $1000.0 \mu \mathrm{~F}, 7$ ranges.
Overrange: 11.3%.
Minimum resolution: 0.1 pF .
*Accuracy (at 1 KHz$): \pm(0.2 \%$ of reating $+0.01 \%$ or $F . S$.). $\pm(0.4 \%$ of reading $+0.01 \%$ F.S.) for $1000.0 \mu \mathrm{~F}$ range.
Residual capacitance: 0.4 pF .
Losa factor range: (at 1 kHz).
D of serles C: 0.001 to 1 . accumacy $=(5 \%$ of reading +2 minor divisions).
D of parallel C: 0.1 to 1000 , accuracy \pm (5% of reading +2 minor divisions) for I/D.
-Fe: temperature of $25^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}$.

General

Intemal oscillator
Frequency: I $\mathrm{kHz}=15 \mathrm{~Hz}$.
Output: continuously variable with front parel conird. Maximum voltage is 0.4 V rms .
External oscillator
Frequency range: 50 Hz to 10 kHz or de for resistance medsuremen.
Internal detector: tuned amplifier at 1 kHz . In 1 kHz position. maximum sensitivity of $10 \mu \mathrm{~V}$, seleclivity better than 26 dB . In "flat," operates as a broad band detector from 50 Hz 1010 kHz . External de blas: capacitance measurements in Cs mode. maximum bias voltage of 250 V dc . Inductance measurements in Lp mode.
Operating temperafura: 0° 10 $55^{\circ} \mathrm{C}$.
Power: $100 / 120 / 200 / 240 \mathrm{~V}=10 \%$: 4810440 Hz . 5 VA.
Dimenslons: $376 \mathrm{mmH} \times 393 \mathrm{mmW} \times 115 \mathrm{~mm} \mathrm{D}\left(14^{13 / 19^{\prime \prime}} \times\right.$ $\left.15^{5} / 4_{1}^{4} \times 4^{15} h "^{\prime \prime}\right)$.
Welght: net. 5.5 kg (12.1 lb). Shipping. 7.1 kg (15.7 lb).
Accessories furnished: power corv, $2.3 \mathrm{~m}(71 / 9 \mathrm{fl})$. Crystel earphonc.
Accessontes avallable: model 16029A Test Fixture.

- Fully automatic-autoranging
- Wide range $\mathrm{C}=0.1 \mathrm{pF}$ to $19 \mathrm{mF}, \mathrm{L}=0.1 \mu \mathrm{H}$ to $1900 \mathrm{H}, \mathrm{R}$ $=1 \mathrm{~m} \Omega$ to $19 \mathrm{M} \Omega$
- Low cost with high performance
- Versatile accessories/options
- High reliability

Description

The Model 426IA Digital LCR Meter in a new, fully amomatic instrument that satisfies many of today's user requirements in the LCR measurement field.
The 4261 A features high speed. accurate measurements. The dcvices under lest need only be connected and the function L, C. or R seleated. The instrument automatically displays the desired parameter. Tedious talancing operations iypically used in conventional manual bridges are completely eliminated. Measurement circuit mode (series or parallel) is also amomatically selected.
Complementing its wide LCR measurement range, HP's 4261A has other fealures such as high accuracy (basically 0.2% of reading). high speed measurement (iypically 4 per second). 120 Hz or 1 kHz measurement frequencics. I V or 50 mV test sigual levels. internal bias sources and parallel or series aquivalent circuit modes.
Measurenents are taken using the five-teminal method. which easily converts to four, lbree or two teminals to meet mosi LCR measument applications. For example. the four-teminal input
could be used to measure the capacitance of an electrolytic capacitor. the induclance of transformer or the intemal reststance of a dey coll. The threc-terminal inpur is appropriate for semiconducior junctoon capacıance or cable capacitance measurements. To fit these needs. Ihree kinds of optional test leads and fisturex are civailable. The 426IA can easily measure parameters of putse ransiormers. Tites coils and electrolyres in addition to ordinary LCR componems.

Expanted use features of this highly reliable instriment melude optionally available digital outpul and remote control which enable a wide range of applications from the research laboratory to the produclion line.

Specifications

Parameter measured: C-D (Capacitance \& Dissipation Factor). L-D (Inductance \& Dissipalion Facior), and R (Resistance).
Display: $31 / 2$ digits. max. display 1900 .
Circult mode: Auto. Parallel and Series.
Measuring clicult: 5 -terminal method.
Range mode: Aulo or Rangc Hold.
Measurament Irequencios: $120 \mathrm{~Hz}=3 \%$ or $1 \mathrm{kHz}=3 \%$.
Trigger: Intemal. Manual or Exiernal.
Measurement ranges, measurement accuracles \& test signal levels: sed tathes on nexi pate for C-D. L-D. and R mieasurement? Acciracy applien over a 1 emperalure range of $23^{\circ} \mathrm{C}={ }^{\circ} \mathrm{C}$ (al $0{ }^{\circ} \mathrm{C}$ io $55^{\circ} \mathrm{C}$. ciror doubles).

DC Blas

Internal source: 1.5 V .2 .2 V .6 V (selectable on front panell). Accuracy: $=5 \%$.
External source: provision for extemal DC bias voluge of +30 V maximum al binding posis on rear panel.

General

Measuring time rypically approx. 1000 counts on fixed range for low loss measurements. Specific data follows:

1 kHz : C/L $220-260 \mathrm{~ms}$. R: $120-160 \mathrm{~ms}$.
120 Hz C/L $900 \mathrm{~ms}, \mathrm{R} 700 \mathrm{~ms}$.
When auto range is selected, a range selection time of 180 ms at 1 kHz and a range step ume 670 ms at 120 Hs is added to the above bypical times.
Reading rate: internal trigger-approx. 30 ms between end of measurement and stan of next cycle: Extemal trigger-measurement cycle is initiated by remore trigger inpul.
Data format: - $1-2.48$ BCD, TTL logic level. " 1 " (high level).
Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Humldity: to 95% RH al $40^{\circ} \mathrm{C}$.
Voltage requlrements: $100 / \mathrm{I} 20 / 220 / 240 \mathrm{~V}=10 \%$. 48106 Hz .
Power consumption: $\leqslant 25 \mathrm{VA}$ with any option.
Allitude: 50,000 it.
Dtmenslons: $132.6 \mathrm{~mm} \mathrm{H} \times 213 \mathrm{~mm} \mathrm{~W} \times 422 \mathrm{~mm} \mathrm{D}\left(5^{1} / \mathrm{c}^{\prime \prime} \times 8^{3} / \mathrm{m}^{\prime \prime} \times\right.$ $16^{3} / 8^{4}$).
Welght: approx. 7.5 kg (16.5 lb).

R Measurement

QANGE	$\begin{gathered} 120 \mathrm{~Hz} \text { sf } \\ 1 \mathrm{hHz} \end{gathered}$	1000 ma	$10.00 n$	100.02	1000%	10.00 kS	$1000 \mathrm{k} \Omega$	$1000 \times \Omega$	1000 ma
rest Signal Level Note I	-				1 V				
	-2700-1000	10 mid	10 ma	1 ma	100 jLA	10 LH			
	RUTO					\$3meas			
A Accuracy Note?	-5im-				0.3\% + 2 counts				
	07000×0	0.2\% - 2 counis							
	AJTO	\$pme as ornotumo				Same ds man		Mode	

[^5]2. $-(\%$ of reading + coums $)$.

C-D Measurement

1 Sypical data, varís with value al 0 and number of coums.
2. $=(\%$ ol readine + coums + a). Cxis capsitance reaciout in counts

1 $15 \%-2$ counts) at 1 kb

L-D Measurement

L Typlaci dala, vuries with ysiue of D and number of cosinss
2. $=16$ of readina + counts - i). La is inductance iogdout in counls

Accessories avallable

16061A: Test Fixture (direcl coupled iype), S-lerminal
16062A: Test Leads wilh alligator clips, terminal (for low jmpedance measurements)
16063 A: Tesi Leads with alligator clips. 3 -fermmal (for high impedimec neasurements)

Optlons avallable

Opt 001: BCD Output of $C / L / R$ and D (simultaneous)
Opt 002: BCD Output of C/D, L/D and R (alter. nately)
Opt 003: BCD Remote Control (except for DC bias add \$60 function)
Ordering Information Price16061A Tesi Fixlure$\$ 95$
16062A Test Leads $\$ 49$
16000A Tcisl Leads$\$ 49$
Opt 001 BCD Outpur (Simultaneous) add $\$ 140$
Opl 002 BCD Outpul (Alemately) add $\$ 125$
Opt 003 BCD Remote Control add $\$ 60$

1 MHz Digital LCR Meter

Model 4271B

- Automatic high-speed measurements of low value components
- Precision LCR and loss measurements
- HP-IB interface for easy systems integration
- Wide measurement range (resolution to overrange):

C: 0.001 pF to 1900.0 nF
$\mathrm{L}: 0.1 \mathrm{nH}$ to 1900.0 mH
R: 0.001Ω to $19.000 \mathrm{k} \Omega$

Description

The HP 4271 B I MHz LCR Meter meets the requirements of the laboratory, manufacturing and quality assurance whene speed and accuracy are cesential. Fully automatic inductance capacitance and loss measurements can be made at the rate of up to S readings per second.
The four-terminal pair measurement technique used in the 4271B reduces errors duc to electromagnetic coupling of leads as well as reducing residual inductance and stray capacitance. Offset adjustments are provided to cancel the residuals of the test fixcures.

Typical applications for the 4271B include microcircuit measurnments, capacitance-voltage characteristics of semiconductor devices and passive component tests on devices such as ceramic and mica cupacitors, reed relays and pulse iransformers.

Specifications

Parameters measured: capacitance and conductance (C-G) or capacitance and dissipation factor (C-D) using parallel equivalent
circuil. Inductance and dissipation factor ($\mathrm{L}-\mathrm{D}$) or inductance and resistance ($\mathrm{L}-\mathrm{R}$) using series equivalent circuit. R is equivalent series resistance.
Dlsplay: dual 44iz dípı LED displays.
Overrange: 90% on C. G, L. and R; 60% on D.
Test frequency: I MHz $\pm 0.01 \%$.
Aanging: automatic and mandal. Remote control with Opi 101. Measurement terminals: four-terminal pair consiruction.
Olfset adjustment: offsel adjusument compensates for (a) stray capacilance and residual conductance of tesı fixture: variable ranges anc 1 pF and $1 \mu \mathrm{~S}$. or (b) residual inductunce or residual resistance of tesi tixture. Variable ranges are 100 nH and $100 \mathrm{~m} \Omega$.
DC Blas (optlonal)
Internal source: DC bias is available as Opl Col with the following specifications:

Range: 00.0 V 1039.9 V . variable in steps of 0.1 V .
Accuracy: $\pm 0.2 \%$ of setting $\pm 5 \mathrm{mV}$ (when ambient lemperature is at $23^{\circ} \mathrm{C} \pm 9^{\circ} \mathrm{C}$ and wam-up time is more than 60 min .).

C-G and C-D

			RAMGE 1	RAMEE ?	RAMAE 3	RANEE 4
full Scale Display		c	10000 pF	30000 pF	10000 0 p	10.000 nf
		G	100.00 kS	$1000.0 \mu \mathrm{~S}$	10.000 ms	100.00 ms
		0	1.0000 on all anges when C reading is greater than 1500 counts			
Test Siqnal Leyd		HIGH		300 mV Tms $=10 \%$		20 mvime - 200
		LOW		$20 \mathrm{mr} \mathrm{mbs}^{2} \pm 10 \%$		
	E	HIOH	$0.1+7$	$0.1+3$	0. $)+3$	+
		LOW	$0.2-8$	$0.2+3$	$0.2-3$	+
'Acculacy - log of reading - caun!s)	G	816H	$0.2+\left(7+\frac{\mathrm{Hc}}{1000}\right)$	$0.2+\left(3+\frac{\mathrm{NC}}{1000}\right)$		2.NC
	6	L0W	$0.3+\left(7+\frac{2+46}{1000}\right)$	$0.3+\left(3+\frac{2+N 6}{1000}\right)$		(7000
	D	HIGH	$1.0-\left(10+\frac{20,000}{N C}\right)$	$1.0+(10$		30,000
		10W	$10-\left(15-\frac{30,000}{\mathrm{Nc}}\right)$	$1.0+$ (
grenange		c	90\%\% d\| ranges			
		6	900, in litages			
		0	60\% all senges			

[^6]| | | | AARGE | RRast 2 | PAMEE 3 | RANEE 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | 1 | 1000.0 nH | $10.000 \mu \mathrm{H}$ | $30000 \mu \mathrm{H}$ | $1000,0 \mathrm{1H}$ |
| Fuil Sczie Display | | \％ | 10000 n | 100.00 ？ | 1000 in | 10.000 kK |
| | | 0 | | 1.0000 on all ranges wh | 15 greater Ihin 150 | |
| text Slenal fevel | | HISH | 2 mA （ms 20% | 5 mA mms $\pm 10 \%$ | 500 上А（mas $=10 \%$ | 50 HA mus $=10 \%$ |
| | | LOW | | 200 μ A $\mathrm{mms}=10 \%$ | 20 込 m ms $=10 \%$ | $2 \mu \mathrm{Arms} \pm 10 \%$ |
| | 1 | High | $10+15$ | $0.6 \div 4$ | | |
| | | 104 | | $0.6+6$ | | |
| －Accuraty | 8 | HIGH | $12+\left(8-\frac{2-N}{2-100}\right)$ | $12 .\left(2+2 \cdot \mathrm{~N}_{1}\right)$ | | $\left.\frac{2 \cdot N_{L}}{1000}\right)$ |
| \rightarrow countls） | n | 10W | $1.2+(8+\overline{1000})$ | $1.2+\left(\begin{array}{l}1000\end{array}\right)$ | | $\frac{2 \cdot N_{4}}{1000}$ |
| | 0 | HIGH | $10-(-20+30,000)$ | $1.0 \div$ | \cdots | $1.0+\left(15+\frac{20.000}{N_{L}}\right)$ |
| | 0 | L0w | $1.0 \pm\left(-20 \times \overline{N_{4}}\right)$ | 1.0 － | ${ }^{00}$ | $1.0+\left(20+\frac{30.000}{\mathrm{H}_{6}}\right)$ |
| Overrance | | L | 90\％All Ranges | | | |
| | | 8 | 90\％\％All Ranges | | | |
| | | 0 | | | | |

－When resistance reading is less than 1000 counts．
N_{L} is the inductande reading in counts．
Conductance，Resistance

			RAMEE 1	RAMSE 2	RUNGE 3	DANEE 4	
6	full Scare Dlsplay		$10000 \mu \mathrm{~S}$	1000－0 15	10.000 ms	100.00 ms	
	Test Sienal Level	HIGH	$500 \mathrm{mv} \mathrm{mms}=10 \%$			$20 \mathrm{mY} \mathrm{mms}^{2} \mathbf{2 0 \% \%}$	
		LOW	$20 \mathrm{ml} \mathrm{m}_{\text {пxs }}=10 \%$				
	（accur＊ay＝$)^{\circ}$ ol 8de＋cqunty	HIGH	0.2 － 8	$02+4$	$1.2+4$		
		10W	0．3－9	$0.3+5$			
－	Foil Scols Msplay		$10.000 \cap$	10000 n	1000.0 H	10.000 kn	
	Tast Slemal Leval	HI6H		5 mA ams $=10 \%$	$500 \mu \mathrm{Lrms}-10 \%$	$50 \mu \mathrm{Arms}=10 \%$	
		LOW		200μ A mas $=10 \%$	$20 \mu \mathrm{~A}$ ms $ニ 10 \%$	$2 \mu \mathrm{~A} \mathrm{mss}=10 \%$	
	Accuracy $I(\%$ ol fod－colnats）	HIGH	$12+10$	$1.2+4$	$0.2+4$		
		10%			$0.3+4$		

－When eapacilance α Inductance is loss than 1,000 counls．
Accuracies listed in the above tables apply over a lempersiure range of $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ ．（At $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ ，accuracy percentages are doubled．） Warm－UP Time；One hour minimum required to meet all specifications

Output reslatance： $1.5 \mathrm{k} \Omega \pm 10 \%$ ．Bias voltage is applied to $\mathrm{H}_{\text {celr }}$ terminal．
Short circult current：less uhan 6 mA ．
Control：conrolled by HP Model 16023A DC Bias Controller （optionally available）or by the HP－1B when Opt 101 is installed．
Control input connector：HP P／N 1251－0143．14－pin receptacle （Amphenol 57－40140）．
Mating connector：HP Parl No．1251－0142（Amphenol 57－ 30140 ）．
Extemal source：Provision for external de bias voliage of $=200$ \checkmark maximum 10 BNC connector（EXT INPUT）on rear panel．
Max bias current 20 mA ．Input resistance $10.5 \mathrm{k} \Omega=10 \%$ ．
Monitor output：bias vollage monitoring BNC connector （MONITOR）on rear panel．Ourput resistance： $480 \cap \pm 10 \%$ to
$\mathrm{H}_{\text {cur }}$ terminal．

General

Measuring Speed

Fixed range： 100 ms to 250 ms for C－G and L－R measuremen．
160 ms 10400 ms for C－D and L－D measurements．
Autorange： $100 \mathrm{mis} /$ range slep added to above values．
Operating lemperature： $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$ ．
Relative humidity：to 95% at $80^{\circ} \mathrm{C}$ ．
Power： $100 / 120 / 220 \mathrm{~V}=10 \%$ ， $240 \mathrm{~V}+5 \%-10 \%$ ． $48-66 \mathrm{~Hz}$ ． 80 VA max．

Accessory Iumished：16038A Test Fixture for radial and ixial lcad components．
Ordering Infarmetton
Price
16021A Calibration Test Fixturc（GR900 connector）
$\$ 475$
16022A General Purpose Test Fixture
16023A DC Bias Voltage Controller（used with Ope 001）
16032A Tesi Leads（BNC）
$\$ 175$
16033A Test Leads with miniature coaxial connectors
16034A Test Fixture for chip capacitor measurement
16039A Test Fixture with＂D＂offsel
Opt 001：DC Bias supply： 0.0 V to 39.9 V
add $\$ 245$
Opt 002：C／L BCD output：may be used with Opl 003
for simultaneous outputs +8421 Code
Opl 003：G／R／D BCD output．+8421 Code（see Opt
002）
Opl 004：Parameter Serial BCD output；allows selec．
tion of：I．（C or L）Data only：2．（D or G or R）Data only：or 3．（C or L）and（D or G or R）Data－8421
Code
Op1 010：4271B Less Test Fixture 16038A
less $\$ 155$
OpI 101：HP－IB Dala Output and Remote Control

Welght： 10 kg （ 22 lb ）．
4271B 1 MHz Digital LCR Meter

- Fully automatic
- 1 kHz to 1 MHz
- Measure from 18.000 pF to $1.2000 \mu \mathrm{~F}$ Full Scale

Description

A unique instrument from Hewlett-Packird, the 4270A Automatic Capacitance Bridge provides a wide variety of high speed measurements of both aclive and passive capacity values. Five-digit readout of capacitance from full-scale ranges of 18.000 pF to 1.2000 $\mu \mathrm{F}$ is complemented by .001 pF resolution and measurement speed or 0.5 seconds. In addition, a second in-line 4 -digit Nixic" display of capacitor loss is given simultaneously in terms of parallel conductance (G) or dissipation factor (D). In the laboralory. HP's 4270A will be exiremely useful for examination of semiconductor junction capacitics, input capacitances of amplifiess and other active devices. as well as analysis of stray capacity values, cables and simple capacitors. DC biasing, four frequencies from I kH 2101 MHz and a fully goarded measurement will add to laboratory llexibility.

Specifications

Measuring clrcult

Float: guarded terminals of unknown are noated from ground. L.ground: one side or known terminals is grounded; guard is re-

tained.

Parameters measured: capacitance, equivalent parallel conduc. tance and dissipation factor.
Measuring Irequency: I $\mathrm{kHz}, 10 \mathrm{kHz}, 100 \mathrm{kHz}$ and $1 \mathrm{MHz}=1 \%$.

Range modes

Auto: range sclection and balance performed allomatically.
Hold: range is held on sixed postion, balance begins with mosi signifitant digit. Range detemined by previous auto or track range selected or by minually stepping range step.
Track: range held on fixed position, balance begins with last digit. Balaneling time: typically 0.5 s.
Measuring rate: measurement cycle equals balance time plus display time. Balance lime typically 0.5 s: display times selected by meas rate are 70 ms . 2 secs. 5 secs. and manoal.

Test voltage across unknown

Normal: I V mis constant in pFornF at 1 kHz .0 .1 V rms conslant, in $\mu \mathrm{F}$ al I kHz .0 .5 V mms constanl al 10 kHz .100 kHz and I MHz . Low: '/s of nomal.
Repeatablity: ± 2 digits at normal iest voleage. ± 10 digits at low test voltage.
DC blas: Internal or external to +200 V , in hold and track mode. Internal blas as float measurement
Voltege: 0 to 20 Vdc : 010200 V dc : consinuously variable on front panel, monisored on rear panel.
Dlal accuracy: $\pm 5 \%$ of full scale.

Source resistance: 100 kh .

Polarlty: low unknown icrminal (-). high unknown terminal (+) in noat position of meas ckt conirol.
Remote: programmable by resistor with $250 \Omega / \mathrm{V}$ rate at 20 V range. $25 \Omega / \mathrm{V}$ rale at 200 V range.
Aemote accuracy: $\pm 2 \%$ of full scale.
Internal bias at L-ground: an additional connection using a blocking capacitor and a coaxial cable is necessary for internal source.

Avallabis full gcale ranges

Capacilance				Conduclance	Dissipation Faclor
1 hRz	10 kht	100 kHz	1 HHz		
180.00 pF	18.000 pr			899.9n 15	. 8979
$18000 \mu^{2}$	180.00 pr	18.0060 F		$8.599 \mu 0$	
18.00in 110	180co 0 f	180.00 pF	18.000 pF	$89.99 \mu 815$	
180.0.1nt	18.00015	1800.0 pF	180.00 pf	899.9 - 11	
$1.2000 \mu \mathrm{~F}$	180.00 nf	18.000 nF	1200.0 p?	8.949 m U	

NOtE: heavy Ine encloses available full-scale ranges in l-GROUNO full oisplay ni $0 / \mathrm{S}$ is oblained al TRACK MODE, and is limited by AUTO RESET of 1.5 sec at AUTO/HOLD NOOE -Accuracy at L-GROUND is not specified an this ranges.

Basic accuracy: $\pm \%$ of reading: \pm number of digits

	Fraquency	$1 \mathrm{kHz} \leqslant 10 \mathrm{Hzz}$	$100 \mathrm{th4}$	1 HMz
0	$\begin{gathered} \mathrm{D}<0.1 \\ \text { Basic hccuracy } \\ 0.1<0<0.899 \end{gathered}$	$\begin{aligned} & =0.1 \% \pm 1 \mathrm{dl} \mathrm{gll} \\ & =0.01 \mathrm{pf} \\ & =0.2 \% \mathrm{I} \mathrm{diglt} \\ & \pm 0.01 \mathrm{pF} \end{aligned}$	$\begin{aligned} & =0.3 \% \pm 1 \mathrm{digil} \\ & =0.01 \mathrm{pF} \\ & =0.5 \% \mathrm{Idigh} \\ & \pm 0.01 \mathrm{pf} \end{aligned}$	$\begin{aligned} & \pm 1 \% \pm 1 \mathrm{digit} \\ & \pm 0.02 \text { of } \\ & \pm 2 \% \pm 1 \text { digh } \\ & \pm 0.01 \text { pf } \end{aligned}$
6	Basic Accuracy	$=14 \%=10$ digls		$\pm 3 \% \pm 10$ digits
D	Qasis Acculacy			

NOTF. CS intarnal stanoma capacilar
CX: capacisance measured
Outputs: 4 line BCD.
Inputs
Trigger hold off level: level must be between 10 V and is V .
Remote programming: cight fronl-panel functions can be remotely conirolled by external contact closure to ground with impedance less iban 400Ω. Programmable functions gre resel, frequency, range mode. lest vollage, loss mein. range step, de bian, hias vemier.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: 115 or $230 \mathrm{Vac} \pm 10 \%$, 50 to 60 Hz approx. imately 10 W).
Welght: net. 15.5 kg (3 fl lb). Shipping. $21.6 \mathrm{~kg}(48 \mathrm{lb})$.
Accessories avallable:
Accessories for HP's 4270A Automatic Capacitance Bridge:
The following adapicrs convert BNC Connectors on HP's 4270A to allow direct insertion of components. 16011 A converts from BNC to binding pusis. 16012A converts from BNC 10 lest axial lead devices. It has a centrally located guard plane to reduce errors duc to stray capacitance. 16013A converts from BNC to test venical lead devices. It has a guard plane similar to 16012.A. 11143A convens from BNC to clip leads. $44^{\prime \prime}$ overall length with third lead to preserve guard terminal.

Optlons and accessorles	Price
110: H1P-IB Data Output \% Remote Control	\$1890
Opi 910: Exira Manuad	add \$35
16011A Test Fixture	\$64
16012A Test Fixlure	\$71
16013A Tesi Fixture	\$71
16411A HP-1B Interfoce Kil	\$1890
11143A BNC Cáble	\$39

4270A Automatic Capacitance Brldge

- Simultaneous go/no go check on production line
- High accuracy-basically 0.1% of reading
- High speed measurements-8 per second

HP-IB

Description

The 4272 A I MHz prescl C meter is a unique instrument in which a 5 dggil "in-house" comparator is combined with I MHz capacitance meanurement caprability. Capacitance can be mencured from 105 F full scale (resw)ution 0.001 pF) tul 1000 pF full scate (maximum display' 1900 pF).
In addition to the comparator capability. the instrument can be set to high and low limits with the built-in thumbwheel switch. Limit indications include panel lamp display. relay contact and TTL outpul for HI. IN and l.O comp:rnons.
The rombindtion of meastirement and comparator capabilisy makes this instrument very applicable for production line GO/NO GO checkins. When relatively nmall capacitors such as ceramic or mical are checked for quality in the production process. there is no necessity to tead the digital display.
A GO/NO GO chech requires only a glance at the HI-IN-LO lamp display. Decision type outputs can be utilized in an autumatic selection system.
BCD data outpul for data processing of variable is optionafly avaitable.

Specifications

Parameter measured: capacitance-equivalent parallel circuit by four terminal pair method.

Test slgnal

Frequency; $1 \mathrm{MHz}=0.01 \%$.
Level: 1 V $\mathrm{ms}=10 \%$.
Measurement range and accuracy: $0.001 \mathrm{pF}-1900.0 \mathrm{pF}$ in 3 dec . ade range, manually selected. Remote ranging is optionally available.

Range	Full Scalt Glaplay	averrange	Accuracy
10 pr	10.000 pF	90%	0.1 .7
100 pF	100.00 pF	at	$01+3$
1000 pF	1000.0 pF	each range	0.1 .2

[^7]Accuracy applies over a temperature range of $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ al dissipation factors $\mathrm{D}<0.1$ (A $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, error doubles). Warm-up time is $>60 \mathrm{~min}$.
Offset adjustment: offsel adiustment compensates for stray capacilances of 010 IpF and residual inductances of 0 to 100 nH existing at test fixture.
Function: compares measured value with HI and LOW LIMIT setting and provides HI. IN and LO comparison outputs.
HI and LOW LIMIT SETTING RANGE: 00000-19999 at each limil switch.
Comparison output; visual. relay contacis and TTL level.
Visural: 3 LED's indicate HI. IN or I_O.
Relay contacte: 3 SPST contaces to circuil common for HI. IN or LO oulput.
rrL level: 3 open collector circuits to HI level (open) for HI. IN or LO outpul (Fanoul max 30 mA).
Messuring time: <120 ms.

Feading rate

Internal: < 400 ms . Belween end of measurement and starl of next evele.
External: a new cycle may be stanted by pushing manual 1 rigger button or by remote trigger input to remote trigger connector.
Remote trigger Input: a measurement cycle may be iniviated at remole (rigger connector by changing logic level state from " 0 ". (zero volts or connection to ground though less than 25 n) to " 1 " (TTL high level or open), pulse width >1 $\mu \mathrm{s}$.

General

Operating lemperature \& humidity: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, relative humidity 1095% all $40^{\circ} \mathrm{C}$.
Power requirements: $100 / 120 / 220 / 240 \mathrm{~V}=10 \%, 48-66 \mathrm{~Hz}$.
Power consumption: <60 VA with eny option.
Dimenslons: $99 \mathrm{mmH} \times 425 \mathrm{~mm} \mathbf{W} \times 467 \mathrm{mmD}$.
Weight: approximately 10 kg .
Accessories fumlshed: 16033A Test Leads with BNC Connectors.

Accessories avaliable Price
16021A: Calibration connector
$\$ 475$
16022A: Test Fixture. General Purpose $\$ 415$
16033A: Tesi Lcads with Minialure Coaxial Connec. $\$ 190$
tors
16034A: Chip Capacitor Test Fixlure
$\$ 295$
18038A: Test Fixture $\$ 175$

Note: The ahove accessories are the same as for the 4271B.

Options avallable

002: BCD and Decision Outputs
add $\$ 80$
005: ASCLI Code Jnput/Outputs for Calculator Inter-
face. Uitizes HP 11202A I/O Card (Not Included)
006: BCD Remote Control add $\$ 450$

101: HP1B Data Output and Remote Control
add $\$ 110$ add \$2080

Description

Most components are measured and their characteristics are evaluated ar) kHz . The model 4273A $/ \mathrm{kHz}$ Preset C Meter is a 4 digit capacilance meter which. combined widh a S digit comparator, provides Go/No-Go information on medium range capacitors in production line testing or incoming inspection use.

The 4273 A measures capacitance from 100.00 pF full scalc (0.01 DF resolution) to $10.000 \mu \mathrm{~F}$ full scale in six decade ranges with an overange of 20%. The instrument's two test signal levels (1 Vrms and 300 mV ms) and wide measurement range covers most capacitor types. including plastic film. mica and ceramic capacitors. The 300 mV test level is aspecially useful when measuring the capacilance of semiconductor devices.
The 5 -digil comparator allows upper and lower comparison limits to be set by thumbwheel swithes on the front panel. The measured capacitance values are compared with the limit switch sentings and the results are displayed on the front panel. This information is simultaneously applied to relay contact and TT L oulputs on the rear panel connector for the with an automatic sorting machine. BCD output or measurement data is also provided

Measurement time is important, especially in automatic soning applications. The 4273A can typically make 4 measurements per second (assuming a masfer lime of 100 ms). For higher sorting speeds, a high speed version. Option H01 is availahle

The 5 terminal conGiguration of the unknown terminals and the capacitance offset capability insures accurale measurements and casier test fixture design for connection to the device under test.

Specífications

Capacitance measurement

Parameter measured: capacitance - equivalent parallel by four terminal method.
Test signal: frequency: $1 \mathrm{kHz} \pm 2 \%$; tesi level: I Vrms $\pm 10 \%$ and 300 mV rms $=10 \%$.
Measurement range: $100.00 \mathrm{pF}-10.000 \mu \mathrm{~F}$ in 6 decade ranges. manually seleclable. Remote ranging is optionally available.
Overrange: 20%.
Accuracy: $=0.1 \%$ of reading +3 counts); conditions: accuracy applies over a temperaturc range of $23^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$ at dissipation factors of $\mathrm{D}<0.1$. At $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$, entordoubles. Wamn-up time is 30 minutes. Offest adfustment; compensates for stray eapacitunce of 0 to 10 pF .

Comparator

Function: compares measured value with H1 and LOW LIMIT sellings and provides HI. IN and LO comparisun outputs.
HI and LOW LIMIT setting ranges: $00000-11999$ al each limil switch
Comparlson oulputs: visual, relay contacis and TTL level.
VIsual: 3 LED's indicate FII. IN or LO.
Relay contacts: 3 SPST contacts to circuil common for HI, IN or LO outpur.
TTL 3eval: 3 open collectos circuits to high level (open) for HI, iN or LO output (Fanout max. 40 mA).

Genera!

Measuring llme: $<150 \mathrm{~ms}$.
Reading rate: internal: < 300 ms . Between slart of measurement and start of next cycle: external: anter completion of a measurement cycle, a new eycle may be started by pushing the manual trigeer button or by remote trigger input to the remole trigger connector: renote trigger input: a measurement cycle may be initiated at the remote trigger connector by changing the logic level state from " 0 " (zero volts or connection to ground uhrough less than 25 2) to " 1 " (TTL high level or open), pulse width; $\geqslant 20 \mu \mathrm{~s}$.
GCD output: connector: 50 pin. P/N 1251-0087 (Amphenol 51-$40500-375$). Mating connector is P / N 1251-0086 (Amphenol 57. 30500-375).
Output level: TTL. "0" $0-0.4 \mathrm{~V}, \cdots 1$ " $2.4-5 \mathrm{~V}$. Max. sink current 16 $\mathrm{mA}(8 \mathrm{~mA}$ for "out of range"). outpul impedance 300Ω.
Operatling temperalure \& humidity: $0^{\circ} \mathrm{C}$ io $50^{\circ} \mathrm{C}$, relative huovidity 10 95% al $40^{\circ} \mathrm{C}$.
Power requirements: $100 / 120 / 220 / 240 \mathrm{~V}=10 \%$. $48-66 \mathrm{~Hz}$.
Power consumptlon: $\leqslant 25$ VA with any option.
Slze: $147 \mathrm{H} \times 426 \mathrm{~W} \times 349 \mathrm{~mm} \mathrm{D}\left(5^{3 / 2^{\prime \prime}} \times 16^{3} / \mathrm{s}^{\prime \prime} \times 13^{3 / 4^{\prime \prime}}\right)$.
Welght: approx 8 kg (17.5 lb).
Accessorles furnished: I6N4SA Test leads with BNC connectors. Optlons avallable: 006: BCD remote conirol. HOI: Hi speed version. 3 digit display with 4 digit comparator. Accuracy: 0.2% of reading. Measurement time: $<75 \mathrm{~ms}$.
Ordering information
Price
Opt 006: BCD Remote Control
Opi H01: Hi Speed Version
$4273 \mathrm{~A} I \mathrm{kHz}$ Preset C Meter
570
$\$ 195$
$\$ 2575$

- Wide range - 10 nF to 1 F full scale
- Dissipation factor or ohm-farad measurements
- Internal bias supply
- Digital and analog outputs for recording

Descrlption

Hewlerr-Packard's Mudel 42\$2A Digital High Capacitance Meter can make precision measuremens on high value tantalum or aluminum eleolrolylic capacitors. Applications include boil capacilor design mensurcments and production testing-either in incoming or outgoing inspection.
Two types of leads ture supplied with the BP 4282A. One is the standard four-wire alligator clip style, and the other. comprises two specially designed clips that maintain the Kelvin four-wire measurement.
Two unique features of the HP 4282A are: altemating mode (altemately displays either capacilance and dissipation factor. (C-D), or capacitance and the prosuct of ohms and farads. (C-תF) and the capsbility to double as a three-dígit DVM.
Both digital and analog outpuls are available for making permanent recordings.
The standard model has four measuring frequencies: 50.60 .100. 120 Hz . These represent power line frequencies and their second mamonics. Most large value eapacitors are used as filiens in power supplies and are operated at these frequencies. If your application requires lests al other frequencies, please refer 10 Models 4260A. 4261A, 4262A. 4265B, 4270A and 42718 on the adjoining pages.

Specifications

Measuring functions: capacitance, dissipation factor. *ohm-farad and de voltage. Selectable by function switch.
-Ohm-farad: the product of the capacilance and equivalent series resistance of the capacitor.

Functlan zwitch sotting	Tunction and duplay
C	Capacitance measurement.
0	Dissipation factor measurement.
nf	Ohm-farae measurement.
CO	Capacitance and dissipation 1acter measurements (aiternately).
Enf	Capacitance and ohm-farad measurements (alternately)
V	DC hias voltage or external valloge measurements.
	Note
	4ll measurements are conlinuously repeated as long as unknown is connected.

Measuring ranges

Function	Fulliscale diplay	$\begin{aligned} & \text { Oyes } \\ & \text { naging } \end{aligned}$
$\underset{\text { (cspacilance) }}{\text { C }}$	10. 000 nf ta 1.00003 , pour fuit cights, 9 ranges in decade steps, manual sainction.	18\%
	1.00011010 .00 , three full digits. 2 ranges. auto selection.	18\%
$\underset{\text { (Dhmi licad) }}{\text { nf }}$	1.0000 mF to 10.000 mF Ihreo lull digits, 2 ranges, auto selection	18\%
$\begin{gathered} v \\ \text { (de voluge) } \end{gathered}$	10.00 V 101 GEL KV, tivee Iuil dintis. $\hat{3}$ lanpes. In decad = slets. mònuz: seluchion (mizalmum boliage 15 fivo Y).	18\%

Measuring clrcult: series eqivalent circuit using four-terminal melhod.
Measuring frequencles: $50 \mathrm{~Hz}, 50 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and $120 \mathrm{H}<(50 \mathrm{~Hz}$ and 60 Hz synchronized by lime (reepuency). Accuracy: $=1.5 \%$.

Measuring voltages

10 nF to 10 mF ranges: < V Vms.
100 mF range: $<\mathbf{0 . 1} \mathrm{V}$ ras.
1 F range: $<10 \mathrm{mV} \mathrm{mm}$.
Accuracy: $\left\{+23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ after half hour warm up $): \pm(5 \%$ of reading $+\%$ of full-scalc).

Capacitance

C Ruget	\% of readinis	\% ol lull-scald
10 nF	$1.0+0.9 \cdot \mathrm{EkSP}$	02
105 n	0.5-0.5 = Drug	0.1
$1 \mu \mathrm{~F}$ to 1 mF	0.4-0.5-0xd8	0.05
10 mf	1.0+0.5 $=$ Drag	0.05
100 mr	1.3+0.5 - Drds	05
1%	$2.5-0.5=0.8 \mathrm{dg}$	LO

Dissipation factor

C 8ange	\% of reading	el full-scale
10 пf	$1.5+0.5 \cdot \operatorname{lodg}$	0.2-Cls/ $\mathrm{Cr}_{\text {d }} \mathrm{d}+0.3$
100 ns to lmp	1.5-0.2.0idg	$0.2 \cdot \mathrm{Cts} / \mathrm{Cidg}+0.3$
10 ก	$1.5+0.2 \cdot 0 \mathrm{O} \mathrm{O}$	0.2-Clacrdg - 0.5
$100 \mathrm{mF}$. I F	$15+02 \cdot \mathrm{Drdg}$	0.2-Cis/Cidg +3

Ohm-larad

C Ransa	\% of ressing.	\%/as fult-scale
$10 \square \mathrm{~F}$	1.0-0.5-nFrog	0.2-CHy/ride 03
100 of 10.1 mF	1.0-0.2 - 0 Frigg	0.2 - $\mathrm{Cls}_{5} \mathrm{Clin}_{8}+0.3$
10 mf	1.0+0.2-01Frag	0.2. $\mathrm{Cis} / \mathrm{Cras}_{\mathrm{s}}+0.5$
$100 \mathrm{mF} .1 \%$	1.0+02. (Ifidg	0.2-Cts/Crdy +3

Drag: reading of dissipation factor.
QFrdg: reading of ohm-furad.
Crdg: reading of capacitance.
CTs: full-scalce of C range selting.

DC voltage measurement accuracy

10 V range: $\pm 0.0 .05 \%$ of reading $+0.1 \%$ of full-scale).
100 V and 1 kV ranges: $\pm(0.2 \%$ of reading $+0.1 \%$ of full-scale).
Temperature coefficlent
(refered $10+23^{\circ} \mathrm{C}$, and lemperalure range or $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$)

finelua	Temperature coaflicient
C	$\therefore 0.02 \%$ of reading ${ }^{2} \%$
D. OF	=003\% ol reading ${ }^{\circ}$
v	$\pm 0.01 \%$ of readinge

Option 001 Leakage Current Measurements adds
following capabilities to standard model
Leakage current measurement (\bar{I}_{L})
Range: $1.000 \mu \mathrm{~A}$ to 10.000 mA .5 ranges three full digits.
Overrenging: 18%.
Accuracy: $1 \mu \mathrm{~A}$ range: - (2 rif of reading $+2.0 \%$ of full-scale). 10 $\mu \mathrm{A}$ to 10 mA ranges: $\pm(2 \%$ of reading $+0.3 \%$ of full-scale).
Elas voltages: internal source: 0 to $10 \mathrm{~V} .010100 \mathrm{~V}, 2$ ranges. continuously variable over each range. Maximum current is 100 mA for 10 V range and 60 mA (for 1 minute) for 100 V range,
External source: usabic up 10600 V de across ext bizs terminals on rear panel.
Protectlve resistor: $\mathrm{Ik} \Omega$ for 100 V range and for extemal bias. I Ω for 10 V range.

General

DC blas voltage: 0 to 10 V . concinuously adjustable with DC bias control. Maximum charging curtent is 100 mA .
Balancing time: normally onc second (when measuring on C ranges of 10 nF ihrough 10 mF , capacitance value near full-scale. dissipation factor less than one and without de bias).
Reading rate: continuously variable from 0.3102 seconds with ratc control.
Reset: Initiates one reading by depressing Resel Int pushburton or contact closure to ground or TTL low level at resel ext line. Mating plug for resel test jack: HP parl No. $1251-0918$.
Digital output: output signals: BCD +1-3-48, datic paraltel, decimal point, function and unit, overload and unbalance, and polarity. Level

stace	Levol	Chancteristics
$\underset{\text { Ligh }}{\text { Low }}$	$\begin{aligned} & 0.3 V=0.3 Y \\ & 3.9 Y=1.5 v \end{aligned}$	Max sind: current 15 mA Hax luad current 300 mA

Print commend output: negative going TTL pulse of approx. 1 ms. Prinfer hold Input: TTL low level or contact closure to ground
Connector: mating, HP P/N 1251-0084: Amphenol 57-30360-375 (36-pin bluc ribbon).
Remote programming: programmable functions, C-range, 1_{1}, range (option 001) and reset by TTI, low level of contact closure to ground.
Connactor: mating. HP P/N 1251-0084: Amphenol 57-30360-375 (36 -pin blue ribbon).
Analog output: DC output of I V full-scale in proportion 10 displayed value.
Aceuracy: add $=0.5 \%$ of reading to occuracy specification.
Operating environment: $0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}, ~<90 \% \mathrm{RH}$.
Power requirements: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or $240 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}$ or 60 Hz , арprox. 70 VA .
 $181^{\prime \prime}$).
Welght: net. 8.8 kg (19.5 lb). Shipping. 12.9 kg (28.5 lb).
Accessorles furnlshed
16035A test leads: four aligator clips.
16038A teat leads: (wo allieator-jaw clips.
Power cord: $230 \mathrm{~cm}\left(7^{1 / 2}\right.$ n). HP Parn No. 8120-1378.
Accessorles avallable Price
18037A: Tesl Fixlure
16037A: Opl 001 (verical and axial lead devices) $\$ 205$
16413A: HP-IB Interlace Kit

Options

001: Leakage current measurement
add $\$ 290$
101: HP-IB Dala Oulpuland Remotc Conirol
$\$ 1890$
908: Ruck Flange Kit
add $\$ 10$
010: Exira Manual

- Frequency range: 22 kHz to 70 MHz
- Q range: 5 to 1000

Description

The direct-reading expanded seale of the 4i42A permits meitsurement of Q from 5 to 1000 and readings of very small changes in Q resulting from variation in lest parameters. The 4342A is solid slate with the elimination of specially matched, fragile thermocouple components.

The 4342 A will measure dissipation factor and dielectic constant of insulating materials. The Q veter can measure coefficient of coupling. munal inductance, and frequency response of (ransformers. RF resistance, reactance. and () of resistors and capmetors can also be determined.

Push bution operation of frequency range and $Q / \Delta Q$ range selection provides strajghforward measurement. Aulomatic indication of mever scales. frequency dials and frequency multipliers are featured. adding to simplicity and reading speed.

Specifications

RF characteristics

RF range: 32 kHz 10 70 MHz in 7 bands: 221070 kHz 7010220 $\mathrm{kHz}, 220$ 10 $700 \mathrm{kHz}, 700102200 \mathrm{kHz}, 2.2$ 10 7 MHz .71022 MHz . 221070 MHz .
4342A Opl 001: 10 kHz to 12 MHz in 7 bands: 101032 kHz .32 (0) $100 \mathrm{KHz}, 10010320 \mathrm{kHz}, 320$ to $1000 \mathrm{KHz}, 1$ to $3.2 \mathrm{MHz}, 3.21010$ MHz . 10 1o 32 MHz .
RF accuracy: $\pm 1.5 \%$ Irom 22 kHz io $22 \mathrm{MHz}=2 \%$ from 22 MHz $1070 \mathrm{MHz}: \pm 1 \%$ al " L " poim on frequency dial.
4342A Opt 001: $\pm 1.5 \%$ from 10 kHz lo $10 \mathrm{MHz}: \pm 2 \%$ from 10 MHz $1032 \mathrm{MHz}: \pm 1 \mathrm{~S}_{\mathrm{s}}$ at " L " paint on frequency dial.
RF Increments: approximately 1\% resolution.
O measurement characteristlcs
O range: 5 to 1000 in 4 ranges: 5 to 30.20 to 100,50 to 300.30010 1000.

O accuracy: \% of indicated value; (a1 $25^{\circ} \mathrm{C}$)

	4342A \& +Jaza Opl 001	43420
	$22 \mathrm{LCH2}-30$ mit	$30 \mathrm{MHz}-70 \mathrm{MHz}$
$3-300$	$=1$	± 10
300-600	± 10	± 15
5no. latu	$=15$	± 20

Q increments: upper scale: I from 20 to 100: lover scale: 0.5 from 5 1030.
ΔQ range: 0 to 100 in 4 ranees: $0103.01010 .01030,010100$. Δ Q accuracy: $=$ lir' of full scale.
$\Delta 0$ Increments: upper scale: 0.1 from 0 to 10: lower scale: 0.05 from 0103.

Inductance measurement characterlstics
Lrange: $0.09 \mu \mathrm{H}$ to 1.2 H , direct reading at 7 specific frequencies.
L accuracy: $\pm 3 \%$ after substitution of residuals (approx. 10 nH).
Resonating capachor characterlstics
Capactior range: main dial: 25 to 470 pF ; vernier dial -5 in $+\boldsymbol{p F}$.
Capacitor accuracy; main dial: $=1 \%$ or 1 pF . whichever is greater: vernier dial $\pm 0.1 \mathrm{pF}$.
Capacitor incremente: main dial: 1 pF from $251030 \mathrm{pF}: 2 \mathrm{pF}$ from 30 to $200 \mathrm{pF}: 5 \mathrm{pF}$ from 200 to 470 pF ; vernier dial: 0.1 pF .

Gerreral

Rear panal outputs

Frequency monttor: 170 mV ms min. into 50Ω.
O analog output: 0 to $1 \mathrm{~V} \pm 50 \mathrm{mV}$ dc after 15 minules warmup. proportional to meter deflection. Outpul impedance approximately) $k \Omega$
Over limit algnal output: contact closure at the rear panti. Relay conlact capacity $0.5 \mathrm{~A} / 15 \mathrm{VA}$.
Over limit display lime: sclectable. I s or continuousiy on, after limit exeseded.
Temperature range: $0^{\circ} \mathrm{C}$ 10 $50^{\circ} \mathrm{C}$.
Power: 115 or $230 \mathrm{~V}=10 \%$. $50-400 \mathrm{~Hz}, 25 \mathrm{VA}$ max.
Dimensions: $129 \mathrm{mmH} \times 425 \mathrm{mmW} \times 414 \mathrm{mmD}\left(51 / \mathrm{m}^{\prime \prime} \times 16^{\circ 1} \mathrm{~m}^{\prime \prime} \times\right.$ $\left.16^{5 / n} / n^{\prime \prime}\right)$.
Wolght: nel. 14 kg (3/ lb). Shipping. $18.45 \mathrm{~kg}(4 \mathrm{l} / \mathrm{b})$.
Accessorles avallable:
HP 16014A: Series Loss Test Adaptor is designed for measuring low impedance components, low-value inductors and resistors, and also high-value capacitors. Using the adaptor adds convenicuce in connecting components in series with the test circuil of the $4342 \mathrm{~A} Q$ Meter. This adapior ennsists of a teflon printed-circuit batse on which are mounted binding posts. to accept the Reference Inductors, and a pair of low-inductance series terminals for the unknown. HP 16462A: Ausiliary Capacitor is designed to extend the Q and L measurement capability of the $\$ 342 \mathrm{~A} Q$ Meler. II is especially useful for measuring small induclors an low frequencies.
HP 16470 A reference inductors: A range of 20 inductors, any of which can be supplied separately. is avinlable for use with the 4342 A Q Meter for meatsuring the RF characteristies of capactors, mesislors, and insulating materials. These inductors have three ferminals. One ierminal is connected to the case to stabilize measurements.
Optlons 8 accessarles
Price
Opt 001: Frequency Range add $\$ 170$
Op1 910: Exira Manual
add $\$ 17.50$
16014 A Serier Loss Test Adaptor $\$ 59$
16462A Auxiliary Capacitor $\$ 275$
16470A Reference Inductors, set of 20 \$880
or $\$ 44 \mathrm{ea}$.

Digital IC Tester

Models 5045A, 5046A

- Tests CMOS, ECL, TTL, DTL
- Printed record of IC failures
- Magnetic card programmable
- Tests IC's to 16 pins - 24 pins optional

5045A Digital IC Tester

The HP Model 5045A is a processor controlled. micraprogrammed digizal IC Tester. Well suited for high volume incoming inspection as well as engineering evaluation and failure analysis, it's simple enough to be used by an unskilled operator yet it includes capabilities usually found only in large, computer-based test systems. To lest a device, all that's required is a preprogrammed magnetic card. Insert the card into the front panel stot, and the tester is ready to provide complete DC parmetric and functional verification of one of the many devices listed in our comprehensive program catalog.
To provide a permanent recond of individual IC failures as the rest is being made, the quiet HP thermal printer has been included in the 5045A to record detailed failure information for every bad IC. Your operator just keeps on testing - the record is automatically kept and can te reviewed later or returned with the bad IC's to the manufacturer.
Tesis all thesie familles
ECL, CMOS. TTL. HTL. DTL
The universal pin electronics in the 5045A let each pin act as power supply, inpul, output, or open circuil. This provides the great flexibility and capability needed to sest circuits all the way from basic gates to arithmetic logic units and ROM's. Devices with power supply voltages up to 15 volts or both posilive and negative voluages up to 7.5 volts may be tested. As your testing requirements expand to new devices. your 5045A can be easily and inexpensively updated
by adding new program cards. The nominal cost of these cards means that you don't have to be satisfied with testing a small frac(ion of your circuit rypes. You can keep your program library complete - and still stay within your budgel.
DC parametric and functional lests
The 5045A thomughly tests devices both functionally and parametrically to ensure that those expensive failures don't get loaded into your PC boands. Functional lests check the ability of the device to correctly operate according to its truth table as the appropriate inpul sumulus is applied. DC parametric tests check the voltages and currents on device inputs and oulpuls wnder various conditions specified by the manufacturer. These tests eliminate almost all defective devices and avoid the expense of finding and replacing bad circuits once they have been soldered into PC boards and perhaps become pan or a complex system.

Unlque test technlque

To provide the accuracy of direct comparison testing without expensive performance or reference boards. the 5045A uses a unique IC simulation technique. The correct functional operation of the device under test is simulated and this simulation is used as a reference. As both the device under tevt and simulator are driven with the same inputs, their outputs are compared on a step-by-step basis. If a failure occurs, the 5045A can indicate exactly where it happened by printed message or can stop on the failure so the faylt can be investigated in more detail.

Economical ROM resting

To test the many different lruth tables which may be programmed in ROM's of the same generie rype, it is not necessary to buy a card for each one. A single card containiog stimulus information for the generic ROM type is loaded into the 5045A and the urique truth table of a known good ROM is "memorized" by the 5045A. The complete program is then recorded on a blank card for future use. Duplicates of any card may be made from the original by programmmg the 5045A. pressing "write". and then insening a blank card.

Automatle IC handlers

The 5045A was designed to work with automatic IC handers needed for high volurne testing. The special circuits which generate the fast rise and fall times for testing digital circuits are io a removable test deck whith ean be placed within inches of the IC being tested. Problems caused by long cables between handles and tester-ringing, oscilation, slow rise/fall times-are elimunated.

HP in cooporation with major aulomatic hander manufaceurers, has designed cusrom interface kits for popular handlens. So, interfacing the 5045 A and a handler requires nothing more than plugging the two together.

Printer glves permanent copy of tesi results

A built-in themal printer provides useful test information: a) it tells whether a program is loaded correctly and what programit is, b) it records the number of failed and passed 1 C 's. and c) it provides failure analysis information for each failed IC.
In iss failure analysis modes, the printer can provide very detailed information; a special voltage/curtent printout, for example. This makes the printer a digical multimeter PLUS!

Self test feature

In an incoming inspection or production enviromment it is importart to know your equipment is operatiog as it should. The tester has self-test cards to automatically exercise all major circuitry (he drivers and receivers for all pins, the central processor, the memory, and associated circuits). This way. you know every day that the tester is functioning correctly and that none of those bad IC's are getting into your production run, and cutting into your company's profis. Also included are diagnostic eards.
Ordering the pre-programmed magnetlc cards
The 5045A is programmed by pre-recorded magnelic cards avaitable from HP. These cards, covering most common device types. are listed in our IC PROGRAM CATALOG. This catalog contains a wide variery of logic famblies and ineludes the majority of common device types. When additional programs are needed after the origioal purchase, they may be ordered through your local HP. sales office or by mail with a prepaid coupon.
Each IC program ordered comes completed with botk PASS/ FAIL and DIAGNOSTIC tesi cards and includes duplicates of each. The PASS/FAll test is used for the majority of testing since it is complete and fast (rypical lest time for MSI sequential devices is 300 ms). The DIAGNOSTIC Iest provides extra information by supplementing the PASS/FAll card. Daca sheets containing tes: descriptions and all parameters are ineluded for bolh PASS/FAIL and DIAGNOSTIC cards.

Condensed Specifications

Test set-up method

Test conditions including parametric information, input stimuli and outpu data contained on magnetic cand; program venified when loaded.
Test struciure
Functional teat: truth tsble verified by comparing device under test to sofiware-generated IC simulator (or, stored truth table for some ci.rcuits).

Parametric fest: DC parameters tested to IC device ondoufacturers data sheel specs, except where limited by 5045A capabilities. Test limits indicated on sheet sent with each program card.
Continulty test: verifies pin contact by checking corrent flow in or out of active pios; test fallure shown by front panel indicator.

Test pattern generatlon

Tesi patlems derived using algorithmic echniques or from stored muth tables; tests individually tailored to each IC.

Unlversal plin drivers

Same circuit drives or modizors each pin whether an inpus. output. power supply, clock or open. Voltages and currents individually programmable for each pin. No external test lixtures required.
Voltage applied to the device under test (Supply Voltage. Ifiput Voltage, and Output Volcage)

Ranf (15 Volts)	Acturag
$\begin{aligned} & -7.5 v \leq 10<-1.675 y \\ & -1.975 v \leqslant 10 \leq+1.875 v \\ & +1.875 v<10 \leq+7.5 v \end{aligned}$	$\begin{aligned} & =25 m V \\ & =15 m V \\ & =25 m V \end{aligned}$

Current applled to the device under test (Supply Current, Input Current, and Output Current)

Qange	Aseuracy"
$-200 \mathrm{~mA} \leqslant$ to $<-2.5 \mathrm{~mA}$	$=04 \mathrm{~mA}$ or $\pm 6 \%$
$-2.5 \mathrm{~mA}<$ to $<2.3 \mathrm{~mA}$	$=10 \mu \mathrm{or} \pm 6 \%$
$2.5 \mathrm{~mA}<10 \leqslant 200 \mathrm{~mA}$	$=0.4 \mathrm{~mA} \mathrm{or} \pm 6 \%$

whichater is greater

Slew rate: $30 \mathrm{~ns} / \mathrm{vol}$.

Rear panel outputs

Automatic handler intertace: 14 pin Amphenol connector provides +5V@<100mA, 'End of Test'". 'Pass'', 'Fail', and
"Fail Continuity" signals, accepts "Start Test". All signals are negative irue TTL levels.

General

Power: 100/120/200/240 V $1+5 \%,-10 \%$). $48-66 \mathrm{~Hz} .240 \mathrm{VA}$.
Size: $19 \mathrm{H} \times 42.5 \mathrm{~W} \times 58 \mathrm{~cm} \mathrm{D}\left(7.5^{\prime \prime} \times 16.7^{\prime \prime} \times 22.8^{\prime}\right)$.
Shipplng waight: 27.7 kg (61 lb.$)$
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Relatve humldity: 80%.
Prices: see page 97.

5046A Digital IC Test System

604BA DIGITAL IG TEST SYSTEM FUNCTIONAL
BLOCK DIAGAAM

- Modiry existing device programs
- Generate one-of-a-kind device programs
- Change test parameters quickly, simply
- In-house programming - on your own schedule

Description

The HP 5046A Digital IC Text System gives you capability previously available only at the factory: the ability to write or change IC test programs to meet your special nceds. Also. the 5046A consists of the same equipment used at the factory to generate all of the standard device programs listed in our IC Program Catalog.

Buill around the S045A IC Tesicr. 9825A Desktop Computer and 9866 B Printer, the system allows you to program proprietary devices, change paramelers, write your own special programs. or modify existing device programs to meet special lesting needs. This helps you to keep information aboul proprietary devices confidenlial, it saves lime by allowing in-house programming capability, and it allows you to evaluate devices. all by use of an HP-IB based. fully programmable system.

In incoming QA inspection deparments. quality control is a key concem. New 1C's need to be tested to assure conformance to design requirements - bad or marginal IC's can generate jecal costs if installed in production equipment, and somelimes IC specifications can change ovemight.

The 5046 A provides fexibility in these areas because device programs can be changed quickly and simply by a few keystrokes. The user simply loads in the device progran, using either a magnetic card or a tape cassetle. lists the program, keys in the changes and generates a new program.

The 5046λ system is a complete $\$ y s t e m$ consisting of hardware and sofiware - it is fuly iotegrated. specified, documented and tested as a system prior to shipment. For easy on-site installation
and verification. full hardware and soflware manuals are provided. The operating and programming manual. for example. is written to three different levels. each progressively deeper. to enable easy start-up and operation. quick comprehension of the operating system and its hardware, and complete self-insiruction on the system sontiware

Each system requires a printer for operation: the 5046A includes a Model 9866日 Thernal Printer as standard equipment, and the Model 9871 A Impact Primer is also available as an oplion (Opt 001). Other RS-232 compatible printers, supplied by the user. can be interfaced to the system in lieu of the 9866 B by ordering the $\mathrm{HP}-1 \mathrm{~B}$ to RS-232 interface (opt 002).

Software

The 5046A system software is stored on one standard $9825 A$ tape casselte. The programs are accessible using the special function keys on the deskiop computer. The soltware package consists of the following programs:

The Editor provides the capability to:

1. Enter IC rest programs from the 982 A keyboard.
2. Read in source program from 9825 A carridges.
3. Modify source programs.
4. Store source programs on 9825 A canridges.
5. Provide on-line editing.
6. Print-our listing of source programs.

6046A DIGITAL IC TEST SYSTEM SOFTWARE ORGANIZATION

The Compiler provides the capability to：
1．Do syntax chcoking on souree program slatement．
2．Convert the source program into an object（machine code）pro－ gram，
3．Output the object program to the 5045A IC Tester．
The Decompider provides the capability 10 ：
I．Read an object progran from the 5045A IC Tester．
2．Generale the corresponding source program．
The Program Analyzer is used for empor checking and debugging source program．Il interrogates the 5045A processor as it is run through a completed iest program，then prints the following：
．Listing of aciual rest sequence．
2．Programmed ics！parameters for each pin in each test．
3．The＂ 1 ＂and＂ 0 ＂logic state for each pin in each test．
The Fallure Statistics program provides the following：
1．Printout of faidure by pir for each specific test failed．
2 Summary of failure and failure percentage for each test in the program．
The Fallure State Monitor prosram interacls with the 5045A while an IC is being tested．When a falure is encountered，it dupplays the state in which the K：Paled．

The Operaling and Programming Manual provides detailed infor－ mation and modular program examples that enable the user to quickly and easily leam the 5046A programming language（it isn＇t necessary to leam the 9825 A HPL language in order to generate IC lest progrants）．

To generate an original IC tesi program，the user need only un－ derstand the IC technology of the device under tesi（DUT）and be able to design simple logic circuits using Boolean techniques．

The manual provides step－by－step instuction for programming． In addition，individual chapters in the manual cover the HP test philosophy ind tes ling techniques used with the TTL．ECL，CMOS and DTL iechnologies．

Orderlng Information

Price
5045A Digital IC Tesier standard l6－pin version；in－ cluder self－check and diagnostic cards． 16 and 24 pin dummy IC＇s and sockel adapter．
5046A Digital IC Tester System：basic system in－ cludes 5045A IC Tester， 8825 A Option 001 Desk Top compuler with 98210 A and 98213A plug－in ROM＇s， Programming lnterface．98034A HP－1B Interface and Model 9866B．Option 025 Thermal Printer，Programm－ ing Manual and 40 blank magnelic program cards．

Options and accessories，5045A／5046
Opt 024：expands 5045A capability 1024 pins $\$ 2.000$ Opt 025：Flat－Pack adapter for 14， 16 and 24 pin IC $\$ 225$

9164－007t：blank magnetic PASS／FAIL program card $\$ 2$
9164－0072：blank magentic DIAGNOSTIC program card $\$ 2$
9281－0401： 250 fool roll of thermal printer paper $\$ 2.40$ ea for 5045A（minimum order：six rolls）
9270－048e： 250 foot roll of thermal printer paper for $\quad \$ 6.25 \mathrm{ea}$ 9866B（minimum order，two rolls）
10845A：preprogramed magnetic card for any device listed in the Program Cualog HP Publication Number 1－9 530 ea ． 5952－7873）ok containing ten coupons，each redeem－ $10-500 \$ 25$ ca．
10846A：book containing len coupons．each redeem－ able for one IC program listed in the IC Program Catnlog（HP Publication Number 5952－7873）． Coupons are mailed to factory．programs sent by re－ lum mail．Coupons expire afler two years

Automatic Handier Optlons，5045A／5046A

Opt $004 \ddagger$ ：interface package for IPT Model $806 \mathrm{au}-\quad \$ 1,000$ tomatic IC handler
Opt 005 \ddagger ：interface package for Sym－Tek model $\$ 1.000$ 7191ND attomatic IC bunder and other related mod－ els
Opt $006 \ddagger$ ：interface package for Daymarc 952／3 au－$\$ 1.000$ tomatic IC handler
Opt 007 \ddagger ：interface package for Micro Component $\quad \$ 1,000$
Technology Model 2608 automatic IC handler
Opt 008 \ddagger ：interface package for Delta Model $8040 \quad \$ 1.000$ ambient naked DIP handler
Opt $009 \ddagger$ ：intcriace package for Control Model H310 $\$ 1,000$
automatic IC handier
Opt $010 \ddagger$ ：interface package for PAE Model 3033LP \＄，1000
naked DIP handler
Opt O13才：interface package for IPT Model 100A $\$ 1.000$ multi－size Arnbient Test Handicr
 and a cable to supply conivel signals so the bandlee．
Optlons and accessocles，5045A anly Price
10844A：programming interface retrofit ktt：contains all $\$ 2.475$ necessary pans，cables，imerface board，and inseructions to medify the 5045A for use in the 5046A Digital IC Test System．Programming manual and 40 blank magnetic prog． rail cards included．
Optlons and accessorles，5046A Onfy
Opt 001：Substutute Model 9871 impaci printer for $-\$ 275$ 9866B and 98226A
Opt 002：Substitute 98036 HP－IB to RS－232 interface $-\$ 3.275$ for 9866 B and 98226 A
Opt 125\＃：Defect Model 9825 desk lop compuler．
-59.150
98034A，98210A and 98213A
Opt 145\＃：Delete Model 5045A IC Tester from sys－
－$\$ 9,500$
lem
Op1 186＇：Deletc Model 9866B．Option 025．and
$-\$ 3.875$ 98226 a cradie from system

－Orly one of these options can be on any one ader．

－The 504确 system should have a 9866AN of 9871（001 00）orinter，or 98036（0pi 002）HP－1日 lo RS－ 232 interlace．

Model 4800A

HP's 4800A measures the vector impedance of components, complex networks. and other wo-teminal devices. Besides measuring vector impedance, the 4800 A measures component values. At frequences thal are decade multiples of $1 / 2 \pi$, as marked o the frequency dial. L and I/C are read directly if the phase is approximasely $\pm 90^{\circ}$. respectively. R is equal to the impedance magnitude at frequencies where the phase is approximately $0^{\circ} \mathrm{C}$. The vector im. pedance meter also yields Q and inductor values by using cither $\Gamma / \Delta f . \operatorname{Rp} / \omega \mathrm{L}$ or the $\mathrm{m} \mathrm{L} / \mathrm{Rs}$ technique.

Specifications

Frequency characteristics
Aange: 5 Hz to 500 kHz in five bands: 5 to $50 \mathrm{~Hz}, 5010500 \mathrm{~Hz}$. e1c. Accuracy: $\pm 2 \%$, 50 Hz to $500 \mathrm{kHz} ;=4 \%$, 5 to $50 \mathrm{~Hz}: \pm 1 \%$ at 15.92 on frequency dial from 159.2 Hz to 159.2 kHz ; $=2 \%$ at 15.92 Hz . impedance measurement cheracteristlcs: I ohm to 10 megohms in seven decade ranges from XI to $\times 10 \mathrm{M}$. Accuracy is $\geq 5 \%$ of reading.
Phase angle measurement characterlstics: 0° 10 $\pm 90^{\circ}$ in 5° in. crements. Accuracy is $\pm 6^{\circ}$.
Difect capacilance mesaurement capabilites: 0.1 pF to 10000 UF direct reading al decade multiples of 15.92 Hz . Accuracy is $=7 \%$ of reading at decade multiples of 15.92 Hz . Accuracy is $\pm 7 \%$ of reading for D less than 0.1 at 159.2 Hz ;o 159.2 kHz .
Dlect inductance measurement capabilites: 1 uH to 100000 H direct reading at decade mutioles of 15.92 Hz . Accuracy is $=7 \%$ of reading for Q greater than 10 from 159.2 Hz to 159.2 kHz .
Measurling Ierminal characteristics: both terminals above ground, neither may be grounded. Calibration resistor and shield provided.
Slze: $133 \mathrm{H} \times 426 \mathrm{~W} \times 467 \mathrm{mmD}\left(51 / 4^{\text {n }} \times 16^{3} / 4^{\text {n }} \times 18^{3} / \mathrm{n}^{\text {" }}\right)$.
Woight: nel, $10.8 \mathrm{~kg}(24 \mathrm{lb})$. Shipping, 13.5 kg (30 lb).
Power: IIS or $230 \mathrm{~V}=10 \%, 4810440 \mathrm{~Hz}, 30 \mathrm{VA}$.

Model 4815A

The HP 4815A RF Vector Impedance Meler provides all of the convenience of "probe and read" measurements. In use. the probe is connected direculy into the circuit to be evaluated, requency is selected, and complex impedance is read. This type measurement allows a straightorward adaption to various jigs and fixtures for special measurementr. Where only component values ane to the determined, a quick-mount adapter is provided to allow rapid measurements. For critical component applications. the unit to be evaluated may be mounted direclly in its working circuit and its value deternined in its actual environment, at the frequency or interest.

Specifications

Frequency
Aange: 500 kHz to 108 MHz in five bands.
Accuracy: $\pm 2 \%$ of reading: $\pm 1 \%$ of reading al 1.592 and 15.92 MHz .
AF monltor output: 150 mV minimum into 50 ohms.

Impedance magnitude measurement

Pange: 1 ohm to $100 \mathrm{k} \Omega$; futh-scale ranges: $10,30,100,300,1 \mathrm{k}, 3 \mathrm{k}$. $10 \mathrm{k} .30 \mathrm{k} .100 \mathrm{k} \Omega$.
Accuracy: $\pm 4 \%$ of full scale $x(\mathbf{f} / 30 \mathrm{MHz}+\mathrm{Z} / 25 \mathrm{k} \Omega)$ \% of reading, where $f=$ frequency in MHZ and Z is in ohms.
Callbration: lipear meter scale with increments 2% of full scale.
Phase angle measurement
Range: 0° to 360° in two ranges: $0=90^{\circ}, 180^{\circ}=90^{\circ}$.
Accuracy: $=(3+f / 30 \mathrm{MHz}+\mathrm{Z} / 50 \mathrm{k}$ ' Ω) degrees where $\mathrm{f}=\mathrm{fre}$ quency in MHz and Z is in ohms. Calibrated in 2° incremeds.
Size: $185 \mathrm{mmH} \times 483 \mathrm{mmW} \times 476 \mathrm{mmD}\left(71 \mathrm{~m}^{2} \times 19^{4} \times 18^{\left.3 / 4^{5}\right)}\right.$. Welght: net, $17.6 \mathrm{~kg}(39 \mathrm{lb})$. Shipping $24.8 \mathrm{~kg}(55 \mathrm{lb})$.
Power: 105 to 125 V or 210 to 250 V , 50 to $400 \mathrm{~Hz}, 50 \mathrm{~W}$.

Model 250B

The 250B RX Meter messures two-teminal RF impedance in terms of equivalent parallel resistance and capacitance. The selfconlained instrument includes a continuously tuned 0.5 to 250 MHz oscillator, high-frequency bridge. amplifier-detector, and null indicating meter. Connections may be conveniently made to the bridge teminals which are amanged for almost zero lead length.

Specifications

RF range: 500 kHz 10250 MHz in cight bands. $=2 \%$ accuracy. scale increments of approximately 1%.
Measurement characteristics
Resistance: range from is to 100000 ohms.
Accuracy is $\pm\left[2+\frac{F}{200}+\frac{R}{5000}+\frac{O}{20} \%\right\} \pm 0.2$ ohms
$F=$ frequency in $M \mathrm{~Hz}, \mathrm{R}=\mathrm{RX}$ Meter R , reading in ohms, $\mathrm{Q}=$ $\omega C R \times 10^{-12}$, where $C=R X$ Meter C_{p} reading in $p F$: resistance calibration increments of approximately 3%.
Capacitance: range 0 to 20 pF (may be extended through use of auxiliary coils): Accuracy is $\pm\left(0.5 \mathrm{pF}+0.5 \mathrm{~F}^{2} \mathrm{C} \times 10^{\circ}\right)^{2} \because 0.15$ $\mathrm{pF}, \mathrm{F}=$ frequency in MHz, $\mathrm{C}=\mathrm{RX}$ Meter C reading in pF ; Callbra. sion in 0.1 pF increments.
Inductance: range. $0.001 \mu \mathrm{H}$ to 100 mHz (actual range depends on frequency: auxiliary resistors employed). Accuracy is same as capacilance accuracy given above.
RF measurement voltege: epproximately 5010750 mV . depending on frequency.
Slze: $263 \mathrm{H} \times 509 \mathrm{~W} \times 343 \mathrm{~mm} \mathrm{D}\left(102 / \mathrm{g}^{\prime \prime} \times 201 / \mathrm{m}^{\prime \prime} \times 131 / \mathrm{z}^{\prime \prime}\right)$.
Weight: net. 18 kg (40 lb). Shipping, 22.5 kg (50 lb).
Power: 10510125 vols or 210 to 250 volts, 50 to $400 \mathrm{~Hz} \mathrm{~Hz}, 66 \mathrm{VA}$. Accessories avallable: 0051SA Coax Adapter Kit (Type N).
Options Price
908: Rack Flange Kit
add $\$ 10$
Ordesing information
4815A RF vector impedance meter $\$ 3375$
4800A Vector impedance meter $\$ 2100$
250B RX Meter
00515A Coax Adapter Kil

44401 Description

The Hewlett-Packard 4440B Decade Capacitor is a bigh accuracy instrument providing usable capacitances from 40 pF to $1.2 \mu \mathrm{~F}$. Its 0.25% accuracy makes it an ideal aid for eircuit design or as a working standard.

Use of silvered-mica capacitors in four decades of 100 pF provides ligher accuracy, lower dissipation faclors and good temperature coeificient. An air capacitor vernier provides 100 pF (from 40 pF to 140 pF) with resolution of 1 pF . Capacitors are housed in a double shield in such a way that increased eapacitance from two terninals to three terminals is held to 1 pF .

44408 Specifications

Gapactence: tu pF to $1.2 \mu \mathrm{~F}$ in steps of 100 pF with a 40 pF to 140 pF variable uir capacitor providing conlinuous adjustment to better than 2 pF between steps.
Diroct reading securacy: $=(0.25 \%+3 \mathrm{pF})$ at $: \mathrm{kHz}$ for threeterminal connection.
Resonant Irequenoy: typical values of the resonant frequency arc 450 kHz al $1 \mu \mathrm{~F}$. $4 \mathrm{MHzal} 0.01 \mu \mathrm{~F}$ and 40 MHz al 100 pF .
Dls sipation factor: for $C>1040 \mathrm{pF} .0 .001 \mathrm{MAX}$ at kHz .
for $\mathrm{C}<1040 \mathrm{pF}, 0.005 \mathrm{MAX}$ al 1 kHz .
Tomperature coetricient: $=-70 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
Insulation reslatance: $5 G \Omega$ minimura, after 5 minutes ar $500 \mathrm{~V} d c$. Meximum voltage: 42 V de or 30 V rms.
Welght: nel, 2.5 kg ($5.1 / \mathrm{lb}$); shipping $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Dimentions: $76 \mathrm{mmH} \times 264 \mathrm{~mm} \mathrm{~W} \times 152 \mathrm{mmD}\left(3^{\prime \prime} \times 11^{\prime \prime} \times 6^{\prime \prime}\right)$.

4436A/4437A Deserlption

The Hewlelt-Packard Models 4436A/4437A Aticnuators provide aceurate steps of attenuation with 0.1 dB resolution for power-level measurements, communication system tests, and gain or loss measurements on filters and amplifiers. and similiar equipment.

4436A Specifications

Maximum attenuation: 119.9 dB .
Attenuation Increments: 0.1 dB .
Input/output impedance: 600 . balanced.
Frequency range: dc to $1.5 \mathrm{MHz}(010110 \mathrm{~dB})$; dc to 1 MHz (0 to 119.9 dB).

Accuracy

dronuation	100 kHz	1 M他	1.5 M以'
0106008	$=0.14 \mathrm{~B}$	$=0.2 \mathrm{~dB}$	$=0.2 \mathrm{~dB}$
60109068	$\pm 0.1 d B$	$\pm 0.1 \mathrm{~dB}$	$\pm 0.3 \mathrm{~dB}$
9010110 de	$=0.2 \mathrm{dg}$	$=0.5 \mathrm{~dB}$	40.5 dB
11010119.9 dE	$=0.3 \mathrm{~dB}$	$=1.0 \mathrm{~dB}$	

-Typleal ralues
Maximum Input power: +30 dBm .
DC isolatlon: signal ground may be $=300 \mathrm{~V}$ de from external chassis.
Dimensions: $76 \mathrm{~mm} \mathrm{H} \times 198 \mathrm{mmW} \times 177 \mathrm{~mm} \mathrm{D}\left(3^{\prime \prime} \times 73 / 4 \times\right.$ $6^{3} \times x^{\prime \prime}$).
Welght: nel, $1.7 \mathrm{~kg}(3 / 2 \mathrm{~b})$. Shipping, $2.9 \mathrm{~kg}(6 / 2 \mathrm{lbs})$.

4437A Specifications

The Model 4437a is a 600 ohms unbalanced type, had its specilications are identical to the 4436 A .

3500 Description

Two altenuator sections make up the Hewleth-Packard 350D Attenuator. One section is a 100 dB attenualor, adjustable in 10 dB steps. The other is a 10 dB attenuator, adjustable in 1 dB steps.

350D Specifications

Attenuation: 0 zo 110 dB . I dB and 10 dB sleps.
Power capacity: 600Ω unbalanced; 5 W (55 V dc or ms) max. conlinuous ducy.
DC isalation: signal ground may be $=500 \mathrm{~V}$ de from chassis.
Accuracy
10 dB sectlon

0 6B		10 d8
de 10 $100 \mathrm{kH2}$	$\leq 0.125 \mathrm{~dB} / \mathrm{sten}$	
100 kHL to 1 MHz	<-0 25 dB :steg	

100 dB section

[^8]

Signature Analysis

Designing for serviceability

Today's microprocessor-based producls are complex. high-densiry systems which can be just as difficult to troubleshoot and repair in the field as large computer systems. In order to reduce product service and suppor cosis. manufacturers are including such service-oriented fealures as lest points, self check modes. circuil partitioning and worough service documentation. Now, a new measurement rechnique, Signature Analysis, enables digital designers to develop products which are field serviceable to the componemt level. Incremential design and production costs for including SA are negligible, and resule in significant service support cost savings.
Signature analyzer
The new Model 5004A Signature Analyzer is an economical tool for field iroubleshoaling of complex logic circuils. It detects and displays digital signatures unique to the bit sireams present at data nodes of a circuit under test. By comparing these actual signalures to the correct ones. a service technician can isolate a faulty component and replace it. The technique is especially usetul in checking micro-processar-based products and high-speed state machines. where data streams are long and complex and where there are no conventional means of component-level troubleshooting.

By designing the digital porion of a product with the 5004A in mind. you can set up a service suppora program for componentlevel field repair. without having to invest in board exchange or in special-purpose test equipment.

Signalure Analysis is also allraclive for production line troubleshooting. The 5004A can detect speed-related failures in assembled systems, which may not have been caught by subassembly testers.
Economics of field service
To meel the service requirements of digiLal produc1s. mosi support programs have relied on board exchange. This approach
minimizes down-lime, yields economies of seate through cennatized board repair, and enables nield service: personnel to repair a wide range of products, with minimum training.
As the number and complexily of digital products increases. however. the economic bunden of board exchange becomes apparent;

- Inventory cartying costs for boards in various stages of iloal increase with the number of products installed.
- Administrative and handling costs are high. especinfly for products approaching obsolescence.
- Overseas support bugs Jown with long transit times, high duties, and import delays.
- System-related. "soft" failures are difficult to derect on individual boards. and some faulty boards are reimtroduced into the exchange loop.
Signature Analysis can reduce these repair costs on microprocessor-based produets by enabling field repair to the component level, and by testing fully assembled products, without board removal. The resolts are:
- Decreased cost of ownerslyip for endusers (parts, downtime, (raining. etc.).
- Reduced warranty and support costs for manutaclurers.
- Increased confidence in field repair results.
Experience shows that incremental development costs for designing Signature Analysis into a product run about lois. Incremental hardware cosis are largely offsed by decreases in other materal since there is no longer a need to divide the hordwase into replaceable modules. The 5004 A and HP Application Note 222, A Designer's Guide o Signamre Anaiysis, can help you take advanlage of the technique.

The IC Yroubleshooters

General

The IC Troubleshooters have becorne the "digital screwdrivers" for Ioday's
laboratories, production lines. service facilities and clectronic classrooms. They are low-cosi, band-hch "instruments-on-achip", and have proven very ctfective in the functional (esting and troubleshooting of digital circurts. HP Application Note 163-1. Techniques af Digital Troublexhooting, can help put the IC Troubleshooters to work for you.
Logle comparator: the Model 10529A Logic Comparator utilizes the time-honored comparison technique 10 identily faulty nodes in a digital circuit. II tests an IC dynamically, in-circuir, by comparing oulput responses to those of a known-good IC which is pluged into the Comparator. Having located bad nodes. use other IC Troubleshooters to isolate the defective component causing the faylt.
Loglc probes: detect logic levels at any circuit point and display them via is band of lighe at the probe tip. A logic high is indicated by a brighe light. A logic low extinguishes the light. A bad level causes a dim light. Pulse aclivity is stretched to provide a 10 Hz flashing light.
Logic ellps: are multi-pin state indicators which clip directly onto ICs. The logic state of each pin is displayed by on individual I. Y:D. enabling die user to check the device's trulh table.
Logle pulser: pulse stimulation is essential in checking digital Ingic circuils. Logic pulsers inject digial pulses helween gates. withoul requiring the unsoldering of components. They automatically drive low nodes high. or high nodes low, with substantial override current.
Current tracer: often a bad node is idenlified, but the specific device causing the lault can only be isolated by cutting traces. or replacing circuit elements. The 547 A Current Tracer eliminates just such "sholgun" Iceliniques by showing exacily where digital current pulses are flowing in the circimt. Use of current tracing techniques solves the most vexing troubleshooting problems: sluck data buses. solder-bridges. stuck nodes containing many circuit elements, and the wired-AND gute.
Stimulus-response testing: the Pulser/ Probe or Pulser/Clip combination helps the user to idenlify the faulty circuits causing a system maltunction. These instruments permil arbilrary signal injection and readout bewveen gales. Thus, an added capability is provided the digital troubleshooter: the abildy to sumulale a circuit and monitor it for an oulpul response.
Troubleshooling kits: a variety of kils is available. combining IC Troubleshooters for stimulus-response testing. Each kil includes a carrying case. and offers a price saving over the individual insuruments.
Educatlon: the need for training in digital electronics continues to grow with the increase in IC design and usage. The Model $5035 T$ Logic Lab meets this need with a complete introductory course. including an easy-to-use breadboard. state-of-the-an components. qualiry texts and a set of IC Troubleshoolers. The fully coordinated package is ideal for industria) training, classroom courses and laboratory development.

- Dynamic multi-family logic indicators
- Pulse stretching for narrow pulses
- Bad level/open circuit detection

Logic probes
Logic Probes greatly simplify tracing lugic levels and pulses through IC circuitry to Find nodes sluek HIGH or LOW. intermittent pulse activily, and normal pulse activity. That's because they instantly show whether the node probed is high. low. bad level, open circuited, or pulsing.
Logic probes require a simple connection to the circuit under test's power supply. and they're ready to use. The strain-relieved power cord, and line-voltage protected lip insure long life and durabilizy. High inpul impedance prolects against circuil loading, nol jusi in the HIGH state, but for logic LOWs as well

545A TTL/CMOS Legic probe

The HP Model 545A Logic Probe contains all the features builn into other HP probes. plus switch-selectable. muli-samıly operation and built-in pulse memory. Employing the same straightforward one-lamp display as our other probes. the 545A operales fromy 41018 voles in CMOS applications or from 4.5 to 15 V de supplics in the TTL mode while naintaining slandard TTL thresholds.
The probe's indcpendent, buill-in pulse memory and LED display help you capture hard to see, intermittent pulses. Jusl connecl the probe tip to a circuit point, reset the memury, and wail for the probe to catch those hard to find gliches. The memory captures and re. tains a random pulse umil reset.
The hand-held 545 A is light. rugged, overload protected, and very fast: 80 MHz in TTL, 40 MHz in CMOS, It also employs unique new power supply conncelurs that criahle you to power the probe using several different methods.

545A Specifications

Input current: $\leqslant 15 \mu \mathrm{~A}$ (source or $\sin \mathrm{k}$).
Input capacitance: $\leqslant 15 \mathrm{pF}$.
Logic thresholds
TTL: Logir one $2.0+0.4,-0.2 \mathrm{~V} \mathrm{dc}$. Logic zero $0.8+0.2,-0$. d \checkmark de.
CMOS: 3-10 V de supply
Logic one: $0.7 \times \mathrm{V}_{\text {aupyls }} \pm 0.5 \mathrm{~V} \mathrm{de}$.
Logic zero: $0.3 \times \mathrm{V}_{\text {supply }} \pm 0.5 \mathrm{~V}$ de.
CMOS: $\geqslant 10-18 \mathrm{~V}$ dc supply.
Logic ONE: $0.7 \times V_{\text {supulu }} \pm 1.0 \mathrm{~V} \mathrm{dc}$.
Logic ZERO: $0.3 \times \mathrm{V}$ supply $\pm 1.0 \mathrm{~V} \mathrm{dc}$.
input minimum pulse width: 10 ns using ground lead (iypically 20 ns wilhoul ground lead).

- One lamp, finger-tip display
- Pulse memory capability
- Overload protected

Inpul maximum pulae repetition
Frequency: TTL. 80 MHz . CMOS. 40 MHz .
Input overload protection: $\pm 120 \vee$ continuous (de 101 KHz); ± 250 for 15 sceoods (de to 1 kHz).
Pulse memory: indicates first entry into valid logic level: also indicates remm to initial valid level from bad level for pulse $\geqslant 1 \mu$ wide. Power requirements

TTL: 4.5 10 $15 \mathrm{~V} \mathrm{dc}{ }^{*}$.
CMOS: 3 to 18 Vdc .
Maximum eurrent: 70 mA .
Overload protection: $=25 \mathrm{~V}$ de for one minute.
Accessory Included: Ground Clip (HP Pari No. 00545-60105).
$+5=50 \%$ y oc power supplyy usable to +15 y dr with sligitity increased logic low threshold.
10525 T Logic probe
The Model 10525 T Logic Prabe movides TTL/DTL troubleshooting at Jow cost. Ideally suited te 5 volt logic applications, the 10525 T has high inpu impedance. overload promection, and 50 MHz dath rate capability. Available with aceessory pulse memory and tip kit.

10525T Specifications

Input Impedance: $>25 \mathrm{k} \Omega$ in both the high and low state (<1 low power TTL load).
Logle one threshold: $2.0 \mathrm{~V}+0.4,-0.2 \mathrm{~V}$.
Logic zero threahold: $0.8 \mathrm{~V}+0.2 \mathrm{~V},-0.4 \mathrm{~V}$.
Input minimum pulae wioth: 10 ns .
Input maximum pulse repatifion frequency: $>50 \mathrm{MHz}$.
Input ovarioad protection: ± 70 voles continuous. ± 200 volts intermittent. 120 V ac for 30 seconds, 240 V ac for 10 seconds.
Power requirementa: $5 \mathrm{~V} \pm 10 \%$ al 60 mA . internal overliad prolection for voleages from +7 to -15 volts. Includes power lead reversal prolection.
Accessorles included: BNC io alligator clips; ground clip.
ECL logle probe
The HP Model 10525E Logic Probe extends the time-proven. cost-saving logic probe troubleshooting technique to high-speed ECL logic.
Operation of the ECL probe is analogous to that of the 105257 except the 10525Es, high speed circuitry stretches single shot phenomena so that single pulses as nartew as 5 nanoseconds may be observed.
The 10525 E may be powered directly from any -5.2 volt source and ils high inpul impedance minimizes circuit loaưing.

10525E Specificattons

Input impedance: $12 \mathrm{k} \Omega$ in boih the high and low state.
Logic one threshold: $-1.1 \mathrm{~V}=0.1 \mathrm{~V}$.
Logic zero threshold: $-1.5 \mathrm{~V}=0.1 \mathrm{~V}$.
input minimum pulse width: 5 ns.
Input maximum pulse repaition frequency: $50 \mathrm{M} . \mathrm{Hz}$ (typically 100 MHz at 50% duty cycle).
Input overiosd protection: - 70 volis consinuous. 200 volts intermitlen, 120 V ac for 30 seconds.
Power requirementa: $-5.2 \mathrm{~V}+10 \%$ at 80 mA ; supply overload protection for voltages from $-710+400$ volts.
Acceseories included; BNC to alligator clips, ground clip.
Accossorles avallable
$00545-60104$ Tip Kil for 545A Probe
Price
$\begin{array}{ll}00545-60104 \text { Tip Kil for 545A Probe } & \$ 30 \\ 10525-60012 \text { Tip Kit for 10525T Probe. } 10526 \text { Pulser } & \$ 40\end{array}$
10525-60015 Pulse Memory for 10525T Probe
$\$ 80$
Ordering Information
545a Logic Probe
\$125
10525 T Logic Probe
$\$ 85$
10525E Logic Probe
hb DIGITAL CIRCUIT TESTERS \& ANALYZERS
Logic pulsers
Models 546A \& $10528 T$

- In-circuit stimulation without unsoldering
- Automatic injection of proper polarity pulse
- Greatly simplifies digital troubleshooting

Logle pulser

The Logic Pulser solves the old problem of pulsing ICs on digital logic boards for designers and troublenhooters. Merely souch the Pulser to the circuil under test. press the pulse button and all circuits connected to the node (outputs as well ax inputs) are briefly driven to their opposite state. No unsoldering of 1 C ourputs is required. Pulse injection is automatic so the user need not concern himself whether the test node is in the high or low state: high nodes are pulsed low and low nodes. high, each time the button is pressed.
The Pulser is essentially a pulse generator with high output currens capability packed in a convenient, easy-lo-usc probe. Ability to source or sink up to 0.65 Amperes insures sufficient current to override IC outpuls in cither the high or low state. Output pulse width is limited so the amount of energy delivered to the device under test is never excessive. Additionally, the Pulser culput is three-state so that the circuit under test is unaffected until the Pulser is activaled.
Combining in-circuil pulse imjection with the unique detection capabilities of Logic Probes. Logic Clips, and the 547A Curent Tracer helps to focus new power on solving the problems of fault isolation. Pulser/Probe. Pulser/Clip. and Pulser/Tracer combinations enable the digital designer or troubleshooter to hold complete stimulus-response capability at his finger tips.
Gate operation is tested using the Pulser to drive the input and the probe monitors transmitted pulses at the output. When pulses are not reccived, place the Pulser and Probe on the same pin to detect if the failure is due to a short 10 ground or $V_{r e}$.
Testing sequential circuits is the domain of the Logis Clip and Logic Pulser. The CLip simulaneously monitors all output states while the Pulser applies clock and resel pulses to the device. Improper operation, if present is immediately obvious since the IC will not go through its prescribed sequences of states.
Finally, when Pulsers are used with the 547A Correne Tracer, the Pulser acts as a current pulse source to enable exact location of faully gates on a node. solder bridges. or stuck devices on bus struelures.

546A Loglc Puiser

Automatic polarity pulse output, pulse width, and amplitude concrol make for easy multi-family operation when you use the 546A Logic Pulser. But, the real surprise comes when you code in one of us six ROM-programmable output patierns (single pulses; pulse sireams of either 1 . 10 . or 100 Hz : or bursts of 10 or 100 pulses). This feature allows you to cominually pulse a circuit when necessary, and it also provides an casy means to put an exact number of pulses into counters and shift registers. Used with our mulli-family of IC Troubleshooters. the 546 A acts as both a voitage and current source in digital troubleshooling applications.

546A Specifications

Output

			Typloal Outpor Yortag	
fanily	Dutpure Cursent	Pulce Width	Higer	10\%
TLDIL	$\approx 650 \mathrm{mat}$	20.5 上s	$\geq 3 \mathrm{Vdc}$	50.8 Y de
CML5	E 1000 mm	$=50 \mu \mathrm{~s}$	V(supoly - I V dc	*0.5 Y de

Powar supply requiremente: TTL-4.5 to 5.5 V dc al 35 mA . CMOS-3 to 18 V dc at 35 mA . protected to 25 V dc.

10526T Logle pul9er

The cconomical 10526 T provides dependable single-shot operaition in TTL/DTL applications. Just press the pulse button, and the pulser delivers a single powcrf(a) pulse of the correct pulse width. polarity and amplitude.

10526T Specifications

Output high pulse voltage: >2 Val 0.65 A (1 A typical at V ps $=5$ V. $25^{\circ} \mathrm{C}$).

Output low pulse voltege: $<0.8 \vee$ al $0.65 \mathrm{~A}(1 \mathrm{~A}$ typical at $\vee \mathrm{ps}=$ 5 V. $25^{\circ} \mathrm{C}$).
Outpuf Impedance, active state: <2 ohms.
Output impedance, off stete: >1 Megohm.
Pulse whith: 0.3μ s nominal.
Input overload protaction: $=50$ volis continuous.
Power supply Input proteotion: ± 7 volts (includes power lead reverial protection).
Power requiremente: $5 \mathrm{~V} \pm 10 \%$ at 25 mA .
Acceseorias Included: BNC to alligator elips. ground elip.

Accessories guallable	Price
00545-60104: Tip Kit for 546 A Pulser	$\$ 30$
10525-60012: Tip Kit for 10526 T Pulser	$\$ 40$
10526-60002: Multi-Pin Slimulus Kit	$\$ 25$
Ordering Intormatlon	$\$ 175$
546A Logic Puiser	$\$ 115$
10526T Logic Pulscr	

DIGITAL CIRCUIT' TESTERS \& ANALYZERS
 Digital current tracer

Solves the "Wired-AND" Problem- Displays in-circuit Digital Current flow
- All Family: 1 mA to 1 A
- Finger-tip indicator

The 547A Current Tracer precisely locales low-impedance fauts in digital circuits by locating current sources or sinks. On a shorted node, all points are stuck in one state by the short. Many simmilar troubleshooting problems such as shoned wired-AND/OR configurations, result in wasted time and excessive costs: several ICs have to be rernoved before finding the bad one, and in the process the circuit board may be damaged. Now, the 547A exactly pinpoints the one faulty point on a node, even on multilayer boards. In addition. the Tracer locates hairtine solder bridges that manage to pass onnoticed until a circuit is operated for the first time.
Constructed as a hand-held probe, the Tracer is a sophisticated instrument designed to troubleshoot circuits carrying fast rise-time evrrent pulses. The Tracer senses the magnetic field generated by these signals in the circuit (or. provided by a Logic Palser), and displays transitions. single pulses, and pulse trains using a simple one-light indicator. Because it is not voltage sensitive, the Tracer operates on all logic families having current pulses exceeding 1 mA . and the repetition rates less than 10 MHz , inciuding CMOS, where even lighty loaded outputs can have up to 2 to 3 mA typical current pulses.

Proer to introduction of the 347A. logic state indicators were limtited to displaying voltage information. A node was HIGH, LOW. open, or pulsing. When a node is stuck, however, it may be trying to change state but isn'I able to cross threshold levels. Use of the Current Tracer adds the final bit of information necessary to pinpoint just such logic fautts on had bodes. For example, on a bad node the Tracer can verify that the driver is functioning and also
show where the problena is by tracing current flow to the souree or sink causing the node to be stuck.

To use the Tracer, simply align the dot on its tip at a reterence point. usually the output of a node driver. Sct the sensitivity control 10 indicate the presence of AC current activity. Then, trace the circuit to see where cument is flowing. As you probe from point to point or follow traces, the lamp will change intensity, and when you find the fault the Tracer will indicate the same brightness found at the reference point.

547A Specificatlons Input

Sonaltivity; 1 mA Io 1 A .
Frequency responae: light indicates single-siep curent ransilions: single pulses $\geqslant 50 \mathrm{~ns}$ in width; pulse trains 1010 MHz (1ypically 20 MHz for current pulses $\geqslant 10 \mathrm{~mA}$).
Alesume: light indicates current transitions with riselime $\leqslant 200$ ns al) mA .
Power supply requlrements
Voltege: 4.5 to 18 Vdc .
Input eurront: $\leq 75 \mathrm{~mA}$.
Masimum Hpple: $=500 \mathrm{mV}$ above 5 V de.
Overvoltage protectlon: $\pm 25 \mathrm{Vdc}$ for one minute.

Logic clips
Models 548A \& 10528A

- Displays IC logie states at a glance
- Self-powered, self-contained
- No adjustments required

Logic, clips

The: Logic Clip is an exiremely handy service and design 1001 which clips onto dual-in-line-package (DIP) ICs. instantly displaying the states of all 14 or 16 pirs. Each of the chip's 16 LEDs independently follows level changes at its associaled pin. Lit diodes are logic High. extinguished diodes are Low.

The Logic Clip's real value is in its case of use. It han no controls to be sel. needs no power conncetions, and requires practically no explanation as to how it is used. The clip has its own gating logic for locating the ground and $V_{\text {ce }}$ pins and is buffered inpuls reduce circuit loading.

The Logec Clip is much easier to use than either an oscilloscope or a voltmeler when a logic designer or service enginecs is interested in whether a circuit is in the high or low state, rather than its actual vollage. The Clip, in effect. is 16 binary volmeters, and the uner does nut have to shif his ejes away from his ciscuit to make the readings.

The inuitive relationstip of the input to the outpul-lighted diodes corsesponding to bigh logic states- -gratly simplifies the troubleshooting procedure. The user is free to concentrate his attention on his circuits. rather than on measurement iechniques. Also, uming relationships become especiatly apparent when clock rates can be slowed to about I pulse per second.
When used in conjunction with the logic pulser. the Logic Clip offers unparalleled analysis capability for troubleshooling sequential arcuits The Clip atcaches to the IC to be tested: the Pulser is then used to inject pulses between gates allowing it to supply signals to the IC under test absolutely independent of gates connected to the IC. All oulpuls may then be obseved simultaneously on the Logic Clip. Deviations from expected results are imnediately apparent as the Pulser steps the IC: through its outgut states.

LEDs in its display. the 548A brings multi-family operation to the HP line of IC rrouble shooters. The Clip can be externally powered. if desired, using a simple power connector.

548A Speclfications

Input threshold: $\geqslant(0.4 \times$ Supply Voltage $)=$ Logic High. input impedance: 1 CMOS load.
Input protection: 30 V dc for 1 minule.
Supply voltage: $4-18 \mathrm{~V}$ de across any two pins.
Auxillary supply Input: 4 . 5 to 18 V dc applied via connector, Supply musi be $\geqslant 1.5 \mathrm{~V}$ de more positive than any pin of IC under lesi. Supply current: < 50 mA
10528 A Logle cllp
Protecison $10+7 \mathrm{~V} \mathrm{dc}$, automatic operation, and law eircuil loading in TTL/DTL applications helps make the 10528A a valuable replaccment for more expensive test equipment like Scopes and voltmeters. The elip is, in effect, like 16 binary voltmeters, allowing the user to look at the circuit rather than having to shift his altention toward test equipment.

10528A Specifications

Input threshold: $1.4 \pm 0.6 \mathrm{~V}$: TTL or DTL compatible (except gates with expander inputs).
Input Impedanoe: one TTL load (-1.2 mA typical per input).
Input protection: voltages <-I V or 17 V must be current limited 1010 mA .
Supply voltage; $5 \mathrm{~V}=10 \%$ across any two or more inpuls.
Maximum current consumption: 130 mA .
Ordering Information
Price
548A Logic clip
10528A Lagic clip
$\$ 125$

Logic comparator

- Finds faulty nodes
- Dramatically cuts troubleshooting time
- Performs in-circuit IC testing with no unsoldering

The Model 10529A Logic Comparator checks the operation of dozens of ICs in less than a minute per IC. The Comparntor clips anto powered TTL or DTL ICs and detecas functional failures by comparing the in-circuit test IC with a known good reference IC inserted in the Comparator. Any logic state difference between the test IC and reference IC is identified to the specific pin(s) on 14- or 16-pin dual in-line packages on the Comparator's display. A lighted LED corresponds to logic difference. The Logic Comparator can save considerable time in locating a faulty IC. There are no controls to be set and no power connections.
The procedure is very simple. First the IC to be tested is identified. An IC of the same type is placed in the Comparator's IC socket, or a reference board with an IC of the same type is inseried in the Comparator. The Comparator is clipped onto the test IC, and an immediate indication is given it the test IC operates differently from the relerence IC. Even very brief dynamic errors are detected. stretched. and displayed.
The 10529 A operates by connecting the test and reference IC inputs in parallel: thus the reference IC is exercised by input signals identical to those of the tesI IC. The outputs of the two ICs are compared: any differences in outputs are detected, and LEDs corresponding to the particular pin are lit on the Comparator's display. Intermittent errors as short as 200 nanoseconds (using the socket board) are detected, and the error indication on the Comparator's display is stretched for a visual indication. A failure on an input pin, such as an intemal short, will appear as a failure on the IC driving the failed IC: thus a failure indication actually pinpoints a malfunctioning node.

Programming for the specific IC is easily accomplished by two different methods. First, the sockel board included with the Comparator is inserted in the Comparator drawer. Outputs of the particular IC to be tested are selected via 16 miniature switches which tell the Comparator which pins of the reference IC are to be allowed to respond freely. The reference IC is then inserted into the socket and locked into place. An IC may be set up in seconds. Altermatively, if specific IC types are to be tested repeatedly, the reference IC may be soldered into one of the 10 reference boards provided with the Comparator. The reference board is programmed by opening the connections between the lests and reference ICs oufputs and solder-bridging V_{ce} and ground.

When troubleshooting you want to know that the tester is operating properly. A test board is supplied with the Logic Comparalor for this purpose. When inserted in the comparator the test board exercises ail of the circuitry, test leads, and display elements to verify proper operation.
The Logic Comparator's ease of use and small size make it an invaluable addition to the troubleshooter's test gear either in the field or in the factory. With TTL and DTL failures that are functionally related, the Comparator can find bad nodes up to ten times faster than conventional signal tracing techniques. At its low price. the Logic Comparator can pay for itself in days.
10541A: iwenty additional blank reference boards; identical to the 10 boards provided with the Logic Comparator, they allow additional ICs to be programmed for Comparator testing.
K01-10541A: wenty preprogrammed reference boards; 30 of the most common TTL ICs already programmed and ready for use with the Logic Comparator. The K01-10541A includes the following ICs: 7400 Quad 2-inpui NAND; 7402 Quad 2 -inpul NOR: 7404 Hex inverter: 7408 Quad 2 -input AND: 7410 Triple 3-inpui NAND; 7420 Dual 4 -input NAND: 74308 -input NAND: 7440 Dual 4 -input NAND buffer: 7451 Dual 2 -wide. 2 -inpul AND-OR-INVERT; 74344 -wide. 2 -input AND-OR-INVERT; 7473 Dual J-K masterslave flip-flop; 7474 Dual D flip-flop; 7475 Quad bistable D latch: 7476 Dual J-K flip-flop with preset and clear: 7483 4-bit binary full adder: 7486 Quad 2-input exclusive-OR; 7490 Decade counter; 7493 4-bit binary counter; 74121 Monostable multivibrator; 9601 Monostable multivibrator, retriggerable.

10529A Specifications

Input itreshold: 1.4 V nominal (1.8 V nominal wi.h sockel board). TTL or DTL compatible.
Tost IC loading: outputs driving Test IC inputs are loaded by s low-power TTL loads plus input of Reference IC. Test IC ompurs are loaded by ? low-power TTL loads.
Inpui protection: voltages $<-1 \mathrm{~V}$ or >7 Y must be current limited to 10 mA .
Supply voltage: $S \mathrm{~V}=10 \%$, at 300 mA .
Supply protection: supply voltage must be limited to 7 V .
Maxlmum current consumption: 300 mA .
Sensitivity
Ertor genalilvity; 200 ns with reference board or 300 ns with sockel board. Errors greater than this are detected and sretiched to at least $0 . i$ seconds.
Delayed variation immunity: 50 ns . Errors shorter than this value are considered spurions and ignored.
Frequency range: maximom operational frequency varies with dury cycle. An error existing for a full elock cycle will be detected if the cycle rate is less than 3 MHz
Accessories included: I test board; 10 blank reference boards: I programmable socket board; 1 carrying case.
Accessories avallable Price
1054LA: Twenty Blank Reference Boards for the Lagic Comparator $\$ 95$
K01-10541A: Twenty Pre-programed Boards for theLogie Comparsior$\$ 195$

- Complete CMOS/TTL troubleshooting kits
- Stimulus-response capability
- In-circuit fauft finding
- In-circuit analysis
- Dynamic and static testing
- Multi-pin testing

Multl-famlly logic

5021A Troubleshooting kit

The 5021a Kit combines multi-family Probe, Pulser and Clip into one handy kit for stimulus-response 1esting in lab, field and factory applications. Useful in dynamic or static circuits such as gates. flipflops, and microprocessors, the 502IA kit instrumeos operate in TTL. CMOS. and most any olher positive voltage logic families.

5021A Specifications

5021A contains

S45A Logic Probe
546A Logic Pulser
548A Logic Clip
Slze: $64 \mathrm{H} \times 146 \mathrm{~W} \times 298 \mathrm{~mm} \mathrm{D}\left(2.5^{\prime \prime} \times 5.75^{\circ} \times 11.75^{\prime \prime}\right)$.
Wolght: net. 0.6 kg (13 oz). Shipping, 0.72 kg (16 o7).
5022A Mult-family logic troubleshooting kit
The 5022A Kit brings the advantages of stimulus-response icsting to both vollage and current domains in digital circuits. Now, for the first time. you can stimulate a circuil and exactly pinpoint logic fauls as ncver before possible.
Starl by locating a sluck node with the Pulser-Probe combination. Then. pulse the node and follow digital curent pulse flow to the faulty circuit element using the 547A Current Tracer. This valuable addition to the IC Troubleshooter line exactly locates the low impedance point to troubleshool stuck data busses. solder bridges. and ibree-state devices.

5022A Specifications

5022A contalns

545A Logic Probe
546A Logic Pulser
547A Cureni Tracer
548A Logie Clip
Stre: $64 \mathrm{H} \times 146 \mathrm{~W} \times 298 \mathrm{mmD}\left(2.5^{\prime \prime} \times 5.75^{\prime \prime} \times 11.75^{\prime \prime}\right)$.
Walght: net. 0.43 kg (15 oz). Shipping. 0.51 kg (1 lb 2 oz).

5023A Multi-family logic troubleshooting kit
The 5023 A Kit includes all of our Multi-family troubleshooters. plus the TTL/DTL Logic Comparator in one complete lab. field. or factory' troubleshooting kit. The comparator adds the ability to "map" and locate faulty logic responses by identifying incorrect static and dynamic logic state responses on 14 or I6-pin digital IC's.
Once bad nodes have been mapped using the Comparator, the Probe, Pulser, Current Tracer and Clip exactly locate logic faults in digital circuits.

5023A Specificafions
 5023A contalns
 S45A Logic Probe
 546A Logic Puiser
 547A Current Tracer
 S48A Logic Clip
 10529A Logic Comparator
 Size: $225 \mathrm{H} \times 200^{\mathrm{W}} \times 337 \mathrm{~mm} \mathrm{D}\left(8.875^{\prime \prime} \times 7.875^{\prime \prime} \times 13.25^{\prime \prime} 7\right.$.
 Weight: net. $1.64 \mathrm{~kg}(3 \mathrm{lb} 10 \mathrm{oz}$). Sbipping. 2.12 kg (4 1 bl 12 oz)

Accessories available

00545-60104: Tip Kit for 545A. Probe, and 546A Pulser
Price
$\$ 30$
105290006. Extim Racrace Ki for 10529A 10529-60006: External Reference Kil for 10529A Comparator
10541A: Twenty blank reference boards for 10529A Comparator

Twenly pre-programmed reference boards for 10529A Comparator
Ordering Intormatlon
5021 A 'Troubleshooling Kir
5022 A Multi-family Logic Troubleshooting Kit
$\$ 700$
5023 A Muli-family Logic Troubleshooting Kit

5011 Logic troubleshooting kit
The HP 5011T Logic Troubleshooting Kit combines all the troublesbooting capabitity of four instruments, the 10529A Logic Comparator, the 10526T Logic Pulser, the 10525T Logic Probe, and the 10528A Logic Clip. The Logic Comparator attaches to 14 and 16-pin dual in-line TTL and DTL circuits. Both sequential and combinatorial logic are testable. The IC under test is alowed to operate normally while its outputs are compared against a reference IC of the same type insered in the Comparator. Should the circuit under test operate improperly, the fuilure is detected and displayed on the hand held Comparator's panel. Sixteen LED's exactly pinpoint the failed node.

5011T Speciflcations

Includes

1052TT Logic Probe
10526T Logic Pulser
10528A Logic Clip
10529A Logic Comparator
Stze: $82.6 \mathrm{H} \times 203 \mathrm{~W} \times 311.2 \mathrm{mmD}\left(3.25^{\prime \prime} \times 8^{\prime \prime} \times 12.25^{\prime \prime}\right)$.
Welght: net, 1.36 kg (3 /b). Shipping. 2.27 kg (5 lb).

5015 T Logle troubleshooting mini kit
The HP 5015 T Legic Troubleshooting Mini Kit combines the unique logic analysis capability of the 10525 T Logic Probe, the 10526T Logic Pufser, and the 10528A Logic Clip into a single, handy kit. These three instruments provide stimulus/response capability for dynamic and static testing of in-circuit inlegrated circuits.

5015T Specifications

5015 T includes

Model 10525T Logic Probe
Model $10526 T$ Logic Pulser
Model 10528A Logic Clip
St2e: $64 \mathrm{H} \times 1.33 \mathrm{~W}^{2} \times 286 \mathrm{~mm} \mathrm{D}\left(2.5^{\prime \prime} \times 5.25^{\prime \prime} \times 11.25^{\prime \prime}\right)$.
Wolght: net. 0.63 kg (1 1 bl 6 az). Shipping, 0.74 kg (1 lb 10 oz).
Accessories avallable Price10525-60012: Tip Kit$\$ 40$
10526-50002: Multi-pin Stimulus Kí $\$ 25$
10541A: Twenty Blank Comparator Reference Boards 595
K01-10541A: Twenty Pre-programmed ComparatorReference Boards$\$ 195$
Ordering Information5011 T Logic Troubleshooting Kit$\$ 725$
5015T Logic Troubleshooting Mini Kit 5250

Signature Analyzer, a $\mu \mathrm{P}$ service solution

 Model 5004A- Field troubleshoot microprocessor-based producis to the component level
- Reduce warranty and service support costs
- Reduce the end-user's cost of ownership
- Improve the confidence level of field service

The product

The HP 5004A Signature Analyzer is a tōbl for ficid troubleshootins of complex logic circuis. It recognizes and displays unique digital signatures associated with data nodes in a circuir under test. By comparing these actual signatures to the correct ones, a service lechnician can back-(race to a taully node. The lechnique is especially useful in checking opention of microprocessor-based products and high-specd state machines, where dati streams are long and complex and where there are no conventionit means to iroubleshoot to the component level.

By designing the digital portion of a product with the Signature Analyzer in mind, a manufaclurer can provide field troubleshooling procedures fior camponent level repair. without having to invest in a bourd exchange program. or in expensive special-purpose equipment.
Signature Anajysis is also aleractive for production line Iroubleshooting. The 5004A can detect speed-related failures in assembled systems. which may not have been caught by subessembly testers.

The technique

HP's patented Signature Analysis techniquc enables the 5004A to display a compressed, four-digit "fingetprint" of the data stream present al a node. This signature is generated from a linear ieedback shift register in the 5004A, and is unique for a specific good node. Any fault associaled with a device on that node will force a change in the data stream and, therefore, result in an erroneous signature.
The 5004A utilizes a 16-bit register, with maximal-length feedback taps. The data stream being measured is summed, modulo 2 , with
the register feedback. The resulting probability of delecting an erroneous dnes stream is 99.998%. More imporantly, the probability of delecting a single-bit error in a data siream is 100%. Signature Analysis detects ime-relaled faulis, such as mid-cycle displaced bits, which are nol deleclable by raditional 1 ransition and ones coumbing techniques.

The 5004A does not require programming, since the test stimulus is stored in the product under lest. Gating and clock signals are also derived from the producl under iest.
The application
For a product which has been designed and documented for Sig. nature Analysis, troubleshooling typically consists of:

- Switching the product to be tested into a lest mode of operation.
- Allaching the 5004A's START, STOP. CLOCK, and GND leads to the test points of the product 10 be lested (no board or component removal required).
- Probing circuil nodes and observing the nignatures displayed on the 5004 A .
- Comparing them to correct signalures preprinted on a schematic or troubleshooting procedure in the service manual of the prodluet under rest.
- Isolaling a falty node by observing an erroneous signature
- Tracing signaturea back urough gales sud memory elements. until an element with cortect inpuls and faulty outputs is isolated.
- Replacing only the faulty component.

These sleps can be periormed quiekly on-site. at a field service facility, or on a produclion line.

5004A Specifications

Display

Slgnature: four-digit hexadecimsl.
Characters: $0,1,2,3,4,5,6,7,8,9$, A,C.F.H.P.U.
GATE, UNSTABLE SIGNATURE Indicators:
Panel llghts
Stretching: 100 ms .
Probe-tip indleator: light indicates high. bow, bad-level and pulsing states.
Minimum pulse wath: 10 ss .
Stretching: 50 ms .
Probability of classlfying correct data stream as correct: 100%.
Probability of classifying fautty data stream as faulty: 99.998%.
Minimum gate length: I clock cycle.
Minimum timing between gates flrom last STOP to next START: I clock cycle.

Data Probe

Input Impedance: $50 \mathrm{k} \Omega$ te 1.4 V , numinal. Shunted by 7 pF , nominál.
Threshold
Logle one: $2.0 \mathrm{~V}+0.2-0.3$
Logle zero: $0.8 \mathrm{~V} \div 0.3-0.2$.
Solup Time: 15 ns , with 0.2 V over-drive. (Data to be valid al least 15 as before selected clock edge).
Hold Time: 0 ns (Data to be held until occurrence of selected clock edge).

MEASUREMENT GATING EXAMPLE POSTTIVE-EDGE START STOR, NND CLOCK

Gating Inpul Lines

START, STOP, CLOCK Inputs

Input Impedance: 50Ω to 1.4 V , nominal. Shumled by 7 pF , nominal.
Threshold: $1.4 \mathrm{~V} \pm 0.6$ (0.1 V hysteresis, ispical).
START, STOP Inpuls
Setup time: 25 ns . (START, STOP to the valid al least 25 ns before selected clock edge).
CLOCK Input
Max|mum clock frequency: IOMH2
Minimum clock time in high or low state: 50 ns.
Overload proteclion (all Inputs): $=150 \mathrm{~V}$ continuons. I 250 V intermititent. 250 V as for 1 mintute.

Operatling Environment

Temperature: $0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$.
Humldly: $95 \% \mathrm{RH}$ at $40^{\circ} \mathrm{C}$.
Allitude: $4,6,6) \mathrm{m}$.
Power Requirementa: is VA max. Sec Options below for power line voltage and frequency.
Welght: net, $2.5 \mathrm{~kg}(5.5 \mathrm{lb})$. Shipping $7.7 \mathrm{~kg}(17 \mathrm{lb})$
Size: $90 \mathrm{H} \times 215 \mathrm{~W} \times 300 \mathrm{mmD}\left(3.50^{\prime \prime} \times 5.50^{\prime \prime} \times 12^{\prime \prime}\right)$. Dimensions exclude bale, probe and pouch.
5004A Signature Analyzer
Opt 910: Extm manual
Orders must specify one of these power line options.
Opt 100: 100 V ac line, $+5 \%,-10 \%$. 48- 440 Hz
Ope 120: 120 V ac line, $+5 \%,-10 \%, 48-440 \mathrm{~Hz}$
Opt 220: 220 V ac line. $+5 \% .-10 \%$. $48-66 \mathrm{~Hz}$
Opt 240: 240 V ac line. $+5 \%,-10 \%, 48-66 \mathrm{~Hz}$

5035A Logic Lab Mainframe

The 5035A Logic Lab Mrinframe brings coovenience and llexibilaty to breadboarding by allowing solderless connection of new circuil ideas. Fully self-contoined, the muinframe has a 5 -vole I-amp power supply, two clocks, four LED indicators, six data switches, two 5 -volt BNC connectors, and a handy removeable breadboard. To use it. jusi connect up circuits using slandard 24 -gauge wire. then power up either one or several breadboards 10 quickly and easily verify new eircuits idean before incurting expensive PC board layout and rework chatecs.

5035A Mainframe ordering Information

Power supply: 5 volts $\pm 5 \%$, over (-1 Amp ringe: 10 mV rms ripple maximum. Continuous short circuit profection.
Date switches: 6 bounceless slide switches for TTL high/low outputs.
LED Indleators: 4 high/low indicators.
Clocks: 2 independent: I Hz and $100 \mathrm{k} \cdot \mathrm{Hz}$.
Breadboard assembly (HP part number 1258-0121): removable. Interconnectlons: all power supply. data switch, LED indicator, and component contact points may be interconnected by standard 24-gauge book-up wire.
Power requirements: $100 / 120 / 220 / 240 \mathrm{Vac}+5$. $-10 \% 50$ or 60 Hz line frequency: 30 wats max: $0^{\circ} \mathrm{C}-55^{\circ} \mathrm{C}$.
Size: mainfrime. $311 \mathrm{H} \times 89 \mathrm{~W} \times 267 \mathrm{~mm} \mathrm{D}\left(31 /{ }^{\prime \prime} \times 12 \%{ }^{\prime \prime} \times\right.$
$\left.10^{1 / 2^{\prime \prime}}\right)$. Breadboand assembly: $165 \mathrm{H} \times 114 \mathrm{~W} \times 13 \mathrm{~mm} \mathrm{D}\left(6^{1 / 2^{\prime \prime} \times}\right.$ $\left.4^{1} / 2^{\prime \prime} \times 1 / 2^{\prime \prime}\right)$.
Welght: net, $5.9 \mathrm{~kg}(13 \mathrm{lb})$. Shipping. 6.9 kg ($15,13 \mathrm{lb}$).

Accessorles avallable Price

1258-0121: Additional breadboand assembly
1540-0258: Heavy duty. padded winyl cartying case
$05035-60006$: Wire interconnect kit (258 prestripped.
assorted length and color. 24 gauge hk-up wires)

Intraductlon

The increasing use of digital processors. such as computers and microprocessors, has created a concurrent need for new analysis equipment for use in the design, checkout. and troubleshooting of digital systems. It has become increasingly apparent that digital problems can best be solved by digital means. The instrumentation and theoretical foundations of these digital solmions come from the branch of elecironics known as the data domain. There are many specific analysis systems and instruments that fit the data domasin insmmentation calegory. These are discussed in relation to the design and troubleshooting lasks facing the designer and user of digital equipment.

Software development

The growth of LSI IC technology. and one-chip processors and bulk memory circuits, has placed much emphasis on the time a designer spends on programming and program verification. Full soltware developmenl involves three steps: software code generation, either simulation or emulation of the processor and memory circuits before the hardware is complete, and analysis in real time (e.g. at full system operating speed) on the hardware.
After code generation the greatest uncertainty occurs when the systern is working to a degree, and design verification is the task. At this poinc. the cask is functional analysis at system speed, a job that logic analyzer have been designed to aid.

Logic analyzers

Als logic analyzers share three basic blocks: data registration, dala capture, and
data display. There are, however, substantial differences in the quality of each of these blocks. perhaps mosi caslly discussed in lerms of levels of sophistication. Table 1 itlustrates these different capatilities.
Data-domain problems are maniüested as an impropes data sequence. for which the cause his yet to be determined. It is important to note that ube problem effect is always functional whether the cause is functiomal or electrical. Consequently, the first analysis step is locnting the maffunction in the data flow sequence.
Locating the problem in data now with an extemal instrument requires data registralion or synchronization followed by data
capture, possible massage, and presentation to the user.

Registraxion

Registration to a dala slream by Logic Analyzen may' he thought of as synonymous with triggering for oscillosecpes, trip for data communications monitors, and breakpoint for computer check-our panels. However it is a muela more complex function than any of these others. embracing Patterm Recognition, Sequence Recognition, Data Indexing. Data Qualifier conparison, and Boundary Condition correlation.
Pattem Recognition can be as simple as acknowledging a gating flag, but more com-

	Data Registration	Data capture	Oata Oisplay
Level 3	Sequential Pattem Recognition Range or Boundary Triggering	Selective Data Storaga Elapsed Time/Count	Graphing \qquad Mnemonic Disassembly Splil-field Machine Languaga
Lavel 2	Pattem frecognition Word Count Delay	Quablied Storage	Malfix Map - Hex/Octal/Binary Word Display
Level 1	Gated rigger Clock Delay	Successive Storage	1's \& O's Display

Table 1. Levels of Loglc Analyzer Sophislicatlon.

Figure 1. 1610A Logic State Analyzer irace specification for deifning a lest sequence that will capture a nested loop as well as only selected states in the loop.

Figure 2. Adding a count-states specilication to the 1810A trace specification in figure 1 results in a trace list showing the number of states (in decimal base) which occurred prior to and following the trace start.
monly involves an ANDing decision at a Data Read cycle on a parallol data bus. For instance. this may be thought of as an ANDing function cqualing án address on an address bus

Sequence Recognition, an important function that mosi early Logic Analyzers do nol allow. is the ability to deseribe a word Directly Followed By another word, or a Loop Count capability where the same recognition mus! be made n times.

The most important uhe of sequedial rec. ognition is 10 analyze tranching software. looping software, and in particular, to unravel nested loops to check for correat behavior. A very typical problem occurs when a sysiem exils from a nesied loop sequence prior to full compleion. The first inalysis question mighi be "docs devialion occur?" which may be answered by seling up a full sequence regisimation specification and ranning the followed.

Data Indexing and Data Qualificalion. closely rclated to Seleclive Dala Siorage. are especially unctiul in longer prograns. The indexing and qualification functions allow truncation of unneceswary sleps. so that captured data is quality data rather than quanlíly dialit.

The HP Madel 1610A Logic Stale Analyzer provides an excellent example of sequence recognition and dala qualification capabilities in a logic analyzer. The 1610 A Trace Specification allows you to define a sequence of from one to seven words which must be found in the specificd order. To furmer qualify the sequence, each word in a sequence may be specilied 10 ocebr from I 1065536 times so you can caplure the nth pass of a loop beginning al a given word. Figures 1 and 2 shov a 1610 A Trace Specification with a defined lest sequence and qualification, and the resulting irace list.

Indexing and qualification capability is especially of value in two applications: (1) searching for uncommen conditions or infrequently oecnming events in a long datasequence. or (2) in irying 10 som bulk dala into its varions components on a muliplexed bus. An extension of qualification is the need for handling multiphase clocks or
dual-clocked interfaces between peripherals and manframes.

Range Triggers, which are preset Boundary Conditions, are a way of locating a class of problems that beset software designers. All 100 frequently, a designer will make an insignificant mistake in code (e.g. address $0202_{\text {dif }}$ instead of 0220_{15}) which eximets an allogether different data word or operand from memory, resuling in a Jump or Gate insiruction on a subsequent cycle that sends the system 10 the wrong area of memory. The betler solution in many cases is to use a boundary condition statement (range trigger) is a (rigeer override which directs the analyzer to recognize a data word less than or grealer than some assigned values.

The HP 1611A Logic State Analyzer for microprocessor based syslem analysis has the capability to include or exclude ranges of addresses by selecting less inan or greater than limas and the desined addresi wonds (i gure 3). Any or ill of the Irigger specifications can be tiurber modified by requiring a predetermined pass count of up 10256 Irig. eer occumences before a trace begins. Additionally. Irigger Enable and Disable conditions wan be speafied 10 estioblish the boundary cunditions in which the selected trigger search may be allowed.

Data Storage

Virtually all data-domain instrumentadion inday gathers a data lable or "Irace" since Jaté and dala sequencess art the parameters of concem. This, of course, requires that the instoment view data just the same as the machine under lest. Binary tiresholds musi match, serup and hold times are cnucial, and probe loading must nol cause a problem to the circuit under test.
Acquisitlon requirements: there are some unusual speed and channel acquisition requrements imposed in daly-demain measurements. For instance, dala need nol be gathered al ralles above the dala regisler speed of the system under rest-This is 3 MHz or less for virtually all minicomputer ind microprocessor systems today, and only' $12.5 \mathrm{MH}_{2}$ for mosi pars of even large CPU's.

By contasi with these low data cycle limes, selup and hold limes have much
higher performunce requirements. Selup lime should be as short as possible, to accommodate nulti-phase clock struciures.

Micro and mini systems in several citses have setup lime requirements under 20 n. (more chan $8 \times$ whal we mighl expect from the insiruction regisler clock rate). In nearly all cases. system hold time guarantes are 0 to perhaps 5 ns al best, imposing a sirict inslrumen! requirement of "zem positive hold lime."
Negallye tme slorage: an equally imporlant consideration for dala-domain lesting is the facl that data raulls are almost never conirollable or easily reproducible. Thus. the classical stimulus-response testing so popular in lime-domain and frequency. domain analysis is rendered impolent becausc of the vasi complexity of the intermediate system. This gives a raull iracing question of "what happened before the failure at $L_{6} ? \cdot$. rather than the easier question of " what happens when we change the system al $1{ }^{\circ}$?

Consequenlly. logic analysis equipmenl has put considerable emphasin on cupturing "pre-trigger" or "negalive time'" events. Otiviously, these historical records were gathered as they occurred- the "negative time" aspect refers 10 the decision to retain data that has already been caplured. Consequently, a logic analyzer can record data over a long period, then make a decision that the captured dala was of interest, and block out fulure events in order to keep the past history file.
Channel width: yct another important consideration is the total amount of data that musi be collected at every event-lime in order to characterize system behavior. In fact, this is the basic reason that these analysis cechniques anc temed data domaln-since the status of a digital machine at any event-time is described by its functional data registers. The program counter. the instruction register, the accumulators and so forth conlain specific coded dala which colleclively describe the machine stalus al any one eventrime. In addition, most digital machines are buila to operate on external data-to add. subtract. mulliply or divide data, to make branching

Figure 3. The 1611A Logic Stale Analyzer allows you to interrogale ranges of memory addresses with the \geq and \leqslant limits to bracket memory bands.
decisions from data comparisons, and to accumulate, slore, and process still more dola. Thus, to select data domain as a descripior for a way of analyzing digital logic machines suggests both an awareness of the machine's extemal function of working with digital data, and its internal operation in terms of an organized flow of data sequences.

Dati domuin analysis, then, is a set of analysis techniques concerned with designing, monitoring, and correcling the behavior of a digital machine as a function of its infernal data sequences and its exiemal data manipulations. Even for modest-size systems. Whis requires many channels for daia acquisition. For example, 10 monitor the addrest. data, and control lines of most cight-bit microprocessor (e.g. 8080. 6800) requires 30 or more lines of simultanecous monitoring. The HP 1611A microprocessor analyzer provides for up to 40 inpur lines as well as eight additional inpur lines for tracing related events or for addinional irigger qualifications.
Storage recording: we can now apprectiste the dilemma often faced by the digital system "troubleshooter". When a system "crashes" on a very spasmodic, intermittent basis, is is very difficult to aseertain why. As a consequence, lize "baby-sitting" mode of lest has evolved, using a very deep memory to record the events leading 10 failure. However. the quantity of dati able to be collected can quickly out-strip any finite memory. For example. the total dynamie memory required by a monitoring instument for one second of operations oi a large CPU could exceed 1.5 billion bils.

As a result of this very large memory requirement, the more capable logie analyzers offer various data compression techniques to aid im system monitoring. One powerful technique used is qualification of dala storage as a function of extemal control lines. For example, ANDing the Write line with the Data Clock will store only Write commands. while Read commands or non-1/0 transactions are ignored. Similarly. data sent only to a given point-of-sale terminat or a particular dise memory could be sorted by quatifying to thal machine's specific bus address. Qualification in the gederal case can
be defined to include Clock Qualification (io handle multi-phase or even hand shake structures). Flag or Control fisic Qualitication (such as Read or Write lines, and Data Qualification (usually in cerms of address or instruction).

Bidirectional mutipipered data seructures are best monitored (one may say' "only monhored") with a sophisticated combination of qualification and selective storage. One further capability is essential for analysis of storage records thus compiled-the elapsed lime and/or counl berween slored words.

Data presentation

The appropriate data presentation methods vary as a function of the measurement being made. as well as the skill level of the user. It is convenient to shink of Global vs. Local unalysis, where Global refers to overview or macrascopic presentations, and Local to tracing specific words or measuring between two events. Under the Global definition, we find Memory Maps and Griphs.

Local analysis, by concrasi, may be concemed with only one transaction or excursion within a lotal memory map. and with the state flow leading up to that crroneous excursion. Perhaps it goes on to analyze the specific pulse timing on some handshake lines during that event-time, or to measure the elapsed time from a known good transaction to the fult condition. Local zalyses are zoom tens interrogations of anomalies in the Global picture.
Global measurements: the fr00A Map is perthaps the most familiar global view available on data-domain instrumentation. This map (Iigure 4) is essentially a dot matris army where any specific dor location corresponds 10 a specific sixteen-bit parallel word (the most significant eight-bit byte on the vertical axis and the least significant on the horizonial axis). The map mode allows fauli perception at a glance. compared with lenglly time to scan a page of state table data. Most users quickly leam the pattems of various operational modes of the system under test, and can verify apparent proper performance or detect differences al a glance.

For specific address-space functions such
as memory-mapped $1 / 0$, the array map provides an casy way to tell whether Imusactions of a given lype ane occurring.

A 1610A data flow graph (figure 5) is also a very useful pictogram for centain functions, not the least of which is portrayal of the time-sequential execution of weighted data. SubroLtines and nented subroutines are easily discemed, showing up as repetitive sawtooth waveforms on such a graph. Leper and lower limits may be expanded or coniracted for whatever zonom resolution is appropriate and "off-scale" indicators may be used as pre-set "boundary conditions," described under dila regicmation. The graph provider an intermediale level of amalysis between the wide angle ovenview of the artay map and the local, specific dala lable listing.
Local measurements: "Local" lesting deals with she specific and particular, and as such is more often thought of as a "real" measurement by users. These are zwo basic incasurements being made today-the Data Trace and the Delta Interval (fime and count measuremenis).

There are many ways of displaying the data Trace (figures 2 and 3), each of which has meril for a given user. For example, the 1611A ofien mnemonic disassembly while the IG10A provides Split HEX, OCTAL, and BINARY to handle address, data, and control lines simultaneously, each in the proper code.

Delta-Interval (time and count) measurepents afe a very powerful addition 10 datadomain instruments, especially those with guod data-registration capability. Time and count measurements are available with boilh the genernl purpase HP 1610A and the HP 161 IA microprocessor analyzer. The 1610 A allows selection of time or state (word) count for all (o words in memory, displayed in either absolute or relative mode. The absolute mode gives you the time or count between the arace position and a selected word, while the relative mode presents the time or count between each consecutively acquired scate. This capability allows you to directly determine the time spent in toops. internupts. or program time between steps.

In the 161/A the time or count between

Figure 5. A 1610A trace graph may be selected to give you a view of all 84 states in the analyzers memory. Each dot's verical posithon is determined by its absolute numerical value and its horizonial position Is determined by its sequence of occurrence. The abllity to sol upper and lower limits on the graph makes it easy to see the level of memory in which the program is operating.

Figure 6. The 161 IA time interval mode along with the ability to select enable and dlsable trigger conditions allow direct measurements of execution time in loops or subroutines
events is measured by specific Enable and Dinatle conditions for the address, data, or extemel mpons. with the result displayed directly (figure 6)

Hewleit-Packard logic analyzers

1600S: Model 1600 S is a general purpose Logic State Analyzer which provides convenient and flex ible functional amalysis of top to 32 -channels of parallel data at clock speeds to 20 MHz . The display is presented in an easy-to-read oness and zero"s formal for fast functional analysis of data flow. Features include triger arming, dual clock. separately conligured data lables, display qualification, exclusive OR comparison of Tables A and B , dynamic mapping, and halt when A is not equal to 8 Ao added advanlage of this logic stale analyzer is that is can be used in conjunction with the Model 10254A Serial-to-paratlel Converter which converts serially formalted data to parallel for use with the Ifons. Another uscful accessory is the Model 10253A Card Reader which may be used 10 lood fixed dala slored on cards into the 1600A Tible B memory. providing a convenient method of performing comparalive lesis on digital components or sysicms.
1602A: Model 1602A is an easy-to-use bul powerful keyboard controlled Logic State Analyzer designed with the technician in mind. Its self-waching keyboard panel and a standard PC board edge connector probe. make the unit ideal for applications involy. ing service and production. The 16 -bit wids and 64 -word deep memory operales at clack speeds 1010 MHz . Dala may be regislered with versatile patlem recognition rigger ind digital delay. Measurements are displaj'ed on the Analyzer's LED readoul in hexadecimsul. decumal. octal, or binary format. eliminating the need for base conversions by the operatos.

Usefulness in further enhanced by the 1602 A's portability (only ten pounds) and by its programmathility. The 1602A Opnon 001 is HP -1B coniputible. making aulomatic functional testing a realiyy by teaming it with a computing conirolicr such as the Model

9825 A . The 1602 A can also act as a scrvice tool for HP-IB sysiems.
1610A: Nodel 1610A is a general pupose Logic State Analyzer with a very poweiful measurement set capable of checking complex digital systems from microprocessor based to minicomputers. The 1610 A synchronously performs scal time irace and count measurement to 10 MHz wilh powerful Iriggering capability on words up to $32-$ buts wide. The sophisticated measurement set is implemented with keyboard conirol and an inceraclive display using a menu concept to permit rapid entry of complex measurement parameters. Measurements of sysiem activity are displayed in any mixare of hexadecimal. octil. binary, or decimal codes.

Features of the 1610 A include Trice Specification with up to seven levels of sequential state conditions. a restan stite for sequential condiuianing. seven choices of trace qualification. and a state count or time inerval which can be displayed in either absolute or relalive modes. A state graph provides a seleciable overview of slate sequences (slatic or dynamic) presented as an X-Y display. The 1610A also includes a self-lest mode which provides seven differenl self-tests for performance verification.
1611A: The Model 1611A is a keyboard conimollod Logic Stale Analyzer dedicated to the design and troubleshooting of microprocessor based systems. The analyzer is configured to a specific microprocessor by ordering the appropriate personality module and is easily reconfigurid. Four personality modules are presently available for ase with the 6800. 8080. F8 and 280 microprocessors with more planned for the folure. Features include powerful triggening capability. time interval measurements. mnemonic display, and eாтor messages 10 wam of improper operation or setup.

Loglc analysis accessorles

Serlaf to-parallel converter: for lunciional andysis of serial data, the HP 10254 A permils display of serial data together with the 1600A. 1607A, or 1600 S Logic Slate Analyzer. with the same windowing

capabilities as for parallel dala.

Card reader: when performing repelitive tests on digital components or systems, the HP 10353A provides a low cosi method of performing simple or complete system checks. With a lesı procedure on cards, special operator training on the system under lest is not needed-just insert a card in the cand reader and look for intensified ones on the 16001 A.
Trigger probes: Lhe HP Madel 10250A TrL Trigger Probe features a 4-bil AND gate triger and selectable bil levels (H), LO, OFF). The circuil-powered probe provides 4 -bit pattem recognition triggering for digital signal analysis and may be used for boih finctional and electrical anslysis, With the 10250 A connected to the HP 1602A Logic State Analyzer rear panel Trigger or Clock Qualifier inputs, an additional four bits of qualification are available.

The HP Model 1230A trigger probe offers 8 -bil parallel Iriggering capability with the addition of digital delay capability of 9998 clocks and synchronous or asynchronous operation. The 1230 A provides versalile Inigering capabilities for oscilloscope windowing to digital problem areas.
Testmoblles: several HP testmobiles offer convenient porability for HP Logic Stale Analyzens. The versalile 1008A can be used for the 1610 A or 1611 A with storage space for other test equipment and accessories. See page 180 for Testmobile information.

Educatlon

Leaming tools available include the Data Domain Measurement series Applictution Notes, and the four pan videotape series. "The Duta Domain. lis Analysis end Measurements." The later is designed to provide insinction in loge state analysis measurement techniques and the debugging of processor-based systerms. Measurementa shown in these bapss include: paging, loops and map techniques. asynchronous measurements. losi program. $1 / 0$ data transfer. memory accens time. software programmable $1 / 0$ porss and intertupls. Contaer your local HP Sales Office for additional informstion on these training aids.

1610A Description

The Model 1610A keyboard controlled Logic State Analyzer offers general purpose neasurements in microprocessor based systems, minicomputers, or virtually any digital circuit. The 1610A synchronously performs real time trace and count measurement to 10 MHz with powerful trigering capabilities on words ip 1032 bits wide to allow you to captore the data of interest.
Measurements of system activity are displayed on the analyzers CRT screen in selectable bexadecimal, octal, binary, or decimal codes. Setup for a measurement is atided with the Fornat and Trace specilication menus which indicate the test parameters you are to enter. The events and activity that are captured and displayed from the system are gathered at clock transitions after the 1610A locates the specified trace position and then capnures 64 words of data. The displayed trace may be a simple break point with the trace position at the beginning, end, or center of the captured data: or, in a state seguence where one to seven words must be found in a specified order before data is captured. This state sequence permits you to directly locate sections of branched, looped, or nested loops of state flow. A selective trice of from one to seven words may be OR specified which allows only the words of interess to be captured and eliminates data that is not necessary for your measurement.

A count measurement capability allows you to perform a time or state count on all 64 traced states in either absolute or relative modes. With the count measurement you can deternine how much time a program spends in loops. servicing interrupts, as well as the lime between program steps. This measurement is performed simultareously with the trace and all 64 words traced are assigned a count record which is displayed as positive or negative lime in relation to the location of the trace position (absolute mode). or in relation to the previously acquired state (relative mode).
One complete measurement, including Format and Trace Specifications, may be intemally stored to be recalled al a later time or for use in a trace compare mode. When a trace compare mode is called.
the display presents an exclosive OR tabular listing of the differences berween the current and stored measurements. The trace compare mode may be also used to direct the Analyzer to contimiously renun à measurement unil the current and stored measurements are equal or not equal and the 1610 A automatically halts and retains the current measurement.

The 1610 A includes a Trace Graph to provide a display of data magnitude versus time sequence for all k words in memory. Each det representing a word is given a vertical displacement corresponding to its magnitude ind is positioned horizontally in the order of its occusrence. The result is a waveform that offers a quick overview of program operation.

For increased confidence of the instament's operation, there are self-tests for the keyboard. ROM/RAM, displas', a Irace test which includes all probe pods, an inierrupt test, and a printer test.

Hard copy of both the Format and Tmee specifications as well as the Trace List and Trace Compare can be obtained by adding a Hewlett-Packard printer (Model 98664 or 98668). Rear panel primer outputs are included in the 1610 A for direct interfacing.

Deta entry

Entries are made in inverse video fields with the entry location indicated by a blinking cursor. Entry fields (enclused with brackets) are muttiple choice with the desined test parameter selected by using the Field Select key (c.g. positive or negative edge of clock wansition). Trace specifications are entered through the key board dircely io octal, hexadecimal, binary, or decimal notation which permits working in a familiar format without worrying about base conversions.

Menu

The displays which are called up by keyboard commands are referred to as menus because they include the selections for setting up lest parameters and labeling of test results. These nenus include Format Specification. Trace Specification. Trace List, Trace Compare, and Trace Graph.

Format specification

The formatting capabilities allow you to separate the 32 input data channels into the desired test parameters. This allows those data bits which ace as a unit to be assigned to one of six labels (e.g. 16 bits of address bus assigned as " A " and 8 bits of data bus assigned as "D"). This labeling capability theo permits all trace specifications to be assigned as a unit mither than on individual lines. Each assigned label may be independently defined in posilive or negalive logic as well as differenl bases of binary, octal, decimal. or hexadecinzal. Another feature of this menu is that active channels are shown ats exclamation manks (!) For a quick overview of system activity.

Format specilication menu lets you deline which group of bits will act as a unll by assigning labels which may be separately defined as to numerical base and polarity. The allowed selections are defined on-screen to minimize front panel controls.

Trace specification

After the Format Specifications have been delined, the Trace Specificalion menu in eafled up and the measurement parameters are entered. The Trace measurement may be defined as a single word or may be in a sequence of from one to seven words which must be found in the specified onder. The ability to select a sequence of words allows you to locate sections of branched. looped. or nested loops duning machinc operation. To furnes qualify the sequence. each word in a sequence may be speciñed to occur from 1 10 65536 limes so you can capture the nit pass of a loop beginning at a given word.

Typical trace specification for defining a test sequence that will capture a nesied loop as well as only selecied states in the loop.

Trace list

When the Trace key is pressed, the 1610A searches for the word sequence defined in the Trace Specification. As the data is caplured it is displayed on the CRT along with a line number and alphabetically formated into the assigned labels and in their numerical base. The display conlains 20 words, and Roll keys permil you to view the entire 64 word listing. To make it easicr to locate the Trace position, which may be selected to start, be in the center, or end a trace, Start is spelled out on the display. Any count information is also presented adjacent to each word

The count measurement may be specilied to be either Time or State (word) count for all $6 d$ words in memory and may be in either absolute mode or relative mode. The absolute mode gives you the (ime or count berween the trace position and a selected word, while the relative mode presents the lime or counl between each consecutively acquired state. This allows you to directly delermine the time spent in loops. intermpts. or program time between steps.

Trace list displays the label and numerical bases, as well as the sequence requirements and resulting state flow. This example also shows time in the relative mode which is the elapsed real itme between each state and the previously acquired state.

Trace graph

Trace Graph is a presentation of dati magnitude versus time sequence which provides a display of all 64 words in memory. This graph allows you to see at a glance in which parn of a program the machine under test is operating. Each word is displaced vertically according to its magnitude and positioncd borizontally in order of its occurtence. The data to be graphed is selected by latel with its base displayed on sereen.

A race graph may be selected to give you a view of all 64 states In the analyzer's memory. Each dot's vertical position is determined by its numerical value and its horizontal position is determined by its the sequence of occurrence.

Trace compare

One complete trace measurement including format and specification may be stored intemally which allows comparison between a current and stored measurement. The current and stored measurement may also be interchanged which allows you to quickly review the stored measurement as well as its specifications.

Trace Compare presents an exclusive OR Labular listing of the differences between the currenl and stored measurements. The listing is formanted and rolled as á trace list with identical biss displayed as zeros and different bils displayed as non-zeros. For example, in the ceral base, 03 is equivalent to a binary 0000 II which means ihat the least significant bits are different in the two measurements. A compared Trace mode is also avnilable which directs the 1610A to continuously rerun a measurement unil the curtent and stored measurements are either equal or not cqual which makes it much easier to caprure intermittent problems.

Probes

Input data is sensed through 32 high impedance probes at rates to 10 MHz . Data probes are separaled into four \&-bit pods for easier connection to a system, with a fifh probe pod for connecting 10 a clock source. To make it eusier for connecling to different systems, the front section of each prothe may be disconnectod from its pod. This allows the individual probe leads for each probe pod to be wired 10 connectors for specific systems. Additional probe lead kits as well as probe itps are available separately as accessories.

The trace compare mode offers an excluslve OA comparlson of stored versus active data. In this example. the 1610A stopped data acquisition when the active data was not equal to tho stored data at state +06 .

Trigger outputs

Once a fault is found, another type of analysis instrument, usially an oscilloscope, is often required to pinpoint the problens. The analyzer"s Trisger Output is stable with respect to the system clock so an oscilloscope can be used for critical thing measurements. The Measurement Enable outpul is useful for gating clocks or interrupting the device under test or for added "clock slopper" circuits in other parts of the system.

1610A Specifications

Clock and data inputs
Repetlition rale: to 10 MHz .
Input RC: $50 \mathrm{k} \Omega$ shunted lyy $<14 \mathrm{pF}$ al the probe tip.
Input blas current: $\approx 20 \mu \lambda$.
Input threshold: TTL, fixed at approx +15 V : variable. $=10 \mathrm{Vdc}$.
Maximum input: - $15 \vee 10+15 \vee$.
MInimum Input
Swing: 0.5 V .
Clock pulse widih: 20 ns at threshold level.
Data setup time: ime dala musi be preseni prior to clock Iransition. 20 ns.
Hold time; cime data musi be present aficr clock unasition, 0 ns.

Trigger and meas enable outputs

Tilgger output (rear panel): is 50 ns $\pm 10 \mathrm{~ns}$ posilive TTL level trigger pulse is generated each time the trace position is recognized. If the trace position includes a word sequence, the pulse occurs when the last word is found. Trigger outputs continue until a new specification is traced or the Stop key is pressed. Pulse rep-rate is 0 1010 MHz depending on input data rales. In continuous or compared trace modes. the intemal display process blanks out pulses for $100 \mu s$ at rep-rates of $<30 \mathrm{~Hz}$.
Measurement enable output (rear panel): the positive TTL level measurement enable output goes high and remains high when the 1610A is looking for a trace position and goes low when a trace position is recognized or if the Stop key is pressed. In continuous or compared (race modes the tmasitions repeat each time the 1610A makes a new measurement.
Delay from Input clock: $\leqslant 150 \mathrm{~ns}$.

Goneral

Memory depth: 64 data iransactions: 20 vransactions are displayed on sereen, roll keys permit viewing all 64 data mansactions.
The Interval: resolvtion, 100 ns ; accuracy, 0.01%. Maximum time. 429.4 scconds.

Events count: 0 to $2^{\text {st }}-1$ events.
Power: $100,120,230,240 \mathrm{Vac} ;-10 \%$ to $+5 \%: 481063 \mathrm{~Hz}: 260 \mathrm{VA}$ max.
SLre: $230 \mathrm{H} \times 425 \mathrm{~W} \times 752 \mathrm{~cm} \mathrm{D}\left(91^{1 \mathrm{H}^{\prime \prime}} \times 16^{\left.7 / 3^{\prime \prime} \times 293 / \mathrm{c}^{\prime \prime}\right)}\right.$,
Operalling environment
Temperature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10+132^{\circ} \mathrm{F}\right)$.
Humldity: up to 95% relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Altitude: 104600 in (15000 fot .
Vlbratuon; vibrated in three planes for 15 min . each with 0.25 mm ($0.010^{\prime \prime}$) excursions. 10 to 55 Hz .
Welght: net. 26.5 kg (58.5 lb). Shipping. 32.2 kg (7l lb).
Accessories supplied: four 10248A dala probes.one 10247A clock probe, onc $2.3 \mathrm{~m}(7.5 \mathrm{f})$ power cond, one Operaling manual, and one Service manual.

Accessories

Probe lead klt: the probe lead kil (HP P/N 10248-6950I) provides a set of 12 probe lead cables and a ganging bar for one 10248 A probe. These extra leads provide a convenient method of wiring special connectors to quickly interface with different syskems.
Probe tlps: separale probe tips (HP P/N 10230.62101) are available if needed for use with extra probe lead kits or as replacement tips.
Ordering information
Price
tôtōa Logic State Analyzer \$9500
Opt 001: adds 9866A Thermal Printer add $\$ 3145$
OpI 002: adds 9866 B Thermal Printer add $\$ 3350$
$\$ 35$ ea
10230-82101 Probe Tip $\$ 2.50$ ea

Loglcally arranged Logic State Analyzer keyboard, divided into functional blocks, and an interactive display, allow entry of complex measurements with a minimum of conirols.

HP-IB

1602A Description

Hewlell-Packard's new, exiremely easy-to-use Model 1602A keyboand controlled Logic State Analyzer is for use in the design and troubleshooting of digital systems. The 16 -bit wide and 64 word deep memory operates at clock speeds 1010 MHz allowing the instrument to capture virually any 64 -word sequence in a system. The data may be registered with versatile paltem recognition trigger and digital delay. Measurements of system activity are displayed on the Analyzer's I.ED readout in hexadecimal, decimal, octal, or binary fomme. which eliminates the need for base conversions by the openator. Keybmad entry of the desired trigger is in the same base as selecled for the display.
A Hewlell-Packard Interface Bus option (HP's implementation or IEEE Standard 488) allows you to make automated functional tesis of digital systems. This means more consistent and repeatable measurements as well as more thorough testing because the lest speed of the inutomated system allows more measurements in a shomer time in both produclion and senice environmens.

Ease ol use
The 1602 's keyboard with its key-per-function layout is basically self-teaching. Eniry of uriggening and display conditions is a series of self-explanatory keystrokes with all entrics displayed as they are entered enabling you to check theis accuracy every step of the way.

Date Probe

The simplicity of the Analyzer starts with the probe which is a single pod containing all 16 data lines. clock, qualifier, and ground. At the front of the pod is a standard edge connector which allows you to quickly move the test connection from an address bus to the daua bus, control lines, or $1 / O$ structures. You need only incorporate a few simple mating printed cireur board connectors to your system.

Tracing data flow

Capturing data now is also easy and only requires a logical sequence of key strokes. The first item to define is the Logic Polarity of your sysiem by pressing the Logic Polarily xey. The panel LED's indicate your selection, possive for high Inse and negative for low true. Next select the clock odge on which you want to gather data which is also indicated by panel LED's.

Now selert the display format that you want to use for the test. If you arc running lesis on an address or data bus, you would most Jikely select either hexadecimal or octal display formal. However, if the test is on an I/O bus with numerical data, decimal may be preferred. For activity on control lines. binary is a meaningful base. In all cases the display indicales the selected fommal with a base (b) notation on the right. The sample displays show selcction of Hexadecimal (bl6) and Octal (b8) bases respectively.

When power is tumed of, the instrument is initialized with a word width of 16 which may also be displayed by pressing the Word Width key. Many times all of the input lines are not used and if you want to blank the more significant bits, just press the Word Width key and enter the number of bits to be displayed from 2 to 16 . The sample display shows that Word Widh $=2$ was selected.

The desired data window is entered from the Trace Specirication section of the keyboard. If you want to view data after the desíred trigger point, press Trigetr Plus Delay Sians Trace which directs the 1602 A to star collecting data as soon as the Trace Specification is sutistied. If you are more interested in data preceding the origger point, select Trigger Plus Delay Ends Trace. For either mode. Stan or End. an LED indicates the selected mode.

To define a trigger point. press the Trigger $=$ key and enter the desired 1 rigger point. e.g. 2803, in the same format previously selected for the display. The selected trigger word is displayed for verification.

To enter a delay that will position the star of data collicetion a specific number of clock pulses from the ingeg wond. press the Delity = key and enter the number of desired clook pulses. The dehty count is entered ind displayed in decimal formal. Delays of up to 65 sas clock pulses after the trigger point may be entered and used 10 either star or end data collection.
The trace specificalion is now complete and the 1602A is ready to capture data. Pressing the Trace key insmuets the Analyzer to stan louhing for the trigger word. Once the trigger word is recognized, the Analyzer caplures and stores 64 words in memory as delimed by the presel lrace specifications.

Model 1602A (cont.)

Once a functional tault is localed in execution of the program another form of analysis insırument. usually an oscilloscope, is frequenly desired to pinpoint the problem. The Analyzer's irigger out. put is stable with the system clock which allows an oscilloscope to be used for crinical timing measuremens.

A Trace Point Output is avaihale for generating interrupt signals or for added "clock slopper" circuits in other parts of the system under test. The rear panel oulpuls can also be used to cascade 1603A's or other analyzen.

And, for those occastons where the data being gathered are mixtures of information from huses and conerol lines. a mixed mode of binary and either hex. decimat, or ocial bases can be easily entered with afew keystrokes. Pressing Word Width $=16$ and Hex 8 gives the display shown.
$1 E$
$B \mathrm{be}$
日b 15

The resuling trace then displays the captured data in the format most convenient for analysis.

17

The anslyzer also interacts with ressage codes which assist the operator in gathering and soning data. The definitions of these message codes arc included inside the top cover for casy reference.

Forincreased confidence of the Analyzer's operation, it performs a self-lest during tum-on and indicates the results on the display. In addition, there is a multi-level diagnostic software which allows the Analyzer to identify virually any intemal fault.

Automatic testing

An optional HP-IB interface is available which when combined with a Computing Controller and a suitable stimulus allows the data caplured by the programmable 1602A to be tanslemed to the controller for analysis, providing fiss, exsily repealable checkout in producion and service. A leam mode, a feanne of the 1602A HP.IB Interface. provides an easy way for a designer to program the analyzer with an HP Model 9825A or 9830A Computing Controller without using the fommal HP-IB language. A few special function keys are ail that is needed for mon cest progtams, and the procedure for using them is also easy. Just make the measurement once using the 1602A and then press Leam on the computing controller. The system will then become conversalional and ask for the test number. number of words of 1602 A memory to be compared, desired measurement time limit. and which test lo go 10 if the present test passes or fails. The computing controller then automatically reads the Analyzer's keyboard and memory and iransfers this data to its cassette. The first test of the "test procedure" is now completed and documented. A compleic iest procedure can be mpidly generaled and documented by using this method. To use the test procedure. simply connect to the system or device under test and press the special function "Run" key on the Compuling Controller. Yout "Automated" test system then sets up each tesi in the procedure. compares the data collected to the refurence data stored on the cassette, and indicates where functional errors exist. This means that all your devices can be functionally iested in minutes. automatically. with identical procedures eliminating varialions due 10 differences between operators.

1602A Specifications

Clock, data, and quallfier probe inputs

Repethon rates: to 10 MHz .

Input load; one low power Schotlky gale ($<400 \mu \mathrm{~A}$ source),
Inpul threshold: TTL. Hued at approx 1.5 V .
Maximum Input: $<+5.5 \mathrm{~V}$.

MInImum Input
Level: $>-0.5 \mathrm{~V}$.
Swling: from $\leqslant+0.4 \vee$ (low) $10 \geqslant+2.4 \vee$ (high).
Clock pulse width: $\geq 25 \mathrm{~ns}$ at threshold.
Date setup time: lime data musi be present prior to a clock iransition. 35 ns al threshold.
Hold time; time data must be present after a clock iransition. 0 ns.
Trigger and clock quallier inputs (rear panel)
Input load: 8 mA max source.
MaxImum Input: $<+5.5 \mathrm{~V}$.
MInlmum Input
Level: >-0.s V.
Swing: from $\leqslant+0.4 \mathrm{~V}$ (low) $10 \geqslant+2.5 \mathrm{~V}$ (high).
Setup tlme: lime data must be present prior to a clock iransition, 40 ns wilh 10250 A probe. 10 ns withoul probe
Hold time: time datd musi be presen afier a clock iransition. Is ns with 10250 A probe. 10 ns without probe.
Trigger and trace polnt outputs
HIgh: $\geqslant 2 \mathrm{~V}$ into 50Ω.
Low: $\leqslant 0.4 \mathrm{~V}$ inio 50 n .
Pulge duratlon (width)
Trigger: high for approximately one clock period.
Trace polnt: sets low when Trace key is pressed. relurns high when the Trace Specification is met.
Delay from Inpul clock: <150 лs.

General

Power: 100. 120, 220, and 240 Vac - 10% + $5 \% / 481060 \mathrm{~Hz} ; 50 \mathrm{VA}$ max.
Slze: $10.7 \mathrm{H} \times 27.5 \mathrm{~W} \times 42.1 \mathrm{~cm} \mathrm{D}\left(47 / 3 x^{\prime \prime} \times 10^{1 \pi / 11^{\prime \prime}} \times 16^{1 / 10^{M}}\right)$.
Operating environment
Temperature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10+132^{\circ} \mathrm{F}\right)$.
Humidity: up 1095% relative humidily al $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Alfltude: to $\$ 600 \mathrm{~m}$ (15000 fi).
Vlbratlon: vibrated in three planes for 15 min . each with 0.38 mm (0.015 in .) excursions. 101055 Hz .
Welght: net, 4.5 kg (10 lb); shipping, 5.9 kg (13 lb).
Accessarles supplled: one extemal probe pod, one connecior with individual clock, ground, and data probe leads with lips, one 2.1 m (7.5 ft) power cord, one Operating and Service Mrnual.
Probe Interface: the probe interface is a standard. Iwo row. edge connector which may be easily added to insiruments during development, providing easily accessed lest poinls for production and field service requirements.

Accessories

10250A TTL trlgger probe: model 10250A Trigger Psobe offers a convenient method of expanding the qualsication capabilities of the 1602A. With the 10250A connected to the 1602A redr panel Trigger or Clock Qualifier inputs, you have an additional four bits of qualificalion. The four inpuls may be switched to H1. LO. or OFF (don'I care) for selection of the desired qualification paltern. Power for the Irigger probe is obtained from the circuil under terit,

HP-IB controllers and accessories

The following computing controllers and accessories combined with a 1602A Option 001 provide a complele HP-IB Test Sysicm. Model 9825A compuling controller: Opt 002 with a 23000 bytc memory is recommended for maximum fexibility. Accessorics required are Model 98210A Siring and Advanced Prugram ROM, Model 98213A General and Exiended 1/O ROM, and a Model 980.34A HP-IB Interface Curd.

Model 9830A Opt 276 computing controller: accessorics required are Model 11272 B or Opt 272 Extended l/O ROM. Model II274B or Opt 274 Sising Variable ROM, Model 11279B or Opt 279 Advanced program ROM. and a Model 59405A HP-JB Inceriace Card.
Sottware: the following leam progroms for the 9825A and 9830A controllers are available and virtually eliminate the need to leas controller or HP-IB language:

Model 10060 A kam program for 9825 A .
Model l006IA leam program for 1930A.
Orderlng information
Price
1602A Logic State Analyyer
Opt 001: HP-IB Interface
10250A TTL Trigger Probe

Description

The Hewlett-Packard Model I611A keyboard controlled Lagic State Analyzer is dedicated to the design and roubleshooting of microprocessor based sysitms. For ease-of-use, a special probe offers two methods of connection to 40-pin microprocessors, a 40-pin clip and a 40 -pin conneclor for interfacing with microprocessors in sockels. Measurements of sysiem activily are displayed on the analyzer's CRT screen in seleclable mnemonic or absolute codes of the microprocessor's own instruction set. The display is divided into three distince fields of address, dala, and extemal information. The events and activity displayed in the address and datin fields are collected drecily from the systern microprocessor"s address and data buses wilh arr additional cight bits of binary informaliun gathered by auxilary probes for display of activity on control or other functional lines.
The relatonal triggering capabilitics of the Analyzer permit the framing of a real-lime data window around vimually any event, of set or relaicd events-any desired sequence of system operations. With the I61la you can selectively trace only those events of interest. eliminating inelevan data The Analyzer also accurately measures execution lime. or counts sclecied events bctween two keyboard selected evenis. Ai a desired poini. defined from a keytoard eniry. the Analyzer can be commanded 10 halh microprocessor operation: then. if desired, the IS:IA can control the following transactions in single or multiple sleps. Keyboard entry of address or data bus irigger words may be made in either ocial or hexadecimal notation and the external irigger information is entered in thinary format.

To increase operalor confidence in the instrument. if performs a sell-test during the turn-on period and indicates the results on the CRT. The microprocessor probe data gathering circuits may also be checked by connecling the probe to the front panel probe test sockel with the test results displayed on the CRT.

Configuration

The convenience of a dedicnted probe and mnemonic instruction decoding is possible only by configuring the Analyzer for specific microprocessors. On initial order. the 1611A is specified to Tis a paricular microprocessor. Option A68 for the 6800. Option A80 for the 8080 . Option OF8 for the F8, and Option 280 for the Z 80 are the presendy available oplions, with more to follow.

All of the specialization is contaiged within two printed circuit
boards, a removable section of front panel, and the dedicated microprocessor probe. A personality modile containing the parts to configure the 1611A to another nicroprocessor may be ordered separately, and casily exchanged in aboul 15 minutes.

Option A68 (6800 Microprocessors)

Nole: Model 10257 B personality module may be ordered separately for installation in a 1611.4 to provide Opt A68 capabilisy.
Clock and data Inputs
Clock rate: 70 kHz . 102.0 MHz : 70 kHz to 1.66 MHz with 10257 B installed in 16IIA with serial prefix below I723A).

inpul loading

 cluding capacitance of $30.4 \mathrm{~cm}\left(12^{\prime}\right)$ connecting cable; approx 30 pF with $7.6 \mathrm{~cm}\left(3^{\circ}\right)$ able.
$\mathrm{D}_{0}-\mathrm{O}_{\mathrm{i}}, \mathrm{BA}: 20 \mu \mathrm{~A}$ max with $\mathrm{V}_{\mathrm{II}}=2.7 \mathrm{~V}:-0.2 \mathrm{~mA}$ max with $\mathrm{V}_{\mathrm{ts}}=$ 0.4 V .

Halt: $120 \mu \mathrm{~A}$ max with $V_{\mathrm{tI}}=2.7 \mathrm{~V}:-0.2 \mathrm{~mA}$ max with $V_{\mathrm{ID}}=0.4$ V.
$\Phi 2: 0.2 \mathrm{nA} \max$ with $V_{\mathrm{Ln}}=5 \mathrm{~V}_{\text {; }}-0.4 \mathrm{~mA}$ max with $\mathrm{V}_{\mathrm{In}}=0.8 \mathrm{~V}$.
Threshold: 2.4 V to 5.5 V , logic 1 (higli): -0.8 V to 0.8 V . logic 0 (low).
Sotup time: $A_{0}-A_{15}$. R/W, VMA must be valid prior 10 falling edge of $\$ 2$ clock for at least $250 \mathrm{~ns} . \mathrm{D}_{\mathrm{n}}-\mathrm{D}_{\mathrm{i}}$ must be valid prior to falling cdge of $\Phi 2$ clock for at least 40 ns. Halt must be valid prior to rising edge of \$2 clock for at least 75 ns .
Hold Itme: halt must be valid after rising edge of D2 clock for at least 10 ns . All ather inputs must be valid after falling edge of $\Phi 2$ clock for al leası 10 ns .
Half output: TTL open-collector compatible outpul capable of sink. ing at least 8 ma when active.
Exfernal probe inputs
Current: $50 \mu \mathrm{~A}$ max.
Capacltance: approx 25 pF measured at probe 1 p .
Threshold: 2.4 V to 5.5 V . logic 1 (high): -0.8 V 100.8 V logic 0 (low).
Selup time: inpul must be present at leasi 250 as prior to falling edge of $\Phi 2$ clock.
Hold time: input must be present al heas: 0 ns atter falling edge of d2 clock.

Opl A68

Outpuls

Low: < $) .4 \mathrm{~V}$ inco 50Ω.
HIgh: $>2.0 \mathrm{~V}$ into 5)! (nominally 3.9 V into an open circuit).
Trigger output: duritiun approx 75 ns in RZ format; dclay approx 400 ns ather the achive alge ol the t 2 clock pulse lhat defines a valid trigger.
Trace Polnt (5): provides a positive cdge approx 40 ns after © \boldsymbol{D}_{2} clock pulse that defines the specific palid trigger to be displayed on IGIIA. If 1611 A Delay is set so that Isigger word is nol displayed. Trace Point output occurs approx 400 as after nclive edge of $\boldsymbol{\Phi} \mathbf{2}$ clock that defines the valid word immediately preceding the first displayed word.
Trace Point (-i): complement of Trace Point (-).
Microprocessor compatibility
Molorola: 6800, 68A00. 68B00. 6802.
AMI: 6800.
Nota: The 1611A. Opt A68 is designed to be compatible with any microprocessors that meet specifications of the Motorola 6800.

Option A80 (8080 microprocessors)

Note: Model 10258B personality module may be urdered sepiralely for installation in a 1611 A 10 provide Opt Asto cispability.
Clock (ゆ2 only)
Repetition rate: 300 kHz to 4 MHz .
Wldth: 75 ns min for either high or low slite.
Threshold: 9 lo 13 V . logic I (high); - $1100.8 \mathrm{~V} . \operatorname{logic} 0$ (low). Input resistance: approx $12 \mathrm{k} \Omega$.
1npui capacilance: approx 25 pF , includes capacitance of 30.5 cm ($12^{\prime \prime}$) cable, approx 15 pF with $7.6 \mathrm{~cm}\left(3^{\prime \prime}\right)$ cable.
Data, Address, Wait, Ready, HLDA, INTE, SYNC
Threshoid: 3 V io 6 V . logic 1 (high): -1 to 0.8 V . logic 0 (low). Input restatance: approx I Mil.
Inpul capacltance: approx 25 pF . includes capacilance of 30.5 cm (12°) cable. nppros 15 pF with 7.6 cm (3°) cable.
Setup ond hold tmes: líming measured at 8 V icvel for leading edge of 42 and I V level for trailing edge.

Addrese and μP atatus on Data lines relative to leading edge of (P2 at T_{g} : scrup, 100 ns min: hold. 25 ns min.
Data relative to leading edge of \$2 at T_{3} : setup, 100 ns min ; hold. 25 ns min.
Sync relatlve to tralling edge of $\$ 2$ at $T_{1}:$ setup, 100 ns min: hold. 15 ns min.
Aeady celative to tralling edge of क2 at Y_{2} : sctup, 80 ns min; botd. 0 ns min .
Ready output: TTL open-collector compatible oulpul capable of sinking at least 8 mA when active.
Outputs: all timing relative 10 leading edge of $\Phi 2$ in $T_{\text {, cycle. }}$ cy Low: <0.4 V into 50Ω.
High: $>2.0 \mathrm{~V}$ into 30Ω (nominally 3.9 V into an open circuit).
Trigger: dumtion. upprox 75 ns ($R Z$ format): delay approx 350 ns anter the <D2 clock pulse which defines a valid Irigger.
Trace polnt (r): provides a positive edge approx 350 ns after the \$2 clock that defines the specific valid trigger to be displayed on the 1611A. If the 1611A Delay is set such that the trigger is not displayed, the Trace Point Ouput occurs approx 350 ns after the $\$ 2$ elock that defines the valid 1rigger word immediately preceding the

Opl A80

firsi word displayed on the I6IIA.
Trace point (2): complement of Trace Point (s).
External probe inputs
Resistance: approx 1 MO .
Capscitance: approx 25 pF measured al probe lip.
Threshold: 2.4 V io 5.5 V , logic 1 (high); -0.8 V to 0.8 V . Iogic 0 (law).
Setup time : input must be present for al leaxt 250 n p prior to leading edge al ゆ2 clock at T_{a}.
Hold lime: inpul musi be present for at least zero ns after falling edge of (\$2 clock at T_{a}.
Microprocessor compatibility
Intel: 8080, 8080A, 8080A-2. 8080A-1.
AMD: $9080 \mathrm{~A}, 9080 \mathrm{~A}-1,9080 \mathrm{~A}-2,9080 \mathrm{~A}-4$.
NEC: μ PD8080. μ PD8080A-E.
TI: TMS8080, TMS8080A.
Natlonal: INS8080A.
Note: The I611A Opl A80 is designed to be compatible with any microprocessor that meets specifications of the Intel BlisoA.
Option 0F8 (F8 microprocessor)
Note: Model 10259A personality module may te ordered separately for installation in a 1611 A to provide Option OF8 capability Clock and write
Clock rate: 100 kHz to 2 MHz .
Width: 180 ns min for either high or low state.
Input current: approx $50 \mu \mathrm{~A}$. logic 0 (low) and logic I (high).
Input capacitance: approx 25 pF . includes capaciance of 30.4 cm (12") cable: approx IS pF will 7.6 cm (3°) cable.
Threshold: 2.4 V to 5.5 V . lagic 1 (high): -0.8100 .8 V . logic 0 (low).
Write perlod: either d or 6 limes the clock period.
Write pulse wldth: max $=$ clock period, min $=$ clock period -100 ns.

ROMC

input current: approx 22μ. logic 0 (low): upprox $40 \mu \mathrm{~A}$, logic I (high).
Input capachance: approx 25 pF . includes capacitance of 30.4 cm ($12^{\prime \prime}$) cable; approx 15 pF with 7.6 cm (3") cable.
Threshold: 2 V min. logic 1 (high): 0.7 V max, logic 0 (low).
Selup time: 200 ns min relative to the second filling edge of Φ after Wrile goes low.
Hold time: 80 ns min relative to falling edge of Write.
Data, I/O0, 1/01, EXT RES
Input current: approx $200 \mu \mathrm{~A}$. logic 0 (low): xpprox $20 \mu \mathrm{~A}$. logic I (high).
Input espacluance: approx 25 pF . includes capacitance of 30.4 cm (12^{\prime}) cable: approx 15 pF with 7.6 cm (3") cable.
Threshold: 2 V min, logic I (high): 0.7 V max. logic 0 (low).

Setup and hold times

If ROMC $=0$, limes arc relative to the falling edge of Write.
Data: Selup, 300 ns min: Hold, 50 ns min.
If ROMC $\neq 0$. times are relative to the rising edge of Winte.
Data: Setup, 350 ns min: Hold, 50 ns min.
H/OO and I/OI: Selup. 300 ns min. Hold. 50 ns min.

Op1 0F8
External probe inputs
Inpul current: approx $50 \mu \mathrm{~A}$. logic 0 or logic 1 .
Input capacitance: approx 25 pF measured al probe tip.
Threshold: $2.4 \vee 105.5 \mathrm{~V}$. logic 1 (high): $-0.8 \vee 100.8 \mathrm{~V}$. logic 0 (low).
Setup time: 150 ns min relative to the rising edge of Write for
ROMC $\neq 0$. or to the falling edge of Write for ROMC $=0$.
Hold time: O ns min relative to the rising edge of Write for ROMC \neq 0 . or to the falling edge of Write for ROMC $=0$.
Note: al inputs have hysterisis.
Halting
The F8 CPU must be placed in the 1611 A Probe sorker to hall or single-step the F8 microprocessor.

Outputs

Low: $<0.4 \mathrm{~V}$ into 50Ω.
Hlgh: >2.0 V into 50Ω (nominally 3.9 V into an open circuit).
Trigger: duration, approx 75 ns (RZ format); delay, approx 350 ns afler the rising edge of Write if ROMC $\neq 0$, and approx 350 ns after the falling edge of Write if ROMC $=0$ during cycles that define a valid ingger.
Yrace polnt (5): provides a positive edge approx 350 ns after the rising or falling edge of Write (as explained for Trigger Output) during the cycle that defines the specinic valid trigger to be displayed on the 1611 A . If the 1611 A delay is set such that the trigger word is nol displayed. Trace Point Outpul occurs for the cyele that defines the valid word immediately preceding the first displayed word.
Trace polnt (7): complement of Trace Point (г).
Microprocessor compatibllty
Fairchild: F8.
Mostek: F8.
Note: The 1611A Opt FB is compatible with any microprocessor thal meers specifiealions of the Fuirchild F8.

Option Z80 (Z80 microprocessor)

Note: Model 10260A personality module may be ordered separately for installation in a 1611A io provide Oplion Z80 capability.
Clock, data, address, ano control inputs
Clock rate: 500 kHz to 2.5 MHz .
Input curfent: approx $200 \mu \mathrm{~A}$. logic 0 (low): approx $20 \mu \mathrm{~A}$, logic I (high).
Inpui capacitance: approx 25 pF , includes capacitance of 30.4 cm (12°) cable; approx 15 pF with 7.6 cm (3") cable.
Threshold: 2 V min. logic I (high); 0.7 V max, logic 0 (low).
Sotup tme: Data, 100 ns min relative to rising edge of RD, WR, or IORQ. Address, 0 ins min relative 10 falling edge of RD. WR, or IORQ.
Hold Ume: Data, dns min relarive to rising edge of RD, WR. or IORQ. Address. 300 as min relative to falling edge of RD, WR, and IORQ.

External probe Inputs

Input current: approx 50μ A. logic 0 or logic 1 .
Input capacitance: approx 25 pF measured at probe Lip.
Threshold: 2.4 V to 5.5 V . logic I (high): -0.8 V to 0.8 V . logic 0 (low).
Setup time: 150 ns min relative 10 rising edge of WR, RD, or IORQ.

Opt $Z 80$
Hold time: 0 as min relative to sision edge of WR, RD, or JORO. Walt output: TTL open-collecter compatible ourpus capable of sinking at least 8 mA when active.

Outputs

Low: <0.4 V into 50 n .
HIgh: $>2.0 \mathrm{~V}$ into 50Ω (nominally 3.9 V into an open circuit).
Trlgger: duration, approx 75 ns (RZ fornsat): delay, approx 350 os after the rising edge of RD, WR, or IORQ during the cycle that defines a valid trigetr.
Trace point (-): provides a positive edge approx 350 ns after the rising edge of RD, WR, or IORQ that defines the specific valid trigger to be displayed on the 1611A. If the 1611A delay is sel such that the trigger word is nol displityed. Trace Point Outpul occurs for the cycle that defines the valid word immediately preceding the first displayed word.
Trace point (L): complement of Trace Point (\ulcorner).

Microprocessor compatiblility

Zllog: Z80.
Mostek: 280.
Note: The 1611A Opt Z 80 is compatible with any microprocessor that meets specifications or the ZiJog 280 .

Microprocessor compatiblity

Zllog: 280.
Mostek: Z80.

General

Connection between $\mu \mathrm{P}$ and 1611A Input buffers: one 40 pin dual in-line package connector with 30.5 cm ($12^{\prime \prime}$) cable. one 40 pin male socket with 30.5 cm (12") cable, or one 40 pin male socket with $7.6 \mathrm{~cm}\left(3^{\prime \prime}\right)$ cable.
Memory depth: 64 data transactions; 16 transactions are displayed at one lime, roll keys pemit viewing all 64 transactions.
TIme Interval: accuracy. $0.1 \%=1 \mu \mathrm{~s}$. Max Lime, $\left(2^{24}-1\right) \mu \mathrm{s}(16.7 \mathrm{~s})$. Events count: $2^{* 4}-1$ events (16.7 million) max.
Loglc probe output power: $5 \mathrm{~V} d c$ at 0.1 A max.
Power: $\{00.120 .220,240 \mathrm{~V} \mathrm{ac}$: -100% +5\%: 48 to 440 Hz ; 120 VA max.
SL2e: $206 \mathrm{H} \times 426 \mathrm{~W} \times 522 \mathrm{~mm} \mathrm{D}\left(81 / \pi^{n} \times 16^{3} / 4^{\prime \prime} \times 22^{1 / 4}{ }^{\prime \prime}\right)$.
Operating environment: temperature. $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $132^{\circ} \mathrm{F}$) : humidily, to 95% relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$; altioude 104600 m (15000 fi); vibrated in three planes for 15 min . each with 0.38 mm (0.013 in .) excursions, 101055 Hz .
Weight: ael, 15 kg (33 lb); shipping, $19.5 \mathrm{~kg}(43 \mathrm{lb})$.
Accessorles supplled: one microprocessor probe. external \&-bit probe; one 40 pin clip with 30.5 cm (12) cable, one 40 pin male socket with 30.5 cm (127 cable; one 40 pin maic sucket with 7.6 cm
($3^{\prime \prime}$) cable; one 2.3 m (7.5 n) power cord; and one Operating and Service Maoual.

Ordering Information

Price
1611A Opt A68 Logic State Analyzer for $6800 \mu \mathrm{P} \quad \$ 5200$
1611A Opt A80 Logic State Analyzer for $8080 \mu \mathrm{P} \quad \$ 5200$
1611A Opt OF8 Logic State Analyzer for $\mathrm{F8} \mu \mathrm{P} \quad \$ 5200$
1611A Op: 280 Logic State Analyzer for $\mathbf{Z 8 0} \mu \mathrm{P} \quad \$ 5200$
Opt 910: extra set of produel manuals
add $\$ 20$
Personallty modules for field installation
102578 for $6800 \mu \mathrm{P}$
$\$ 1250$
10258 B for $8080 \mu \mathrm{P} \quad \$ 1250$
10259A for $0 \mathrm{~F} 8 \mu \mathrm{P}$ \$1250
10260A for $280 \mu \mathrm{P} \quad \$ 1250$

1600S Descriptlon

The 1600 S Logic Slate Analyzer is a versatile. general purpore data domain instrument for use in design and inoubleshooting of minicomputer and microprocessor based systems as well as other digita) systems. Parallel data is captured at clock speeds to 20 MHz and presented in an easy-to-read one's and zeru' i insplay formal for fast functional analysis of digital data flow. The ability to caplure and display words up to 32 -bils wide lets you observe. in real time. microcodes or addresses with resulting data, saving time in system design and development, hardware troubleshooting. software evaluation. and service and maintenance. Convenient and nexible functional analysis is provided by fearures such as sequential triggering. dual clock, sepurately configured data lables, display qualification. exclusive OR comparison of Tables A and B . dynamic mapping, and halt when A is nol equal 10 B .

The 1600 S consists of a 1600 A Legic State Analyzer. a 1607A Logic Stale Analyzer, a 10236 A Trigger Bus Cable, and a 10237 A Data Cable. The Trigger Bus Cable logically AND's the ingger regislers of both the 1600 A and 1607 A for a trigger word up to 36 bits wide (four qualifiers not displayed). The Data Cable connects the 1600 A Table B memory to the 1607 a 10 cnable the display of words up to 32 bits wide, to display two 16 -bil data sequences at the same
ting - such as addresses and instruclions. to display $\underline{2} \mathbf{2}$ consecutive th-hil words. or for dual clock application. When the iull system cap:ithilities are nor needed. the 1600A or 1607A may be used separately. The $1600 \wedge$ by itself is a complete logic state analyzer with 16-bir tngeering plus (wo qualificrs, and a 32-bit wide lable display as well as dynamic mapping. The I607A needs only the proper oscilloscope or X-Y display for another complete analyzer. also with 16 -bit triggering plus two qualifiers. Both the 1600 A and 1607 A hatve a pattern trigger oulput to trigger an ascilloyeope for electrical analysis.

Mapping program flow

The map display provides a dynamic overview of a system's operation-a pattern of dots interconnected with vectors that are unique for each area of program implementation. Each dot represents :t peecific word: its location indicates binary magnitude and its brighinesi indicates retalive frequency of occurrence. The veciors between cach dol allow you to observe the sequence of data transactions. The vector gets brighter as it moves coward a new point to show the direction of ditte now.
With the map you can identify program loops, improper data fiow. as well as lose portions of a program. You cin also map single-shot events such as those in tum-on sequences.

The map display olfers an overall view of machine operation, whit each dot representing one input word. The real time display allows you to identify program loops, improper data flow, as well as lost portions of a program.

Table display

In the Table display mode you can display up to sixteen 32 -bit words which gllows you to view address and resultant data flow at the same lime. You can look al events leading up to, surrounding. or following the trigger word; and delay up to 99999 clock cycles beyond the trigger point to view events anywhere in a program. Two 16 -bit by 16 -bit cable displays. A and B. can be used separasely or in various combinations to satisfy a wide variety of applications.

Exclusive OR mode

An exclusive OR mode. A \& ($A \nsubseteq B$). makey comparison of Table A and Table B data casy by displaying any differences as intensified one's on Table B. This display mode allows you to quickly compare active data to known stored data. or co compare data from two active systems simultaneously.

Another useful mode is the hall when A docs nol equal B mode (A - B). which automatically halts and slores the data in the A mernory when it does not equal the data in the B memory. Used in conjunction with the $A \&(A \oplus B)$ mode. this mode frees you from the tedious waiting and watehing for intermittent malfunctions.

Display quallfication

The 1600 S has a total of four qualifier channels which in the Display Mode allow only selected data to be captured. greaty expanding the effectiveness of the memory since isrelevant or extraneous data is not strobed into memory. The 1607A paltern trigeer oulpul (PTO) can be used as a qualifier inpur to the I600A which permits very sophisticated analysis of multiplexed buses in minicomputers.

Sequentlal triggering

The 1600 S permits you to define two events which must occur in sequence to Irigger a data acquisition cycle. The Irigger output of the 1607A can be used 10 arm the 1600A on a selected event, enabling it to look for the second event. Sequential triggering is uscful for analyzing branch operations.

Duel clock

The 1600 A and 1607 A may be clocked at different rates which permits you to examine simultancously up to 16 bits on both sides of an 1/O port even though state flow is from two different sources running at different speeds. You can also easily relate bus activity to events occurring elsewhere al different clock rates. such as sysiem peripherals. Dual clock capability can be farticularly useful in deicmining design incompatibilities between handware and sonware in mierocomputer-controlled systems.

In the exclusive $O R$ mode, $A \&(A \oplus B)$. A memory data is displayed on the leff while the table on the right displays logic differences between A and B memories. This orovides very last 'at-a-glance' comparisons.

Start and End display triggering

Hoth the 1607A and the 1600A may be operated in the Star Display or End Display modes. In Slart Display, the Analyzer Itiggers on a unique word established by the trigger word switches and displays that trigger word and the fiffeen following words as they are clocked in. This is a valuable noude for paging through a system while following an algorithm to trace data fow.
End Display triggering captures events leading up to and including the thiger wond, providing a "negative time" display. This is extremely helpful for troubleshonsing, since you can trigger on an unallowed slate or a fault and see where the machine nalfunctioned rather than the end results of the error. In addition, delay may be combined with the End Display trigger to caplure both positive and negative time data, allowing you to see events before and after the trigger event and reduce analysis time.

Digital delay

When the data you want to see does nol immediately follow the desired trigger wond. delay can be used to position the sixteen word "window" an exact number of clock pulses from the trigger word. The 1600 A and the 1607 A cach perrait selection of up to 99999 clock cycles of delay. Digital delay is used with the start and end display modes for precise paging through data, or indexing. It is useful for moving the display window past loops and neasuring lengiths of subroutines while maincaining a desired pattern trigger point.

Trigger outputs

The 1600 A and 1607 A have trigger outpuls that extend troubleshooling capabilities in digital circuit analysis by windowing osciloscopes to the proper digital point in time for electrical analysis of circuil operation.

Versatle minature probes

The 1600 S acquites data through six. 6-channel high impedance probes. Two separate clock probes allow comnection to the desired strobe source. The miniature probe tips are small enough 10 connect to adjacent pins on DIP's, or can be slipped off the probe wire for direct connection to 0.6 mm (0.025 in .) square pins, IC test clips. Model 10024A IC clip. and wire wrap pins.
Individual probes are connected to each data or clock pod through a quick disconnect ganging-bar which permits hardwired or semipermanent conncetions to system nodes that do not need to be disturbed when the Logic State Analyzer and its probe pods are removed.

Models $1600 S$ and 10253 (cont.)

10253A Card Reader

1600S Specifications

Clock and data lnputs

Repeltion rate: 0 to 20 MHz .
Input RC: $40 \mathrm{k} \Omega=3 \mathrm{k} \Omega$ shunted by $\leq 14 \mathrm{pF}$ (al the probe tip).
input blas curtent: $=30 \mu \mathrm{~A}$.
Input threshold: TTL. fixed al approx. +1.5 V : variable $=10 \mathrm{Vdc}$.
Maximum input
Level: - 15 to +15 Vdc .
Swing: 15 V peak from inreshold.

MInimumi Input

Swing: $0.5 \mathrm{~V}+5 \%$ of p-p threshold voltage.
Clock pulse width: 20 as at threshold.
Data pulse wldth: 25 ns al threshold.
Data setup time; lime dala must be present prior to clock transition, 20 ns.
Hold tlme: time data must be present after clock lransition, 0 ns.
Pattern and delayed trigger outputs
$\mathrm{HIgh}: \geq 2 \mathrm{~V}$ into 50Ω (line driver interface).
Low: $<0.4 \mathrm{~V}$ into 50Ω (line driver interface).
Pulse duratlon
Delayed trlgger: approx. 25 ns (RZ format) al I V level.
Pattern trigger: approx. 25 ns in RZ formal al I V level with
delay sel to zero or off. With delay on and not set 10 zero, pattern
rigger oulpul stans on receipt of a pattem trigger signal and ends when the delay ends.
Trigger arm lnput
Impedance: Son.
Level: low state, 0 V to $<0.4 \mathrm{~V}$: high stale. 2 V to $<5 \mathrm{~V}$.
Pulge width: 15 ns minimum at 1.5 V level.
Arming conditions: if the arming pulse posilive edge occurs < 45 ns after a clock. triggering occurs on the same clock cycle that is is armed. If the arming pulse positive edge occurs $>75 \mathrm{~ns}$ afticr a clock. triggering occurs on the next clock cyele.
1607A X-, Y-, and Z-axes outputs
X -axls: $<0.6 \vee 10>6 \mathrm{~V}$ p-p. $\pm 8 \vee \max$ in $10 \geqslant 500 \mathrm{kS}$.
Y -axis: $<0.6 \mathrm{~V}$ to $>6 \mathrm{~V}$ p-p, $=8 \mathrm{~V}$ max in $10 \geqslant 100 \mathrm{k} \Omega$.
Z-axls: 0 to 10 V -p inlo $\geqslant 1 \mathrm{k} \Omega$.
Display Interface requirements: the 1507A interfaces with oscilloscope or display with the following input parameters (Nol recommended for storage oscilloscopes or displays).
X and Y inputs: 0.1 to I V/div deflection factors: de coupled input: and $>500 \mathrm{kHz}$ bandwidth.
Z-axls input: de coupled with positive blanking; full blanking must occur with 10 V input at 10 mA .

General

Display rata: variable from <200 ms to $>5 \mathrm{~s}(1600 \mathrm{~A})$. $<50 \mathrm{~ms}$ to $>5 s(1607 A)$.
Power: 100 . $120.220 .240 \mathrm{Vac}:-10 \%,+5 \%$: 4810440 Hz : 120 VA max.
Logic probe power: tear panel BNC conneclor. $+5 \mathrm{~V}, 0.1 \mathrm{~A}$.

Slze
1600A: $197 \mathrm{H} \times 335 \mathrm{~W} \times 540 \mathrm{mml}$ L with landle ($73 / \mathrm{c}^{\prime \prime} \times 13^{\circ} / \mathrm{m}^{\prime \prime} \times$ 21/."7: 460 mm ($181 / \mathrm{s}^{\prime \prime}$) L withoul handle.

Operating envlronment: tampcriture, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ io
$+130^{\circ} \mathrm{F}$); humidity to 95% relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$: wtilude to 4600 m (15.000 ft): vibrated in three planes for 15 minules cach with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz .
Welght
Model 1600S: nel. 19.1 kg (42 lb). Shipping. 22.7 kg (50 lb).
Model 1600A: ne1. 12.7 kg (28 lb). Shipping, 15.9 kg (35 lb).
Model 1807A: net, 6.4 kg (14 Jb). Shipping, 8.2 kg (18 lb).
Accessorles supplied
1600S: six 10231C data probes, Iwo 10230 C clock probes. one
10236A Trigger Rus Cable, one 10237A Data Cable, two 23. mo
(7.5 ft) puwer curds, one accessory line for each analyzur. one

1600A and one 1607A Operating and Service Manual.
1600A or 1607A: three 1023)C dala probes. one 10230C clock
probe. one accessory case. one Operating and Scrvice Manual.

Accessorles

Card reader: Model 10253A Card Reader plugs directly into the 1600A and provides a convenient method of performing repetitive lests on digital components or systems. Cands provide a low cost method of storing fixed data that may represent a complete system test procedure or a simple QC lest. Applications include íncoming inspection, production lesting. service and maintenance, engineering, and envinonmental lesting.
Cards: special printed cards are in format required for loading data into the 1600A Logic State Analyzer Table B memory: 187 $\mathrm{mm}(\pi / \mathrm{m}$ in.) length cards are loaded into Table B in $<2 \mathrm{~s}$.
Powar: suppliad by 1600 A .
Welght: ncl. I kg (2.1 lb). Shipping, $1.8 \mathrm{~kg}(4 \mathrm{lb})$.
Operaling envlronment: same as 1600 A except: emperalurc,
$+10^{\circ} \mathrm{C}$ 10 $\div 40^{\circ} \mathrm{C}\left(+50^{\circ} \mathrm{F}\right.$ 10 $\left.+104^{\circ} \mathrm{F}\right)$; humidity, 1080% relative humidicy at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Accessorles supplledi one drum cand. HP P/N 10253-9000): one exerciser card. HP P/N 10253-90002; 100 dala cards. HP P/N 9330-3324; anc interíace box mounting bracket. HP P/N $01120-$ 64701 : and ane Operating Nole.
Serial-lo-parallel converter; Model 1025a Serial-lo-paralkel Convener acts as the interface between a serial data system and a 1600 A or 1607 A , converting the serial data into parallel format for full utilization of these logic state analyzers in serial data stream analysis.
Trigger bus cable: Model 10236A Trigger Bus Cable interconnects the 1600A and 1607A to provide a 32-bil word capability (supplicd with the 1600 S).
Welght: net, 0.2 kg (60 oz). Shipping, 0.5 kg (I lb).
Data cable: Model 10237A Data Cable interconnects the 1607 A and 1600 A to provide 32 -bit data display (supplied with 1600 S).

Welght: nel, 0.23 kg (8 oz). Shipping. 0.5 kg (1 fb).
Hack mount adapter: Model 10491B Rack Mount Adapicr, 222 $\mathrm{mm}(8 \%$ im.) high and 540 mm ($21 \mathrm{M} / \mathrm{in}$.) deep: ad apis the 1600 A to a 3 (andard 483 mm (19 in .) rack.

Welght: ne1, 1.4 kg (3 lb). Shipping, 2.3 kg (9 lb).
IC tegt cllp: Model 10024A iC Clip allows convenient connection of analyzer probe leauds to dual in-line packages, reducing the possibility of shorting between IC pins. Refer 10 page 172 for description of 10024 A and oither probe accesseries.
Ordering Intormation Price
1600S 32-channel Logic State Analyzer. $\$ 7100$
includes a 1600 A and 1607 A
Opl 910: cxtra set of manuals
add $\$ 17.50$
1600A 16-channel Logic State Analyzer
Op1 910: extra Operating and Service Manual
$\$ 4200$
add \$9
1507a ib-channel Logic Stalc Analyzer
Opt 910: extra Operaling and Service Manual
add $\$ 8.50$
1023 A Trigger Bus Cable (supplice wiul 1600S) $\$ 20$
10237A Dala Cable (supplied with I600S) \$60
10253A Card Reader
$\$ 800$
104918 Rack Mount Adapler
$\$ 100$
10024 A IC Test Clip
10247-88701 Quick Disconnect Probe
Lead Kir for 10230 C Clock Probe
Lead Kiz for 1023) C Data Probe
10230-62101 Probe Tip for use with
Probe Lead Kits or as replacement tips

Serial data analysis \& digital triggering

Models 10254A, 1230A \& 10250A

1230A

10254A Serial-to-parallel converier
 specifications (Accessory to the 1600 A and 1607 A Logic

 State Analyecrs.)Probe Inputs
Rep rate: $\leqslant 10 \mathrm{MHz}$ in Edge Sync, $\leqslant 7 \mathrm{MHz}$ in Patlem Sync.
Input AC: $40 \mathrm{k} \Omega=3 \mathrm{k} \Omega$ shunted by $\leqslant 14 \mathrm{pF}$ (at the probe tip).
Input threshold: TTL. fixed at 1.5 Vdc , variable ± 10 Vde selected at the logic state analyzer.
Maximum Input: level, $\pm 15 \mathrm{Vdc}$; swing. Is V peak from threshold.
Pulse width: 40 ns min at threshold.
Sotup tlme: 50 ns. time data must be present prior to clock iransition.
Hold time: 0 ns . ime data must be present after clock transition.

Operating modes

Display format
Blts/byta: 110 to bits (a byre is displayed as one line on the Analyzer).
First blt, lett/right: configures displayed data for most significant bil left or right.

Data sync

Pattern: symbhronizes on a unique pattern in the seriad data strean selected with the logic state nnalyzer Trigeer Word switches.
Edge: syachronizes on input probe syne signal with positive or negative edge selectable.
Bytes/sync: pernits memory qualification by acquiring 1 to 16 byles of data following a sync.
Delay (bits after sync): selects the number of clock pubses from 0 to 99 after a sync sigral is received before data acquisition begios. Sync search: Initisle pushbution or a posifive-going input pulse slarts a new search cycle.

General
Welght: net, 3.2 kg (7 lb). Shipping, 5 kg (11 lb).
Power: +5 Vdc, +12 Vdc and -12 Vdc: supplied by the 1600 A or 1607A Logic Scate Agalyzer.
Slze: $12.1 \mathrm{H} \times 28.4 \mathrm{~W} \times 41.4 \mathrm{~cm} \mathrm{D}\left(4^{3} / 6^{\prime \prime} \times 11^{3 / 19^{7}} \times 16^{3 / 16^{7}}\right)$.
Accessorles supplled: one Model 10230A Trigger Bus Cable, four interiace cables (HP P/N 10254-6160), and one Operating Note.
Equipment required: 1600 A or 1607 A plus a 10233 C data probe from the 1600 A, 1607 A or ordered separately, for use as the 10254 A inpitt data probe (labels supplied with 10254 A).

8 Bit trigger probe with delay

1230A Speclfications
Input
Frequency: 15 MHz max.
Logic tevels: logic ' 0 ': 0 V to 0.8 V : logic ' 3 '; 2 V to is V .
Current: - $360 \mu \mathrm{~A}$ for logic ' 0 ' inpul $(-400 \mu \mathrm{~A}$ for GATE input):
$100 \mu \mathrm{~A}$ for logic ' 1 ' input.
Maximum Input voltage range: $-1 \mathrm{~V} 10 \div 15 \mathrm{~V}$.
Output (negative-going edge true)
Logle ' 0 ': 0.5 V max (60 mA currest sinking capabilisy).
Logle '1': $\mathfrak{2} \mathrm{V}$ min into 50Ω (40 mA source current).
Operating modes
Word recognition
Synchronous pattern recognition: trigger word input recognition only during pos. or neg. edge (selectable) of CLOCK input signal.
Minimum setup tme: 20 ns .
Minimum hold time: zero ns.
Asynchronous pattern recognition: independent of CLOCK input.
Maximum propagation delay after word recognition: 45 ns. Minimum Input pulse widh; 2ς ns.
GATE input: for strabing or expanding word recognizer. GATE switch set to LO. GATE input pulse must be 20 os longer than 'word-true' time. Sel to HI, GATE input pulse must be 10 ns fonger than 'word-inue" time.
Events delay
Delay range: 1-9998 evenis start counting on pos. edge or neg. edge (selectable) of CLOCK input signal after word recognition.

General

Power requifements: 300 mA at $\$ \mathrm{~V}$.
Vohage on power inputs: +4.75 V $10+13 \mathrm{~V}$ max $d c$. Protected against reverse polarity.
net. 454 g ((lb). Shipping. 907 g (2 lb).

4 Blt trigger probe (TTL)

10251A Specillcations
Inpul
Low level: $0.8 \mathrm{~V}(-0.6 \mathrm{~V} \mathrm{~min}) ;-0.8 \mathrm{~mA}$ max al $0.4 \mathrm{~V}(0.5$ standard TTL load).
High lovel: 2 V (5.0 V max): $100 \mu \mathrm{~A}$ max at 2 V .
Output
Swing: 0.5 V to 4.5 V min into 1 megohm.
Transition time: 7 ns mux firom $0.6 \vee$ io 1 V ; 50 ns min 104 V with I megohm, 20 pF load.
Delay
Propagation: 30 ns max from any inpur to trigger output.
Difference: 10 ns max between any two inputs.
Power (supplifed by elrcult under teat)
Voltage: $+5 \mathrm{~V} \pm 5 \%$; -0.4 V 10 +7 V nuix
Current: 30 mA maxi nonnal operation. 17 mA .
Overall lenglt: approx. 168 cm (66 in .).
Welght: nel. $227 \mathrm{~g}(8 \mathrm{oz})$. Shipping, $907 \mathrm{~g}(2 \mathrm{lb})$.
Accessories included: six miniature probe lips, one Operating Note, and one vinyl cartying case.
Ordering information Price
10254A Serial-10-parallei Converter \$975
1230A Lopic Trigger
Opt 910: extra manual
10250A Trigger Probe (TTL)

The osclloscope-the most general purpose and basic tool of the electrical designer-has evolved into a very accurate and versatile measurement tooi. With the rapid growth. in the past few years. of lechnology in integrated circuits, the measuring cnpabilities have increased tremendously. New capabilities include the Hewlett-Packand developeat delta time measurements and the erystal referenced lime base of the 1743 A . In geneml, the mout versatile rest instrument has become even more accurale and more fiexible.

Howlell-Packand pioneered many of the measurement capabilities that are now taken for granted in oscilloscopes. A few of these are intemal graticule CRT, beam finder. expansion mesh CRT, Inger holdoff, sixed sweep, general purpose sampling 1018 GHz, time domain reflectometry, and rugged variable persistence/storage.

Selecting an osclloscope

Today's selection of an oscilloscope is not as easy as it was in previous years. The re-
cent technological changes have considerably improved the price performance ratios that are available. In addition. measurement requirements have also changed and expanded.

To make the best sclection, use your innmediate measurement applications as a starting point. Then look at your past and future requirements, After examining all of the possible measurement requirements. you will have an idea of the rype of oscilloscope needed in your application. In a somewhat broad sense oscilloscpes can be classified in ewo categories. mainframes with plug-ins and nonglug-ins.

Plug-In oscllloscopes tor the lab

The plug-in oscilloscope offers maximum flexibitily by pemmilling genema purpose measurements as well as retaining the capability to make specialty measurements. By carefully selecting a mainframe, you will be able to change the measurement capability by using different plug-ins rather than having another infrequendy used spi-
cial purpose oscilloscope on hand. Plug-in oscilloscopes are usually called General Purpose Laboratory insiruments because of the broad measurement enpabilities.

Gencral purpose lab scopes are used in basic circuit design for almost every clecfronic product and are most often configured as a 2 channcl. wide band, delayed sweep instrument. As the gencral purpose measurement needs expand, the plug-in flexibility allows you to reconfigure your instrument to bis other applications.

In addition to general purpose dual channel plug-ins with bundwidths from 50 to 100 MHz , specialty plug-ins are alno avail able-high sensitivity , differential/de offset: four channels: standard. delayed, expanded. or mixed sweep operation: sampling bandwidths to 18 GHz time domain reflectometry: spicelrum analysis to 1500 MHz . and swept frequency festing from 100 MHz to 18 GHz . The nexibility of the plug-in syslem is considerable-il makes one instrtment do many jobs

Regresentative plug-in osclifoscopes from Hewlett-Packard's 180 serles.

High speed

Hewlet1-Packard bas three high speed delta time oscilloscopes that are ideal for use in the design, manufacturing. and testing of high speed computers and peripherals with fast intesface logic, high speed digital communications and instrumentation, as well as high frequency ff applications.

Mode) 1722B with is microprocessor and LED display eliminates the time-consuming counting of divisions. interpolating belween gralicule lines, and multiplying by the ap. propriate scate factor. With microprocessor calculated resulis and direct LED readout, measuremens are made withour manual computation which saves time and reduces the possibility of human ertor. Delta (ime techligutes improve accuracy of lime inter. val measurements because the CRT is used as a nullíng device which ctimionates nonlinearity errors. The della time sweep measurement rechnique, developed by Hewlell-Packard simplifies I ransition iime. propagation delay, clock plasing and other high-speed liming measumements. Two separale markers are used to enable the operator to see both starn und slop points of the time interval simillaneously. These two markers also reduce the possiblity of seting a measurement to the wrong evens. In the delayed sweep mode, the starl and stop mode are overlapped to oblain maximum accuracy with the improved resolution of opitcal nulling.

Modeis 1725A and 1715A both offer the delca tirne advantrees of increased accuracy and ease-of-use. The 275 MHz I725A and $200 \mathrm{MHz} \mathrm{1715A}$ are available with an op. tional built-in DMM for direct readout of lime interval. The time interval can also be read directly from the calibrated delay control orfrom an external DVM that is reading the scaled voltage oucput on the rear panel. Both oscilloscopes can be converted to the familiar single marker delayed sweep by selection of the della time off mode.

100 MHz

Model 1740 A is a 100 MHz osellloscope
with a third channel 1rigger view for accurate general pumpose measurements. This oscilloscope with ies lange $8 \times 10 \mathrm{~cm}$ CRT offers delayed sweep measurements to 100 MHz at $5 \mathrm{mV} / \mathrm{cm}$ deflection factors. A X5 magnifier increases sensitivity to $1 \mathrm{mV} / \mathrm{cm}$ on both channels to 40 MHz without the need 10 cascade channels. As a further aid 10 measurement flexibility Option 101 to the 1740 A provides rear panel inpuls and switching circuits for interfacing with the Model 1607A Logic Statc Anslyzer. This oplion permits single pushbulton switching between data domain table displays and time domain measurements. The functional 16 bit wide displays provided by the 1607 A permil fast analysis of digital bystems when you only need logic flow infomntion. And, with the digital triggering capability of the 1607 A coupled to the 1740A extemal trigger you have the ability to "window" the time domain display to the digits problem area for electrical analysis. Option 101 is also avaitable on the I715A, 1722B, 1725A, 1741.A. and 1743 A .

Model 1741A offers the same operaling features as the 1740 A plus variable persistence/slorage for a truly versatile general purpose oscilloscope. For vieving low rep rate fast transition ime signals, be variable persislence mode allows you to adjus the irace for an oplimum display. The 1741A slorage CRT provides a bright, crisp stored trace with a vriting speed of $100 \mathrm{~cm} / \mu \mathrm{s}$ which is ideral for capturing single-shol and low rep rale signals common In today's digiaid circuits.

Preclsion IIming

Conventional osciłloscopes offer liming accuracies lypically $\pm 3 \%$ of full seale, but with the addition of a crystal referenced lime base in the new 100 MHz 1743A, liming accuracies of 0.002% of reading are obtained. This new type of time base offers several new measurement capabilisies: unprecedented accuracy. calibrated sweep vemier so that the scope can be calibrated to your system's units of operation and still make
precision timing nicasurements, (riggered delia time meanurements so that the time interval readout will iulomaticially track changes in the input signal without operator intervention. and first pulse mesisurement for highly accurate measurements on those hard to measure software generited pulses.

15 MHz

In the de so 15 MHz range there are four models avaidable. 1223A variable persistence/storage, 1220A and 1223A dual channel, and I22IA single channel, that are designed for indusirial and educational applications, and production line lesting. Logical front pancl layout, large 8×10 division intermal graticule, and autumatic irgegering reduce familiarization thac and assure maximum efficiency in production and student envirunments.

500 kHz

Low frequency ropes which have about $500 \times \mathrm{Hz}$ bendwidth are used in educiational. medical, syiten monitots, engineering. production, and in some cuses field service. These scopes could be classified is the "workhorses" of the electrooics industry since they are most commonly found in system applications. The 1200 series scopes casily fill these requirements with their 100 $\mu \mathrm{V}$ and 5 mV sensilivity. solid-state and lighrweighe construction, and reliable and stable operation. Also avadable art slorage and variable persistence models which eliminate annoying licker and retain singleshot traces that are common in bio-medical or electro-mechanical applications.

Oscilloscope basics

Because the oxcilloscope cith diaplay elec friculd signals whieh vary with time. it las become today's most widely used electronic measuring instmment. It produces a visual display of any physical quantity which can be represented as a voleage. This pemils precisc measurement and analysis of the phenomenon represented by the voltage.

Option 101 to 1740A offers one button switching between Loglc Stete Anaiysis and volts vs. ilme measurements.

Representative Hewlett-Packard nompiug-in oscilloscopes.

The cathode-ray tube

λ CRT produces an electron beam whose movement is controlled by the verical and horizonlal amplifiers and by the power supplies which form, shape, and accelerate iI. This electron beam strikes a phosphor screen and a vistble glow resules as the beam is moved.

Since the beam deflection can be calibrated against a grid (graticule) on the CRT face, amplifude and time measurements can be made. All Hewlett-Packard graticules are internal and in the same plane as the phos. phor, eliminating paralax.
An expansion mesh. introduced by Hewletl-Packard in 1962, with a voltage on it produces an electrostatic field wbich bends the beam after its initial deflection at the electron gun structure. By controlling mesh radius, Hewlett-Packard CRT designers have produced increasingly larger display areas while simultaneously reducing the overall length of the sube.
Storage scopes are available with rugged variable persistence (the time it takes for the trace to fade 1010% of its ariginal bright. ness). This is made possible by use of a storage mesh immediately bebind the pbosphor. Conerol eincuits then determine the rate at which a display fades away after being stored as a charged pattem on the mesh.

Vertical deflection system

Since the CRT is limited as to the range of deffection voltages which can be applied. a verical amplifier and attenuator are used. These are accurately calibrated to provide a deflection factor related to the graticule (e.g., $5 \mathrm{mV} /$ division).

Horizontal deflection system
To deflect the electron beam horizonlally. an amplifier and sweep gencrator are used. A sawtooth waveform generator sweeps the beam at a selectable uniform rate. With such a linear rate of sweep, calibration to the graticule is possible (e.g.. I ms/division).

For meaningul displays. the horizontal deflection system must provide synchronizing circuits to star the sweep at a specific instant with respect to the measured waveform. Automatic iriggering on Hewlet-Packand scopes makes starting of the sweep a quick, easy step.
Power supplles
Scopes contain low and high voltage power supplies and determine, with the CRT, the maximum capability of a scope. especially of a mainframe.
Low voltage power supplies give operating power to scope circuits such as the verical and horizontal amplifiers. The high voltage power supply forms and controls the CRT eleciron beam.
input probes
Proper selection of well-designed probes will minimize circuit loading effects and provide the most accurate and useful waveform information. Improper matching of probe to scope will cause rise time errors in pulse measurements and cause both amplitude and phase errors in CW measurements.

The effects or resislive loading have been recognized for some time. High input impedances have been used to reduce the voltage division between circuit and measuring device. This technique will cause minimal error if measurements are al low frequencies and the circuit test point has a low impedance.

When these probing requirements are not met, inaccuracies result for one big reason: CAPACITANCE. And the effects of capacitance in the probe or scope input change drastically because of frequency.
Hewlett-Packard has pioneered in helping solve the capacitance problem in high frequency measurements by providing selecta-

HP minialure probes and IC Test Clio permit easy probing of dual in-line packages with minimum probe loading.
ble input impedance- 50 ohms or a high \mathbf{Z} with low capacitance. This measurement convenience is available because of Hewlet1-Packard's innovative design that uses thick-film attenuators.

Sampling oscllioscopes

Sampling ascilloscopes use a technique which is simular in principle to use of a stroboscope for study of periodic or varying molion.

Samples are taken on successive recurences of a waveform. As each amplitude sample is taken later in time on the waveform, the CRT beam is deflected to the correspooding point where a visible dot is then displayed. The rate at which sampling occurs is very fast; thus the dots are displayed as a coherent-appearing waveform on the CRT.
Samples are obtained when a pulse "turms on" the sampling circuit for an extremely shor time. During this interval the input waveform amplitude is measured, the samples are then effecively "stresched" in time. and amplified at relatively low bandwidths.

Thanks to rast-switching diodes developed by Hewlett-Packard-some even for use in other rypes of instrumentationsampling scope bandwidths have progessed to the 18 GHz point.

Militarized ascilloscopes

A complete line of oscilloscopes modified to meet one or more specific military requirements is available through the aearest HP Sales Office.

- Plug-in 50 MHz I551a Opl 021 Oscilloscope (AN/USM-281A) meets or exceeds requirements of MIL-O-24311. Rack mountable units avaîable on request.
- Portable 30 MHz 1707B Opt 300 Oscilloscope (AN/USM-338) meets or exceeds requirements of M1L-T-28800 A for Type 11, Class 2. Style A.
- Poriable 100 MHz 1740F Oscilloscope (equivalent to AN/USM-425 (V) I).
- Portable 250 MHz 1720 AF Opt 021 Oscilloscope (AN/USM-426 (V) 1) meets or exceeds requirements of MIL-T-28800A for Type II, Class 4, Styie C.
Contact your Hewlelt.Packard Field Engineer for detailed specifications, price and availability.

Oscilloscope accessorles

Cameras and adaplers, testmobites, aclive and passive probes, and adapters to meet most any need are available to help you get the most out of your scope investment. See page 171.

Typleal oscilloscope block dlagram.

Oscllloscope Selection Chart

Chazactanditice	1100 Sories						$\begin{gathered} 160 \\ \text { sinics } \end{gathered}$	12000 Sulos						
Bandwidta	200 MHL	275 kHz	275 相	100 MHz	100 MHz	100 MH	$\begin{array}{r} 0.510 \\ 10014 \mathrm{~Hz} \\ \hline \end{array}$	15 MHz	15 MHL	15 Sing	15 MHL	500 kHz	510) \%he	500 uHz
Dellaction fatioss/Dw,	$5 \mathrm{~m} / \mathrm{sv}$	$10 \text { mivis }$	$5 \operatorname{mov}_{5} 10$	$\underset{20 \mathrm{~V}}{5 \mathrm{~m} / 0}$	$5 \pi v 10$	$5 \mathrm{mv} 10$	$\begin{gathered} 100 \mu V \\ M \mathrm{Mn} . \end{gathered}$	$\begin{gathered} 2 \mathrm{mv}^{60} \\ \mathrm{IOV}^{2} \end{gathered}$	$2 \text { mid }{ }^{10}$	$\begin{gathered} 2 \mathrm{mV} 10 \\ 10 \mathrm{~V} \end{gathered}$	$\begin{gathered} 2 \mathrm{~m}^{2} \mathrm{lo} \\ 10 \mathrm{~V} \end{gathered}$	$0.1 \mathrm{mv}_{20 \mathrm{v}} \mathrm{vo}$	$01 \mathrm{mV} \text { to }$	0.1 mV to 20 V
Sweep Spreads/incl. Mag	$\begin{gathered} 10 \text { ns to } \\ 0.5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 10 \mathrm{~ns} 10 \\ 0.5 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 10 \pi 510 \\ 0.5 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{array}{r} 50 \text { ins } 10 \\ 28 \\ \hline \end{array}$	$\begin{gathered} 50 \mathrm{~ns} \text { to } \\ 2 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 50 \mathrm{ng} t \\ 2 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \mathrm{~ms} 10 \\ 18 \\ \hline 8 \end{gathered}$	$\begin{gathered} 0.1510 \\ 058 \\ \hline \end{gathered}$	$\begin{gathered} 0.1510 \\ 0.51 \\ \hline \end{gathered}$	$\begin{array}{r} 0.1510 \\ 0.5 \mathrm{~s} \\ \hline \end{array}$	$\begin{gathered} 0.1 \mu_{5} t 0 \\ 23 \end{gathered}$	$1 \frac{\mu s}{58}$	$\begin{aligned} & 14510 \\ & 5 ; \end{aligned}$	${ }^{1} 4^{3}{ }^{3} 5$
Channels	2	2	2	2	2	2	1.24	2	1	2	2	2	2	2
A Mime Measurements	*	-	-			-								
Variable Persistemos Storage					-		-				-		-	
5ampling							-							
10R							-							
Ditferenlial Imputs							-					-	-	-
Optionaf Logic 5late Switch	\bullet	-	-	*	-	-								
LEO Ressout/DMM	Optlonal	-	Optional			-								
P3ye	138	132	136	119	139	139	148	168	188	168	16.8	186	168	158

[^9]
$275 \mathrm{MHz} \Delta$ time measurement
 Model 1722B

1722B Description

The Model 17223 is a 275 MHz bandwidth. I ns/div sweep speed daal channel oscilioscope with a buil-in microprocessor and live function LED display for precise real time measurement. In addttion to the conventional volts versus time CRT display. the microprocessor gives you direct readout of delta bime. frequency. de vollage, instantaneous vollage, and percent amplitude.

As well its increased uccuracy offered by the microprocessor, you get a digital readout of the answer to your problem in considerably less time than it takes in a conventional scope. You also get a substantial improvement in measurement repcatability which makes the 1722B cxtremely useful in applications repuining compationn 10 a refcrence. For example, the 1722 B 's outstanding repeatability along with the 20 pe resolution makes it ideally suited for making clock phasing measurements in liuge computer timing applications.

Timo interval measurements

Delta time ,weep. developed by Hewlelt-Packard, is used in the Time Interval Mode for maxing ascurate mearure ments of rise time. pulse widit, and propagation delay.

Time interval measurements can be made between two events on Channel A, cwo events on Channel B. or when in alternate mode. between an event beginning on Channel A and ending on Channel B . A DELTA TIMF. NEASUREMENT echnique dipllays the stim and stop points of youl lime incerval as intensified nawhers. Select MAIN INTENSIFIED MODE and adjust narker width with the dclay time/division control. Then set the first maiker at t, with the DEL AY dial, and se the 3nd markel at t_{y} will we DECREASEINC REASE conlrols (cuaise, medinm, or line). the $3^{1 / 2}$ digit LED displity aulomatically and continuously reads the ume interval between the sivo markers $\left(4_{4}-1,1\right)$. Della time measurements are always displayed in units of see (exponem 0): ms (exponent-3): μ ((exponent -6): or ms (exponeml -9). For increased resolution, select DELAYED sweep monde. The (wo intensified parions will be dis. plat ed aliemately. Achicving the maximurtacessicty of the 1722B is a sumple matier of overlapping the sta 11 and stop poinis using the DEC.INC switches! This technique eliminateq any measurement errors due to verical or horizontal drifi. It also enables you to
compare two waverorms while comparing the time relationship between them.

The microprocessor not only keeps tmack of the distance between the two markers but automatically expands the measurement resolution by a factor of 10 whenever the two matkers are within I cm of each otber. For example, when making measurements on the 2 ms/div range a measurement of just over a division has a readoul of 2.01 ms while a measurement of just under a division has a readow of 1.998 ms .
Accuracy in the time interval mode is basieatly 1%. The 1722B Data Sheet has more deailed information regarding measurement accuracy

The microprocessor is not only used to calculate delia ume but is also used to interrogate the function switches to help prevent inaccurate measurements. For example, the lime interval mode is only valid in either the main intensified mode, where the two markers can be secn. or in the delayed sweep mode. where resolution and accuracy can be improved by overlapping the two delayed sweeps. In other modes where errors might be made (such as in main, mixed, and $X-Y$). Whe microprocessor aulumatically sels the display 10 zero. The display is also sel to zero whenever the sweep vemier is oul of the Cal detent or when the delayed trigger level is out of the Starts After Delay position.

1/TIme (frequency) measurements

The 17228 gives an antomatic 3 or 4 digit display of the reciprocial of hime. If a time interval measurement is the period of a waveform, then the I/Time mode provides a direct reasout of repetilion rate or frequency. The microprocessor computes the reciprocal of whatever lime interval has been set when in the Time mode. ITime display units are in Hz (exponent 0). xHz (exponent 3). or MHz (exponent 6). This very convenient measurement eliminates the need for calculations when seting up elock frequencies and measering the frequency or repetition rate of a waveform. An application of both time and l/time modes is to presel a desired time interval or frequency, then through the technique of overlapping traces make an extemal adjustment to bring the system under lest into specification.

DC vollage measurements

When the J722B is operaled in the lnput (de volts) mode sou have a direct digital display of the average value of the wavefom at the input to channel A. The display is $3 \frac{1 / 2}{}$ digits with a sample mete of approximately $2 / s$ and a response time of less than one second. The DVM is autoscaling from 95 mV full scale to 49 V full scale in the X) range. In the $X 10$ ringe. which automatically compensates for a $10: 1$ divider probe, full scale ranges are from 0.95 V to 470 V

The technique for making do vollage measurements is 10 ground 1be scope input and establish a reference level by pressing the reference sel pushbution. Then with the input impedance set to 1 megohm the digital readout displays the average value of the inpur waveform. The DVM measurement is made using a successive approximation algorithm controlled by the microprocessor which atlows you to establish a reference level with respect to any voltage and enables differential de measuremenis. For example, you can probe the base of a transistor, push the reference set bulton, then probe the emilter. The display gives you $V_{\text {mo }}$ directly.

Instantaneous voltage meásurements

In the position mode you con measure the value of any point on a waveform which eliminates the need 10 count divisions from a baceline and multiply by the attenuator selting. A switch in the channel A input allows you 10 compensate for a $10: 3$ divider probe for a direct readout of voltage at the probe up without any calculalions. This measurement mode is useful for measuring peak voltage. power supply ripple, crossover and threshold points in logic circuils. or any other cime when you need to know a precise voltage al a particular point on a waveform.

As with the de voltage measurement, you select the reference point (usually ground) and measure the value of any point on a waveform with respece to the reference point. This measurement mode, like DC Volts, is autoscaling: the microprocessor auto-

Two intensilfed markers are positioned to cover the start and stop polnts of the desired interval. The LED readout quiometicatly and continuously displays the time belween the two markers ($1.92 \mu \mathrm{~s}$).

For Increased accuracy, the scope is placed In the Delayed Sweep mode to display the wo intensified traces alternately. When the two iraces are made to colncide using the DEC - INC controls. maximum accuracy is achleved ($1.962 \mu 8, \pm 0.63 \%$).
matically keeps track of the altentator setring to provide the correct voltage. If the dynamic range is exceeded the display Dashes 10 indicate the overtange condition.
Percentege measurement
The Posilion Mode gives an automatic readout of percent when the vemier is oul of CAL position. This measurement is made by establishing a 5 cm display between the 0 and 100% points with the 0% point positioned on a convenient graticule and zeroed with the Relerence Set pushbutton. The desired point on the waveform is positioned on the reference graticule line using the position control and the percentage of that point with respect to the 0 and 100% points is automatically and continuously displayed. Applications for the percentage mode include measuring the 50% poisis on a pulse and percent of amplitude modulation of an rf carrier.

Storage reglsters

Storage registers in the microprocessor remember the value of the last secting of different modes. For example, when switching from the Time mode 10 a Voltage mode and back 10 Time the display automatically resets to the last display including the spacing between the markers. This memory capability makes it easier to reestablish a display after making measurements in other parts of a circuit.

The digital readout achieves considerable measurement time savings and improves repeatability over conventional scopes. This measurement repeatability makes the 1722B useful for applications where comparison measurements 10 a reference are required.

High performance

Model $1722 B$ is a precision. wideband, high performance ascilloscope in all imditional verical, horizontal, and criggering openalions. Vertical deflection factors of $10 \mathrm{mV} / \mathrm{div}$ to $\mathrm{SV} / \mathrm{div}$ with $2 ; ; \%$ alrenuator accuracy cover most oscilloscope measurement requirements. The full bandwidth of 275 MHz is maintained in all calibrated and uncalibrated modes as well as over the full $00^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}$ icmperature range
For maximum measurement Dexibility, there are switch-selectable 50Ω or I M Ω inputs with the foll bandwidth available in either mode. The HP 100 J7A miniature probe with an input of 1 Mn shumed by less than 8 pF is ideal for ase with the $1 \mathrm{M} \Omega / 11 \mathrm{pF}$ inputs of these oscitloscopes. The small size of the 10017 A allows probing in compacl circuits where conventional probes are difficult ar impossible 10 use. For convenient probing of dual in-line packages, the 10017 A may be inserted into a 10024 A 1 C test clip which eliminates the problem of holding the probe up on an IC pin or possible shoring between pins. The IC lest clip also provides built-in probe grounding which eliminates the problems associated with separate probe ground leads.

A crisp, bright mace over the $5018 \times 10 \mathrm{~cm}$ display area offers easier, more accurale measurementi. Beam intensily is automatically regulated for convenient viewing and incrensed CRT life. however, maximum intensity is mantained when viewing low rep rate. fast transition pulses. An automatic focus circuit reduces the need for focus readjusiment with intensity level changes normally encountered in probing applications while retaining a front pancl control for fine adjusiments wben desired.

Intemal triggering is stable in excess of 275 MHz and requires only 1 cm of verical deflection (0.5 cm to 50 MHz). The interral Irigger sync lakeoff is immediately after the attenuator for a stable display regardless of changes in position. vemier, or polarity controls. For extemal triggering applications, you only need 100 mV p-p to trigger in excess of 275 MHz and only 50 mV p-p to 100 MHz .
Olgital circult analysis
The HP 1607A Logic State Analyzer and Option 101 on the 1722B offers a convenient method of debugging and troubleahooling digital circuits. Stale Display Oplion 101 adds rear-panel inputs and intemal switching circuits for switching berween logic state display and analog display (voliage vs time). The ability to quickly switch between state and analog displays is very useful when wordfow errors require analysis of electrical paramelers to determine correcrive measures.

1722B Specificallons

Verilical display modes
Chanmel A_{i} channel B; channels A and B displayed altemately on successive sweeps ($A L T$); channels A and B displayed by swilching belween channels at approx. I MHz rate with blanking doring swirching (CHOP): channel A plus channel B (algebraic addition): X-Y (channel A vs. channel B).

Vertical ampllflers (2)

Bandwldth: ($\leqslant 3$ dB down from a 6 div reference signal)
DC-coupled: dc 10275 MHz in boih 50 ohm and high impedance inpul modes.
AC-coupled: approx. 10 Hz io 275 MHz .
Gandwlath Ilmit: limits upper bandwidih to approx. 20 MHz .
Alse lime: $\leqslant 1.3 \mathrm{~ns}$.
Deflectlon facior
Ranges: $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (9 calibraled positions) in $1,2.5$ sequence. $\pm 2 \%$ allcnuator dccuracy.
Vernier; continuously variable belween all ranges; exsends maximum deflection factor to at lcast $12.5 \mathrm{~V} / \mathrm{div}$. Front panel light indicates when vemier is nol in CAL position.
Polarlty: channel 8 may be inverted. front panel pushbuiton.
Slgnal delay: inpul signals are delayed sufficienily to view leading edge of input pulse without external trigger.
Input coupling: selectable, AC or DC. 50 ohm (dc), or ground. Ground position disconnects input connector and grounds amplifier inpul.
Input RC (setectable)
AC and OC: I megohm $=2 \%$ shumed by approx. II pF.
50 ohm: 50 whms $\pm 9 \% ;$ SWR, $\leqslant 1.3$ on 10,20 . and 50 mV ranges and $\leqslant 1.15$ on all other ranges.
Maximum inpul
AC and DC: $\pm 250 \mathrm{~V}$ (dc + peak acl al I kHz or less. 50 ohm: 5 Vrms.
A + B operatlon
Amplffer: bandwidth and deflection factors are unchanged; channel B may be inverted for $A-B$ operation.
Difterential $(A-B)$ oommon mode: CMRR is at least 40 dB from de to 5 MHz decreasing to 26 dB at 50 MHz . Commors mode signal amplitude equivalent to 12 cm with one vernier adjusted for oplimum rejection.

Trigger source

Seleclable from channel A. channel B. or composite.
Channel A; all display modes uriggered by channel A signal.
Channel B: all display modes Iriggered by channel B signal.
Composite: all display modes Iriggered by displayed signal.
Channel A input - de volis
Dlsplay: light emitting diodes (LED).
Number of diglts: $31 / 2$.
Display unlts: 0 exponent indicates volts: -3 exponent indicates millivalts.
X1 range: 95 mV 1047 V full scalc verical deflection ($10 \mathrm{mV} / \mathrm{div} 10$ s V/div).
X10 range: 0.95 V to 470 V full scale vernical deflection (100 $\mathrm{mV} / \mathrm{div}$ to $50 \mathrm{~V} / \mathrm{div}$ wilh $\times 10$ probe).
Accuracy: $\pm 0.5 \%$ reading $\pm 0.5 \%$ full scale (full scalc $=10 \mathrm{~cm}$). $+20^{\circ} \mathrm{C} 10+30^{\circ} \mathrm{C}$.
Stabllity: tempcratur cocfficient, $<=0.02 \% 0^{\circ} \mathrm{C}$.
Input Impedance: X I range, I megohm shunted by approx. 11 pF ; $X 10$ range (with $X 10$ probe) 10 megohms shunted by approx. 10 pF . Sample rate: approx. 2/s.

Response tlme: $\leqslant 15$.

Reference sat: meter may be zeroed pemtiting de voltage mensurements with respect to any volkage within selected range. Drifi may be eliminated by the REF SET conirol.
Overrange: flashing display indicates overange condilion.

Channel A position - volts (channel A vernier in CAL detent̂)
With the following exceptions, specifications are the same as Chanocl A Input - DC volis.
Measurement: de substitution method using channel A position control to determine voltuge of any point on displayed waveform using any gratcule linte as reference.
Bandwldth; de $10275 \mathrm{MHz}(\leqslant 3 \mathrm{~dB}$ down from a 6 div reference signal).
Dynamic range: $\pm 6 \mathrm{~cm}$ from ground referenced to center screen.
Reference set: meter may be zeroed. permits instantaneous voilnge measurements with respect to any vollage within selected minge. Accuracy: $=1 \%$ reading $=0.5 \%$ of full sciale (10 X the volts/div range) measured at dc.

Chanrel A positton $-\%$ (channel A vernier out of CAL

 detent)Measurement; de subslitution method using channel A position control to determine percent of any waveform point with respect to user defined 0 and 100% points.
Range: 0 to $=140 \%$ (calibrated with vernier so that 100% equals 5 div).

Accuracy: $\pm 1 \%$.
Zero relerence: meter may be zcroed to permit percent measurcments with respect to any waveform point.
Vertical output
Amplifude: one division of verifal dellection produces approx. 100 mV outpul (de 1050 MHz).
Cascadad dellectlon factor: $1 \mathrm{mV} /$ div with both venical channels set $1010 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidih: dc 105 MHz with bandwidh limit engaged. Source reslstance: approx. 100 ohms.
Source selection: rigger source sel to channel A selects channel A output: Inigger source set to channel B selcets channel B output.

Horizonial display modes

Main, main intensified, mixed. delayed. mag X10, and $X-Y$.
Main tlme base

Sweep

Ranges: $10 \mathrm{~ns} /$ div lo $0.5 \mathrm{~s} /$ div (24 ranges) $1.2,5$ sequence.
Aceuracy

Main sweptimejalv	Accuracy $10^{\circ} \mathrm{C} 10 \times 55^{\circ} 0$	
	1)	X 10
10 ns 1050 ns	$\pm 3 \%$	- 5\%
100 ns 6020 ms	=2\%	-3\%
50 msto 0.5 s	$=3 \%$	$\pm 3 \%$

Vernler: continuously variable between all ranges: extends slowest sweep speed to at least 1.25 s/div, Vemier uncalibraled light indicates when vemier is not in CAL position.
Magnlfier: expands all sweeps by a factor of 10 : extends fastesi sweep to $1 \mathrm{~ns} / \mathrm{div}$.
Sweep mode
Normal: swoep is iriggered by intemal or external signal.
Automatle: bright baseline displayed in absence of input sigaal from $10 \mathrm{~ns} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}^{2}$. Triggering is same as normal above 40 Hz . Normal triggering is gencrally sequired for sweep speeds from $50 \mathrm{~ms} /$ div to $0.5 \mathrm{~s} / \mathrm{div}$.
Slngle: in Normal made, sweep oceurs once with same uriggering as normal, reset pushbutton arms sweep and lights indicator; in Auto mode, sweep oceurs once cach cime Resel pushbutton is pressed.
Triggering
Internal: de to 50 MHz on signais causing 0.5 division or more vertical deflection, increasing to 1 division of vertical deflection al 300 MHz in all display modes. Triggering on line frequency is also selectable.
External: dc to 100 MHz on signals of 50 mV p-p or more increasing 10100 mV p-p al 300 MHz .
External input RC: approx. I megohm shunted by approx. is pF. Maximurn external input: $=250 \mathrm{~V}(\mathrm{dc}+$ peak ac) al 1 kHz or less.

Trigger level and slope
Internal: at any point on the verical uraveionm displayed.
External: contínuously variable from $+1.0 \vee$ to -1.0 V on either slope of the trigger signal: +10 V to -10 V in (-10) mode.
Coupling: AC. DC, LF REJ, or HF REJ.
AC: unenuates signals below approx. 10 Hz .
LF REJ: attenuates signals below approx. 7 kHz .
HF REJ: attenuates signals above approx. 7 kHz .
Trlgger holdoff: time belween sweeps conlinuously variable exceeding one full sweep from $10 \mathrm{~ns} / \mathrm{div}$ to $50 \mathrm{~ms} /$ div.

Maln Intensified

Intensifies that part of main time base to be expanded to full screen in delayed lime base mode. Time interval control adjusts position of intensified portion of swesp. Rear panel intensity ratio control sets relaive intensizy of brightened segmens.

Delayed time base

Sweep

Ranges: $10 \mathrm{~ns} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}$ (20 ranges) in $1,2,5$ sequence.
Aceuracy (0 to $+55^{\circ} \mathrm{C}$): same as main time base.
Magnilier (0 to $+55^{\circ} \mathrm{C}$): same as main time bise.
Trlggering
Internat: same as main time base except there is no Line Frequency trigsering.
Starts atter delay: delayed sweep automatically stans at end of delay period.
Trigger: with delayed rigger level control out of detent (stars after delay) delayed sweep is sriggerable at end of delay period.
Extemal: de 10100 MHz on signals of 50 mV p-p or more, increasing to 100 mV p-p at 300 MHz .
External lnput RC: approx. 1 megohm shunted by approx. 15 pF . Maximum external Input: $\pm 250^{\circ} \mathrm{V}$ ($\left.\mathrm{dc}+\Gamma \mathrm{p}-\mathrm{ck}_{\mathrm{k}} \mathrm{dc}\right)$ at $\equiv 1 \mathrm{kHz}$.
Trlgger level and slope: same as main time base.
Coupling: same as main lime base.
Delay time renge: 0.5 to 10X Main Time/Div seltings of 20 ns to 0.5 s (minimum delay, 50 ns).

Time interval

Delay time: continuously variable from 10 ns 105 s , Delay fitter: refer to Time Interval Measurements. Stability.
Time interval measurements
Function: measures time interval between two events on channel A (channel A display): between twa events on chanoel B (channel B dísplay); or be tween two events starting from an event on channel A and ending with an event on channel B (Altemate display). Dlsplay unita: $0(\mathrm{~s}):-3(\mathrm{~ms}):-6(\mu \mathrm{~s})$: or -9 (ns).
Accuracy

Haln timg base setting	Accuacy $1+20^{\circ} \mathrm{C}$ to $\left.+30^{\circ} \mathrm{C}\right)$
$100 \mathrm{~ns} / \mathrm{div} 1020 \mathrm{~mm} / \mathrm{civ}^{\text {a }}$	$=05 \%$ of measurement $\pm 0.02 \%$ of tufl scale (for measurements $<1 \mathrm{~cm}$). Fof measurements >1 on $=0.5 \%$ of measuro ment $\pm 0.05 \%$ of full seale.
50 ns div*	-0.5% of measurement -0.06\% of full scale.
20 ns/diu"	$-05 w_{0}$ of measuremeal $\pm 0.12 \%$ of full scale.
$50 \mathrm{mos} / \mathrm{duv} 10.0 .5 \mathrm{~s} / \mathrm{d} / \mathrm{v}$.	$=3 \%$

[^10]
X-Y aperatlon

Bandwidth
Y -axls (chennel A): same as channel A.
X-axla (channel B): de $10>3 \mathrm{MHz}$.
Deflectlon factor: $10 \mathrm{mV} / \mathrm{div} 105 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in
1,2,5 sequence.
Phase difierence between channels: $<3^{\circ}$, de 103 MHz .
Cathode-ray tube and controls
Type: post accelerator, approx. 20.5 kV accelerating potential. aluminized P31 phosphor.
Graticule: 8×10 div intemal graricule. 0.2 subdivision markings on major axes. I div $=1 \mathrm{~cm}$. Rear panel adjustment aligns trace with graticule. Intemal food gun graticule dumination.
Beam findar; retums trice to CRT sereen regardless of setting of horizontiat, vertical, or intensity controls.
Intensity modulatlon: +8 V , $\equiv=50 \mathrm{~ns}$ width pulse blanks irace of any intensity, useable to 20 MHz for nomal intensities. Input $R, 1$ $k \Omega=10 \%$. Maximum input. + 10 V (dc + peak ac).
Auto-focus: automatically maintains beam focus with variations of intensity.
Intensly 11 m t: a a omatically limits CRT beam current to decrease possible CRT damage. Circuit resporse ume ensures full wriung speed for viewing low duty cycle. fast rise time pulses.
Rear panel controls: astigmatism, patem, main/delayed intensity ratio. and trace aliga.

General

Rear panel outputs: nuin and delayed gates. -0.7 V to +1.3 V capable of supplying approx. 3 mA .
Callbrator: I $\mathrm{kHz}=10 \%$ square wave: $3 \vee \mathrm{p}-\mathrm{p}=1 \% ;<0.1 \mu$ rise time.
Power: $100.120,220.240$ V. -10%. $+5 \%$: 48 10 440 Hz ; 110 VA max.
Weight: net, $13.6 \mathrm{~kg}(30 \mathrm{lb})$, Shipping, $19.5 \mathrm{~kg}(43 \mathrm{lb})$.
Operating environment: fempelialure, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$); humidity, to $95 \% / 8$ relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{2} \mathrm{~F}\right)$; altitude, to 4600 m (15 (0) jt); vibration, vibrated in three planes for 15 min . Eaih with 0.254 mm (0.010 im .) excursion, 10 to 55 Hz .
Size: $197 \mathrm{H} \times 335 \mathrm{~W} \times 570 \mathrm{~mm} \mathrm{D}$ with handle $\left(73 / /^{\prime \prime} \times 13 \mathrm{~m}_{1}:{ }^{\prime} \times\right.$ $22^{\prime \prime}, 1 i^{\prime}$); 518 mmD withoul handle ($20^{x} / x_{x} \gamma$.
Accessories turnished: one blue light filter: one front panel cover: one vinyl storage pouch: one $2.3 \mathrm{~m}(7.5 \mathrm{H})$ power cord: two 10017 A 10:1 divider probes: one Openting and Service Manual.

Recammended probes

Olvider probes for 1 megohm Inputs: 10014A. 100 16B, 10017A. 10018 A .
Divider probe for 50 ohm Inputs: 10020A resintive divider.
Active probes for 50 ohm inputs: 1120 A , and 1125 A .

Options 001: U.S. fixed line cord

003: probe power supply with iwo rear panel jacks for use with HP active probes. Provides power to operate iwa 1120 A . 1124 A. or 1125 A active probes
090: withour probes
091: (wo 2 m (6.6 ft) 10018 A . 10 : 1 probes in lieu 1 wo
10017A minialure probes
092: (wo $1.8 \mathrm{~m}(6 \mathrm{ff})$ 10016B. $10: 1$ probes in lieu ofivo miniature probes
101: logic state display inlerface for operation with Model 1607 A Logic SLite Analyzer

Price

910: additional Operasing and Service Manual
add \$150
Logic state analysis equip required for Opt 101
1607A: 16-Bil Logic Siate Analyzer includes three dalu probes and one cloct probe.
$\$ 2900$
Four 10502A: $23 \mathrm{~cm}\left(9^{\prime \prime}\right)$ cables. Three for X, Y, and Z interconnections and one for pattem triggering connection to the oseilloscope.
$\$ 15$ ea
HP P/N 5081.1213 Adapte Plate and Sirap for mounting the 1722 B on top of the 1607A.

200 MHz \& $275 \mathrm{MHz} \Delta$ time Measurements
 Models 1715A \& 1725A

Except for the bandwidth and volts/div conlrol the Model 1715A Opl 034 is identical In appearance to the Model 1725A Opt 034 in this photo. Oot 034 ofiers direct LED readout of time interval measurements or ac and de voltage or current and resistance measurements. Without Opt 034 the 1715A and 1725A offer delta time measurements using the callbrated ime interval stop control and provide a scalad voltage rear panel output compatible with most DMM's.

1715A, 1725A Description

Hewlell-Packard's Models 1725A. $275 \mathrm{MH} \%$, and $1715 \mathrm{~A}, 200$ MH : oncilloscopes offer improved dual chaninel. delta time measuremenes with the oplional DMM for direce delaa lime retalout and current, voltage, or resistance measurements. Verical deflection facturn of $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} /$ div over use full bandwidd) ($\mathrm{s} \mathrm{mV} / \mathrm{div}$ to 1.50 MHz in the $1715 \wedge$) offer the high performance iequired for both latoratory and ficld applications.

A lange $8 \times 10 \mathrm{~cm}$ display grovides casy viewing of duad trace signals on which liming measurements can be made conveniently and accurately using the Hewlete-Puckard developed dela lime technique. For casier pereentage neasurements. reference iness of 0 and 100% amplitude are 5 divixions apan and markines for 10 and 90% and 20 und 80% ane also provided for casier nise time mensurements
The 1715A or 1725A Slate Display Oplion 101 combined with the 1607A Logic Suate Analyzer provides conventent digital circuis andysis with the ability to quickly switch between logic viale :nd cecerrical analysis.

Delta time measurements

These oscilloscopes ofter two methods for making tinning measurements: one is standand delayed sweep. using onc intensified marker and the calitrated delay vemier knob to accurately measure Itme relationship: the second is the Hewletr-Packaral developed system of dual intensified markers which significantly improves accuracy while conveniently reducing the time necessary to make a measuremen! The latter, bellerknown as the Della itine measurement method, incorporales a system of two intensified markers which anc two delayed siveeps displayed altemately.

The Delta Time measurement technique is to select the Main Intenstied mode and position the first marker at i_{1} with the Time Interval Stan control and position the second marker al to with the Tinue Interval Stop control. The difference between the iwo selected points is then read directly on the optional DMM or is atyatatle as a rear pancel scaled voltage outpul compatible with man DVM's. Linits of seconds, milliseconds. or microseconds are read on the Main Time/Div control.
This Delta Time technique makes timing measurements such as iransition times. propagation deliay. clock phasing, and other highsped digital timing measurements faster and with more repeatability than was previously possible with slandard delayed swecp oscillencopes. Time interval mesturenecnts can be made between two events on channel A. wo events on channel B. or between two events on altermate channels

For increased resolulion. Delayed Swecp mode is setected where the two intensified portions are displayed alternately. Maximum accuracy is achieved by superimposing the star and stop points using the Time Interval Stop control. Even without an extemal voltmeter and using only the Time Interid Stop control, this optical nulling sechnique reduces the chance of error in lime interval measurements.

For added convenience, the Delta Time Capability can be selected with the time interval witit marker on channel A ur channel B. This eliminates the switching of probes when making interchannel measurements.

Optional direct delta time readout

The ability to add an optional $3 / /$ digit autoranging DMM to the basic oscilloscope entrances the ability to make uming measure. ments accumaty and with convenience. Since the basic Deta Time
capability is contained in these Oscilloscopes. the optional DMM is available initially as Option 034 or can be ordered later as a field installable kil ($\mathrm{P} / \mathrm{N} 01715 \mathrm{f} 950 \mathrm{n}$. With a flip of the switch on the oscilloscope, you can ue the DMM to measure ac voltage. de voltage, ac current, de current, and resistance.

1725A, 1715A Specifications

Vertical display modes

(hannel A; channel B; channuls A and B displayed allemately on successive sweeps (ALT): channels A and B displayed by swuching between channels al approx 1 MHz ralc will blanking during switching (C'HOP); channcl A plus channel B (algebraic addition): $X-Y$ (chenhel A ws channel B).

Verilical ampllfiers (2)

Bandwath: 3 dB down from a 6 div reference signal.
DC-Coupled (1725A): de (o 275 MHz in bolh 50 ohm and high impedance inpul modes.
DC-Coupled (1715A): de to 200 MHz in boih 50 ohm and high impedance input modes $10 \mathrm{mV} / \mathrm{div}$ to S Vidiv, io 150 MHz at 5 $\mathrm{mV} / \mathrm{div}$.
AC-Coupled: lower limit is approx 10 H ,
Bandwldth limit: limils upper bandwidth 1 i i
Rlse tlme
1735A: <1.3 ns.
1715A: <1.75 ns $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div} .<2.3 \mathrm{~ns}$ at $5 \mathrm{mV} / \mathrm{div}$
Deflection factor
Ranges (1725A): $10 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (9 calibrated posilıons) in 1. 2.5 sequence. $=2 \%$ allenuator accuracy.

Vernler: continuously variable bolween all ranges; extends maxımum deflection factor to it least 12.5 Vidiv. Front panel indicator lights when vemer is not in CAL position.
Polarlty: channel B may be inverted. front panel pushbution.
SIgnal defay: input signals ane delayed sufficienly to view leading edge of inpui pusle without advanced trigger.
Input coupling: selectable. $A C$ ur DC, 50 ohms (du) or ground Ground position disconnects inpul connector and grounds amplifier inpul.
Input RC (seleclable)
AC and DC: I megohn $\pm 2 \%$ shunted bs approx 11 pF .
50 Ohm: 50 ohms $\pm 2 \%$: SWR (1725A) 1.3 an 10.20 and 50 mV
rangew and $<1: 15$ on all other ranges: SWR $(1715 A) \leq 1.3 \mathrm{wl} 5,10$.
20 and 50 mV ranges and $<1: 15$ on all other ranges.
Maximum Input
$A C$ and $D C: \pm 250 \mathrm{~V}^{\prime}(\mathrm{d} \varepsilon+$ peak ac) al l kHz or less.
50 Ohm: 5 V rms .

A + E operation

Amplifier: bandwidth and deflection facton are unchanged: channel B may be inveried for $A-B$ operation.
Differential (A-B) Common Mode: CMR in ill leist 40 dB from de w 5 MHz decreasing to 26 dB al 50 MHz . Common mode sienal turplitude equivalent to 12 em with one vernier adjusted for optimum rejection.

Trigger source

Selectable from channel A. channel B. or Composite.
Channel A: all display modes ingeered by channel A vignal.
Channel B: all diplay modes triggered by channel B wignal.
Composite: all display modes triggered by displayed sinal.

Vertlcal output

Ampiltude: one division or venical denection produces approx 100 $m \mathrm{P}$ oulput, de to 50 MHz in 1725A. de to 25 MHz in 1715 A .
Cascaded deffection factor: I mV/div with bolh vernical channels sel $1010 \mathrm{mV} / \mathrm{div}$.
Cascaded bandwidth: dc to $5 \mathrm{MH} \not \mathrm{K}$ with bandwidh limil cngaged.

Source reslstance: approx 100 ohms.

Source selection: (ngeger source sel to channel A selects channel A outpul. to channel B selects channel B outpui.

Horizonlal display modes

Main, main intensified. delayed. mixed. X.Y. and mag XIO. In main iniensifīed, mixed. and delas cod modes, selectable delta time with channed A xtan or channel B stan fime mberval measurements are available.

Maln time base

Sweep
Ranges: $10 \mathrm{~ns} /$ suv $80.5 \mathrm{~s} / \mathrm{div}(34$ ranges 1.2 .5 sequence.
Accuracy

	$\begin{gathered} \text { Rocuracy } \\ \left.10^{\circ} \mathrm{C} 10-55 \mathrm{C}\right) \\ \hline \end{gathered}$	
Main Sueap Iimerolv	$\times 1$	$\times 10$
10 ns 1050 n :	± 37	± 58
100 ns 1020 ms	$\pm 2 \times$	± 37
50 ms 100.5 :	± 33	

Vernier: continuously variable between all rangen: extends slowest sweep to at least $1.25 \mathrm{~s} / \mathrm{div}$. Vemier mucalbrated indicator lighes when wemer is not in CAL position.
Magnifier: extends ath sweeps by a tactor of 10 : extends fameut sweep to I nsidiv.

Sweep mode

Normal: sweep is siggered by intemal or exiemal signal.
Automatle: brigh biseline displayed in absence of input signal. Triterering is same as normul above 40 Hz .
Single: in Normal mode. sweep occurs once with same ingeering as normal, resel pushbunton arms sweip and lighen indicator: in Autn mode, sweep wecur once eath time Renel pushbutton is pressed.
Triggering (1725A)
Internal: de tol 00 MHz on signals causing 0.5 division or more verical deflection. increasing to I division of vertical deffecion at 300 MHz in all display modes. Trigerering on line frequency is also selecuble.
External: de co 100 MHz on siunals of 50 mV p-p or mone incrais. ing to $100 \mathrm{mV} \mathrm{p}-\mathrm{r}$ at 300 MHz . Miximbum input. : 250 V (di a peak ac) at 1 kHz , les.

Triggering (1715A)

Intemal: dc to 100 MHz on signals causing 0.5 division or more verical denection, increasing to I division of vericial deflection at 200 MHz in all display modes. Triggering on line frequency is adso selcetable.
External: dc (1) 100 MHz on signals of $50 \mathrm{mV} \mathrm{p} \cdot \mathrm{p}$ or more increasing $10100 \mathrm{mV} p-\mathrm{p} \pi 200 \mathrm{MHz}$. Maximum input, $\pm 250 \mathrm{~V}$ (dc + peak actal I kH/ or less.
External Input RC; approx I megolsm shunted by appres isp p.
Triggering level and slope
Internal: at any poin on the venical waveform displayed.
External: conlinuously variable from $+1.0 \mathrm{~V} 10-1.0 \mathrm{~V}$ on eilher slope of the trigger sigitial. $+10 \mathrm{~V} 10-10 \mathrm{~V}$ in divide by 10 mede $(\div 10)$.
Couplling: AC. DC. LF REJ. or HF REJ.
$A C$: atenuster sugtuls belus approx 10 Hz .
LF Reject: : itlenvate, signals below approx 7 kHz .
HF Re)ect: attenuates signals above approx 7 kHz .
Trigger holdofl: lime belween sweeps continuously varialle, caxceeding one full sweep from $10 \mathrm{~ns} / \mathrm{dhy}$ to $50 \mathrm{ma} / \mathrm{div}$.
Maln Intensllied
Delayed Sweep: intensifies that part of main lime base to be expanded to full screen in delayed time base mode. Stop conirol adjusts pusition of intensified portion of sweep. Rear panel intensity ratio control sete relative intensity of brightened segment.
ITtme mode: intensifies wo parts of man time base to be expanded to full screen in delayed sime base mode. "START"' conirol postions the first intensified partion of the sweep: "STOP" conlrol positions the second intensiffed porion of the sweep. Rear panel imicnaty conirol sets relative intensity of brightened segmenls.

Delayed time base

Sweep

Ranges: $10 \mathrm{~ns} / \mathrm{div} 1020 \mathrm{~ms} / \mathrm{div}$ (20 rangec) in $1,2.5$ sequence.
Accuracy ($0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$); same as maim tine bast.
Magnifler ($0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$): same ans main time base.
Triggering
Internal; same as main time base except there is no Line Frequency riggering.

Starts After Delay：delayed sweep automatically slarts al end of delay period．
Trigger：with delayed irigger level control oul of detent（slarts after delay）delayed sweep is（riggerable at end of delay perion．
External：de to 100 MHz on signals of 50 mV p－p or more，increas－ ing $10100 \mathrm{mV} p-\mathrm{p}$ at 200 MHz ．Moximum inpur，$=250 \mathrm{~V}$（dc＋peak ac）a l kHz or less．

External Inpul RC：approx I megohm shunted by approx 15 pF ． Trigger level and slope

Internal：at any point on the verical waveform displayed when in triggered mode．
External：coninuously variabe from $+1.0 \mathrm{~V} 10-1.0 \mathrm{~V}$ on either
slope of the Irigger signal．$\div 10 \mathrm{~V} 10-10 \mathrm{~V}$ in divide by 10 mode $(\div 10)$ ．
Couplling：AC．DC．LF REJ．or HF REI，
$A C$ ：allenuater signals below approx 10 Hz ．
LF Reject：altenuates signals below approx 7 kH ．
HF Reject：attenuates signals above appros 7 kHz ．
Defay tlme range； 0.5 to 10 X Main TimelDiv scttings of 20 ns 10 0.5 s（minimum delay 50 ns ）．

Differential time maasurement accuracy

Main Time Base Satdre	Accuracy－ $\left(+15^{\prime} c 10-35^{\prime} \mathrm{c}\right)$
$\begin{gathered} 50 \text { nsidiv } 10 \\ 20 \text { itis.'div } \\ \hline \end{gathered}$	$\begin{gathered} =\{0.5 \%=01 \% \\ \text { of fuli scal6) } \end{gathered}$
$20 \mathrm{ss} / \mathrm{d} \mathrm{l}$	
$\begin{gathered} 50 \mathrm{~ms} / \mathrm{div} 10 \\ 0.5 \text { s'alv } \end{gathered}$	$=30 \%$

Delay jltter：$<0.005 \%$（I pan in 20000 ）of maximum dulay in each slep．

Time Interval（Stime mode）

Function：measures time interval beiween two events on channel A （channel A display）；between two cvents on channet A（channel B display）：or belwecn iwo evenis varring from an cvent on esther channel A or B and ending with an event on either channel A or B （alternate display）．
Time interval output vollage：varies from 90 V 10100 mV full scale．Full scale output vollage can be detemmed by mulliplying the number on the TIME／DIV dial by 10 V （e．g．． 0.05 s .0 .05 ms ，or $0.05 \mu \mathrm{~s}$ per div gives 0.5 V oulpur full－scale）．
Accuracy ：measurcment accuracy is the Time Interval Accuracy plus the exicmal DVM accuracy．

Main Ilme Base Senifs	$\begin{gathered} \text { Acculacy }+ \\ (+20 . C 10 \div 30-C) \end{gathered}$
$\begin{gathered} 100 \text { sus div ! } \\ 20 \text { חlis } \end{gathered}$	$\begin{aligned} & =0.5 \% \text { का reading } \\ & =0.05 \% \text { of ts } \end{aligned}$
	$\begin{aligned} & \triangle \text { a S\% of reading } \\ & =0.1 \% \text { of is. } \end{aligned}$
20 がすい。	$\begin{gathered} \pm 0.5 \% \text { of reading } \\ \pm 02 \% \text { of ts } \end{gathered}$
$\begin{gathered} \text { 50 misdivia } \\ 0.5 \text { sldin } \end{gathered}$	$=3 \%$

－St anting atlei 50 ns ol swees
－Stability $\left(0^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$ ）：short－term 0005% ．Temperature． $\pm 0.03 \% 1^{\circ} \mathrm{C}$ deviation from calibration temperature range．
Mixed time base
Dual time base in which the main lime base drives the lirst portion of sweep and the delayed lime base completes the sweep the fasler delayed sweep．Also operated in single sweep mode．

$X-Y$ operation

Bandwidth

Y－Axls（channel A ）：same as channel A ．
X－Axls（channel B）：dc $10>\mathrm{I} \mathrm{MHz}$ ．
Deflection factor： $5 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$（ 10 calibrated positions）in 1．2．S sequence．
Phase difference between channels：$<1^{\circ}$ ，do to 1 MHz ．
Cathode－ray tube and conirols
Type：posi accelentor，approx 20.5 kV accelerating poicnual． aluminized Pas phosphor．
Gratleule： 8×10 div intemal gralicule． 0.2 subdivision markings on
major horizonlal and venical axes． 1 div $=1 \mathrm{~cm}$ ．Rear panel adjustment aligns crace with graticule．Intemal foodgun graticule illumination．
Beam finder：returns truce to CRT screen regardless of setting of borizontal．vertical，or intensily controls．
Intengity modulation（Z－ax｜s）$:+8 \mathrm{~V}, \geqslant 50 \mathrm{~ns}$ widih pulse blanks Irace of any intensity，usable to 20 MHz for nomal inlensilies． Input R．J $k!t=10 \%$ ．Naximum input，$\pm 10 \cdot \mathrm{~V}$（dc＋peak ac）．
Auto－focus：automatically maintains beam focus with variations of intensity．
Intensity limil：auzomatically limiLs beam cument to decrease possi－ bility of CRT damage．Circuil response lime ensurcs full writing specd for viewing low duty cycle．Fast rise ume pulses．
Rear panel controls：astigmatism．pattem．main／delayed intonsity ratio．and Irace align．

General

Rear panel outputs：main and delayed gates，$-0.7 \mathrm{~V} 10+1.7 \mathrm{~V}$ capable of supplying approx 3 mA ．
Callbrator：1ype．； $\mathrm{kHz}=15 \%$ squere wave： $3 \mathrm{~V} \mathrm{p}-\mathrm{p}=1 \% .<0.1$ дs risc lime．
Power： $100,120,220$ ，and $240 \mathrm{Vac},-10 \%+5 \%, 4810440 \mathrm{~Hz}$ ； 110 VA max
Welght：ne1． 12.9 kg （ 28.5 lb ）：shipping， 17.9 kg （ 39.5 Jb ）．
Operating environment：temperalure， $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$ ）：humidity， 1095% relative bumidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$ ： altitude． 104600 m （ 15000 fl ）：vibration，vibrated in threc planes for 15 min ．each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$ ．）excursion． 10 to 55 Hz ．
Slze： $170 \mathrm{H} \times 395 \mathrm{~W}: 570 \mathrm{~mm} \mathrm{D}$ with handle； $502 \mathrm{~mm} D$ without handle（ $\left.7 \%^{\prime \prime} \times 15 \% 1 \pi^{\prime \prime} \times 2 \%^{\prime \prime}, 18^{\circ} / 9^{\prime \prime}\right)$ ．
Accessorles furnished：one blue light filter：one fronl
pánel cover．two， $2 \mathrm{~m}(6.6 \mathrm{fl}) 10018 \mathrm{~A}$ minialure $10: 1$ divider probes with 1715A：two 1 m （ 1.3 n ）10017A minialure 10：I divider probes with 1725A：one 2.1 m （ 7.5 ft ）power cord．one vinyl slerage pouch； one Operaling and Scrvice Minual，and one kit（HP P／N 8120－2521） containing wos lest leads with Opi 034， 035.
Optlons and accessories

Price

Tlme interval multmeter xit：（HP P／N 01715－6950I）
adapls a standard Model 1715A or 1725A to an Opi 034，builr－in．LED readous．detrá tíme oscilloscope． The k it includes a multimeter．a new top oscilloscope cover．a vinyl slorage pouch，and mounting hardware for fas！installation．
001：lixed line power cond
003：probe power supply with iwo rear panel jacks for use with HP active probes Provides power to operate iwo 1120A．II2AA，or II2．5A aetive probes
034：built－in DNM（ 60 Hz eperation）
035：buile－in DMM（ 50 Hz eperation）
090：withoul probes
091 （1725A）：IWO 2 m （ 6.6 fl ）10018A，10：1 probes substituced for two 10017 A miniature probes
091 （1715A）：two $1 \mathrm{~m}(3.3 \mathrm{n}) 10017 \mathrm{~A}, 10 \cdot 1$ probes subslituled for two 10018 A minialure probes
092：two 1.8 m （6 fi） 10016 B ．10：1 probes sumsituted for two minialure probes
101：STATE DISPLAY，single swith inlerface op－ tion for operation with the HP Model 1607A Logic Stale Analyzer．Adds interface circuits for switching belween front panel inpuis and rear panel logic slare inputs．

$\$ 375$

 add \＄15add $\$ 50$
add \＄329
add \＄32s
less $\$ 150$

Logle state analysis equlpment requlred for Option 101
1607A：IG－bit Logic State Analyzer including threc $\$ 2900$ data probes and one clock probe
Four 10502A： $23 \mathrm{~cm}(9 \mathrm{in}$ ．）cables．Threc for X ．Y． and Z interconnections and one for patlem triggering connection to the oscilloscope
HP P／N 5061－1213：Adapter plate and strap for

Ordertng Information
1725A 275 MHz Oscilloscope
$\$ 3300$
1715 A 200 MHz Oscilloscope
$\$ 3000$

- Dual channel, $5 \mathrm{mV} / \mathrm{div}$ to 100 MHz
- 3rd Channel trigger view
- Selectable input impedance
- $100 \mathrm{~cm} / \mu$ s storage writing speed (1741A)
- Single shot auto-store (1741A)
- Auto-erase (1741A)
- High resolution time interval measurements (1743A)

1740A, 1741A, 1743A (new) Description

Introduction

The Hewlet1-Packard Model 1740A. 1741 A , and 1743 A 100 MHz , $5 \mathrm{mV} / \mathrm{div}$, dual-channel oscilloscopes offer the high performance necessary to meet the demanding requiremeots of both laboratory and field applications. These oscilloscopes have the performance and features to make accurate measurements with ease. The carefully designed fronl panef includes a large. high-resolution CRT with logically arranged controls which reduce operator leaming time and make repecicious measurements easier. Several features that make these oscilloscopes more versatile than the average 100 MHz portitble oscilloscope include a third chaonel trigger view for viewing the extemal urigger signal with both vertical channels; a X 5 vertical magnifier for $1 \mathrm{mV} / \mathrm{div}$ deflection factors on both channels; selectable inpul impedance ($M \Omega / 50 \Omega$) for general purpose probing and precise ise time mensurement; and a Logic State Display option for convenient switching berween logic state and electrical analysis.
1740A, 1743A $8 \times 10 \mathrm{~cm}$ CRT
The CRT has a crisp. bright wace over the fully specified 8×10 cm display area. An accelerating potentid of IS kV makes the display compatible with the 5 ns/em sweep speeds for easier viewing of low rep ratc. fast cransition time signals. The small spot size of the lab quality CRT along with the no parallax intemal grasicule makes critical and difficult riming measurements easier to perform. An intemal floodgun uniformly illuminates the CRT phosphor for high qualiry erace pholos with a sharp well deñoed internal gralicule.

1741A Storage CRT

The Hewlet-Packard storage and variable persistence CRT of fers a well deñed trace with a slorage writing speed of greater than $100 \mathrm{~cm} / \mu s$ and a bum resistant storage surface which is ideal for digital and general puppose applications. Storage operation is exiremely easy with indicators that clearly show the mode of operaition. A press of the store pushbution automalically switches the

1741A 10 a deep store mode, with no screen illumination, for maximum storage time. Another press of the store pushbution displays the stored trace.

For viewing low rep rate fast rise time signals, the wariable persistence mode allow, you to adjust the trace for an optimum display. By adjusting the persistence 10 match the rep rate you can integrate a trace to provide a sharp. clear display for accurate measurements of low duly-cycle pulse trains such as thase from disc. tape. or drum peripheral units.

Exceptionally fine 1741A trace in the variable persistence mode permits high resolution timing measurements as shown with this dual trace, alternale sweep display al a sweep speed of $5 \mathrm{~ns} / \mathrm{div}$.

For maximum convenience in single-shot applications, an aulo store mode which operates in the single-shot mode, makes it easy 10 capture random events. To prevent the possibility of recording the wrong event. the 1741A automatically switches to the Normal trig. gering mode when single-shot mode of operation is selected. When your eveni occurs, the i741A riggers and automatically switches from the Write mode to the Store mode which is shown by the indicators. To view the signal, a press of the Store/Display pushbut. con displays your trace. For convenience, a push of the Erase pushbutton erases the CRT and resets the time base.

Third channel trigger viow of the external rigger signal olfars measurement convenlence with the center screen threshold. The 2.5 ns fixed delay between the external trigger input and the displayed signal permits easier timing measurements.

An aulo-erase mode allows the 1741 ת 10 operate as if it is in a repelitive, single-shot mode even when a continuous signal is available. When in the auro-erase mode. the 1741A automalically swilches io maximum persistence which provides maximum trace retention between erssures. This mode is convenient for setup of single-shot events by making it easie. to obtain the optimum focus and intensity for a particular signal. Additionally, if you are displaying more than one trace. such as two or three chinneth, the 1741A will wait for the required number of sweeps to be displayed before automatically erasing the display.

Triggering ability on lwo signals widely separated in trequency is clearly shown with these signals which have a ratlo of 1000 to 1 while irlggering in the composite mode.

3rd channel trigger vlew

In many applications, especially in dipital circuils, it is necessary to use external trigger sources to mantain proper liming relationships and to know the time relationship of the trigger signal to the displayed events. By pressing the Trigger View pushbulton while in alemate or chop mode. the extemal trigger signal is displayed as a thind channel with the migger threshold at center screen. By adjusting the trigger level control. you can see which portion of the trigger signal is initiating the sweep. With the Extermal Trigger input in the $\mathrm{I}: 1$ mode. the deflection factor is $100 \mathrm{mV} / \mathrm{div}$ which is compatible with ECL levels and in the - 10 mode is I V/div which is compatible with TTL levels.

Stable flexlble lriggering

Srable infernal triggering 10 greater thans 100 MHz requires only I div of vertical deflecion. To prevent annoying trace shift. Ibe internal trigger sync lake-of is inmediately after the attenuator which maintainヶ a stable display regardess of ehanges in position, vemier, or polarity controls. A full complament of cuthy-to-use pushbulton rigger controls atspures you of the desired trigger signal conditioning for your measurement. In the external mode, triggering to 100 MHz anly requires 100 mV and 50 mV to 50 MHz .

Selectable input Impedance

For maximum measurement flexibility. these scopes have switch-selectable 1 megohm or 50 ohm inpuls. This permits a high input impedance for general purpose probing with $10: 1$ divider probes for minimurn circuit loading. The 50 ohm input with inemal compensation and low reflections provides faithful pulse reproduction for accurate eransition time measurements in circuits where low capacilive londing is required.

Verilcal ampllifers

Verical deflection factors are $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} /$ div over the full 100 MHz bandwidih. full lempersture range. and 8×10 div display area with 7 ge altenuator accuracy. For two channel low level medsurements requiring $1 \mathrm{mV} / \mathrm{div}$ and $2 \mathrm{mV} / \mathrm{div}$ deflection factors to 30 $\mathrm{M} \mathrm{Hz}_{2}$ (40 MHz in the 1740 A), a XS magnifier is included which eliminates the need for cascading. This low level capabilicy permits measurements on tape and disc heads or power supply ripple with a convenient front panel pushbution. The $20 \mathrm{~V} /$ div setling allows you to make convenient measurements of power line signals while using standard 10 : I divider probes.

Serviceabillty

Access to the uncluttered interior for calibmtion and servicing is fasi with the easy-to-remove covers. Innovations in circuit design
along with custom integrated hybrid circuits reduce calibration time becanse of a minimum of adjustments. Wire hamesses and interconnection cables between boards are redueed with an interface board which connects the inain twards together. This interface board helps to reduce servjoe time and reassembly errors normally encountered with instmments containing many cables. The $1740 \mathrm{~A}, 1741 \mathrm{~A}$, and 1741A do not require a fan or ventilating holes for convection cooling which reduces the amount of dust and dirt that can accumulate inside the scope.

1743A Crystal accurate liming

The 1743 A incorporites s 100 MHz erystal timing reference for dela time measurements rather than the traditional analog manp reference. This imtemal crystal reference offers 10 ns cesolution which is enhanced with time interval averaging to produce 300 ps timing resolution. The lime berween the two intensitied marks is displayed on a Tive digit LED readont with an accuracy of 0.002 es plus or misus one count. For intervals of less than five microseconds the one count corresponds to plus or minus 100 ps while at intervals of greater than two ouicroseconds the one count becomes insignificant and the accuracy can be considered to be $\pm 0.002 \%$ of reading.

First pulse measurements

The 1743A, by using a cristal reference. allows you to measure time intervals relative to the leading edge of the first pulse in the delayed sweep mode. This ability is parlicularly useful for high reso lurion meisurements on low duty cycle pulses. Because the neat surement cin be made using the same pulse that triggers the main sweep. the sweep speed can be set for optimum resolstion and accuracy.

Triggered measurements

The triggered delay mode of the 1743 A offers excellent pulse width. period, and propasition delay mensurentent sapability. The trigered delta sweep mode astomatically performs the desired measurements without any of the complex operations usually needed with delayed sweep measurements. By selecting the appropriare start and stop slopes (one positive and one negalive for width measurements and both the same for period measurements) you can conveniently read out the period or width measurement while direclly viewing the exact trigger level at which the measurement is being made.

Also available is the ability 10 make duty cycle measurements quickly. In the intensified mode, measure the pulse width and period with the direct LED readout. Then a simple ratio calculation provides an accurate answer.

A

B

C
The 1743A makes accurate timing measurementa automatically in the Triggered Sweep After Delay mode. When you select the desired starting slope (positive) and stopoing slope (negative) (A). the I743A automatically overlays the iraces at the signal's trigger level (B) ano provides a time interval readout on the LEO's of 33.75-6 seconds (33.75 $\mu \mathrm{s}$). The trigger level can be viewed while being adjusted to the exact level desired (C). In this example the lrigger level is adjusted to the 50% points for measuring a pulse widit of $3219-6$ seconds $(32.18 \mu \mathrm{~s})$ with $0.002 \% \pm 1$ count accuracy.

B
Modal 1743A erystal timing permits you to use the sweep vernier to calibrate the CRT graticule in your system's units of operatlon. In this example. with the sweep vernier calibrated. the period is 32.18 microseconds (A) and with the sweep vernier uncalibrated to allow 3 major divisions to be one clock cycle, the crystal maintalns the accurate delta time readout of 32.18 microseconos (B).

Sweep vernier

Crystal liming now allows you to use the sweep vernicr out of its detent pesition to calibrate the CRT divisions for various measurements without uncalibrating the L.ED time readout. For example. you can sel up the graticule lines to represent clock periods and then make two channel measurements of other signals sclated to the preEdibmted"clock" signal.

The sweep vemicr increases the display resolution by up to three times. With the vemier in detent, the resolution of a full screen display is a maximum of one parn in 50000 and with the vernier full ccw, full screen resolution is a maximum of one part in 150000 . When the measured time interval exceeds one par in 100000 (5 digiss), the LED displays two decimal points under the exponent which implies a sixth digit of one to the left of the LEDD display.

Another use of the uncalibrated sweep vemier is to use a faster sweep to provide more resolution of the LED readouc. For example, by switching from a $1 \mu \mathrm{~s} / \mathrm{div}$ range 10 a $0.5 \mu \mathrm{~s} /$ div mange the lusi digit of the five digit display becomes hundreds of picoseconds instead of tens of manoscconds. The same display of the $1 \mu /$ div sweep can now be oblained on the $0.5 \mu /$ div sweep by adjusting the sweep vemier.

Logic Slate Display Option 101 offers convenient ane button switching between logic state and electrical analysis without changing probe or cable connections

Digital circuit analysis

Logic State Display Opt 101
With the increasing use and complexiry or digital circuits in sew products, the debugging and croubleshooting of a digital systern can be very difficult. The 1740A. 1741 A , or 1743A Logic State Display Option 101, plus a 1607A Logic Scate Aralyzer and four 10502A interconnecling cables. offer a solution to digital «roubleshooting with the combination of logic state and electrical analysis. The 1740S is also available which consists of a 1740A Option 101. a 1607A. and four interconnecting cables with a bracket and strap for combining into a single packuge. The Logic Sute Display Option 101 adds rear parel inputs with intemal switching circuits for single pushbucton swilching between the standard front panel inpuls and the rear panel state display inputs without changing cables. This single pushbution switehing capability is very useful when digital

Time relatlonship of two very low rep rate signals is cieariy shown with the variable persislence capabilty of the 1741A. The stable 1 riggers required for this alternate sweep display to maintain time relationship were generated by the 1 gota Logic State Analyzer.

Word triggering with the Analyzer's digltal memory and digltal delay permits viewing events leading up to and fallowing the trigger word for faster troubleshooting.
word flow errors require analysis of clecirical parameters to determine correclive meanures.

The 1607A's digital Delay mode makes it possible to position the 16 word oscilloscepe display window a desired number of clock pulses from the trigger word. The Delay mode coupled with the End Display mode allows you to monitor the events ibat lead up to and follow a faule. By comparing the algorithm with the data display. erroneous operation is quickly identified.

Switching to the electrical analysis mode permits probing of the circuit nodes to determine if an electrical problem exists that could be causing the machine 10 improperly exceute an instruction. This intemal switching between state and efectrical unalysis requires no reselting of controls or changing of cables.

Analog display of digital data shows race condition pulse (lop trace) which is defined in time by the 3rd ohannel Irigger view. With the trigger signal defined by a 18 -bil word you know when the problem occurs to reduce troubieshooting time.

1740A, 1741A, 1743A Specifications

Vertlcal dlsplay modes

Channel A : channel B : channels A and B displayed alternately on successive swecps (ALT): channcls A and B displayed by switching between channels at an approximate 250 KHz rate with blanking during switching (CHOP): channel A plus channel B (algebraic addirion); and rigger view.
Vertical amplitiers (2) Bandwidth and Rise Time at alldeflect ion faclors from $0^{\circ} \mathrm{C} \quad 10+55^{\circ} \mathrm{C}$.
Bandwldth: ($1740 \mathrm{~A}, 1743 \mathrm{~A}$) 3 dB down from 8 div reference signal: (1741A) 3 dB down from 6 div reference signal.

DC-coupled: dc 10100 MHz in both 50Ω and $\mathrm{I} \mathrm{M} \Omega$ input modes.
AC-coupled: approx 10 Hz to 100 MHz , I Hz with $10: 1$ divider probes.
Bendwidth limit; limits upper bandwidth to approx 20 MHz .
Rise Time: $\leq 3.5 \mathrm{~ns}$ measured from 10% to 90% points of a 6 div inpul step.

Deflection factor

Ranges: 5 mV div to $30 \mathrm{~V} / \mathrm{div}$ (12 calibrated positions) m $1,2,5$ sequence, accumte within 3%.
Vernler: conlinuously variable between all ranges, extends maximum deficction factor to at least $50 \mathrm{~V} / \mathrm{div}$. UNCAL light indicates when vemier is not in the CAL position.
Polarity: channel B may be inverted. Front panel pushbutton.
Dalay Ilne: input signals are delayed sufficiently to view lcading edge of input pulse without advanced ingger.
Input coupllig: selectable AC or DC. 50 (dc), or ground Ground position disconnects input cunnector and grounds amplifier inpul.
Input RC (salactable)
AC or $\mathrm{DC}: 1 \mathrm{M} \Omega \pm 2 \%$ shunted by approx 20 pF .
50 ohm: $50 \Omega=2 \%$.
Maxitnum input
AC or DC: 250 V (dc + peak ac) or 500 V p-p al I kH z or less. 50 ohms: $S V$ rms.

A + B operation

Amplifler: bandwidth and deflection factors are unchanged: channel B may be inverted for A-B operation.
Differentlal ($\mathrm{A}-\mathrm{B}$) common mode: CMR is at least 20 dB from de 1030 M Hz . Common mode signal amplitude equivalent 108 divisions with one vernier adjusied for oplimum rejection.

Vertical magnificatlon (X5)

Bandwidth: 3 dB down from 8 div reference signal.
DC-coupled: (1740A. 1743A) dc to approx 40 MHz : (174/A) dc to approx 30 MHz .
ACncoupled: 11740 A .1743 A) approx 10 Hz to 40 MHz . (1741 A) approx $10 \mathrm{H} \geqslant 1030 \mathrm{MHz}$.
Rlse tlme: ($1740 \mathrm{~A}, 1743 \mathrm{~A}$) $\leqslant 9 \mathrm{~ns},(1741 \mathrm{~A}) \leqslant 12 \mathrm{~ns}$ (measured from 10% to 90% points of 8 div inpul step).
Deflectlon factor: increases sensitivity of the 5 and $10 \mathrm{mV} / \mathrm{div}$ deflection factor settings by a facter of 5 with maximum sensitivity of 1 mV on channels A and B.

Trigger source

Selectable from channel A. channel B. composite, or line frequency. Channel A: all display modes riggered by channel A signal.
Channel B: all display modes ingered by channel B signal.
Composite: all display modes trigered by displayed signal excepl in Chop. In Chop mode trigger signal is derived from channel A.
Llne frequency: trigger signal is derived from power line frequency.

Trigger ulew

Displays insernal or extemal trigger signal. In Altemate or Chop mode. channel A. channel B, and the rigger signals are displayed. In channel A or B mode. Trigger View ovemides that channel. Intemal irigger signal amplitude approximates verical signal amplifude. Ext trigger signal deflection faclor is approx $100 \mathrm{mV} / \mathrm{div}$ or I V/div in EXT $\div 10$. Triggerng point is approx ecoler screen. With identically timed signals to a vertical inpur and the Ext trigger input, Irigecrsignal delay is $2.5 \mathrm{~ns} \pm 1$ ns ($1740 \mathrm{~A}, 1741 \mathrm{~A}$), $3.5 \mathrm{~ns} \pm 1$ ns (1743A).

Horizontal dlsplay modes

Main, 1 time (1743 A), main intensified (1740A, 1741A), mixed. delayed (1740A. 1741 A) mag X'10. and A ve. B.

Main and delayed time bases

Ranges

Main: $50 \mathrm{~ns} / \mathrm{div}$ to 2 s/div (24 ranges) in $1.2,5$ sequence.
Delayed: $50 \mathrm{~ms} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{div}$ (18 ranges) in). 2.5 sequence. Accuracy

Smapp Mimediv	Leturbe)		14 mp lant
	11	110	
30ntic 20 cm			$0 \text { 令别, }$ - 155 to 355 1356 to . 356

- Add 1% for 50 ms to 2 s ranges.

Maln sweep vernler: conlinuously variable between all ranges. extends slowest sweep to at least 5 s div. UNCAL light indicates when vemier is nol in CAL position. 1743A LED rcadout is always calibrated.
Magnitier (X10): expands all sweeps by a factor of 10. extends fastesı sweep to $5 \mathrm{~ms} / \mathrm{div}$.
Calibrated sweep delay (1740A, 1741A)
Delay time range: $0.51010 \times$ Main Time/Div sellings of 100 ns to $2 s$ (minimum delay 150 ns).
Differentlal time measurament accuracy

Haip raut bave Sexing	
100 nudiv to $20 \mathrm{~m} / \mathrm{m} / \mathrm{du}$ 	

- Aad 1% for lemperatuses from $0^{\circ} \mathrm{C} 10 \cdot 15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.

Delay fitter: < 0.002% (1 parn in 50000) of maximum delay in each step from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}:<0.005 \%$ (1 part in 20000) from $0^{\circ} \mathrm{C}$ to $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C} 10 \div 55^{\circ} \mathrm{C}$.

Callbrated sweep delay (1743A)

Delay tlmerange: 0to $10 \times$ Main Time/Div settings of 100 nsta 2 s .
Differentlal time measurement accuracy
Accuracy: $\pm 0.002 \%$ of reading $=1$ counl from $+15^{\circ} \mathrm{C} 10+35^{\circ} \mathrm{C}$; $=0.005 \%$ of reading ± 1 counl from $0^{\circ} \mathrm{C} 10+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C} 10$ $+55^{\circ} \mathrm{C}$.
TIme Resolution of ± 1 Count

5acep untreidir	: 1 Coum	Avarigit
41 ml 0.7 sintal	$=100 \mathrm{~mm}$	0000
$1 \mu \mathrm{~L}, 2 \mu \mathrm{~L}, 5 \mathrm{~s}$	-1m	1000
10 uct 20 ut 30 H1	$=10 \mathrm{nl}$	100
	$\pm 100 \mathrm{ml}$	17

I or infervals greater than 0.5 ms . : 1 caunt becumes insignolicant and the acculacy can be consid. ered a percent of reading.

Readout: 5 digil LED plus exponent.
Crystal Aglng: 0.0005\% per year.
Delay Ilther: same as 1740A. 1741 A

Triggering

Maln sweep

Normal: sweep is trigered by incemal or extemal signal.
Automatle: bright baseline displayed in absence or inpul signal. A bove 40 Hz . Inggering is same as normal. For stable triggering at approx 40 Hz and below, use Nomal iriggering.
Single: automatically switches triggering to Normal and the sweep occurs once with sume triggering as Nonnal, resel pushbution arms sweep and lights indicator. (1741A) Single sweep is also initiated with Erase pushbulton. sweep is armed after the erase cycle.
Internal: de to 25 MHz on sjgnath cirusing 0.3 div (1740A, 174) A). 0.5 div (1743A) or more verical deffection. increasing to 1 div (1740A, 1741A). 1.5 div (1743A) or werical deflection al 100 MHz in all display' modes (required signal level is increated by 2 when in Chop mode and by 5 when X 5 verical magnifier is mued). Triggering on líne frequericy is also selcetable.
External: de 1050 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (1740A. 1741 A). 65 mV p.p (1743A) or mare, increasing $10100 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (1740A. $1741 \mathrm{~A})$. $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (1743A) al 100 MHz (required signal level is increased by 2 when in Chop mode).
Delayed sweep (sweep after delay)
Auto: delayed sweep aulomatically stars al end of delay period.
Trig: delayed sweep is armed and triggerable al end of delay period.
Internal: de to 25 MHz on signals causing 0.3 div (1740A. 174|A).
I div (1743A) or more verical deflection, increasing to 1 div (1740A, 1741A), 2 dive (1743 A) of verical deflection at 100 MHz in all display modec (requred signal le vel is increased by 2 when in Chop mode and by 5 when X 's verneal magnifier is used.
External: de to 30 MHz on signals of $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (1740A, 1741A). 100 mV p.p (1743 A) or more increasing to 100 mV p-p (1740 A, 1741A). 200 mV p-p (1743 A) al 100 MHz (required signal level is increased by 2 when in Chop mode).

Exiernal Input RC: approx $1 \mathrm{M} \Omega$ shunted by approx 20 pF .
Maximum extemal Input: 250 V (dc + peak ac) or $500 \mathrm{~V} p-\mathrm{p}$ at 1 kHz or less.

Level and slope

Intemal: at any point on the positive or negative slope of the displayed waveform.
External: continuously variable from +IV $10-\mathrm{I} V$ on either slope of the triggér signal, $+10 \mathrm{~V} 10-10 \mathrm{~V}$ in divide by 10 mode (-10).
Couplling: AC. DC, LF REJ. or HF REJ.
AC: altenuates signals below approx 20 Hz .
LF Rejeot (maln aweep): attenuates signals below approx 4 kHz . HF Reject (maln sweep): altenuates signals above approx 4 kHz .
Trigger holdoff (maln sweep): increases sweep holdoff time in all ranges.

Callbrated mixed time base

Dual time base in which the main lime base drives the first portion of sweep and the delayed time base completes the sweep at the faster delayed sweep. Also operates in single sweep mode. Accuracy. add 2% to main time base accuracy.

A ve. B operatlon

Bandwldth

Channel A (Y-axis): same as channel A.
Channel B (X-axis): dc to 5 MHz
Deflectlon factor: $5 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ (12 calibrated pasitions) in I. 2. 5 sequence.

Phase difference between channels: $<3^{\circ}$. dc to 100 kHz (75 $\mathrm{kHz}, 1743 \mathrm{~A}$).
Cathode-ray lube and controls (1740A, 1743A)
Type: Hewlett-Packand. 12.7 cm (S in.) rectangular CRT, posi accelerator, approx 15 kV accelerating potential, aluminized P3I phosphor.
Grathcule: $8 \times 10 \operatorname{div}(1 \operatorname{div}=1 \mathrm{~cm}$) intemal non-paralax gradicu)e. 0.2 subdivision murkings on major horizontal and verical axes and markings for rise time measurements. Internal floodgun graticule illumination.
Beam finder: retums irace to CRT screen regardless of setting of horizontal, vertical. or intensity controls.
Z-axis Input (Intenalty modulation): $+4 \mathrm{~V}, \geqslant 50 \mathrm{~ns}$ width pulse blanks trace of any jatensity, usable to $\leqslant 10 \mathrm{MHz}$ for normal inten= sity. Input R. $1 \mathrm{k} \Omega=10 \%$. Maximuminpul $\pm 20 \mathrm{~V}(\mathrm{dc}+$ peak ac).
Rear panel controls: astigmatism and trace align.
Cathoderray tube and controls (1741A)
Type: Hewlelt-Packard, 12.7 cm (S in.) rectangular CRT, post accelerator, approx 7.5 kV acceleraling potential, aluminized P31 phosphor.
Graticule: $8 \times 10 \mathrm{div}$ ($1 \mathrm{djv}=0.85 \mathrm{~cm}$) intemal, non-parallar gralicule, 0.2 subdivision markings on major horizontal and vemical axes, with markings for risc lime measurements. Graticule illumination is achieved with Persistence control sel 10 minimum.
Beam flinder: recums trace to CRT screen regardless of selting of horizontal and verical controls.
Z-axls Imput (intensity modulation): $+4 \mathrm{~V}, \geqslant 50 \mathrm{~ns}$ width pulse blanks imce of any intensity, usable $10 \leq 10 \mathrm{MHz}$ for nommal intensity. Inpul R. I $k \Omega=10 \%$. Maximum input $=20 \mathrm{~V}$ (de + peak ac).
Operating modes: write, store, display, auto-store, auto-erase, and conventional (rear panel control).

Perslatence

Varlable: approx 100 ms to 1 min .
Conventional: natumd persistence of P3I phosphor (approx 40 $\mu \mathrm{s})$.
Storage writing speed: $\geqslant 100 \mathrm{~cm} / \mu 5(118 \mathrm{div} / \mu \mathrm{s})$ over center 7×9 div (with viewing hood).

Storage the
Dleplay modes al least 105 at $22^{\circ} \mathrm{C}$.
Store mode: al least 30 s at $22^{\circ} \mathrm{C}$.
Brlghtness: approx $170 \mathrm{~cd} / \mathrm{m}^{2}\left(50 \mathrm{fl}\right.$) increasing to tipprox $340 \mathrm{~cd} / \mathrm{m}^{2}$ (100 fl$)$ derending on brightness control selling.
Erase time: approx $\mathbf{3 0 0}$ ms.
Rear panal controla: astigmatism, crace align, conventional pushbulton, and view time.
General
Rear panel outputs: main and delayed gates, 0.8 V io $>+2.5 \mathrm{~V}$ copable of supplying approx 5 mA .
Amplitude calibrator ($0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$)

Oulpul vollage	170plnto $>!M \Omega$ 0.1 Vp-pinto 50 O	土 J\%
Pise time	二.01 1 s	
Fioquency	aporoc 1.4 hHz	

Power: 100. 120. 220. 240 V ac $\pm 10 \% ; 48$ to $430 \mathrm{~Hz}: 100 \mathrm{VA}$ max. Weight: (1740A net, $13 \mathrm{~kg}(28.6 \mathrm{lb})$. Shipping, 17.7 kg (39 lb). (174 I .1743 A) net $13.8 \mathrm{~kg}(30.5 \mathrm{lb})$. Shipping $17.7 \mathrm{~kg}(39 \mathrm{lb})$.
Operallng environment: remperature $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$; humidity to 95% relative humidity at $+40^{\circ} \mathrm{C}$: altitude, 104600 mm (15 000 fl): vibration. vibrated in three planes for 15 min . each with 0.254 mm (0.010 in.) exeursion. 10 to 55 Hz .
Slze: (1740 A$) 197 \mathrm{H} \times 335 \mathrm{~W} \times 597 \mathrm{~mm} \mathrm{D}\left(78 / 4^{71} \times 133 / \mathrm{n}^{\prime \prime} \times 231 / \mathbf{z}^{\prime \prime}\right)$ with handle, $492 \mathrm{~mm} D$ ($19^{9 / 3} / \mathrm{s}^{\prime}$) without handle: $(1741$ A) $616 \mathrm{~mm} D$ ($241 / 4^{4}$) with handle. $552 \mathrm{~mm} \mathrm{D}\left(21 \% \%^{\prime \prime}\right)$ without handle: (1743 A) 613 $\mathrm{mm} \mathrm{D}\left(23^{\left.1 / 2^{\prime \prime}\right)}\right.$ with handle. $549 \mathrm{~mm} \mathrm{D}\left(21^{\pi / 4} \mathrm{~m}^{\prime \prime}\right)$ without handle.
Accessorles furnlshed: one bluc hight filter HP P/N 01740-02701. one front panel cover, one $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ power cord, one vinyl accessory slorage pouch, one Operators Guide and ane Service Manual. two Model 10041A 10:1 divider probes approx 2 m (6.6 ff) long. The 174IA also includes one Model 10173A RFI filter and contrast screen. and one Mosel 10140 A viewing hood.

Options

Prlce
001: fixed power cord (U.S. only) in lieu of detachable power cord
101: Logic State Display single pushbutton (Gold Button) interface Option for operation with the HP Model 1607A Logic State Analyzer. Permits single pushbulIon switching between functional 16 channel logic slate analysis and electrical analysis of digital data. Option 101 removes the A vs. B mode and replaces it with the State Display pushbution and adds interface cincuits for switching betweon front panel inputs and rear panel logic state inputs.
910: exera sel of product manuals
1740A Ope 910
add $\$ 8.50$
1741A Opt 910
add \$12.50
add \$18
Loglc state analysis equlpment required for Option 101
1807A: 16-Biz Logic Slate Analyzer including three $\$ 2900$ data probes and one clock probe.
Four 10502A: $33 \mathrm{~cm}\left(9^{\prime \prime}\right)$ cables. Three for X, Y, and $\$ 15$ ea. Z interconnections and one for pattem triggering connection to the oscilloscope.
Adapter plate and Strap: (HP P/N 5060-1213) for
1740S: includes 1740A 160 MHz oscilloseope with
Ope 101. Model 1607A Logic State Analyzer. four $10502 \mathrm{~A} 23 \mathrm{~cm}\left(9^{9}\right)$ BNC interconnecting cables with adapter plate and strap (HP P/N 5061-1213) for combioing into a single package.

Ordering informatlon
1740 A 100 MHz Oscilloscope
1741 A 100 MHz Storage Oscilloscope

Introduction

The 180 plug-in oscilloscope combines high performance, plug-in versatility. and operating ease to give you a flexible operating sysen with latoratory quality throughout. Whecher you require four channcl real time measurements to 100 MHz , sampling 1018 GHz . 170 ps rise lime Time Domain Rellectomelry. High Resolution Spectrum Analysis, or precision Swept Frequency testung. each of these and more are availahle in a compact package with a large CRT display.

The focal moint for performance is the mainframe with a high quality CRT for accurate measurements. Four mainframes, including onc with a large screen, and a selection of plug-iss allow you to configure an oscilloscope for general purpose use ihrough 100 MHz . 18 GHz sampling. Time Domain Reflectometry. Specinum Andysis, and Nelwork Analysis. You can meet your present measurement needs, selecting only those plug-ins to meet present requirements at minimum cost, yel keep the full capability of the mainframe for future requirements.

Models 180 C . 180 D , and 182 C mainframes have brighi, easy to sce displays for maximum resolution and measurement accuracy. Models 180C and 180D each have a CRT display with a full 8×10 cm internal graticule and a writing specd of $1500 \mathrm{~cm} / \mu \mathrm{s}$. For multitrace viewing and easy-ro-see displays. the 182C CRT display bas a
large 8×10 division (one division equads 1.29 cm) internal graticule
Storage/variable persistence mainframes give you the widest selection of general purpose and high speed storage applicalions. Advances in processing and larget material have resulted in a very rugged storage sufface as well as extremely high writing speeds. This storage surface is so bum resistant that special operating procedures are not required, extending the versatility of storage measurements 10 general purpose applications.

Slorage writing speeds of $100 \mathrm{~cm} / \mu s$ are available in the 184 A and 184A Option 005, whith allows you to capture those clusive Iransients thal were too fast for other storage scopes to record. With these fast writing speeds you can easily make pulse liming adjustments, locate noise pulses and missing bits from low duty-cycle digital signals. Low duty-cycle pulse trains from disc, lape, or drum peripheral units can also be viewed through repettive sweeps by using variable persistence to build up the intensity of dim traces.

For medium speed storage and variable persistence applications, Models 181A/AR mainframes are available. Variable persistence mode, in both models. allows you to adjust display reseblion time to match the speed of slowly cbanging signals for maximum viewing ease. This allows direct viewing of complete waveforms without cluter in electromechanical, biomedical, chemical. geological. oceanographical. and many other areas with slowly changing signals.

Real time measurements

A selection of high performance, verical real sime plug-ins assures the right plug-in for most measurement applications. Real (ime. dual channel plug-ins are available in $500 \mathrm{kHz}, 50 \mathrm{MHz}$, and $100 \mathrm{MH} \Rightarrow$ bandwidths with denlection factors of $100 \mu \mathrm{~V}$. and 5 mV . Additional measurement capabiliry is provided by four chansel 100 MHz , and 50 MHz plug-ins and a differential/de offser plug-in with 40 MHz bandwidth.

A selection of time base plug-ins gives you a choice of single or main and delayed sweeps with magnified sweep speeds io $5 \mathrm{~ns} / \mathrm{div}$ in 180 mainframes. Models 1820 C and 1825 A have riggering capabilitics to $150 \mathrm{MH} \%$ and the 182 IA riggers in excess of 50 MHz Models 1821A and 1825A have culibrated delayed and mixed siveeps for accurale timing measurements and detailed examination of selected porions of waveforms.

Sampliny

Models 1810 A and 1811 A sumpling plug-ins provide fast. easy low level, high frequency measurements. The 1810A looks and operates like a real time plug-in which reduces familiarization time for accurate. low-level measurements to 1 GHz . Measurements to 18 GHz are aviolahle with the 1811A and the 1430 C remore feedihrough sampling head. The remote sampling head reduces mensurement emors at high frequencies by eliminating long high frequency interconnecting cables. The feedibrough methord of measurement in the sampling heall increases accuracy by allowing measurements io be made while the system is operating with its own loads.

Time domain reflectometry

Time Domain Reflectometry is a fast, convenient iechnique for measuring the electrical characteristics of transmission systens. This measuremeat lechnique provides a display of the impedante profile of a system showing magnilude, nature, and distance of discontinuities. Model 1818A is an easy-10-11se 170 ps rise time TDR plug-in for design and installation evaluation of transmission or intereonnecting systems. For critical design work or system installations. the $1815 B$ with its remote sampling head will display discon(inuities as close as 6.4 mm (0.25 inch) with a system rise time of 35 ps.
Logle state analysls
The 1607A Logic State Analyzer combined with a 180 or 182 oscilloscope provides a complete logic analyzer system for func. lional measurements of digital systems al specds tu 20 MHz . The 1607 A analog outputs connect to the 180 or 182 scope de-coupled X (Exy Horiz)-. Y-. and Z-hxes inpuls to provide a 16×16 bit data ficld display of I's and 0 's. The 180 or 182 scopes may also be 1riggered by the 1607 A to display waveforms related ta the logic flow al a prenelecled point. In the dialia domain the analy atrs'acope combination displays the logic states so you can pinposint a problem. "then. in the time domain, the 1607A triggers the scope whene the problem occurs for electrical analysis.
Spectrum analysis
The 8557A (350 MHz) and 8558 B (1500 MHz) Spectrum Analyzer plug-ins display the absolute amplitude of the frequency componens of an inpul signal. Applications include: distoriten and modulation measurements, mixer characierization, filler measurements and absolute power measurements.

Operation of both analyaers is extremely simple: only three controls are needed for mosi measurements. Two controls set the frequency scale, and one is used for the amplitude scite. Meaturemenis can be made from +20 dBm (3.24 volts) to $\cdot 117 \mathrm{dBm}$ (320 nV) on a 70 dB dislonion-free display. The 8557 A features a full span of 350 MHz : the 8558 B as wide as 1000 MHz . and for more detailed analysis, both cin scan a range as namuw as 50 kHz .

Swept trequency testIng

Hewlet1-Packard's Model 8755 sericy Frequency Renponse Test Sets are precision detection and display systems for making the basic microwave measurements of insertion gainfluse and feturn loss (SWR) from 15 MHz 1018 GHz . Available in cither cabinetor rack-mount configuration. the 8755 sysiem is useful for chastoterizing such networks is amplifiers, fillers, atienuators, antennas. elc.
The 8755 sysiem has been specifically designed to achieve a full 60 dB dynamic range when used with solid slate sweepers (HP R620 weries) which typically have an output level in excess of +10 dBm . The 60 dB dynamic range from +10 to -50 d 8 m means it is possible 10 view a fill 40 dB of relum loss with couplers having a 20 dB auxiliary amm coupling facior.

180 System Selection Charts

MANFRAMES

Mdinframes		
Hodol Mo．	Doscriplion	Page
180E／D	High speed， $8 \times 10 \mathrm{em}$ Inlemal grallaule（1800 rach styite）	152
IB1A／AR	$5 \mathrm{~cm} / \mu \mathrm{s}$ starage writini sused／variable persistence（IELAR rach sfyle）	149
182C		151
1848	$100 \mathrm{am} / \mu s$ sorage writing speedfuarisble persistance	150
184A Opt 005	$400 \mathrm{~cm} / \mu \mathrm{s}$ slorage writing speed／varlable persistence	150

VERTIEAL PLUETMS							SAMPISNE （Yerical Section！		
Madel Ko	18019	16034	1804h	18054	1808A	18992	118108	148158	131831／
$\begin{aligned} & \text { Bandwith } \\ & \text { MHz } \end{aligned}$	50	$\begin{gathered} 40 \\ (30) \\ \hline \end{gathered}$	30	100	D． 5	100	1 GH	124 GHz	18 GH
Minc dellection laclorfaly	$\begin{gathered} 5 \text { miv (SAD } 1 V \\ 001 \text { OCl ciscouded) } \\ \hline \end{gathered}$	$\begin{gathered} 10 \mathrm{mV}(1 \mathrm{mv} \\ \text { cascadac) } \end{gathered}$	20 mb	5 mY	$100 \mu \mathrm{Y}$	10 mv	2 mb	5 mV	2 mv
Ciranaels	$\begin{aligned} & 2 \text { (Op1 001, 1 } \\ & \text { cascaded) } \end{aligned}$	1 diff	4	2 （ ${ }^{\text {c cascaded }}$	2 （both dilff）	4	2	I	2
1noし̧ AC		$1 \mathrm{MO} / 27$ 㫙	1 Hos／25 pf		$1 \mathrm{Mra/45}$ 听		S012	5001	5011
Dilferenlisl ingul	yes	yes（with ac oflset）	no	yex	jef	ves	yes	no	Yes
Pape	154	154	136	153	154	158	160	162	150

TIME BiSe plutuihs				SAMPIIHG （Tme Base Sacllon）			IDR		$\begin{aligned} & \text { FREOUCNCY-GOMAIN } \\ & \text { PLOG-INS } \end{aligned}$		
Model Mo．	1820C	．1821A	1825	118104	1.18158	1.218119	11818 Al	8．2318150	85314	85588	
Exifrig fraq（if Hz ）	150	100	150	$>1 \mathrm{GHz}$	18 GHz with tisget「．nリntiokn	$18 \mathrm{GH}_{2}$ with Itirgat l：aundonn	<170 os isse time IDR system Cahbrated in feet and metres	$\begin{gathered} -35 \text { os } \\ \text { sise timie } \\ \text { TDR } \end{gathered}$	Spectrum Analyzer $0.1-350$ MH_{2} ． Marsurements from $-117 \mathrm{dBm}$ $10-20 \mathrm{dBm}$	spectrum Analyrer plugin． $0.1-1500$ MHz． Measutements trom $-11708 \mathrm{~m}$ $10+30 \mathrm{dBm}$.	Swepl Amplitude Analyzar olug－in measures Insertion gain／loss and ceturn loss from 15 MHz to 18 GHz
lat Trig fieq	Delermared oy Vet．Amp．Plug－1n			16 Hz			Caharated in feet and metres	Cantiated in metres	$0.1-350$ MHz Messurements from $-117 \mathrm{dBm}$ $10-20 \mathrm{dBm}$		
Sweap Spe és／dir	$\begin{gathered} 5115 \\ 18 \end{gathered}$	$\begin{gathered} 10 \mathrm{~ns} \\ 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 5 \mathrm{~ns} \\ 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} 100 \mathrm{E} \\ (\text { (expsinded }) \\ -50 \mu 3 \end{gathered}$	$\begin{gathered} 10 \mathrm{ps} \\ -1 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 10 \mathrm{ps} \\ & \text { (expankedi } \\ & -1 \mathrm{ps} \\ & \hline \end{aligned}$					
Oelayed and mixed swep	No	Yes	Yes	No	No	No					
Page	153	158	159	150	IE5	160	162	162	165，486	165． 488	424

[^11]

181A/AR specifications

Cathode ray tube and controls
Type: post-accelcrator stomge: approx 8.5 kV accelerating poten(jal: aluminized P3) phosphor.
Graticule: 8×10 div internal gralicule, 0.2 subdivision markings on major horizontal and vertical axes. I div $=0.95 \mathrm{~cm}$. Front panel adjustment aligns trace with graticule.
Beam Hinder; returns urace to CRT scrcen regardless of horizonial or verical control senting.
Intensity modulation (extemal input)
Input: approx $\div 2 \vee, \geq 50$ ns pulse width will blank irace of normal intensily
Input R: approx $5 \mathrm{k} \Omega$.
Maximum Input: $=20 \mathrm{~V}(\mathrm{dc}+$ peak ac)

Pergistence

Normal: ratural persistence of P3I phosphor (approx $40 \mu \mathrm{~s}$).
Vardable: from $<0.2 \mathrm{~s}$ to $>1 \mathrm{~min}$.

Storage writing speed

Write mode : $>20 \mathrm{~cm} / \mathrm{ms}$.
Max write mode: $>5 \mathrm{~cm} / \mu \mathrm{s}$.
Brighiness: $>342.6 \mathrm{ed} / \mathrm{m}^{2}(100 \mathrm{n})$.
Storage tlme: from Write mode lo Srore, mace may be slared at reduced intensity for >1 hour: 10 View mode. trices may be viewed at normal intensity for >1 minute. From Max Write mode to Slore, traces may be stofed at reduced intensity for >5 minutes; to View mode. races nay be viewed at normal mitensity for ≥ 15 seconds. Erase: manual, pushbution erasure tates approx 300 ms .

Horizontal amplifler

External Input
Bandwldth: dc-coupled, de 105 MHz : ac-coupled. 5 Hz to 5 MHz.
Deflection Factor: $1 \mathrm{~V} / \mathrm{div}$ in X1: $0.2 \mathrm{~V} / \mathrm{div}$ in X : $0.1 \mathrm{~V} / \mathrm{div}$ in Xio.
Vernler: provides continuous adjusiment belween ranges.
Dynamic range: $: \pm 20 \mathrm{~V}$.
Maximum Input: 600 V ac (ac-coupled input).
Input RC: approx 1 megohm shumed by approx 30 pF .
Sweep magnifler: X $\$ \times 10$: accuracy. $=5 \%$ with 3% accuracy time bise.

Outputs

Four rear panel emitter follower outpuls for main and delayed gates. main and delayed sweeps, or vertical and borizontal outpuls when used with TDR/swmpling plug-ins. Maximum curvent available ± 3 $m A$. Outpuls will drive impedances $\geqslant 10 t 00$ ohms without distonion.

General

Callbrator: approx I kHz square wave. 3μ s rise lime: 10 V p-p inso $\geqslant 1$ megohm: accuracy. $=1 \%$.
Operating environment: temperature. 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$): humidity, to $95 \%^{\circ}$ relative humidey at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: altitude, to $4600 \mathrm{~m}(15000$ fi): vibrition, vibrited in three planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 101055 Hz .

Dimensions

Cablnet Model, 181A: $289 \mathrm{~mm} \mathrm{H} \times 300 \mathrm{~mm} W \times 540 \mathrm{~mm} D$ behind panel $\left(11^{2 /} / 4^{\prime \prime} \times 7 h^{\prime \prime} \times 21^{1 / 4}\right)$.
Hack Model, 181AR: $132.6 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm} \mathrm{~W} \times 543 \mathrm{~mm} D$
 mount labs.
Weight (wlthout plug-Ins)
Model 181A (cabinef): nel. 10.9 kg (24 lb). Slipping. 15.4 kg (34 (b).

Model 181AR (rack): nct. 11.8 kg (26 lb). Shipping. 17.2 kg (38 1b).
Power: IIS or $230 \mathrm{~V} \pm 10 \mathrm{U}_{i}$, 48 to 440 Hz : 115 watrs al normal line with plug-ins; max mainframe power, 225 VA.
Accessorles supplled: $2.3 \mathrm{~m}\left(7^{1 / 2} \mathrm{ft}\right)$ power cord. Mode) 10178 A mesh contrast filter, blue plastic light filter (HPP/N 5060-0.548), one Operating and Service Manual. A rack moumt kit (HP P/N 5060 . 05S2) and 2 clip-on probe holders (HP PiN 5040-0464) are supplied with the 181 AR rack model.
181T/TR
181 T cabinct and 181TR rack model mainframes are related to 8557A. 8558B, and 87558 plug-ins; with non-buffered rear pane) auxiliary outputs. For detailed information refer to an 8557A. 8558 B , or 8755 series data sheer.

Optlons

Price
H49: Model 18/A with remote progromming capabilíy
for Writc, Max Wrice, Nomal, Store. View, and
Erase functions. Programming is accomplished with contact closure, DTL. or TTL logic sources

910: additional Operating and Service Manual
add $\$ 8$
Ordering informatlon
181A Siorage Oscilloscope. Cabine: Siyle
$\$ 2450$
181AR Scorage Oscilloscope, Rack Sıyle
$\$ 2550$

184 Mainframe Description

The Model 184A cabines style variable pensistence and storage mainfame provides writing speeds of $100 \mathrm{~cm} / \mu$ s or with Option 005. $400 \mathrm{~cm} / \mu \mathrm{s}$ (with viewing hood). These writing speeds are fast enough that craces you previously had to photograph to see can now be viewed directly in normal ambient light. A FAST mode optimizes, writing speed by switching the CRT display to reduced sean while mainataining calibration and resolution. A second graticulc. for the FAST mode, is superimposed in the center of the sercen and a froml panel light indicates when the scope is the FAST mode.

184A Specifications

Cathode-ray tube and controls

Type: posi-accelerator siorage tube; aluminized P31 phosphor.
Gratcule: 8×10 div inernal gralicule. 0.2 div subdivisions on major axes. I div $=0.95 \mathrm{~cm} .8 \times 10$ diy internal graticule superimposed in center of normal scope graticule (for fast writing speed mode). I div $=0475 \mathrm{~cm}$. Front panel adjusıment aligns trace swith graticule.
Beam finder: retums trace to CRT sereen regardless of selling of horizontal or verical control seting.
Intenslty modulation (extemal input)
Input: approx $+2 \mathrm{~V}, \geqslant 50 \mathrm{~ns}$ pulse width will blank trace of normal intensily.
Input A : approx $5 \mathrm{k} \Omega$.
Maximum Input: $\pm 20 \mathrm{~V}$ ($3 \mathrm{c}+$ peak ac).

Writing modes: conventional (non-storage). standard, and fast (variable persistence and storage). Pressing STORE fand either STD or FAST provides maximum persistence with floodguns of for a ready-to-write state. The CRT witl reman primed and ready-towrite for the storage time or $>10 \mathrm{~min}$. in STD/STORE and $>30 \mathrm{~s}$ in FASTISTORE.

Perslationce

Conventional: natural persistence of P3I phosphor (approx 40 $\mu s)$.
Varlable: from < $50 \mathrm{~ms} 10>1 \mathrm{~min}$.
Storage writing speed

Model Mo.	Stangato'	Tasis'
187 A	$>0.2 \mathrm{em} / \mathrm{us}$	>100 cmincs
184 A 0 pr 003	$20.2 \mathrm{~cm} / \mathrm{cs}$	$\because-400$ inties

Adjustable willing speeds to approx $10 \mathrm{em} / \mu 5$ are avallabla wlith reat pancil conluols

- Callbrated $3.8 \times 4.73 \mathrm{~cm}$ reduced scan area

Brightness
Standard: $>342.6 \mathrm{~cd} / \mathrm{m}^{2}(100 \mathrm{f})$).
Fest: $>173.3 \mathrm{~cd} / \mathrm{m}^{2}(50 \mathrm{n})$.

Storage time

Standard wriling speed: variable from >1 mın at normal iniensity to $>10 \mathrm{~min}$. at reduced brighuness.
Fast writing speed: variable from $>10 \leq(8 \mathrm{~s}$ for Opt 005) at normal intensity $10>30$ s al reduced brighiness. Storage lime may vary with wide temperature changes, specifications are for normal room temperature ($+22^{\circ} \mathrm{C}$).
Erase: manual. pushbulton erasure lakes approx 300 ms .
Horizontal amplifier
External Input
Bandwldth: de-coupled, dc to 5 MHz , ac-coupled. 5 Hz to 5 MHz .
Deflection factor: I $\mathrm{V} / \mathrm{div}$ in $\mathrm{X} 1: 0.2 \mathrm{~V} / \mathrm{div}$ in $\times 5: 0.1 \mathrm{~V} / \mathrm{div}$ in X10; accumey, $\pm 5 \%$. Vernier provides continuous adjustment berween ranges.
Dynamle range: $=20 \mathrm{~V}$.
Maximum Input: 600 V de (ac-coupled input).
Input RC: approx I megohn shunted by approx 30 pF .
Sweep magnifier: XS, X 10 ; accuracy, $\pm 5 \%$ (with 3% accuracy (ime base).

Callbrator

Type: approx 1 kHz square wave. $3 \mu \mathrm{~s}$ rise cine.
Voltage: $10 \mathrm{~V}-\mathrm{p}$ into $\geqslant 1$ megobm: accuracy. $\pm 1 \%$.

Outputs

Four rear panel emitter follower ourputs for main and delayed gates, main and delayed sweeps. or verlical and horizontal outputs when used with T'DR/Sampling plug-ins. Maximum curent available, $=3 \mathrm{~mA}$. Will drive impedances $\geqslant 1000$ ohms without distortion.

General

Operating environment: iemperalure. 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to +130 F): humidiry, to 95% relative humidit's at $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$): althade, to 4600 m (15000 ft): vibration, vibraled in three planes for 15 min. each with 0.254 mm (0.010 in .) excursion, 10 to 55 H 7.
Dlmenslong: 289 mmH . 200 mm W .540 mm D behind panel ($113 / \mathrm{g}^{\mathrm{H}}$ $\times 7 / h^{\prime \prime} \times 2\left(1 / 4{ }^{\prime \prime}\right)$.
Welght: (without plug.ins) ret. 10.9 kg (24 lb). Shipping. 15 kg (33 1b).
Power: 115 or $230 \mathrm{~V}=10 \%$. 48 to 440 Hz , IIS watts at normal line with plug-ins. Max mainframe power. 225 VA.
Accessories supplled: 2.3 m ($71 /=$ n) power cord. Model 10178A mesh contrast filter, bluc plastic light filler (HP P/N 5060-0548), one Operative and Service Manual.

Opilons

005: Fast Starage CRT add $\$ 500$
910: additional Operatong and Service Manual
184A Storage Mainframe (Cabinet)

182C Description

Model 182C mainframe provides large. easy-ro-read displays on a $16.5 \mathrm{~cm}(6 \%$ in.) CRT with 100 MHz capability. A parallat free. intemal graticule allows accurate readings from any angle or from a distance which is extremcly useful in systems testing. The lange display also improves measurement accuracy or displays such as rour channel. differential/dc offset. sampling, and time domain reflectometer measurements.
The cathode-may tube has 21 kV accelerating potential for bright displays of low repetition rate signals. Particular allentioo to electron oplics in the CR]' assures that the large display size does not cause degradation of the trace. Intemal flood guns provide graticule i) umination which allows adjustment of buckground illumination for optimum contast of graticule and trace for easy-10-read three-shade photogmphs. A find beam conirol reduces setup time by rewining the beam to the display area regandess of vertical, time base. or intensily control sertings.

182C Speciflcations

Cathode-ray tube and controls

Type: post accelerator. 21 kV accelerating potential: aluminized P31 phosphor.
Gratleule: 8×10 div internal graticule. 0.2 div sub-dimsioms on major axes. 1 div $=1.29 \mathrm{~cm}$. Front panel adjustment aligns trace with graticule. Suale conlrol illuminates CRT phosphor for viewing with hood or takilig photographs.
Beam tinder: returns trace to CRT screen regardess of setuing of horizontal, verical or intensity consrols.
Intensity modulation (external input)
Input: approx $+2 \mathrm{~V}, \geqslant 50 \mathrm{~ns}$ pulse width will blank trace of normal intensity. Inpul R approx $\$ \$ 0$.
Maximum Input: $=20 \mathrm{~V}$ (dc + peak ac).
Horlzontal amplifler
External Input
Bandwldth: de-coupled. de to 5 MHz : ac-coupled. 5 Hz to 5 MHz .
Deflection factor: $1 \mathrm{~V} / \mathrm{div}, \times 1: 0.1 \mathrm{~V} / \mathrm{div}, \times 10$ aceuracy. $\pm 5 \%$.
Vemier provides continuous adjustment hetween ranges.
Dynamle range: $\pm 20 \mathrm{~V}$.
Meximum Input: $\pm 300 \mathrm{~V}$ (dc + peak ac).
Input RC: 1 megohm shunted by approx 30 pF .
Sweep magnifier: X 10 ; accuracy. $\mathrm{I} 3 \%$ (wilh 3% accuracy cime base).
Callbrator: approx $1 \mathrm{k} . \mathrm{Hz}$ squore wave. $<3 \mu \mathrm{~s}$ rise lime: $250 \mathrm{mV} \mathrm{p}-\mathrm{p}$ and 10 V p-p into $\geqslant \mathrm{Imegohm},=1 \%$.
Outputs
Four rear pancl emitter follower outpuls for main and delayed gales. main and delayed sweeps. or vertical and horizontal outpuls when used with TDR/Sampling plug.ins. Maxinum curtent available. $=3$ mA . Will drive impedances $\geqslant 1000$ ohms without distortion.

General

Oparating environment: temperalure, 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $+130^{\circ} \mathrm{F}$): humidity. 1095% relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: at tilude. 104600 m (15000 n); vibration, vibrated in three planes for 15 mirf. each with 0.554 mim (0.010 in.) excursion. 10 to 55 Hz .
Dlmensions: $338.1 \mathrm{mmH} \times 201.6 \mathrm{~mm} \mathrm{~W} \times 498.5 \mathrm{~mm}$ D overall (133/n" $\times 719 / 1 r^{4 "} \times 19^{3} / 8^{4}$).
Weight: (withour plug-ins) net, 12.2 kg (27 lb). Shipping. 15.4 kg (3 A lb).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$. 48 to $440 \mathrm{~Hz},<110$ watts wilh plug-ins at normal linc. Max mainframe power, 200 VA.
Accessories suppled; 2.3 m ($71 / 2 \mathrm{fi}$) power cord, blue piastic light filter (HP P/N $5060-0547$), one Operating and Service Manual.

182T

Cabinet model mainframe related 108557 A . 8558 B . ond 8755 B plugins: non-buffered rear pancl auxiliary outputs: and P39 mediumpersistence CRT plossphor. For detailed information refer to an 8557 A .8558 B or 8755 B data sheel.

Options

Price
010: mainframe without rear panal main and delajed
sweep and gate outputs
less $\$ 100$
10: additional Operating and Service Manual
add $\$ 10$

Ordering Information
182 C Oscilloscope Mainframe $\$ 1500$
182C Option 010 (sec Options)
$\$ 1400$

$180 \mathrm{C} / \mathrm{D}$ Speciflcations

Cathode-ray tuberand controls
Type: post accelerator. approx is kV accelerating polential: aluminized P31 phosphor.
Graticule: 8×10 div mienal graticule. $1 \mathrm{div}=1 \mathrm{~cm} .0 .2$ div subdivisions on major axes Front pancl recessed screvedriver adjustment aligns trace wilh graticule. Scale control hiluminates CRT phosphor when viewing with hood or taking photograplis.
Beam finder: relurns race to CRT screen regardlens of velling of honzontal. vertical. or inemsily conirols.
Intensity modulation (external Input)
Input: approx $+2 \mathrm{~V} . \geqslant 50$ ns pulse widh will blank tace of normal intensity.
Input R: approx $\leq k \Omega$.
Maximum Input: $=20 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$.

Photographle writing speed: 1500 chiv/ μ s. Mcasured ubing P ? phosphor. 10000 ASA film without film figstan and HP Model 195A camera (1. 3 lens. I:0.5 object-10-image ratio). Writing speed may be incredsed subsianlially by usme film fogging techniques. P il phosphor. and fuster cuncratenses.

Horlzontal ampilfier

External Input

Bandwldth: de to 5 MHz di-coupled: $5 \mathrm{~Hz}_{2}$ to 5 MHz ac-coupled.
Deflection Factor; $)$ Vidiv. XI: $0.2 \mathrm{~V} / \mathrm{div} . \times 5 ; 0.1 \mathrm{~V}$ idiv, $\times 10$; accuracy $=5 \%$. Vernier provides continuous adjusiment between

ranges.

Dynamic range: $\pm 20 \mathrm{~V}$.
Maximum input: 600 V de (ac-coupled inpul).
Input RC: approx 1 megohm shunted by approx 30 pF .
Sweep magnifler: $X \leq, X 10$. accuracy $\pm \$ \%$ (with 3 骨 accuracy time base).
Outputs
Four rear panel emilter follower outputs for main and delayed gates. main and delayed sweers, or vertical and horizontal outputs when used with TDR/Sampling plug-ins. Maximum current available, ± 3 mA. Oulputs will drive impedances of >1000 ohms withou distortion.
General
Callbrator: approx 1 kHz square wave, $\mathbf{c} 3 \mu \mathrm{~s}$ risc lime: 350 mV p-p and $10 \vee p-p$ into $\geqslant 1$ megohm: accuracy. $\pm 1 \%$.
 $+130^{\circ} \mathrm{F}$): humidity. to 95% relative humidity at $40^{\circ} \mathrm{C}$ ($1044^{\circ} \mathrm{F}$): ad titude. 104600 m (15000 m): vibration, vibrated in three pl: n es fur 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion. 10 to 55 Hz .

Dimenslons

Cablnet model, 180C: $289 \mathrm{~mm} \mathrm{H} \times 200 \mathrm{~mm} \mathrm{~W} \times 540 \mathrm{~mm} \mathrm{D}$ behind panel ($\left.11 / / s^{\prime \prime} \times 7 / / y^{\prime \prime} \times 2114^{\prime \prime}\right)$.
Rack model, 1800 : $132.6 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm}$ W $\times 543 \mathrm{mmD}$
 mount tabs.
Wolght (without plug-Ins)
Model 180 C (cablnet): nel. $10.4 \mathrm{~kg}(23 \mathrm{lb})$. Shippring, 15.4 kg (.34 lb).
Model 180 D (rack): nel. 11.9 kg (26 ll). Shipping. $17.2 \mathrm{~kg}(38 \mathrm{lb}$).
Power: 115 or 230 V . $=10 \%$; 48 to 440 Y Iz : nomitll < 160 walls with plug-ms in normal line. Max manframe power. 200 VA .
Accessorles supplled: $2.3 \mathrm{~m}(7 / 2 \mathrm{f})$ power cord. blue plastic light tiller (HP P/N 5060-0548). one Operating and Service Minual. A rack mount kil (HP P/N $5060-0552$) and 2 clip-on probe holder- (HP P/N 50:0-0464) are supplied with the 180D rack model.

180TR

Rack model mainframe related to 8557 A .8558 B . and 8755 B plugins: non-buffered rear pancl auxiliary oulputs; and P 39 mediumpersistence CRT phosphor. For detailed information refer in an 8557A. 85589 or 8755 series data sheet.
Optlons

Price
010: deletes rear panel outputs for main and delayed less \$100 gates and main and delayed sweeps
910: additional Operating and Service Manual
add $\$ 7.50$

Ordering information

180C Cabinet Style Mainframe
Opt 010: (sec Options)
180D Rack Style Mainframe
$\$ 1550$
Opt 010: (see Options)
$\$ 1450$

1805A

1805A Specifications

Modes of operation

Channel A: channel B: channels A and B displaved altemately on succersive sweeps ($A L T$): channel A and B displayed by switching between channels at approx 400 kHz sote (CHOP) with blanking during switching; channel A plus channel B (ajgebraic addizion).
Each channel (2)
Eandwldth: (neatured with or withoul 10014A probe. 3 dB down from 8 div reference signal from a termipated 50 ohm source.)

DC-coupled: dc to $100 \mathrm{M} . \mathrm{Hz}$.
AC-coupled: approx 10 Hz io 100 MHz (lower limit is approx I Hz with l0014A probe).
Alse time: <3.5 ns measured with or without 10014 A probes. 10%
1090% points of 6 div inpul step from a lerminaled 50 obm source).
Deflection factor
Ranges: $5 \mathrm{~m} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (10 ealibmed positions) in $1,2,5$ sequence: $\pm 2 \%$ altenuator accuracy.
Vernler: provides continuons adiustment between deflection faclor stillings and extends maximum deflection factor toad least 12.5 V/div. Froni panel lighe indicates when vemier is not in CAL position.

Polarity: + up or - up. selcciable.
Signal delay: input signals are delayed sufficiently to view leading edge or input pulse without advanced (rigger.
Input coupling: AC. DC, 50 ohms (dc). orground. Ground position disconnecis inpul connector and grounds amplifier inpur.
Input RC
 on all ranges.
$50 \mathrm{ohm}: 50 \mathrm{ohm} .-2 \% . S W R<1.2$ al 100 MHz on all ranges.
Maximum Input
AC and DC: $=300 \mathrm{~V}(\mathrm{dc}+$ peak ac$)$ at IkHz or less. $\pm 150 \mathrm{~V}$ (dc + peak ac) on $5 \mathrm{~m} /$ div range at $: \mathrm{kHz}$ or less.
50 ohm; 10 V rms (dc-coupled input).
Dynamic range: 6 dival 100 MHz increasing to 16 dival $\leqslant 1.5 \mathrm{MHz}$.
Positloning range: 16 div.

A + B operalion

Amplifler: bandwidth and deflection factors are unchanged: either channel may be invered for $\pm A \pm B$ operation.
Differentlal Input ($A-B$) common mode: CMR is al leası 40 dB from de to 1 MHz for common mode signals of 16 div or less: CMR is al least 20 dB at 50 MHz for common mode signals of 6 div or less.

Triggering

Source: selectable from channel A. channcl B, or a composite (Comp) signal from A and B in any display mode. Composite is channels A and B sigmals switched for All and Chop modes and added for A and B mode. Vemice and position controls do oot affect A. B, or composile (rigger signali. A ánd B signals are independent of polarity selection.
Frequency

Tre base Plutin	Theger frequency	Required Vertical Opfiection
IB\%0C. 1825a	de-50 Mikz	放 Uiv
	$\mathrm{dC}-100 \mathrm{MHL}$	1 div
IA2IA	dc-50 M $\mathrm{MH}^{\text {d }}$	1 \%

all dlaplay modes except Chap. do to $100 \mathrm{kty} \ln \mathrm{Chop}$.
Oftset
$=300$ div of offset. Nlows offsel of de or ae signals up 10 the dynamic range and maximum inpul
Vertlcal slgnal outpul
(selected by (rigeer source switch)
Bandwidth: $>50 \mathrm{MHz}$ in10 50 ohms.
Amplitude: $>50 \mathrm{mV}$ for each division of display inlo 50 ohms with usable amplitudes up 10500 mV p-p.
Source Impedance: approx 50 bhms.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Weight: nel. 2.3 kg (5 Jb): shipping. 3.6 kg (8 lb).
Accessorles supplled: (wo 10014 A 10:I voltage divider probes approx. I. $\mathrm{Im}(31 / 2 \mathrm{ft})$ long, one Operating and Service Manual.

Recommended prabes

$10014 \mathrm{~A}, 10016 \mathrm{~B}$ passive probes, 10017A. 10018 A minature passive probes, 10026 A, 10027 A minalure 50Ω probes, 10020 A resistive divider probe kit, and the IJ20A and 1125A acrive probes maineain full performance of ihe 1805A.
Ordering informallon
Price
1806A Dua! Channel Venical Amplifier
Opt 003: without probes
Op1 910: additional Operating and Service Manual
less $\$ 120$
add $\$ 10$

1801A

1801A, 1806A Specifications

Modes of operation

Channel A: channel B: channels A and B displayed alternately on successive sweeps (ALT); channels A and B displayed by switching between chanoels al approx 400 kHz rate (1801 A). 100 kHz (1806 A). in CHOP mode with blanking during switching; channel A plus channel B. olgebraic addiuion (1801A).
Each channel (2)
Bandwidth (measured with or without a Model 10004D probe (I801A). Model $10001 \mathrm{~A} / \mathrm{B}$ probe (1806 A). 3 dB dowa from 8 div reference signal from a lerminated 50 ohm source.)
DC-coupled: ((1801A) de to 50 MHz . (I806A) de to 500 kHz .
AC-coupled: (1801A) approx 8 Hz 1050 MHz . (1806A) approx ?
Hz to 500 kHz . Lower limil (I801A) is approx 0.8 Hz with 10004 D probe. (1806A) approx 0.2 Hz with $10001 \mathrm{~A} / \mathrm{B}$ probe.
Bandwldth Ilmit awiteh (1608A): limits bandwidth to aprox 50 kHz .
Rise tme: (1801A) $<7 \mathrm{~ns}$ (measured with or without 10004D probe.
10% to 90% of 8 div input step from a terminated 50 ohm source).
Dellection factor
Ranges: (180|A) $5 \mathrm{mV} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in $1,2,5$ sequence; (1806 A) $100 \mu \mathrm{~V} /$ div to $20 \mathrm{~V} / \mathrm{div}$ (17 positions) is 1.2 .5 sequence: $\pm 3 \%$ atenustor accuracy.
Vernler: provides contínuous adjustment between deflection faclor settings and extends maximum deffection factor to at leas 50 $\mathrm{V} / \mathrm{div}$. Front panel light indicates when vernier is not in CAL position.
Polarty: (1801 A) +up or -up, selectable.
Slgnal delay: (1801A) irput signals are delayed sufficiently to view leading edge of input without advanced trigger.
Input: (1806A) differential or single-ended on all ranges. selectable. Input coupling: (1801 A) selectable, AC. DC. or Ground: ground presition disconncets signal input and grounds amplifier ioput. (1806A) seleciable AC, DC. or OFF for boit + and - inputs: OFF position disconnects signal input and grounds amplifier input for reference.
Inpul RC: (I801A) approx 1 megohm shunted by approx 25 pF ; (1806A) approx 1 megohm shunted by approx 45 pF ; constant on all

ranges.
 Maxlmum Input (3801A)

DC-couplod: $\pm 350 \mathrm{~V}$ (de + peak ac) at 10 kHz or less. $\pm 150 \mathrm{~V}$ (dc + peak ac) on $5 \mathrm{mV} / \mathrm{div}$ range at 10 kHz or less.
AC-coupled: $\pm 600 \mathrm{~V}$ dc.
Maximum liput (1808A): $\pm 400 \mathrm{~V}$ (dc + peak ac).
A + B operation (1801A)

1808A

Ampilfler: bandwidth and deflection factors are unchanged; either channel may be inveried for $二 A \approx B$ operation.
Differentlal input ($\mathrm{A}-\mathrm{B}$) common mode: CMR is al leas 40 dB at $5 \mathrm{mV} / \mathrm{div}$ and at leasi 20 dB on other ranges for frequencies between dc and I M.Hz and for common mode signals of 24 div or less.
Input isolation (1806A): $\geqslant 80 \mathrm{~dB}$ between channels at 500 kHz with shielded conneclors.
Nolse (1808A): $<20 \mu \mathrm{~V}$. measured tangentially al full bandwidth.
Common mode (1806A)
Frequency: dc to 10 kHz on all ranges.
Rejection ratlo: $\geqslant 100 \mathrm{~dB}$ (100000 to 1) with de-coupled input on $100 \mu \mathrm{~V} / \mathrm{div}$ range, decreasing 20 dB per decade of deflecuion factor to $\geqslant 40 \mathrm{~dB}$ ob the $200 \mathrm{mV} / \mathrm{div}$ range; CMR is $\geqslant 30 \mathrm{~dB}$ on the $500 \mathrm{mV} / \mathrm{d}$ y $1020 \mathrm{~V} /$ div ranges.
Maximum algnal: $=10 \mathrm{~V}(\mathrm{dc}-$ peak ac) on $100 \mu \mathrm{~V} /$ div 10200 $\mathrm{mV} / \mathrm{div}$ ranges: $\pm 400 \vee(\mathrm{de}+$ peak ac) on all other ranges.
Triggering (1001A)
Source: for channcl A. B. or A $+B$, on the signal displayed: Chop is selectable from channel A or B : Alt is selectable from channel A, B. or Comp (channels A and B switched).
Frequency: dc to 50 MHz on signals causing 0.5 div or more venical deflection in all display modes excepl Chop; de 10100 KH \% in Chop mode.
Triggering (1808A)
Soures: for chanmel A or B. on the signal displayed; Chop is selectable from channel A or B: Alt is selectable from channel A, B. or Comp (channels A and B switched).
Frequeney: de to $>500 \mathrm{KH} \%$ on signals causing 0.5 div or more vertical deflection in all display modes except Chop: de to 100 kHz in Chop.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframe.
Weight: net. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
Accessorlea supplled: (1801 A) two 10004D, 10:2 divider probes. approx 1.1 m ($31 / 2 \mathrm{f}$), one Operating and Service manual; (1806A) two BNC to dual banana plug bindiog post adapters (HP P/N 1250 1264). one Operating and Service Manual.

Recommended probes: the $10004 \mathrm{D}, 10005 \mathrm{D}$, and 10006 D passive divider probes and 10040A. $10041 \mathrm{~A}, 10042 \mathrm{~A}$ minialure passive divider probes roaintain full periormance of the 1801 A ; the $10001 \mathrm{~A} / \mathrm{B}$, 10002A/B. 10003 A passive divider probes and 10021A. 10022 A miniature passive probes mainzain full periomance of the 1806 A .

1803A Specificatlons

Verlical deflectlon

Bandwith: (metasured with or without 10004 D probe. 3 dB down from 8 div reference signal from a terminated 50 ohm source.)

DC-couplad: de to 40 MHz froma $0.005 \mathrm{~V} /$ div to $20 \mathrm{~V} /$ div: de 1030 MHz on $0.001 \mathrm{~V} / \mathrm{div}$ and $0.002 \mathrm{~V} /$ div or when using V_{0} range of 0 206 V or two mosi sensitive volts/div seltings for other V_{0} ranges. AC-coupled: lower hindwidih is appmx 2 Hz , upper bandwidit is the same as de-coupling. Lower bandwidth is approx 0.2 Hz with 10004 d probe.
Alse itme : <10 ns for deneclion factors of $0.005 \mathrm{~V} / \mathrm{div} 1020 \mathrm{~V} / \mathrm{div}$: $<12 n s$ on 1$) .601 \mathrm{~V} /$ dity and $0.002 \mathrm{~V} / \mathrm{Liv}$, on V_{0} range of 0106 V and on the must rensitive voles/div sellings for other V_{0} ranges. Measurcd with or whthent 20004D probe: 10% to 90% of 8 div input step from terminated 50 ohom source.

Deflection factor

Ranges: from $0.001 \mathrm{~V} / \mathrm{div} 1020 \mathrm{~V} / \mathrm{div}$ (if calibrated positions) in 1. 2,5 sequence: allenualor accuracy $\pm 3 \%$.

Vernfer: provides continuous sujustinent between deflection factor settings and extends maximum dellection factor to at least 50 V/div. Front pancl light indicales whell vemier in not in CAL position.
Input coupling: $A C, ~ D C, ~ G r o u n d, ~ o r ~ V_{0}$ for both + and - inputs Ground disconnects signal inpul and grounds amplifier input.
Input RG: approx 1 megolim shunted hy approx 27 PF, constant on all ranges.
Maximum Input

Y 9ange	Deflection factar	Haximum Ingut (dc-pead ac)
0105 V	a 001 v/dur to 0.02 V/de:	$=15 \mathrm{~V}$
0106 V	$0.05 \mathrm{~V} / \mathrm{div} 10.0 .2 \mathrm{~V} / \mathrm{ar}$	$\pm 150 \mathrm{~V}$
0106 V	$0.5 \mathrm{~V} / \mathrm{dir} \mathrm{to} 20 \mathrm{~V} / \mathrm{dlv}$	\pm EOU
01060 V	$00 \mathrm{~V} / \mathrm{div} 1002 \mathrm{~V} / \mathrm{Jiv}$	$=150 \mathrm{~V}$
01050 V	$0.5 \mathrm{v} / \mathrm{div} 1020 \mathrm{y} / \mathrm{div}$	$=600 \mathrm{Y}$
010800 V	0.1 V/riv to 20 Vidiv	-600 4

Overload recovery

6 V overload: within $\pm 10 \mathrm{mV}$ of final signal value in $0.3 \mu \mathrm{~s}$ or less. with $\pm 5 \mathrm{mV}$ in 1μ s or less, and within 1 mV in 1 ms or less. 60 V overload: within $\geq 100 \mathrm{mV}$ or final signal value in $0.3 \mu \mathrm{~s}$ or Icss. within $=50 \mathrm{mV}$ in $1 \mu \mathrm{~s}$ or less, and within $=10 \mathrm{mV}$ in 1 ms or lexs.
$600 \vee$ overlosd: within $\pm 1 \vee$ of final nignal value in 0.3μ s or less. within $=0.3 \mathrm{~V}$ in $1 \mu \mathrm{~s}$ or less. and within $\pm 100 \mathrm{mV}$ in 1 ms or less.
Common mode rejection: measured at a deflection factor of 0.001 V/div. (CMR decrases with mereasing dellection settings.)

Froquency lango	CMR	Common Moda Ingut Sintwive (mak op-p)
AE $10<100 \mathrm{hHz}$	≥ 200001 (286 6 (7)	10 V
	$210000: 1(\geqslant 80 \mathrm{~dB})$	10 V
1) MHL $10<10 \mathrm{MM7}$	$\begin{gathered} \quad 50001 \\ \\ \text { ireg in Mr13 } \end{gathered}$	$\begin{array}{r} 10 \mathrm{~V} \\ 118 \mathrm{~g} \text { in } \mathrm{MHz} \\ \hline \end{array}$
20 MHz	$=50.1(>34$ 48)	1 V
60 H	$\geq 20001(265 d B)^{\prime \prime}$	10 V

-AC-caupled tall others de-coupled.
DC offset

Yo samge	Dallecilon Faclex	Comparison Accuracy
$010 \pm 6 \mathrm{~V}$	0.001 V/alv 100.02 V/div	\pm (10) $15 \%+8 \mathrm{mV})$
	0.05 V/div to 02 Vidiu	$=(0.75 \%+日 m$)
	0.5 Vidlu co 2 Vidiu	$=1 \%$
	$5 \mathrm{~V} /$ diu io 20 V dolu	$=3 \%$
$010=60 \vee$	0.01 V ¢ div $1002 \mathrm{~V} / \mathrm{d} \mathrm{V}$	= $00.4 \%+8 \mathrm{mV})$
	0.5 V/div la 2 V Oiv	$=(0.75 \%-日 m \mathrm{~m})$
	5 V/aly $1020 \mathrm{~V} / \mathrm{div}$	$\leq 3 \%$
$010=600 \mathrm{~V}$	a.) Vidiv to 2 Vidiv	-10 65\% + 0.8 n
	$5 \mathrm{~V} / \mathrm{dlv}$ to $20 \mathrm{~V} / \mathrm{div}$	$=3 \%$

V_{0} output: calibrased de offset voltage a vailable at front panel conneczor, continuously variable from 0 in $\pm 0.006 \mathrm{~V} .0$ to $=0.06 \mathrm{~V} .0$ to $\pm 0.6 \mathrm{~V}$ or 0 to $\pm 6 \mathrm{~V}$. Accuracy of the 6 V range is $\pm 0.15 \%$ of reading $=8 \mathrm{mV}$. when driving a resistance of 10 megohms or higher.

Triggering

DC to 40 MHz on signals causing 0.5 div or more vertical deflection.

General

Operating environment: same is 180C/D nuimirame.
Weight: net. $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping, $4.5 \mathrm{~kg}(10 \mathrm{lb})$.
Accessories supplled: one Operating and Service Manual.
Recommended probes
Models 10004 D . 10005 D , and 10006 D passive probes and 10040 A . $10041 \mathrm{~A}, 10042 \mathrm{~A}$ mininture passive probes maintain full performance of the 1803A.

Ordering information	Price
180 La Dual Chann el Verical Amplller	\$1000
Opt 001: channel B output and X5 magnifier	add $\$ 155$
Opt 003: without probes	less \$110
Opt 090: 1.8 m (6 ft) 10006 D probes in lieu of	
10004 D	N/C
Opt 091:3 m (10 (1) 10005D probes in lieu of 10004D	/C
1806A Dual Chamel Vertical Amplifier	850
Opt 910: additiontal Operating and Service Manual	add \$6
1806 A Dual Channel Vertical Amplificr	\$850
Opt 910: additional Operating and Service Manual	add \$5
1803A Dual Channel Vertical Amplifier	\$1500
Opt 910: additional Operating and Service Manual	add \$5

Price
$\$ 1000$
ndd $\$ 155$
less $\$ 110$

1809A

Four channel display shows ease of making liming measurements of the Q oulputs on a TTL decade olvider.

1809 A in dual dikerential mode ($\mathrm{A}+\overline{\mathrm{B}}$) and ($\overline{\mathrm{C}}+\overline{\mathrm{D}}$) shows iranslent state (race condition) occurring at count 8 of a TTL decade olvider between both Q1 and Q2 (upper irace) and Q2 and Q3 (lower trace).

Description

Model 1809A, 100 MHz four channel venical amplifier plug-in provides accurate mulitirace. $10 \mathrm{mV} /$ div measurements in both digital and analog applicitions. Its wide bandwidth coupled with s ns/div sweep speeds allows high resolution timing measurements in digital cincuits. Multiwhanncl timing measurements are also aided with the ability to select the altemate sweep mode or a fast chop mode with a MHz chop rate for 2 channels or 500 kHz rale for all four channcls.

A thick film. planar attenuator with selectable I megohm or 50 ohms inpul impedance precedes an MSI integraled circuil amplifer 10 altain 100 MHz bandwidth at $10 \mathrm{mV} /$ div deflection factors. The I megohm (ac or dc) input has only 12 oF shunt capacitance for minima losding in probing applicstions. For accurate 50 ohm measurements, a precision, Jc-coupled, inemal 50 ohm inpul termination may be selected with a front panel switch. The 50 ohm termination maintains low SWR and pulse fidelity by compensating for normal input capacitance which is not possible with external terminations.

The nexible erigger source selection allows timing measurements referenced from channel A, B, C or D or each channel iriggered independently in composite mode. Any channel may be used as the trigger source whether it is displayed or not.

Any of the four channels may be invened with a convenient front panel switch. In addition, the ADD mode gives you the capability of looking al (wo pairs differentially $(\pm A=B),(=C=D)$ or $(\pm A \pm B)$, $\pm C$. $\pm \mathrm{D}$ which makes measurements in balanced or differential lines easy.

Model 1804A provides fous channel measurement capability 1050 MHz wish $20 \mathrm{mV} / \mathrm{div}$ deflection factors and is paricularly useful in low speed logic applications. Deflection factors from $20 \mathrm{mV} /$ div to $10 \mathrm{~V} / \mathrm{div}$ assure measurcment compatibility with most logic levels. Trace identificalion is convenienty oblained with a pushburton on each channel which moves the respective irace approximately $1 / 2$ division.

A wide selection of trigger sources íncreases neasurement versalility by allowing you to select the irigger mode to fil your paricuhar application. In Chop or Altemate mode, you can trigger on any channel to see the time relationship with the other three channels. In the composite mode. each channel Iriggers sieparalely for direcl comparison of signals in spite of time delays or for display of asynchronous signals.

1809A Specifications

Modes of operation

Chamels A. B. C. or D or any combination displayed alterrately on successive sweeps (ALT) or chopped (CHOP) with blanking during switching: either channels A and B or C and D may be algebraically added ($\pm \mathrm{A}=\mathrm{B}$) or ($=\mathrm{C} \pm \mathrm{D}$). Approximate chop rate for two channels displayed is $1 \mathrm{MHz}, 3$ channcls is 667 kHz .4 charnels is 500 kHz .
Each channel (4)
Bandwldth (meinured with without 10014 A probe. 3 JB down from a terminated 50 ohm source.)
DC.coupled: de to 100 MHz ,

AC-coupled: approx. 10 Hz to 100 MHz . Lower limin is approx. 1 Hz with 10014 A probe.
Alse time: <3.5 ns. Measured with or withom 10014 A probe. 10% so 90% of 6 div input siep from a terminated 50 ohm source.
Deflectlon factor
Ranges: from $0.01 \mathrm{~V} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in I , 2. 5 sequence.

Altenuator accuraoy: $\pm 3 \%$.
Vernler: provides continuous adjustment between all deflection factor ranges. Exiends maximum defection factor to at least 12.5 V/div.
Signal delay: input signals are delayed sufficienty to view leading edge of inpul withoul advanced extermal triger-
Input coupling: ac, de. So ohms (de), or grecund. Ground position disconnects input connector and grounds amplifier inpus.
Input RC (selectable)
AC or DC; 1 megohm $=1 \%$ shunted by approx. 12 pF .
50 ohm : 50 ohms $=2 \%$. SWR, 1.3 at 100 MHz on all ranges.
Maximum input
AC and DC: $\pm 300 \mathrm{~V}(\mathrm{dc}+\mathrm{peak} \mathrm{ac})$ al 1 kHz or less: $=150 \mathrm{~V}$ (de + pcak ac) on 10 mV diliv range at 1 kHz or less.
50 onm: $10 \vee$ rms (dc-coupled input).
Polarity: any channel may be inverned for $\pm A .=8 . \pm C$ or $\pm D$ operalion.
Algebralc additlon ($A+B$), ($C+$ D)
Amplifter; bandwidth and deflection factors are unchanged, any channel may be inverted for ($\pm A \pm B$) or ($=C \pm D$) operalion.
Differentlal input ($A-B$) or ($C-D$) common mode: CMRR is at least 20 dB from de to 80 Mhz on all ranges.
Triggering
Source: selectable from channe) A, B. C. D. or composite (on displayed signals) in all display modes.
frequency

Time Grse Plugelio	Triger fioquøncr	Requirsd Verical iteflection
I日20C. 1825A	$\begin{gathered} d e-50 \mathrm{MHz} \\ d c-100 \mathrm{MHz} \end{gathered}$	IV dy 1 oiv
1821A	$1 \mathrm{CO}-50 \mathrm{MH7}$	1 dy

- An disglay modes extept Chop, de 10100 xH in Chop.

General
Weight: nes. 3.2 kg (7 lb). Shipping. 4.5 kg (10 lb).
Operating environment; same as I $80 \mathrm{C} / \mathrm{D}$ mainframes.
Accessorles supplied: one Operating and Servicc Manual.

Fecommended probes

Models $10014 \mathrm{~A}, 10015 \mathrm{~A}$, 10016 B . $100 \mathrm{I7A}$, and 10018 A will maintain 1809A barrwidth and rise time in the high impedance (ac or dc)
mode. Models $10030 \mathrm{~A}, 1125 \mathrm{~A}$. 10026 A , and 10027 A will marnain bandwidit and rise time in the 50 ohm inpul mode.

1804A Specifications

Modes of operation

Channels A, B , C or D or any combination displayed altomately on successive sweeps (ALT) or chopped (CHOP) with blanking during switchng. Approximale chop rate for two channels displayod is $500 \mathrm{kH} \%$, 3 chauncls is 333 kHz . and 4 channels is 250 kHz .

Each channel (4)

Bandwidth (measured with or without 10004D probe, 3 dB down from 8 div reference signal (rom a terminated so ohm source.)
DG-coupled; de to 50 MHz .
AC-coupled: approx. 10 Hz to 50 MHz (lower limit is approx. I Hz with 10004 D probe)
Rise time: $<7 \mathrm{~ns}$ (measured with or wilhout 10004 D probe. 10% to 90% of 8 div input sep from a terminated 50 ohm source).

Deflection factor

Ranges: from $0.02 \mathrm{~V} /$ div $1010 \mathrm{~V} / \mathrm{div}$ (9 calibrated positions) in I . 2. 5 sequence.

Attenuator accuracy: $=3 \%$.
Vernier: provides continuous adjustment belween denection factor settiogs and exiends maximum deflection factor to at Jeast 25
$V /$ div. Front panel light indicales when vernier is out of CAL pasition.
Signal delay: input signals are delayed sufficiently to view leadiag edge of input pulse without advanced extemal trigger.
Input coupling: AC. DC, and Ground. Ground disconmects input signal and grounds amplifier inpur.
Input RC: approx. I megohm shunted by approx. 25 pF . constant on all ranges.

Meximum Input

DC-coupled: $\pm 350 \mathrm{~V}$ (dc + peak ac); $\pm 150 \mathrm{~V}$ (dc + peak ac) on $20 \mathrm{mV} / \mathrm{div}$ at 10 kHz or less.
AC-coupled: $\pm 400 \mathrm{~V}$ dc.
Trace Idendflcation: pushbution conirol displaces respective irace apprax. 0.5 div.

Triggering

Source: selectable on sigral from any channel in either Chop or All mode. or successively from displayed signal on each channel in Alt mode.
Frequency: de to 50 MHz on signals causing 0.5 div or more vertical deflection in all display modes excepl Chop. DC 10200 kHz in Chop mode.
General
Operating environment: lemperalure, 0 to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 $+130^{\circ} \mathrm{F}$) : humidity, 1095% relalive humidty at $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$) al sirude, 104.6 km (1.5000 fi); vibration. vibrated in three planes for 15 min. each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, 10 to 55 Hz .
Welght: net, $2.3 \mathrm{~kg}(\mathrm{~s} \mathrm{lb})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{ib})$.
Accessorles supplled: one Operating and Service Manoal.
Recommended probes
10004 D .10005 D . 10006 D passive probes and. 10040 A .10041 A. 10042 A miniature passive probes, mainain full performance of the 1804A.

Ordering intormation	Price
1809A $100 \mathrm{MHz} A$ Channel Amplifer	$\$ 2300$
0 Ot $910 ;$ additional Operating and Service Manual	add $\$ 14$
1804A 50 MHz 4 Channel Amplifer	$\$ 1400$
Opt 910: addational Operaling and Service Manual	add $\$ 7.50$

1820C Speciflcations

Time bage

Sweep

Ranges: $0.05 \mu \mathrm{~s} /$ div $101 \mathrm{~s} / \mathrm{div}$ (23 positions) in $1,2,5$ sequence: $\pm 3 \%$ securacy with vemier in CAL position.
Vernler: conamuously variable between ranges. extends slowest sweep to at least $2.5 \mathrm{~s} / \mathrm{div}$. Front panel light indicates when vernier is nor in CAL position.
Magnifler: (mainframe) expands fastest sweep to $5 \mathrm{n} / \mathrm{div}$.

Sweop mode

Normal: triggerod by an int, ext. or power line signal.
Automatle: bright baseline dispiayed in absence of 1rigger signal.
Trigge ring is same as Normal except tow frequency limit is 40 Hz .
Single: in Normal, sweep occurs once with samc triggering as
Normal (reset pushbution ams and lights indicator): in Aulo.
sweep occurs once each ume reset pushbulton is pressed.

Triggering

Internal: effer to verlical plog-in specifications.
External: de to 50 MHz on signals $50 \mathrm{mV} \mathrm{p}-\mathrm{p}$ or more increasing to 100 mV at 100 MHz and 150 mV at 150 MHz .
LIne: powcr line frequency signal.
Level
Internal: at any point on the verical waveform displayed.
Exfernal: continuously variable from +2 V to -2 V on either slope of trigger signal. from $\div 20 \mathrm{~V}$ to -20 V in -10 sening.
Slope: pushbutton selection of + or slope of trigger signal.
Coupling: front panel selection of AC. DC. HF Reject or LF Reject. AC atlenuates signids below approx. 20 Hz . LF reject attenuates signals below approx. 15 kHz . HF reject atlenuates signals above approx. is kHz .
Trigger holdoth: time between sweeps continuously variable, exceeding one full sweep on all ranges.

General

Operating envlronment: same as $180 \mathrm{C} / \mathrm{D}$ mainsrame.
Welght: nel. 1.4 kg (3 lb). Shipping. 3.2 kg (7 lb).

1821A Specifications

Main time base

Swoep

Hanges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $1 \mathrm{~s} / \mathrm{div}$ (22 positions) in $1,2.5 \mathrm{se}$ guence: $=3 \%$ accuracy with vermier in CAl position.
Vernier: continuously variable between all ranges: extends slowest sweep to at least 2.5 s/div.
Magnifior: (mainframe) expands fastest sweep to 10 ns/div.
Sweep mode
Normal: triggered by an int. ext, or power line signal.
Automatic: brigh baseline displayed in absence of input signal. Triggering same as normal except low frequency limit is 40 Hz for

internal or extemal modes.
SIngle: sweep occurs once with adme triggering a, normal; resel pushbuton with indicator light.

Delayed time base

Delayed ime base sweeps after a uime delay sel by Main time base and Delay controls.

Sweep

Ranges: from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $50 \mathrm{~ms} / \mathrm{div}$ (18 positions) in 1.2 .5 seguence; $+3 \%$ accuracy with Vemies in CAL position.
Vernler: continuously variable beiween all ranges; extends slowest siveep to at least lins $\mathrm{ms} / \mathrm{div}$.
Magniller: (numframe) expands fastest sweep so $10 \mathrm{~ns} / \mathrm{div}$.
Triggering
Main and delayed time base
Intemal: refer to verical plug-in specifications.
Exiernal: from de 1050 MH \% on signals 0.5 V p-p or more. increasing to 100 MHz on signals I V p-p or more.
Line: power line Irequency signal.
Level and slope: internal, al any point on the verical waverorm displayed; extemal. continuously variable from +3 V to -3 V on either slope of the syme sigral. from $+30 \vee 10-30 \mathrm{~V}$ in -10 .
Automatic (delayed only): tiggered al end of set time delay.
Coupling: from pancl selection of AC. DC. ACI , or ACS. AC allenuates signals below approx. 20 Hz . ACF (ac-fist) attenuates signals below approx. 15 kHz . ACS (ac-slow) anenuates signals above approx. 30 kHz .
Trace Intenghication: intensifies that part of Main time base to be expanded to full screen on Delayed time base. Rolating Delayed lime base sweep swisch from Off position activales imensitied mode. Front panel screwdriver adjusl sels relalive intensity of brighlened segment.

Delay (betore stan of Delayed sweep)

Tlree: continuously variable trom $0.1 \mu \mathrm{~s} 1010 \mathrm{~s}$.
Accuracy: $=1 \%$ of differential delay ± 2 minor divisions of delay dial. Time jirer is is < 0.005% (I part in 20000) of maximum delay of each step.
Trigger output: (at end of Delay (ume) approx. I.5 V with $<50 \mathrm{~ns}$ rise time from 1000 ohm source resistance.
Mixed time base: dual time base in which Main tume bise drives lirst portion of sweep and delayed time base completes nweep al up to 1000 times faster. Also operates in single sweed mode.

General

Operaling environment: same as $180 \mathrm{C} / \mathrm{D}$ mainftames.
Welght: net. 1.8 kg (4 (b). Shipping. 3.6 kg (8 lb)
Ordering informsilon Price
1821A Time Base and Delay Generator
Op1 910: additional Operating and Service Manual
1820 C Time Base
add $\$ 5$
$\$ 525$
Opt 910: additional Operating and Service Manual
add $\$ 7.50$

Main sweep

Intensifled main sweep

Delayed sweep

Mixed sweap

Multiple exposure shows four modes of operalion for 1825A. with lime relationship malntalned in all modes.

1825A Description

Model 1825A lime base and delay genemator provides sweep speeds ranging from 0.05 رs/div to $1 \mathrm{~s} / \mathrm{div}$ in 23 posilions. Delay times are continously variable frum 50 ms so 105 and are aceurate to 0.75% with extremely low jitter of 1 part in 50,000 . Also. a calibrated mixed sweep mode is provided. A mainframe X 10 magnifier increases sweep-speed capability $105 \mathrm{~ns} /$ div with 5% accuracy.

One knob control makes Inggering ensy in main. delayed, and mixed modes. Slable, accurate time displays are provided in main, delayed, and mixed modes with the highly sensitive 50 mV extemal trigger cupability al 50 MHz wbich increases to only 1.50 mV at 150 MHz . Trigger syachronization is maintained when switching between main, delayed, and mixed modes, further simplifying use.

Front panel controls are logically amanged for quick familiarizalion and easy use. Pushbutoons eliminare front panel chutter and reduce the possibility of errors. Easy-to-operate pushbuttons establish main. delayed, and mixed modes of operation.

Trigger level controls on main and dealyed sweeps allow selection of the triggering point on the desired portion of the signal for almost every measurement application. Also, the +10 function provides a wide dynamic range of Itiggering in both extemal and intemal modes of operation.

External trigger sensitivity of 50 mV on both main and delayed sweeps allows a $10: 1$ divider probe to be used to reduce circuit loading at trigger pick-off points and reduces the possibility of circuit malfunction caused by the measuring instrument.

1825A Specifications

Maln time base

Sweep

Ranges: $0.05 \mu \mathrm{~s} / \mathrm{div}$ to $\mathrm{I} / \mathrm{s} / \mathrm{div}$ (23 psotions) in $1,2.5$ sequence: $\pm 3 \%$ accuracy with vemier in CAL position.
Vernler: continuously variable between ranges, extends slowest
sweep to at least 2.5 s/div. Front panel light indicates when ver-
nier is not in CAL position.
Magnifler: (on mainframe) expands faslest sweep to $5 \mathrm{~ns} / \mathrm{div}$. accurac) $\pm 5 \%$.
Sweep mode
Normal: sweep is triggered by an intemal, external, or power line signal.
Automalle: bright baseline displayed in absence of trigger signal.
Triggering is same as Nomal except low frequebcy limit is 40 Hz .
Sjingle: in Normad, sweep occurs once with same triggering as
Normal; reset pushbution arms sweep and lighes indicator; in
Auto, sweep occurs once each time reset pushbution is pressed.
Delayed time base
Delayed tive base sweeps after a lime delay set by Main time base and Delay controls. Delayed lime base is iriggered on firsi trigger pulse after sel delay or automatically triggers after sel delay when delayed level control is in detent position.

Sweep

Ranges: $0.05 \mu \mathrm{~s} /$ diy to $20 \mathrm{~ms} /$ div (18 posilions) in 1.2 .5 se quence: $\pm 3 \%$ accuracy.
Magnifler: (on mainframe) expands fastest sweep to $5 \mathrm{~ns} / \mathrm{div}$. accuracy $\pm 5 \%$.

Triggering

Internal: refer to verical amplifier plag-in specifications.
External: de to 50 MHz on signals 50 mV p-p or more increasing to 100 mV p-p at 100 MHz and 150 mV p-p at 150 MHz .
Line: power line frequency signal (Main only).
Leval
Internal: at any point on the verical waveform displayed.
External: continuously variable from +2 v $10-2$ on either slope of triger signal. from +20 V to -20 V in $\div 10$ seting.
Slope: pushbutton selects either positive or negalive slope of urigger signal.
Coupling: front panel selection of $\wedge C, D C$, HF Reject, or LF Reject.
AC: attenuates signals telel approx. 20 Hz .
LF reject: allenuates sigmals below approx. 15 kHz .
HF reject: attenuales sizails above approx. Is kHz .
Trigger holdoti: time between sweeps continuously varable, exceeding one full sweep on all ranges (Main only).
Delay (before starl of delayed sweep)
Time: continuously variable from 50 ns to 10 s .
Accurgey: $\pm 0.75 \%$ of differential delay $=2$ minor divisions of delay dial.
Time fifer: 0.002% (1 par in 50000) of maximum delay on each range.
Trace Intenslification
In Main sweep mode, intensifies that par of main time base to be expanded to full screen in delayed time base mode. Rotating time base switch from OFF position activates intensified mode.

Callbrated mixed sweep

Combines Main and Delayed sweegs into one display. Sweep is started by the Main time base and is completed by the faster Delayed time base. Delayed sweep stan is aligned with start of intensiffed marker.

General

Operating environment: same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Welght: net, $1.8 \mathrm{~kg}(4 \mathrm{lb}$). Shipping, 2.7 kg (6 lb).
Accessorles aupplled: one Operatiag and Service Manual.
Ordering Iniormation
1825A Tlme Base and Delay Generator

1810A Specifications

Modes of operation

Channcl A; cbannel B; channels A ard B displayed on alternate samples ($A L T$): chamnel A plus channel B (algebraic addition); and channe! A vernus channel B.

Vertical channels

Bandwldth: dc to 1 GHz .
Rise Ilme: $=150 \mathrm{ps}$.
Pulse response: $\leqslant \pm 5 \%$ or 3 mV p-p (overshool and penurbations) in normal display mode.
Deflection Iactor
Ranges: $2 \mathrm{mV} / \mathrm{div} 10200 \mathrm{mV} / \mathrm{div}$ (9 calibrated positions) in 1.2 .5 sequence: $\pm 3 \%$ accuracy.
Vernler: provides continuons adjusiment between all deffection factor renges: exiends minimum deflection foclor to $<1 \mathrm{mV} / \mathrm{div}$.
Front panel light indicates when vermer is not in CAL position.
Polarlty: + up or - up.
Dynamle range: $=1.6 \mathrm{~V}$.
Positioning range: $>=1 \mathrm{~V}$ on all denection factors.
Input R: 50 ohms. $\pm 2 \%$
Maximum Input: $\pm 5 \mathrm{~V}(\mathrm{dc} \div$ peak ac).

SWR: <1.1 to 300 MHz , increasing to <1.5 al 1 GHz .
Reflectlon coefflclent: <6\% $\%$, measured with HP Model 1415A TDR.
Random nole
Normal: <2 mV, observed from center 80% of dols. Fliterad: reduces noise al least 210 l .
Isolatlon between channels: $\geqslant 40 \mathrm{~dB}$ with 350 ps rise time input.
Tlme difference between channels: <100 ps.
A + B operallon: bandwidih and defleciion factors are unchanged; either channel may be inverted for $\pm A \pm B$ operation.

flme base

Ranges
Normal: $10 \mathrm{~ns} / \mathrm{div} 1050 \mu \mathrm{~s} / \mathrm{div}(12$ calibrated positions) in a 1.2 .5 sequence. \pm i\% accuracy whit vemier in calbrated position.
Expanded: direct reading expansion up to Xl00 in seven calibrated steps on all normal rimes seales, extends the range to 100 $\mathrm{ps} / \mathrm{div}$. Accuracy is $\pm 4 \%$ ($10 \mathrm{ps} / \mathrm{div}, \pm 10 \%$ using the mainframe magnifier).
Vernler; coninuously variable between ranges; increases fastesi sweep to $<40 \mathrm{ps} / \mathrm{div}$. Front panel light indicates when verrier is not in CAL position.

Trlggerlng

Mode

Normal: rigger level conirol can be adjusted to irigger on a wide variety of signals.
Automallc: iriggers automatically on most signals with g minimun of adjustment of the level control. A bascliae is displayed in the absence of an input signal.
Internal
Source: selectable; channes A iriggers channel A or altemate; channel B triggers chandel B, altermate. $A+B$, or A vs B.
Slne wave: $30 \mathrm{mV} \mathrm{p}-\mathrm{p}$ for signals from 1 kHz to 200 MHz .100 mV p-p for signals from 200 MHz to 1 GHz for jilter of $<30 \mathrm{ps}$ plus 1% of I period. Uscfyl iriggering can be obtained with 5 mV signals.
Pulse: 30 mV peak, 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Useful Ingecring can be oblained with 5 mV signals.
External
SIne wave; 30 mV p-p for signals from 1 kHz so I GHz for jitter of <20 ps plus 1% of I period. Usefw inggering can be oblained with 5 mV signtals.
Pulse: 30 mV peak. 3 ns wide pulses for $<30 \mathrm{ps}$ jitter. Useful rriggering can be obtained with 5 mV signals.
Either Internal or external
Auto: 50 mV p-p for CW signals from 10 kHz to 200 MHz for <30 ρ jitter plus 2% of 1 period (may be used 101 GHz with increased jitter). Pulse riggering requires 50 mV peak. 3 ns wide pulses for <30 ps jilter.
Level and slope: level control minimizes jittor and is variable over $=800 \mathrm{mV}$ range on either slope of sync signal.
Coupling: ac coupling attenuates signals below approx. I kHz .
Varlable holdoff: variable over at least a 3;1 range in all sweep modes.
Markar position: intensified marker segment indicales point abour which the sweep is to be expanded (automatically dimmed with increasing persistence in 181 and 184 mainframes).
Scan
Internal: dol density, continuously variable from $<10010>1000$ dots full screen or from approx. 500102000 dots in fliered mode.
Hanual: scan is positioned manually by front panel control.

General

Probe power: supplies power to operate two HP active probes.
Recorder outputs
Vertical: an uncalibrated IV vertical output from each channel is provided at the rear panel of 180 system mainframes.
Horlzontal: an uncalibrated 0.75 V amplitude signal is provided al the rear panel of 180. 181, 182. and 184 mainframes.
Operation envifonment; same as $180 \mathrm{C} / \mathrm{D}$ mainframes.
Welght: net. 3.2 kg (7 lb). Shipping, 5 kg (II (b).
Accessories supplled: one Operaling and Service Manual

1811A Specifications

Modes of operation

Channel A: channel B: channels A and B displayed on alternate samples (ALT): channel A plus channol B (algebraic addition); and channel A vessus channel B.

Vertical channels

Deflection factor

Ranges: $2 \mathrm{mV} /$ div $10200 \mathrm{mV} / \mathrm{div}$ (6 calibraled positions) in $1.2,5$ sequence: accuracy $\pm 3 \%$.
Vernler: provides continuous adjustment berween all deffection factor ranges: extends minimum deflection factor to $<1 \mathrm{mV} / \mathrm{div}$.
Fron: panel light indicales when vernier is not in CAL posilion.
Polarity: + up or - up.
Positioning range: $> \pm I V$ on all deflection factors.
A + B operation: bundwidh and deflection factors are unchanged: cilher channel may be inverted for \pm A :- B operation.

Time base

Ranges

Normal: I ma/div to 5 usidiv 112 calibrated punitions) in a 1. 2. 5 sequence. 5 ?ri accuracy with vemier in calibrated position.
Expanded; direct reading expansion up to XIUO in seven calibrated steps on all normal lime seaks. extends the range to 10 ps/div. Accuracy is $\pm t \%$ (l psidiv. $=10 \%$ using the mainframe magnificr).
Vernler: conlinuously variable between ranges; increases fastest sweep $10<4 \mathrm{ps} / \mathrm{div}$.

Triggering

Auto: eriggers autometically on most signals with a minimum of level control adjustment. A baselinc is displayed in the absence of an imput signal.
Normal: engeg livel control may be adjusted 10 trigger on a wide variely of signals.
CW: 80 mV p-p for sine wave signals from I kHz to I GH z for jiller of < 10 ps plus 1% of I period of Irigger signal. Useful displays can be obtained with Ingeer signals as low as 5 mV . Triggering may be extended to 18 GHz with HP Model I304A/1105B Irigger countiown
-Slope: Iriggers on $50 \mathrm{mV} /$ peak, 3 ns wide pulses. for <30 ps jitter.
Level and slope: continuously variable from $\div 800 \mathrm{mV} 10-800 \mathrm{mV}$ on either slope of syne signal.
Coupling: ac coupling attenuales signals below approx $1 \mathrm{k} . \mathrm{Hz}$.
Variable holdoff: variable over al leist a 3 : I range in all sweep modes.
Marker positlon: incensified marker segment indicates point about which the sweep is to be expanded fautomatically dimmed with increasing persisicnce in 181 and 184 variable persistence/storage (mainfiames).
Sean
Internal: dol density, continuously variable from <100 $10>1000$
dols fuld screen or from approx. 500 to $=2000$ dots in Eltered mode.
Manual: scan is posilioned manually by fromt panel conirol.
Trigger output: I ns. 1.5 V into 50 ohms.

General

Probe power: supplies power so operate HP active probe.

Recorder outputs

Vertleat: an uncalionated $) \vee$ vertical outpul signad from each chaonel is provided at the rear panel of 180 neries mainirames.
Morlzontal: an uncalibrated 0.75 V amplitude signal is provided at the rear pancl of 180.181 . 182 or 184 mainframes.
Operating envlronment: same as 180C/D mainfiames.
Welght: net. $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping, $5 \mathrm{~kg}(11 \mathrm{lb})$.
Aecessorles supplled: one Operating and Service Manual.

1430C Specifications

Sampling head

Rlse time: approx. 20 ps ($<28 \mathrm{ps}$ observed with $1105 \mathrm{~A} /$ / 106 B pulse genemtor and 909A Option 012. So ohm load).
Bandwidth: de to $>18 \mathrm{CiHz}$.
Overshoot: <7.5\%.
Nolse: approx. 10 mV observed noise on CRT excluding 10% of random dots. Noise decreases to approx. 2.5 mV on the automatically filterd 2 mV /div and 5 mV /div ranges and all other ranges when display switch (on 181IA) is sel 10 filtered position.
Dynamic range: I V p-p.
Low frequency distortion: $< \pm 5 \%$.
Maximum safe Input; x? volts.
Inpul characteristics
Mechancal: lype \mathbf{N} female connectors on inpuf and oulput ports.
Electrical: 50 ohm Fecditrough. de-coupled. Rellection from
sampler is spprox. 10%. measured with a 40 ps TDR system.
Pulses emilied from sampler iopur are approx. 10 mV amplitude and 5 ns duration.
Time difference between chonnels: <sps.
Isolatlon between channels: $\geq 40 \mathrm{~dB}$ over sampier bandwidth.
Connecting cable length: $1.5 \mathrm{~m}(5 \mathrm{ft})$.

General

Weight: net, 1.8 kg (4 lb). Shipping, 4.1 kg (9 lb).
Access orles supplled: two 50 ohm loads with rype N male connec. Iors (HP Model 909A Option 012), one 1.5 m (5 fi) sampling head to 1811A interconnectiog cable (HP P/N 5060-0540), and one Operzting and Service Manual.
-Components required for samplling systems

USE a 180 selves manframe

Ordering Information	Price
1810A Sanmpler	$\$ 2350$
Opt 910: addilional Operating and Service Manual add $\$ 7.50$	
1811A Sampler	$\$ 2100$
Opt 910; ndditional Operating and Service Manual add $\$ 12.50$	

1403 C Sampling Head. $18 \mathrm{GHz} \quad \$ 3250$
Opt 910: additional Operating and Service Manual add $\$ 3.50$
1104i Trigger Countdown $\quad \$ 270$
1105 A Pulse Generator $\$ 320$
1106 B (Type N Conncctor) $\$ 650$
1106 B Opt. 001 (APC-7 connector) $\$ 700$
1108A (GR-874 Connecior) $\$ 350$
Recomruended Accescory; HP Modal II09B High \$230
Pass Filer

1815B

1817A

1818A

1815B Description

Model 18158 provides calibrated 35 ps system rise time, time domain reflectometry and 12.4 GHz (28 ps rise Lime) sampling capability with a remote feedthrough sampling head for exremely accurate measurements. This TDR system can locate impedance disconeinuities in transmission systems up 1010000 merres long and also allows measurement of discontinuilies spaced only a few millimetres apart. As a single chanoel, general purpose sampling oscilloscope, you have deflection factors to $2 \mathrm{mV} / \mathrm{div}$ and sweep times 1010 ps/div.

1815日 Specifications

Ualess indicated otherwise. TDR and sampling performance specifications are the same. Where applicable, TDR specification is giver first. followed by Sampler specification in parentheses. Model 1815B is calibrated in melres.

Vertical

Scale: reflection coenficient ρ (voits) from $0.005 /$ div $100.5 /$ div in 7 calibraled ranges; 1,2,5 uequence.
Accuracy: $\pm 3 \%$. TDR only. -5% on $0.0 / 1 /$ liv and and $0.005 /$ div in signal average mode.
Vemier; provides continuous adjustment between ranges: extends scate $10>0,002 / \mathrm{div}$.
Slgnal average: reduces noise and jinter approx. 2:1.
Horlzontal
Scale: provides up to a 10000 metre display window with roundtrip ume or díscance (time) in four calibrated decade ranges of $1 / d i v$. $10 / \mathrm{div}, 100 / \mathrm{div}$. and $1000 / \mathrm{div}$. Concentric expand control provides direct read-out in 28 calihrated steps in $1,2.5$ sequence from 0.01 $\mathrm{ns} / \mathrm{div}$ to $1000 \mathrm{~ns} / \mathrm{div}$ or from 0.01 metre $/ \mathrm{div}$ to $1000 \mathrm{mecres} / \mathrm{div}$. Accuracy: time. $=3 \%$; distance (TDR only) $\approx 3 / 2, \pm$ variations in propagation velocity.
Marker posituon: indicator. calibrated in divisions, provides direct read-out of tound-tips time or distance (time), number of disivions x decade range in units/div. Front panel light indicates when vernier is not in CAL position.
Marker zero: ten-tum control provides vanable reference for marker position dial, allows direct read-out of round Irip or distance (Lime) belween 1wo or more displayed events.
Zerofinder: permís instant location of marker reference.
Dlelectrle. TDR only: calibrated for air, $\epsilon=1$ and for polyethylene. $\epsilon=2.35$. Also provides sellings for dielectic constans $\epsilon=110 \varepsilon=$ approx 4.
Friggering, sampling only
Pulses: < 50 mV for pulses 5 ns or wider for jitter $<20 \mathrm{ps}$.
CW: signals from 500 kHz to 500 MHz require at least 80 mZ for jitter < 2% of signal period plus 10 ps ; usable to 1 GHz , CW triggering may be extended to 18 GHz wilh HP models $1104 \mathrm{~A} /$ j 106B aniger countdown.

Recarder outputs

Approx $100 \mathrm{mV} / \mathrm{div}$; vertical and horizontal outputs at BNC connectors on rear panel of mainframe.

Display modes

Repelitive scan, normal or detail; single scan; manual scan: record.

General

Operaling environment: tempcralure. 0 to $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $+130^{\circ} \mathrm{F}$); humidity, to $95 / \mathrm{c}$ relative humudity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$: adtitude, to 4600 im (15000 ft): vibration, vibrated in three planes for is min. each with 0.254 mm (0.010 in .) excursion, 10 to 55 Hz .
Weight: net. 2.3 kg (5 lb). Shipping, 4.5 kg (10 lb).

1817A (28 ps Tr) sampler specifications

TOR system (requlres 1106日 Opt 001)
Systom rise time: <35 ps incident as measured with Model 1106 B Opt 001.
Overshoot: $< \pm 5 \%$.
Internal reflections: $<10 \%$ with 45 ps TDR: use reflected pulse from shorted outpul.
Jiter: < Is ps: with signal averaging, typically 5 ps. Intemal pickup: $\rho \leqslant 0.01$.
Noise: measured tangenvially as a percentage of the incident pulse when terminated in 50 ohms and operated in signal averaging mode. $=1 \%$ on $0.005 / \mathrm{div}$ to $0.02 / \mathrm{djv}:<3 \mathrm{c} / \mathrm{c}$ on $0.05 / \mathrm{div} 100.5 / \mathrm{div}$.
Low frequency distortion; $x \pm 3 \%$,
Maximum sate input: 1 voll.
Tunnel dlode mount: dircel connection of 1106B Opt 001 to 1817A.
Sampler system
Rise ume: $<28 \mathrm{ps}$.
Input: 50 ohm feedthrough.
Dynamic range: $1 \vee p-p$.
Maximum sale input: 3 volts.
Low frequency dlatortion: $\leqslant \pm 3 \%$.

Noise

Normal: $<8 \mathrm{mV}$ tangential noise on $0.01 \mathrm{~V} / \mathrm{div}$ to $0.5 \mathrm{~V} / \mathrm{div}$.
Noise decreasis,s automatically on $0.005 \mathrm{~V} /$ div range.
Signal average: reduces noise and jilter approx. 2:1.
General
Welght: net. 1.4 kg (3 lb). Shipping, 5 kg (11 lb).
Accessorles supplled
Cable, plug-In to sampler: connecis sampler (1817A) to plug-in (1815B). HP P/N 5060-044 .
Cable, tunnel diode to sampler: connects unnel diode (1106B Opt DOI or 1108A) to sampler, type N male connectors on each end, H.P P/N 01817-61603.
Recommended accessorles
Trlgger source: extcmal itigger source is required for triggering above 500 MHz . 10 GHz source is provided by the 1104 A Trigger Countdown with the 1108A Tunnel Diode Mount. 18 GHz source is provided by the 1104A Trigger Coualdown with the 1106B Opl 001 Tunnel Diode Mount.

1106B Opt 001 (20 ps Tr)/1108A (60 ps Tr)

tunnel diode mounts specifications
Tunnel diode is required for a TDR system. Refer to sampling head specifications for mounting requirements.
Amplifude (both): $>200 \mathrm{mV}$ into $\$ 0$ ohms.
Rise time: 11068 Opt 001 approx. 30 ps : $1308 \mathrm{~A} .<60 \mathrm{ps}$.
Output Impedance: 50 ohms. $\pm 2 \%$,
Source reflectlons: I 106B Option 001. < 10% with 45 ps TDR:
$1108 \mathrm{~A} .<10 \%$ with 145 ps TDR.
Welght (both): ne1. $0.5 \mathrm{~kg}(1 \mathrm{lb})$. Shipping, $1.4 \mathrm{~kg}(3 \mathrm{lb})$.
*Components requiled for TOR/sampling systems

I8159 TOR/SAMPUNE PLUR-IN
1817A SAMPINO HESO (APC-7 inpuljoulpul Connectors)
TOR 35 DS ts 11068 Opt 001 lumnel Diads
SAMPRINE Ug to 124 GHz Termination, 50 ohm Model 909A, APC-7 eonnecter tafgera hecessonies <500 MH2 Adapter $1250-0750$ APC. 10 Yype N Female 11500 Cable :yge N Male ta type N Male, 1.8 m (5 it) edadier 1250-0077 typo N Female to BNG Mäie 300 Mhz io 10 胡z 1104 IVigger Countdown 1108A Tuanel Diode Adapter 1250-0847 GR Type B74 ib Type N Male 1009 B tiph Pess Filter Adapter 125020750 A.PC-7 to Iype N female 11150 C Maie BNG to Maie ENC Prizger Cgble. 1.2 m (4 tu 500 MHz to 18 GHz 1104 A Yrieger Countdown 11068 Opt 001 Tunnol Diofe Adapter $1250-0749 \mathrm{APC} 7$ to TyOM Male 1109 B High Pass filter 11170 C Maie BNC to Male BNC Telgger Cable. 1.2 in (4 fi)

- Use any 180 serles maintrame

1818A Description

The 1818A Time Domain Reflectometer plug-in with a 180 series mainframe gives you a completely integrated wide band system for tesuing of transmission lines, strip lines, cables, connectors, and many other devices in high frequency systems. The eas y-so-use controls provide accurate direct distance calibrated displays of up 10300 metres or 1000 feet with dielectric materials from $\epsilon=1.0$ (air) to $\varepsilon=$ 4.0. This allows you to quickly detemine the magnitude and oature of each resistive or reactive discontinuity in coaxial components such as attenuators. cables. connectors, and delay lines in microwave or pulse cireuits. You can also locate and identify faults such as shoms. opeas. loose connectors, defective tap offs. splices, and mismatches with measurement resolution as close as 2.54 cm .

1B18A Specifications

System (in reflectometer conflguration)
Rise Ime: <170 ps.
Overshoot: $\leqslant 5 \%$ overshoot and ringing (down to ${ }^{1 / 4 \%}$ io 3 ns).
Internal relfecllons: < 10% (dues not limit resolution).
Reflectomer sensitivity: reflection coefficients as small as 0,001 can be observed.

Signal channel

Rlse tlme: approx. 150 ps.
Reflection coefflelent: $0.5 /$ div $100.005 / \mathrm{div}$ in a $1,2.5$ sequence. Input: 50 ohms, feedthrough type.
Nolse and internal plekup, peak: 0.1% of step (terminated in 50 ohms).
Dynemic range: $=0.5$ voit.
External stgnal loval: up to IV peak may be safely applied to the Sampler output connector.
Attenuator accuracy: $\pm 3 \%$.

Step generator

Amplitude: approx. 0.25 V into 50 ohms (0.5 V into open circuit).
Rise time: approx. 50 ps .
Output Impedance: 50 ohms ± 1 ohm (dc-coupled).
Droop: $<1 \%$ in 1μ.
Distance/time
Distance scale: 3 metres/div and 30 metres/div; 10 fi/div and 100 ft div. Accuracy. $=3 \%$.
Variable dielectric: $\epsilon=1$ to $\epsilon=4$.
Time scale: $10 \mathrm{~ns} / \mathrm{div}$ and $100 \mathrm{~ns} / \mathrm{div}$. Accuracy. $\pm 3 \%$.
Magntication: XI to $\times 100$ in a 1, 2, 5 sequence provides time scales down $630.1 \mathrm{~ns} / \mathrm{div}$ and distance scales to 0.03 metres/div or $0.1 \mathrm{ft} / \mathrm{div}$. Accuracy of the basic sweep is maintained al all magnifier settings.
Delay control: 0 to 10 div of unmagnified sweep. Accuracy. $\pm 3 \%$.
Jitter: $=20 \mathrm{ps}$.

General

Recorder outputs
Vertical: approx. i V vertical output signal is provided an the rear panel of 180 series mainframes.
Horlzontal: approx. I V horizontal output signal is provided at the rear panel of a 180.181 , 182 or 184 mainframe.
Operating environment: temperature, 0 so $1.35^{\circ} \mathrm{C}\left(35^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$ with small increase in system rise time); humidity, 1095% relative humidity at $40^{\circ} \mathrm{C}$ ($104^{\circ} \mathrm{F}$); alritude. 104600 m (15000 ft): vibration. vibrated in three planes for 15 min , each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion. 101055 Hz .
Weight: net. $2.3 \mathrm{~kg}(5 \mathrm{jb})$. Shipping. 5 kg (11 lb).
Accessortes supplled: yype N connerior assembly. One 50 ohm load with Type N male connector. One Operating and Service Manual.

Ordesting Intormatlon	Price
1815B TDR/Sampler (calibrated in metres)	1750
Opt 910: additional Operating and Service Manual, covers 1815 B and 1817 A	add \$5
1817A 28 ps Rise Time Sampling Head	\$2050
1104A Trigger Counidowa	0
11068 One 00120 ps Tunnel Diode Mount	\$70
1108A 60 ps Tunnel Diode Mount	\$350
1810A Time Domain ReDectometer	\$1315
Opt 910: additional Operatiog and Service Manual	add \$13
10457A Adapter, 50Ω GR to 75Ω Type N female (converts $1818 \mathrm{~A} 50 \Omega$ outpus to 75Ω system.)	\$120

90BA

1104A/1106B/1108A Specifications

1104A/1106B 18 GHz trigger countdowrI 1104A/1108A 10 GHz trigger countdown Input

Frequency range: (1106 B) 1 GHz to 18 GHz . (1108A) I GHz to 10 GHz .
Senslitivity: (1106 B) signals 100 mV or larger up to 12.4 GHz . produce < 20 ps of jitter (200 mV required to 18 GHz). (1108 A) signals up 1050 mV or larger up to 10 GHz produce <20 ps jitter.
MaxImum safe Input: $=1 \mathrm{~V}$.
Inpul Impedance: dc resistance approx 50 ohms. Reflection from input connector is $<10 \%$ using a 40 ps TDR system.
Slgnal appearing at input connector: approx 250 mV .

Output

Center frequency: approx 100 MHz .
Amplltude: iypically 150 mV .

Connectors

1104A: inpul, lype N male: irigger output, BNC female.
1106B; input. lype N male; output, type N female.
1106B Opt 001: input. APC-7: outpul. Iype N female.
1108A: input, GR Type 8j4; oulput yype N female.
Weight
1104 A : nel. 0.9 kg (2 Ib). Shipping. 1.8 kg (4 lb).
1106 B or 1108 A : ne1 0.5 kg (I lb). Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.

1105A/1106B/1108A Specifications

1105A/1106B/20 ps pulse generaior
$1105 \mathrm{~A} / 1108 \mathrm{~A} / 60 \mathrm{ps}$ puise generator

Outpul

Rise time: approx 20 ps with I 106 B . ($<660 \mathrm{ps}$ with 1108 A), $<28 \mathrm{ps}$ observed with HP Model 14IIA/I430C 28 ps Samplerand 50 ohm termination HP Model 909A Option 012.
Overshoot: $=7.5 \%$ as observed on 1411A/1430C with 909A Op. (ion 012.
Droop: $<3 \%$ in lirsi 100 ns ,
Wldth: approx $3 \mu \mathrm{~s}$.
Amplltude: $1+200 \mathrm{mV}$ into 50 ohms.
Output characterisilcs (II06B/I [08A)
Mechanical: (ll06B) Male Type N input conneclor. Female Type N output connector: (1108A) GR-87A input connector. Female Type N output connector.
Electrlcal: ds resistance. 50 ohms $\pm 2 \%$. Source seflection.
$<10 \%$. using a 40 ps TDR sysiem. DC offsel V, approx 0.1 V .

Triggering

Amplltude: at leasi -0.5 V peak required
Rlse tme: < 20 ns required. Jitter < 15 ps when triggered by I ns rise ime sync pulse.
Wldth: >2 ns.
Maximum safe input: I vole
Input Impedance: 200 ohms, ac-coupled through $\mathbf{3 0} \mathrm{pF}$.
Repetition rate: 0 to 100 kHz : free nuns at 100 kHz .
Accessorles supplied (with Model 1105A): one 1.8 m (6 fi) 50 ohm cable with Type N Male connectors on each end, HP Model 10)32A.

Woight
1106 B or 1108 A : пet. 0.5 kg (1 lb). Shipping. 0.9 kg (2 lb).
1105 A : пet. 0.9 kg (2 lb). Shipping. 1.4 kg (3 lb).

1109B High-pass filter

The II09B High-Pass Filter Iransmils only frequencies above 1 GHz . It is useful for blocking the 100 MHz "kickout" encountered when using a tunnel diode countdown to view high frequency signals or a sampling oscilloscope. The 1109 B is designed for use with the Model $1104 \mathrm{~A} / 1 / 068$ Trigger counldown.

1109B Specifications

Lower bandwldth IImlt: 3 dB down al 3 GHz . nominaj.
inpul characterlstics
Mechanlcal: male rype N input connector: Female Type N ousput connector.
Electrical (whth output terminated in 50 ohms)
Aeflectlon: < 10% using 40 ps TDR system.
SWR: typically 1.1 up to 10 GHz increasing 102 at 15 GHz .
DC Reslsiance: 50 ohms $\pm 2 \%$ shunted across linc.
Welght: nel. $0.45 \mathrm{~kg}(\mathrm{I} \mathrm{lb})$. Shipping, 0.9 kg (2 lb).

Other sampling accessories

50 ohm loads: Models 908 A with Type N malc connector (4 GHz) and 909A Option 012 with Type N mate connector (18 GHz).
50 ohm adapters: Model IIS24A has Type N Female and APC-7 connectors: Model 11525 A has Type N Male and APC. 7 connecions.
Alr IIne extenslon: Model 11566 A, 10 cm, APC-7 connector. Model 11567 A. 20 cm . APC- 7 connector.
Ordering informatlon Price
lı04A Trigger Countdown
$\$ 270$
1105A Pulse Generutor
1106820 ps Tunnel Diode Mount
1108A 60 ps Tumnel Diode Mount
1109 B High Pass Filter
5320
$\$ 650$

908 A 50 ohm Teroination
909A Opl 01250 ohm Termination $\$ 50$

II524a 50 ohm Adapter
$\$ 85$
11525 A 50 ohm Adapter $\$ 95$
11566A Air Line Extension
$\$ 170$
11567A Air Line Exiension

180 Spectrum Analyzers
 Models 8557A \& 8558

- Economic spectrum analysis 0.01 to 1500 MHz
- Simple, 3 knob operation
- Dírect signal power display in dBm

8558E/182T

8558B and 8557A Spectrum Analyzers

The 8557A/8558B Spectrum Analyzers plug into any 180 scries oscilloscope maintrame to provide low cost 0.01 to 350 MHz or 0.1 to 1500 MHz performance with high amplitude and frequency aceuracy, and they're easy to use.
Simple three knob operation
For most measurements only three controls are required: one for amplitude calibration and iwo for frequency calibration. The center or start frequency of the display is shown on a digital readout, and the analyzer automatically selects the resolution bandwidth and proper scan time to provide calibrated measurements with any desired Irequency scan.
Absolute amplitude calibration
Signal levels can be read direcly from the CRT display in dBm (or dBmV for option 002) without the use of extemal slandards or calculations. The signal level represented by the top CRT graticule line is always indicated by the reference level coniral, and scale factors of $10 \mathrm{~dB} / \mathrm{div}$. I dB/div, and linear can be selected.
Optiona! 75 ohm inpul Impedance
Two options are available which allow measurements in 75 ohm systems: Option 001 has 75 ohm impedance and retatns the dBm power calibration: Option 002 has 75 ohm impedance with the amplitude calibrated in dBmV for measurements in systems such as CATV.

- Resolution bandwidths from 1 kHz to 8 MHz

- Optional 75Ω input impedance
- Companion tracking generator (for 8558B only)

Companion tracking generator

The 8444A Oplion 058 Tracking Generator provides a calibrated RF signal matchíng exacily the 8558 B analyzer unned frequency. This makes swept frequency tests, such as insertion loss and return loss measurement, possible over 0.5 to 1300 MHz frequency range. The 8444 A Option 058 is specified on page 488.

Suggested displays

The $8557 \mathrm{~A} / 8558 \mathrm{~B}$ Spectrum Analveers will function with any 180 -series display. However. the follawing are suggested: for low cost, large screen display, the Model $182 T$ is ideat: the Model $181 T$ offers variable persistence and storage; and the Model I8OTR uffers a rack mount configuration. Each of these displays provides a long persistence P39 phosphor (except variable persistence displays) and four non-buffered rear patiel outpots compatible with most X-Y recorders.

8557A and 855BB Specifications

Frequency specifications
Frequency display span: (on a 10 -division CRT horizontal axis): 8557A: F (full span, $0.01-350 \mathrm{MHz}$), 12 calibmited spans from 20 $\mathrm{MHz} / \mathrm{div}$ to $\mathrm{SHz} / \mathrm{div}$ in a $1,2.5$ sequence: 8558 B : 14 calibrated spaos from $100 \mathrm{MHz} /$ div $105 \mathrm{kHz} /$ div. In $0 \mathrm{kHz} / \mathrm{div}$ both analyzers become fixed-tuned receivers.
Dightal frequency readout: indicates center frequency or stan frequency of the frequency display sean.

Stabillity

Residual FM: less than 1 kHz peak-1o-peak for time $\leqslant 0.1 \mathrm{scc}$.
Nolse sldebands: more than 75 dB (8557A). 65 dB (8558B) below CW signal, 50 kHz or more away from signal with a I kHz resolution bandwidsh and full video filter.
Resolution
Bandwidth ranges: 3 dB resolution bandwidths of 1 kHz to 3 MHz in a 1.3. 10 sequence.
Fesolutlon bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ resolution bandwidth ratio <1s:I.
Video fllter: posi-detection filler used to a verage displayed noise.
Amplitude specilications
Absolute amplitude callbration range
Log callbration range: from - $117 \mathrm{dBm} 10+20 \mathrm{dBm}$ (8557A).
$+30 \mathrm{dBm}(8558 \mathrm{~B})$ in 10 dB sleps. Reference level vermier. 0 to
-12 dB continuously.
Log dlaplay ranges: $10 \mathrm{JB} /$ div on a 70 dB display, and $\mathrm{I} \mathrm{dB} / \mathrm{div}$ on an 8 dB display.
LInear display: from 2.2 mierovolts (-100 dBm) full scale to 2.24 voles $(+20 d 8 \mathrm{~m}) 8557 \mathrm{~A} .7 .1$ volts $(+30 \mathrm{dBm}) 8558 \mathrm{~B}$ full-scale in 10 dB sleps.
Dynamic range
Average nolse level: <-107 dBm with 10 kHz resolution bandwidits (0 dB inpul altomation).
Spurlous respanses: for input signal level \leqslant Oplimum Input Level setting, all image and out-of-bynd mixing responses. harmonic and intermodulation distortion products are more than 70 d8 below inpur signal level, $1 \mathrm{MHz} 10350 \mathrm{MHz}(8557 \mathrm{~A}) .5 \mathrm{MHz}$ to 1500 MHz (8558 B): 60 dB below, 20 kHz to 1 MHz (8557 A). 100 kHz 105 MHz (8558 B).
Resldual responses: (no signal present al input): $<-100 \mathrm{dBm}$ with 0 dB inpur attenuation.

Callibrator

Amplitude: $-30 \mathrm{dBm} \pm 1.0 \mathrm{~dB}$.
Frequency: $250 \mathrm{MHz}(8557 \mathrm{~A}), 280 \mathrm{MHz}(8558 \mathrm{~B}) \pm 50 \mathrm{kHz}$, crys. ial controlled.
Input spegificat̂lons
input impedance: 50Ω nominal.
Typisal reflection coefficient <0.27 (1.74 SWR) 8557A, <0.20 (1.5 SWR) 8558 for all Optimuin Input Level settings txcept -40 dBm (0 dB Inpul Allenuation).
Input connector: BNC female (8557A). lype N female (8558B).
Input attenuator: 50 dB range (8557 A), 70 dB range (8558 B).
Price and fucther information: see pages 488 \& 486.

Vertical amplifiers specifications

Modes of operation: channel A: channel B: channels A and B (either Chop or Allernate iriggered by channel A). Chop firequency is approx. 100 kHz channel A vs B (A-vertical. B-horizontal).
Bandwidth: de-coupled. de to 500 kHz ; ac-coupled. 2 Hz to 500 kHz . A bandwidth limit switch (i200 and 1201) selects upper bandwidth limit to approx. 50 kHz or 500 kHz .
Rlse ilme: $0.7 \mu \mathrm{~s}$ max.

Deffection factor

Ranges (1200 and 1201): from $0.1 \mathrm{mV} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}(17$ positions) in I. 2, 5 sequence.
Ranges (1205): from 5 m V/div to $20 \mathrm{~V} / \mathrm{div}$ (12 positions) in 1.2 .5 sequence.
Attenuator accuracy: $=3 \%$ with vernier in calibrated position.
Vernler: continuously variable between all ranges; extends maximum deflection factor to at least $50 \mathrm{~V} /$ div.
Nolge (1200 and 1201): $<20 \mu \mathrm{~V}$ measured langentially at full bandwidth.
Input: díferential or single-ended on all ranges.
Common mode
Frequency: de to 10 kHz .
Rejection ratlo
1200 and 1201: 100 dB (100000 to 1) with de-coupled input on 0.1 mV div range, decreasing by $<20 \mathrm{~dB}$ per decade of deflection factor to at least 40 dB on the $0.2 \mathrm{~V} /$ div range: CMR is al least 30 dB on $0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges. Maximum signal is $\pm 10 \mathrm{~V}$ (dc + peak ac) on $0.1 \mathrm{mV} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$ ranges: $\pm 400 \mathrm{~V}$ (dc + peak ac) on all other ranges.
1205: $\$ 0 \mathrm{~dB}$ with de-coupled input on $5 \mathrm{mV} / \mathrm{div} 100.2 \mathrm{~V} / \mathrm{div}$ ranges: CMMR is at least 30 dB on the $0.5 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{~V} / \mathrm{div}$ ranges. Maximum signal is $\pm 3 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on $5 \mathrm{mV} / \mathrm{div}$ to 0.2 V/div ranges: $=300 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) on all other ranges.

Input coupling: selectable AC. DC, or OFF for both + and inpuis.
Input AC: approx. $1 \mathrm{M} \Omega$ shunted by approx. 45 pF .
Maximum inpul: $\pm 400 \mathrm{~V}(\mathrm{dc}+$ peak ac).
Internal trigger source: on channel A signal for A. Chop. and Alternate displays, on channel B signal for B display.
Isolation: $>80 \mathrm{~dB}$ between ehannels at 500 kHz . with shiedded input connectors.
Phase shitt: A vs B mode, $<1^{\circ} 10100 \mathrm{kHz}$ with vernices in cali. brated positon.

Time base specifications

Sweep

Ranger: from $1 \mu \mathrm{~s} / \mathrm{div}$ to $5 \mathrm{~s} / \mathrm{div}$ (21 positions) in $1,2.5$ sequence: $\pm 3 \%$ accumcy with vernier in calibrated position.
Vernier: continuously variable between ranges; extends slowest sweep to at least $12.5 \mathrm{~s} / \mathrm{div}$.
Magntler: direct reading XiO magnifier expands fastest sweep to $100 \mathrm{~ns} / \mathrm{div}$ with $=5 \%$ accuracy.

Automatic trlggering

Baseline is displayed in absence of an inpur signal.
Internal: 50 Hz to above 500 kHz on mosi signals causing 0.5 division or morc vertical deffection. Triggering on line frequency also selectable.
External: 50 Hz to above 1 MHz on most sigoals at least 0.2 V $\mathrm{p}-\mathrm{p}$.
Trigger slope: positive or negative slope on internal. external. or line trigger signals.

12058

Amplitude selection trlggering
Internal: de to above 500 kHz on signals causing 0.5 division or more vertical deflection.
External: de to $/ \mathrm{MHz}$ on signals at leası 0.2 V p-p. Inpul impedance is approx. i M Ω shunled by approx. 20 pF .
Trigger level and slope: inlemal, al any point on vertical wavefom displayed: or continuously variable from $+100 \vee 10$ -100 V on either done of the extermal irigger signal.
Trigger coupling: dc or ac for extemal, line, or intemal irigger. ing. Lower ac custoff is 2 Hz for cxemat; 5 Hz for internal.
Single sweep: selectable by front pancl switch. Resel switch with armed indicator light.
Free run: selectable by front panel switch.
Maximum Input: $\pm 350 \mathrm{~V}$ (dc + peak ac).
Horizontal amplitler
Bandwldth: de-coupled. de to 300 kHz : ac-coupled, 2 Hz to 300 kHz .
Deffection factor; ranges. $0.1 \mathrm{~V} / \mathrm{div} .0 .2 \mathrm{~V} / \mathrm{div} .0 .5 \mathrm{~V} / \mathrm{div}$, and I $V /$ div. Vergicr, conunuously variable between ranges; extends maximum deflection facior 10 at lcast $2.5 \mathrm{~V} / \mathrm{div}$.
Maximum input: $\pm 350 \mathrm{~V}(\mathrm{dc}+\mathrm{peak} \mathrm{ac})$.
Inpul RC: approx. I Mr shunted by approx. 20 pF.
Input: single-ended on all ranges.

Cathode-ray tube and controls speciffcations

Beam finder: retums trace 10 CRT gareen regardless of seting of liorizonial, verlical, or intensity conirols.
Intenslty modulation: +2 V signal hanks trace of nommal iniensity. $+8 V$ signal blanks any intensily irace. DC-coupled rear panel input: amplisier rise lime, approx. 200 ns ; input R approx. $5 \mathrm{k} \Omega$.
Standard CRT, 1200, 1205
Type: mono-accelerator, approx 3000 V accelerating poledial. P- 31 phosphor slandimd.
Graticule: 8×10 divintemal gralicule. 0.2 subdivision markings on horizontal and verical major axes: 1 div $=1 \mathrm{~cm}$. Front panel recensed screwdriver adjusiment aligns trace with graticule.
Variable persisiencelstorags CPT, 1201
Type; pust-acceleritior. variable persistence storage tube: approx. 10.5 kV accelerating polential: aluminized P-3I phosphor.

Gratleute; 8×10 div intemad gratiule. 0.2 subdivision markings on major axes: I div $=0.95 \mathrm{~cm}$. Front pancl recessed screwdriver adjustment aligos trace with graticule.
Perslstence storage characteristlcs
(Referenced to a centered 7×9 div area in STD mode and 10 a centered 6×8 diy asted in FAST mode.)
Persistence: conventionil, natural persistence of P-3I phosphor. approx. $40 \mu s$: variable, continuously variable from 0.2 s to $>1 \mathrm{~min}$. in STD mode: and from 0.2 s to 15 s in FAST mode.

Storage writing speed: STD mode, $20 \mathrm{div} / \mathrm{ms}$: FAST mode, 0.5 div/ps.
Brlghtness: $343 \mathrm{~cd} / \mathrm{m}^{2}$ ($1(\mathrm{KI} \mathrm{fl}$) in write mode.
Storage time: STD wriling specd variable from approx. I min. to >2 hours. Fast wriling speed, variable from approx. 15 s to >15 min.
Erase: pushbullon erasure takes approx, 1.2 s . Write gun is blanked and sweep is resel until erasure is completed.

General specifications

Callbrator: $1 \mathrm{~V}=1.5 \%$ line frequency square wave.

Dimenslons

Cablnet models (destgnated by A suffir): $298 \mathrm{~mm} \mathrm{H} \times 211 \mathrm{~mm}$

Rack models (deslgnated by B suffix): $133 \mathrm{~mm} \mathrm{H} \times 483 \mathrm{~mm} \mathrm{~W}$
$\times 466 \mathrm{~mm} D$ overal); $423 \mathrm{~mm} D$ behind front panel ($5^{\prime \prime} \mathrm{Kan}^{*} \times 19^{\prime \prime} \times$
$185 / 96$: $16^{3 / 6 ")}$,
Power requirements: $115 / 230 \mathrm{~V}=10 \%$. 48 to 440 Hz . I50 VA máx.

Welght

1200A: net. $11.4 \mathrm{~kg}(25 \mathrm{lb})$. Shipping. $15.7 \mathrm{~kg}(34 / \mathrm{g} \mathrm{lb})$.
12008, 1205B: net, 10.2 kg ($221 / \mathrm{lb}$ lb). Shipping, 15.9 kg (35 lb).
1201A: net, 13.6 kg (30 lb). Sbipping. $17.9 \mathrm{~kg}(391 / \mathrm{ll})$.
1201B: net, 12.5 kg ($27^{1 / 3} \mathrm{lb}$). Shipping, $18.2 \mathrm{~kg}(40 \mathrm{Jb})$.
Vertical output signals specliflcations (Opt 015)
Output: $0.3 \mathrm{~V} / \mathrm{div} \pm 10 \%, 0 \mathrm{~V}$ offset unaffected by position control setting.
Bandwhdth: oc to 500 kHz .
Dynamic range: $\pm 3.5 \mathrm{~V}$.
Maximum slewing rate: $12 \mathrm{~V} / \mu \mathrm{s}$ with 300 pF load.
MInimum load RC: $10 \mathrm{k} \Omega$ shunted by approx. 300 pF .
Source impedance: approx. 300 ohms.

Optlons

006: rack models only, rear input teminals wired in parallel with front panel verlical and horizontal input terminals. Verical input shunt capacitance is increased to appiox. 106 pF . Horizontal inpul shunt capacitance is increstsed to approx. 75 pF
009: variable percistence/siorage models only, remote crase through rear panel banana jack. shorling to ground provides erasure (nol compatible with Opt. 006)

0t5: venical channel signal outputs through rear panel
910: additıonal Operating and Service Manual
$1200 \mathrm{~A} / \mathrm{B}$
$1201 \mathrm{~A} / \mathrm{B}$

Ordering Informatlon
1200A or 1200 B Dual Channel, $100 \mu \mathrm{~V}$ Oscilloncope
12012 or 12018 Dual Channel, $100 \mu \mathrm{~V}$ Siorage Oscil-
loscope
1205B Dual Channel. 5 mV Oscilloscopc
idd $\$ 125$
add \$15
add $\$ 16$ add 512.50
$\$ 2500$
$\$ 1500$

Price

 add $\$ 60$add $\$ 25$

15 MHz , dual/single, storage, general purpose
Models 1220A, 1221A, 1222A \& 1223A

1223A Description

Hewletc-Packard Model 1223A is a versalite, easy-to-use 15 MHz oscilloscope widh a ragged, performance proven CRT that gives you a choice of conventional, variable persistence. or stomage operation. Storage operation is extremely easy with indicators that clearly show whether you are in a stomge mode or conventional mode of operation. Storage controls are located directly under the slorage mode indicator for convenient selection of the Siore. Write. Variable Persistence, and/or Erase mode to meel your panicular requirements. Store and Write times are both variable for adjusting viewing time vs intensity as desired. An auto slore mode makes it easy to capture mindom single-shot events. automatically. The versatile crase controls tel you erase manually, remotely, or automatically with a vanable erase mite feature that allows you to adjust the viewing time or the displayed signal. And Variable Persistence provides bright ficker-free viewing of low rep rate, fasl rise sigmals.
Additional features include an 8×10 division intermal graticule for parallax free measurements: variable trigger holdoff to correct unslable Irigger condilions: and selectable chop or allemate sweep mode.

Triggering

The operalor can select the source of the sweep tringer (intemal, line. external ac, dc. or TV) as well as trigger on cither the positive or negative going traositions of the signal. Further flexibility is added by the abiling to presel the signal amplitude required to trigger the swecp. assuring that perturbations below the desired amplitude do not trigger the oscilloscope. A trigger holdoff control eliminates double triggering on complex digital wavcforms and maintains a full-screen, calibrated sweep.

Automatic triggering assures that a base-line is present even in the absence of a signal or if the Inger level control is set beyond the range of the trigger signal. With automatically riggered sweep, displays are stable because the observed signal itself determines when a sweep should star.

Storage/varlable persistence CRT

The 8×10 division Hewletr-Packard post-accelerator storage CRT, with 8.5 kV accelefating potential, atuminized P31 phosphor. and mesh storige, offers a bright, crisp trace in both conventional and storage modes. For maximum convenience in single-shot applications, at auto-store mode which operates in the single-shol mode. makes it easy to cap oure random events.
For viewing low rep rate fast rise time signals, the variable persislence mode allows you 10 adjust the trace for an optimum display. By adjusting the persistence to match the rep rate you can inlegrate a trace 10 provide a sharp. clear display for aecurate measurements of low duty-cyele pulse trains such as those from dise, tape. or drum peripheral units.

TV sync

The built-in TV sync separator assures stable, automatic riggering on frame or line for convenient TV troubleshooting. With the insanument's times-an magnifier. signals can be pulled out easily. The calibrated time base nakes it easy to idenuify liming problems in verrical or horizonisal TV circuits. The external horizontal input allows vector presentations of color CRT drive signals. Dual channels make it easy to set color demodulator circuits.

Optional accessories

General purpose probing is provided with the Model 10013 $10: 1$ divider probe with 10 megohms input shunted by only 13 pF . It extends inpul range to $100 \mathrm{~V} / \mathrm{div}$ and multiplies inpur impedance without degrading frequency response. A stindard System-11 rack mounting adaplerkit. Model 10173 A RFI filter, and contrast screen are also available.

1220A, 1221A, 1222A Description

Hewleth-Packand Models 1220A/1222A (dual channel) and 1221A (single channel) is MHz oscilloscopes are bigh quality instruments with the performance necessary for a wide variet! of applications. Fentures include a large $8 \times 10 \mathrm{~cm}$ intemal graticule for no-parallax measurements, 3% vertical attenuator accuracy, 4% horizomal accuracy. calibrated sweep times from $0.5 \mathrm{~s} /$ div to $0.1 \mu \mathrm{~s} / \mathrm{div}$. de coupling. nutomatic trigering, a sweep magnifier to expand the display up to ten limes for derailed analysis, a pushbution beam finder. X-Y display capability, TV sync separator, and in the 1222A delay lines permit the leading edges of pulses to be vie wed.

Easy operation

The buman engineered front pancl with functionally grouped controls and color-coded pushbutons makes measurements easier and faster. Inputs are protected to 400 V , reducing chances of accidental electrical Jamage. Automatic triggering assures that a base-)inc is present even in the absence of a signal or if the trigger level control is sel beyond the range of the trigger signal. And. although the dual channel Models 1220A and 1222A operate in either a chopped or alle mate mode, the operator need nol concern himself with making a choice since the Time/Div switch automatically selects the best display mode.
The basic stabifity of the solid-slate circuils and components used throughout is such that intemal adjusiments have been reduced to a minimum. This secreases calibration requirements and provides real savings over the oscilloscope's lifetime. Recalibration. When necessary, is simple and straightorward compared to most other oscilloscopes.

Triggering

Even though the instruments are easy to operate. these oscilloscopes have the flexibitity for multi-purpose use. The operator can select the source of sweep trigger (inlemal, external, ac line. TV) and he can select the trigger stope, adding to the oseilloscope's versatility by allowing triggering on either the positive or negative going transitions of the signal. Further flexibility is added by the ability 10 preset the signal amplitude required to trigger the sweep. assuring thal perturtations below the desired amplitude will nor trigper the oscilloscope
With automaticaliy (riegered siveep. displays are slable because the observed signal inself determines when a sweep should start. Automatic trigering produces a free ranning trace in the absence of a signal for fast secup. If loeks onso any inpu signal of the proper polarity and amplitude.

CRT
The internal $8 \times 10 \mathrm{~cm}$ CRT graticule eliminates pamalax errors that occur when the graticule is extemal to the CRT. The 30% verical accuracy combined wish the no-parallax graticule enables the oscilloscope to be used as a voltmeter as well as for waveform display. CRT beam intensity can be modulated itrough a rear panel Z-ixis impul.

$X-Y$ Inputs

Phase shift measurements through the verical amplifiens in the 1222A permit maximum measurement fexibility with the wide selection of deflection factors. In Models 1220A and 1221A. external signils can be applied to the herizontal deflection amplifices. Tbis $X-Y$ Eapatility parmits X - Y plots or Lissajous figures with a phase shift of less than 3° to 100 kHz .

TV Sync

Refer to the TV sync paragraph in the 1223A Description.

Rugged lightwelght design

These oscilloscopes are, except for the CRT. entirely of solidstate design, resulting in low power consumption. The consequent low heat has made possible a rugged, lighrweight cabinet with a vinyl-clad aluminum cover that is resistant to shock and moisture. A convenient side-pancl handle and stabilizing feet on the opposite side make handling easy. This allows these oscillescopes to be used in arcas where ruggedness is a necessity. These areas include production lines, numerically controlled machinery, process control equipment, aulomotive, aircraf and marine elealronics, and communications.

Optional accessorles

An optional froni panel cover. Model 10117A. is available to protect the instiument during trasportation and gives storage space for probes and other accessories. General purpose probing is provided with the Model 10013 A 10101 divider probe with 10 megohms inpus shunted by only 13 pF . 11 extends inpul range to $100 \mathrm{~V} / \mathrm{cm}$ and multiphies input impedance without degrading frequency respanse. Wilh a rack mount kit. Model $\$ 0119 \mathrm{~A}$. the oscilloscopes can be mounsed to occupy only 22.2 cm (8.3 a inches) of vertical space.

1220A, 1221A, 1222A, 1223A Specifications

Modes of operallon (1220A, 1222A. 1223A)
Channel A : channel B : channel B inverted (1222A): channel $A \pm B$ (1222A. 1213A): channels A and B displayed alternately on sucses-
sive sweeps (A / t); friggering by A channel; channels A and B displayed by switching berween channels al approx $300 \mathrm{kHz}(300 \mathrm{kHz}$. 1223A) rate with blanking during switching (Chop). (I220A. I222A) Automatic selection of aliernate or chop mode-chop, al speeds from $0.5 \mathrm{~s} / \mathrm{cm}$ to $1 \mathrm{~ms} / \mathrm{cm}$. altemate. $0.5 \mathrm{~ms} / \mathrm{cm}$ to $0.1 \mu \mathrm{~s} / \mathrm{cm}$. (1223A) Chop or All selectable.

Veritcal amplifers 2 in 1220A/1222A/1223A. 1 in 1221A)
Bandwidth (3 dB dows from $50 \mathrm{kHz}, 6$ div reference signal from a terminated 50 ohm source.)

DC-coupled: de to is MHz .
AC-coupled: Jower limit is approx 1 Hz .
Rise time: approx 23 ns (measured from 10% to 90% points of 6 div input step from a terminated 50 ohm source).

Deflaction factor

Ranges: from $2 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ (I2 calibrated positions) in 1. 2.5 sequcnce. (1220A, 1221A. 1222A) $\doteq 3 \%$ Accuracy with vernier in calibated position on $20 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{mV} / \mathrm{cm}$ ranges, $\pm 5 \%$ accuracy on $2 \mathrm{mV} / \mathrm{cm}, 5 \mathrm{mV} / \mathrm{cm}$, and $10 \mathrm{mV} / \mathrm{cm}$ ranges. (1223 A) $=3 \%$ Accuracy with vemer in calibrated position on 10 $\mathrm{mV} /$ div $1010 \mathrm{~V} /$ div ranges. $=5 \%$ aceuracy on $2 \mathrm{mV} / \mathrm{div}$ and 5 mV /div ranges.
Vernler: continuously variable between all ranges. extends maximum deflection factor to at least $25 \mathrm{~V} / \mathrm{cm}$.
Polarity (1222A, 1223A): Channel B may be invened. front panel pushbution.
Slgnal delay: input signals are delayed sufficienlly to view icsding cdge of inpu: signal without advanced extemal itigger.
Input RC: AC or DC. approx 1 megohm shunted by approx 30 pF . Input coupling: AC. DC. or GND. GND position disconnects inpul connector and grounds amplefier input.
Maximum Input: $\pm 400 \mathrm{~V}$ (dc + pcak ac).
$A+B$ operation (1222A, 1223A)
Ampllifer: bandwidth and deflection faclors are unchanged: channel B may be inveried for A-B operation.
Differential ($A-B$) common mode (1222A, 1223A): CMR is at least 30 dB from de to 1 MHz .

Time base

Tplgger Source (1223A)
Channel A: display modes A. A and B. A and B INV uriggered by channel A signal.

Channel B: display modes B. B INV eriggered by channel B signal.
A + B (composite slgnal): display moder A + B. A - B, uriggered by displayed signal.

Sweed

Ranges: (1220A. 1221A, 1222A) from $0.1 \mu \mathrm{~s} / \mathrm{cm}$ to $0.5 \mathrm{~s} / \mathrm{cm}(21$ ranges) in 1. 2.5 sequence, (1223A) from $0.1 \mu \mathrm{~s} / \mathrm{div}$ to $2 \mathrm{~s} / \mathrm{div}$ (22 ranges) in 1. 2. 5 sequence: $=4 \%$ accuracy over full scale with Magnifier/Expander in calibraled position.
Sweep trigger mode (1220A, 1221A, 1222A): sweep is iriggered by inte mal or external signal. Bright baseline displaved in absence of input signal except with 1222A in Normal irigering mode.
Sweep trigger modes (1223A)
Normal (Aulo off): sweep is triggered by internal or externa! signal or line.
Automatlc (Auto on): bright baseline displayed if trigger signal is absent for longer than 500 ms .
Single: in Normal mode. sweep occurs once with same triggering as nomad. reset pushbution amas sweep and lights indicator: in Auto mode. sweep occurs once each time Resel pushbution is pressed.
Trigger holdof (1223A): time between sweeps continuously variable up to to times. Allows triggering on complex signals without loss of time base calibration.
Triggering
Internal: de to 15 MHz on signals causing I div or more vertical deflection.
External: dc to 15 MHz on signals of 0.1 V p -p or more.
External input RC (1220A, 1221A, 1222A): approx I megohm shunted by approx 30 pF .
External input R (1223A): approx 1 megohm.
Lline: triggers on line frequency.
Trigger coupling: ac or de allenuales signals below 10 Hz .
TV sync: separalor for + or - video. requires I div of video signal to trigger. automatic frame ($0.5 \mathrm{~s} / \mathrm{div}$ to $100 \mu \mathrm{~s} / \mathrm{div}$ except 1223A. 2 s/div $10100 \mu \mathrm{~s} / d \mathrm{div}$) and line select ($50 \mu \mathrm{~s} / \mathrm{div}$ to $0.1 \mu \mathrm{~s} / \mathrm{div}$). Usable also as a low pass filler.

Level and Slope

Internal: at any point on the posilive or negative slope of the displayed waveform.
External: (1220A, 1221A, 1222A) conlinuously vanable from $+0.5 \vee 10-0.5 \vee$ on either slope of the Irigger waveform: $\div 10$ extends trigger range to +5 V to -5 V . (I223A) continuously variable from $+1 \vee$ to $-1 \vee$ on eiber slope of the trigger signal.
Calibrated $X-Y$ operation (1222A, 1223A)
Operalion is via channel A (X-axis) and channel B (Y-axis).
Bandwldth: X-axis de to 1 MHz . oherwise see Venical Amplifiers Bandwidth specifications.
Accuracy: see Verical Amplifiens Deflection Factor specifications. $\mathrm{X}-\mathrm{Y}$ phase shift less than $3^{3^{\circ}}$ at 100 kHz .
Cathode-ray tube and controls (1223A)
Type: post accelcrator storage tube, approx 8.5 kV total acceleral. ing polential, avminized P- 31 phosphor.
Gratlcule: $8 \times 10 \operatorname{div}$ (1 div $=0.94 \mathrm{~cm}$) intemal graticule; 0.2 subdivision markings on major horizontal and verical axes; 10% and 90% lines for 6 and 8 division reference.
Intensity modulation (2 -ax|s): grounding a signal. dc 101 MHz . blanks trace of any intensily: fositive TTI_ voltage or greater un. blanks trace: input voliage limits - IV peak $10+15 \mathrm{~V}$ peak, from source capable of sinking 2.5 mA .
Beam finder: relurns irace to CRT screen regardess of settings of
horizontal and vertical controls.
Persistence
Conventional: natural persistence of P-31 phosphor (approx 40 $\mu \mathrm{s})$.
Varlable: from <0.1 s to >1 min.
Storage lime
Store mode: at minimum writing speed ($20 \mathrm{div} / \mathrm{ms}$) and minimum sefling of Store Time control, slorage time is a minimum of one minute at minimum brightness. Ai higher writing specds minimum slorage time decreases 1010 s at 1000 div/ms writing speed.
Auto store mode: cumblative time to caprure and store a single event is $\leqslant 2$ hours.

Storage writing apeed: continuously variable from $20 \mathrm{div} / \mathrm{ms}$ ($8 \times$ 10 div) $10 \geqslant 1000 \mathrm{div} / \mathrm{mss}(6 \times 8 \mathrm{div})$.
Eraso
Manual: pushbution for overriding automalic or remote erasure cycle.
Automatic: time between erasure cycles váriable from 1 s 10 : min.
Remote: single erase signal aclivated by grounding rear panel Remote Erase Input (or connection to TTL low level). Max voltage inpul - I V peak to +15 V peak.
Cathode-ray tube and controls (1220A, 1221A, 1222A)
Type: mono-accelcrator, approx 2 kV accelerating potentiad, P. 31 phosphor
Graticule: $8 \times 10 \mathrm{~cm}$ inicmal graticule; 0.2 cm subdivisions on major horizontal and vertical axes.
Beam finder: retums trace to CRT screen regardless of setting of horizontal and vertical controls,
Intensify modulation: +5 V (TTL compatible) 1 Hz 101 MHz blanks trace of any intensity. Input R approx I $k \Omega$. Maximum input. 7 V rms.
External horizontal inpul (1220A/1221A)
Eandwidth: de to I MHz ,
Coupling: dc.

Expandor	$\begin{aligned} & x \text { Hode } \\ & \text { Ansnuzior } \end{aligned}$	Deflecilion Factar
C31.	1:1	$1 \mathrm{Y} / \mathrm{cm}$
Eat.	1.10	10 V cm
C*	1:1	$300 \mathrm{mV} / \mathrm{cm}$

Continuous aduyiment between ranges by Expander.
Inpul RC; approx I megohm shunted by approx 30 pF .
$X-Y$ Phase shitt: $<3^{c}$ at 100 kHz .
General
Probe adjust: approx $0.5 \mathrm{~V} \mathrm{p}-\mathrm{p} .1 \mathrm{kHz}$ square wave for adjusting probe compensation
Power: (1220A, 1221A. 1222A) 100. 120. 220. $240 \mathrm{~V},+5 \%-10 \%$. 60 VA max. 88 VA max (I223A).
Weight:
1220A: net. 7.3 kg (16 lb). Shipping $1 \mathrm{I} .3 \mathrm{~kg}(25 \mathrm{lb})$.
1221A: net, 7.0 kg ($15^{1 / 2 / 2} \mathrm{lb}$). Shipping $10 \mathrm{~kg}(22 \mathrm{lb})$.
1222A: nel, 7.3 kg (16 lb). Shipping, 12.3 kg (27 lb).
1223A: nel, $11.9 \mathrm{~kg}\left(26^{1 / 4} \mathrm{lb}\right)$. Shipping, $15 \mathrm{~kg}(33 \mathrm{lb})$.
Dimensions
1220A, 1221A, 1222A: $181 \mathrm{H} \times 311.2 \mathrm{~W} \times 412.8 \mathrm{~mm} \mathrm{D}\left(7.13^{\prime \prime} \times\right.$ $\left.12.25^{\prime \prime} \times 16.25^{\prime \prime}\right)$.
1223A: $265.9 \mathrm{H} \times 212.3 \mathrm{~W} \times 421.6 \mathrm{~mm} \mathrm{D}, 476 \mathrm{~mm} D$ averall
($10.47^{\prime \prime} \times 8.36^{\prime \prime} \times 16.60^{\prime \prime}, 18.73^{\prime \prime}$ overall) .

Environment

Operating temperature: $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ except $1223 \mathrm{~A}, 0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10+130^{\circ} \mathrm{F}\right)$.
Non-opersting temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} 10+167^{\circ} \mathrm{F}\right)$.
Relatlve Humldity: to 95% at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Altlude: 104800 m (IS 000 f).
Vibration: vibrated in three planes for 15 minutes each with 0.254 mm (0.01 іл) excursion, 101055 Hz .
Accessories tumlshed: one blue light filter. one power cord. one fuse for $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V operation, and one Operating and Service Manual.
Accessories avaliable Price
10117A: Front Panel Cover (1220A, 1221A, 1222A) $\$ 28$
10119A: Rack Mouni Kil (1220A. I221A. 1222A) $\$ 80$
Note: Probes are nol supplied. recommended probe
10013A: 10:1 Divider Probe (sce page 173)
1220 Dual Channel Oscilioscopt
Opt 910: extra Operating and Service Manual
122JA Single Channel Oscilloscope
Opt 910: exira Operating and Scrvice Manual $\$ 795$

1222A Dual Channel Oscilloseope
add $\$ 12.50$
Opl 910: exim Operating and Service Manual
$\$ 895$
1223A Storage, Variable Persistence Oscilloscope
Opt 910: extra Operating and Service Manual

Typical miniature 10:1 divider probe, bottom. and 50Ω probe. top (accessories shown are supplied with each probe).

Minature oscilloscope probes
Hewlett-Packard's series of̂ miniature oscilloscope probes easily access test points in densely populated circuits. These small, lightweight probes, which fit in the hand much like a pencil, simplify previously difficult measurements. The basic probe is a small (2.4 mon diameter, 25 mm long) cylinder with a needle-like tip which is used with a variety of interfacing/insulating accessories to meet a Wariety of testing situations. The narrow bady provides easier access 10 test points in congested areas whithout worrying about accidental shorts to adjaceni leads.

Conventional probing

An insulating sleeve added to the basic probe provides a miniature version of the tanditional oscilloscope probe. In this configuration, the probe looks and handles like a small-scale versions of the traditional oscilloscope probe except that the forward barrel insulator is retractable which makes the traditional slip-on insulators for protection against shonts unnecessary. With the barrel insulator retracted, the ground spring configures the probe with a very shon ground lead for high-frequency point-to-point probing.

With the barrel insulator in the forward position, the probe is used with the 20 cm flexible ground lead for probing where this type of grounding allows adequate response fidelity. The probe lip makes positive metallic contact to narrow conductors and penetrates commonly-used protective coatings while the extended insulating slecve prevents shorts 10 closely-spaced adjacent leads.

With the barrel insulator retracted and using the fiexible ground lead, the probe may be used with the slip-on hook tip (figure 1) for attaching to verious component leads. For monitoring signals on dual in-line packages, a slip-on IC probe lip adapter allows connection io closely spaced leads without shorting (figure 3).
DIP probing
By removing the probe's insulating sleeve and using the nccessory clip (10024 A), you can monitor points on 14 - and I6-pin DIP's with improved pulse fidelity (figure 3) and without worrying about shorting adjacent pins.

In this application, the clip is installed on the DIP. a circuit interface pin is inserted into the appropriate position, and one or more

OSCILIOSCOPE MINIATUAE PROEE LOMPATEILITY ANO PROBE LMARACTERISTIES								
4P Oscilloscopes Plac-la Model No. and Bandwidt	Piobe Model No.	Mopros overali Lenglh in Motres (f)	$\begin{gathered} \text { Dirasicn } \\ \text { Ratio } \end{gathered}$	$\begin{gathered} \text { Inpul } \\ \mathbf{R} \end{gathered}$	Stuit Capapitance	Compenislei Scoie Ingut C	$\begin{gathered} \text { Mun } \\ \text { actity } \end{gathered}$	Price
$\begin{aligned} & \text { 1725A/275 MHz } \\ & 1722 \mathrm{~A} 275 \mathrm{MHz} \end{aligned}$	10017A	1π (3.3)	10.1	$14 n$	B pl	2to 14 pr	300	590.
$\begin{aligned} & 1715 \mathrm{~A} 200 \mathrm{MHz} \\ & 1809 \mathrm{~A} 100 \mathrm{MHz} \\ & 1085 \mathrm{~N} 100 \mathrm{MHs} \end{aligned}$	100164	2 mlf (6)	10.1	1 Mn	10 pr	9 to 14 pF	300	590.
1741 N 100 MHz	10040A	1 n (3.3)	10.1	1 Mn	9 pl	20.1030 pF	300	390
1741010, mryl $1700 \mathrm{Al00} \mathrm{MHz}$	10041A	2 m (6.6)	10.3	1 mb	12 pl	20102401	300	590
$1743 \mathrm{~A} / 100 \mathrm{Mh}_{1}$	100422	$3 \mathrm{~m}(2.8)$	101	1 Hid	15 \% 1	201026 pr	300	\$90
All Scopes with	300214	$1 \pi / 3.3)$	1.1		36 तI		300	345
(masy reduce bandwidth)	100021	2 (6.6$)$	1.1		62 ps		300	345.
All Scopes with 50Ω inpuls aná	100264	$1 \mathrm{~m}(3.3)$	1.1	5013:			2 Anips	Ses.
signal sources with a 50Ω source impedance	10077ג	$2 \mathrm{~m}(6.6)$	11	$501) 2$			2 Amps	545

- These miniature probes may be used with other oscilloscopes and test instruments with the proper input capacitance with no noticeable bandwidth degradation. However, dite it variations of input characteristics. the probes may require recalibration for optimum performance.

10024A IC Test Clip

BNC-10-Drobe Adapter

probes are insentad to contact the desired package leads. The circuit interface pin contacls refcrence planes in the clip to provide a ground reference for finy probe inserted in the clip. This grounding arrangement is exiremely effective: high-speed puise sidelity schieves a level previously associated only wilh probe-to-BNC adapters or high frequency, point-lo-point probing. In addition, the clip makes it extremely easy lo monitor two channel signals while using a thind probe to provide an external trigger signal,

The cırcuit interface pins have a section of insulation which allows theno to be inverted from the grounding position for using other lypes of probes to couple signals into or oul of an $1 C$. When the circuit interface pins are used in this posilion they are isolated from the ground bus in the IC clip.

Figure 1. With the sllp-on hook tip and flexible ground lead in place. the minature probe can be used like a conventional probe for altachment to test points or component leads.

Figure 2 The slip-on IC probe tip adapler provides convenient connection to closely spaced leads on DIP's without shorting.

Figure 3. Minature probe with insulating sleeves removed is held in place on an IC load by the optional IC clla. The circuit Interlace pin in the right hand corner of the cllp can be Inserted at any lead position to ground relerence planes that contaci the barrel of the probe(s). Rise times as short as 1.3 ns are preserved by this arrangement. The hand held probe's insulating lip has been retracted to allow the spring ground tlp to establish a ground-reference point at the end of the barrel for measurements of high speod signals.

By using the 50Ω. $1: 1$ probes, you can insert signals from a pulse genemior to determine the IC's response. In other applications, the circuit containing the IC may be removed from the insinument and it can be powered through the 50Ω probes. the IC clip. and the interface pins. This means that the 1 C clip, circuil interface pins, and miniature probes provide you with a complete testing sysiem for locating IC raults.

Additional circuit interface pins are available in packages of 12 pins so that the clip can be used with other instruments. Each pin has a rip on each end so thal probes such as those on HP Logic State Analyzers can be connected for fasi. functional checks of circuit operation.
Digital irigger probes
Model 10250A (TTL) 4-bit Trigger Probe is a useful service, pron duction. and design eroubleshooting tool that offers digital paltem triggering to enhance the use of oscilloscopes, logic analyzers. and other test equipment.
The compact Model 1230A 8-bit Logic Trigger unit generates a trigger outpul puise (TTL compatible) from parallel digital pattern recognition with digitad delay capability for oscilloscopes or other extemally Iriggered toss equipment.

For 4 and 8 bit parallel trigger probe specifications and prices refer to page 127.
Minlature probe accessories
Probe tip kitg: to increase probing versatility Models 10036B and 10037B probe lip adapter kits are supplied wich slip-on $6 / 32$ screw adapter for interfacing with any $6 / 32$ probe adapter tip. This means that your present supply of $6 / 32$ adapter tips. as well as future adapterips, may be used with these minjature probes. Refer to page 176 for ordenng information.
Ordering Informallon
1002Aa IC Test Clip for easy probing of dual in-line
packages: includes 4 insulared circui interface pins.
$10024-69501$ interface Pi.n Kit for 10024 A: includes 12

incerface pins.

1250-1454 BNC 10 probe adapier permits the minialure probes to be connected to BNC connectors to mainlain fast pulse response.

100078． 100088

Standard probe／instrument compatibility

Scopal Plug．In	$\begin{aligned} & \text { 䐬 } \\ & \text { N } \\ & \text { 8 } \end{aligned}$	$\begin{aligned} & \text { 荡 } \\ & \text { W } \\ & \text { H } \end{aligned}$	$\frac{\pi}{N}$ $\frac{3}{2}$ $=$	콜					砍	亳	ㅍㅡㅡㅡㅡㄹ	$\frac{98}{90}$
Frobe												
100014	K	x			1	1		x				
100018	x	χ			1	1		X				
10002A	x	X			L	L		x				
10002B	x	K			1	1.		x				
10003A	H	x			1	1		x				
100040		x			x	K						
100050		x			L	X						
100060		x			x	x						
100078	X	X	1.	1	1	L	L	K	1			
100088	x	6	1	1	1	L	1	x	L			
100134	K	X				1		x				
100134			x	X			x		x			
10015A			x	X			x		x			
100168			x	x			x		x			
10020A			x	K	X		$\underline{ }$		x	1	L	1
1120A			K	x	χ		K		X	1	L	1
1124k			L	1	l		\underline{L}		t	1.	L	1
1125A			X	L	\times		\times		X	d	1	1

Notes：
I indicates that probe will maintain the bandwidth of the instrument
Lindicates that probe may limit the bandwidth at the instrument．
Standard divider probe specifications

Modal Ho．	Division Ratic	Roslance $M \Omega$	Shunt Capacliance	Comper satas Scope Inpul Capscrias	$\begin{aligned} & \text { Max } \\ & \text { OC } \\ & \text { volls } \end{aligned}$	Drerall length m（10）	Price
1000 LA	10.1	10	10 pF	15－55	600	$15(5)$	360
100018	10：1	10	$20 \mu \mathrm{~F}$	15－45	600	$30120)$	500
10002 A	501	9	25 pf	15－33	1000	15（5）	4611
100028	50：1	9	5 pf	15－55	1000	3.0 （10）	\＄60
10003A	10．）	10	10 pl	15－55	800	1.3 （d）	380
100040	10.1	10	10 pr	20－30	500	1135）	\＄55
100050	10：1	10	17 pr	20－30	500	$30(10)$	\＄65
100060	10：1	10	14 pr	20－30	500	1.8 （6）	\＄65
100079	H1	－	40 pF	－	600	11 （3．5）	\＄2
100088	$11)$	－	B0 D5	－	6 Cu	1.8 （閏）	S32
100134	10.1	10	13 pr	24－45	500	1.8 （6）	439
10.144	10．1	10	10 of	9．－13	500	1113.51	565
10015A	$1 \mathrm{~N}_{1}$	10	In pr	5.13	500	$27(9)$	985
100168	10：1	10	14 DF	9－13	501	L8（6）	\＄39

10020A Resistive dividers

Divison Hatid	lanal R＂ （0hms）	Division Accuracy	$\begin{gathered} \text { Mgr } V^{\prime *} \\ \text { (\|mas) } \\ \hline \end{gathered}$	Ingul C （ \varnothing ）
11	50	－	6	－
$5-1$	250	二 30	9	<0.7
101	500	－3\％	12	<01
201	1000	－3\％	15	<0.7
50.1	2500	$\because 3 \%$	25	＜0］ 7
100：1	5000	$=3 \%$	35	≤ 67

－When rerminated in 50 anms．
－Limited by power dissipation of resistive element
Probs length（overall）：approx． 121.9 cm （4 fi）．
Welght：ne1، 0.45 kg （I lb）．Shipping． $1.36 \mathrm{~kg}(3 \mathrm{lb})$.
Accessories supplied：blocked capacitor．BNC adapler Lip．6－32 adapter lip，aligator tip，boot exsension，callde assy＇ 51 cm （ 2 in ．） and $15.2 \mathrm{~cm}(6 \mathrm{in}$ ）ground，spanner tip，insulating cap，colored sleeve．

1120A 500 MHz actlve probe

For probing high source impedances al high frequencies, the Model 1120A I: I aclive probe provides a probe up impedance of 100 $\mathrm{k} \Omega$ shunted by approx 3 pF at 100 AHz . When used with the $10: 1$ or 100:1 divider tips, the shunt capacitance is <I pF at 100 MHz . The 50 ohm oulpul provides the opimum impedance match for 50 ohm inpot plog-ins for accurate measurements. Power is supplied by instruments with probe power jacks or the II22A probe power supply.

1120A Specifications

(Measured with oupput connected to a 50 ohm lond.)
Bandwldth: (neasured from a terminated 50 ohm source) dccoupled, de $10>500 \mathrm{MHz}$; ac-coupled. $<1.5 \mathrm{kHz} 10>500 \mathrm{MHz}$.
Pulse response: (measured from a lerminated 50 ohm source) rise lime, $<0.75 \mathrm{~ns}$; penurbations, $< \pm 10 \%$ measured with ! GHz sampler.
Dynamic range: $\pm 0.5 \mathrm{~V}$ with $=5 \mathrm{~V}$ de offises.
Nolse: npprox 2.5 mV (measured Iangentially).
Inpul RC: $100 \mathrm{k} \Omega$, shum capacitance appoix $3 \mu \mathrm{~F}$ at 100 MHz ; with 10:1 or 100:I dividers. shunt capacitance is $<1 \mathrm{pF}$ at 100 M Hz .

Maximum Input: $=80 \mathrm{~V}$.
Welght: ncl. 1.8 kg (4 ib). Shipping, 3.2 kg (7 lb).
Power: supplied by oxcilloscopes with probe power jacks or a Miadel II22A probe power supply.
Length: 1.2 m (4 ft) overall: with Option $001.1 .8 \mathrm{~m}(6 \mathrm{fl})$.
Accessories furnlshed
Model 10241A 10:1 divider: increases inpui R to approx I megolim shumled by <l pF at 100 MHz .
Model 10243A 100:1 divlder: increases input R to approx I megobm shunted by $<1 \mathrm{pF}$ at 100 MHz .
Model 10242A bandwidih Ilmiter: reduces bandwidth in approx 27 MHz shonled by approx 6 pF and reduces gain $<2 \%$.
Also Included: slip-on hook ip. 6.4 cm (2.5 in .) ground lead. spare probe lips, a slip-on 8 N C probe adapier. Iwo red ID sleeves. and a probe divider adjustment tool (PN 5020-0570).

1124A 100 MHz active probe

Model 1124A Active Divider Probe provides high voltage. gereral purpose probing capabilities for instruments having 50 ohm in. puts without selectable high impedance inputs. This 10 megohm 10 pF probe ullows direcs measurements of 100 volts, in the 100: 1 division ralio mode. from de 10100 MHz . In the $10: 1$ division ratio mode. inpul voliage range is ± 10 volis. Power is supplied by insituments with probe jacks or the ll22A probe power supply.

1124A Specifications

(Measured when connected to a 50 ohm load.)
Bandwldth: (measurad from a rerminated 50 ohm source) decoupled, de to 100 MHz ; ac-coupled, 2 Hz to 100 MHz .
Pulse response: (measured from a lerminated 50 ohm source) rise lime. $<3.5 \mathrm{~ns}$: perturbations. 5% p-p. Measured with pulse rise time of >2.5 пs.
Atenuatlon raslo: $10: 1 \pm 5 \% ; 100: 1 \pm 5 \%$.
Dynamle range: $\times 10 . \pm 10 \mathrm{~V}: \times 100, \pm 100 \mathrm{~V}$.
Input RC: 10 megohms shunted by approx 10 pF .
Maximum safe input
DC-coupled: X $10,=300 \vee(d c+p c a k a c) \leqslant 100 \mathrm{MHz}: \times 100$ $=500 \mathrm{~V}(\mathrm{dc}+\mathrm{peak} \mathrm{ac}) \leqslant 100 \mathrm{MHz}$.
AC-coupled: X $10,-300 \mathrm{~V}(\mathrm{dc}+$ peak ac$) \leqslant 100 \mathrm{MHz}$. DC com. ponent musi not exceed $=210 \mathrm{~V} ; \times 100 . \pm 500 \mathrm{~V}(\mathrm{dc}+$ peak ac)
$\leqslant 100 \mathrm{MHz}$. DC component musi nol exceed $\pm 200 \mathrm{~V}$.
Accessorles supplied: one 20.3 cm (8 in.) ground lead. one reIraclable hook tip, and 1 wo probe lip insulating caps.
Power: supplied by instruments with probe power jacks or Model 1122A probe power supply
Weight: nel. $0.2 \mathrm{~kg}(6 \mathrm{oz}$). Shipping, 0.91 kg (2 lb).
Length: approx 1.5 m (5 il) overall.
Avallable accessory: 10131891.4 em (36 in) extender cable (refer to I122A Probe Power Supply). Required for use with 1700 oscilloscopes with probe power oplion.

1122A Probe power supply

Model II23A is a regulated power supply that provides power for operaling active probes. The power supply provides all power requirements for simullaneous operation of up to four aclive probes.

1122A Specifications

Probe driving capablity: up to four HP active probes.
Power outpest: -12.6 and $+15 \mathrm{~V}, \pm 3 \%$.
Power inpul: 115 V or $230 \mathrm{~V}=10 \% .48$ to 440 Hz . 40 W (wid) four probes).
Welght: nel. $2.7 \mathrm{~kg}(6 \mathrm{l})$. Shipping, $3.63 \mathrm{~kg}(8 \mathrm{lb})$,
Accessorles gupplled: four Model 10171 B 91.4 cm (36 in.) extender cables.
Ordering information
I120A 500 MHz Active Probe
1120A Opl 001. 1.8 m (6 At lengh add 535
1122A Probe Power Supply
$\$ 425$
1124 A 100 MHz Aclive Probe
$\$ 170$

IIIOA

1125A Impedance converter probe

Model II2SA 250 MHz Impedance Converar Probe for oscilloscopes with 50 ohm inputs is ideal for ECL and other offsel logic circuil measurements. This active divider probe provides a high impedance of approx m mately 100 kilolims to low frequencics with both the 10: I and 100: I divider tips, which drops to a low impedance as high frequencies. The dual impedance feature gives you the advantages of low de circuil loading, high maximum voltage ratings.
and high fidelity rise time measurements. Probe tip shunt capacirance is $<0.7 \rho F$. Power is supplied by scopes with probe power jacks or the 1122A probe power supply.

1125A Specifications

Attenuallon ratio: (oscilloscope gain may be adjusted for $10: 1$ and $100: 1$ division ratio) $10.5: 1$ and $105: 1 . \pm 5 \%$.
Dynamic range at probe tip: $\times 10, \pm 4 \mathrm{~V}: \times 100, \pm 40 \mathrm{~V}$.
Input impedance at probe tip
High frequency: approx 500 ohms (X 10) or $5 \mathrm{k} \Omega$ ($\mathrm{X} \mid 00$) shunted by 0.7 pF (in X 10 or X 100 modes).
Low frequency: approx $100 \mathrm{k} \Omega$ (dc-coupled).
Maximum Inpul
All modes: $\pm 300 \mathrm{~V}(\mathrm{dc}+$ peak ac) wilh $\pm 200 \mathrm{~V}$ max de component.
X10: de to $500 \mathrm{~Hz}, 200 \mathrm{~V}$ rms; decreasing 6 dB per octave to 12 V rms at 10 kHz . $\geqslant 10 \mathrm{kHz}, 12 \mathrm{~V} \mathrm{rms}$ is max allowable continuous inpur.
X100: dc to $1.5 \mathrm{kHz}, 200 \mathrm{~V} \mathrm{~ms}$; decreasing 6 dB per octave to 35 V mis al $10 \mathrm{kHz}, \geqslant 10 \mathrm{kHz}, 35 \mathrm{~V}$ rms is max allowable continyous input.
Bandwidth (with X 10 or X 100 lip and supplied 1.3 m (4 ft) cable) DC-coupled: de to 250 MHz .
AC-coupled: 20 Hz to 250 MHz .
Pulse response $\ln \times 10$ or $\times 100$: $\leqslant \pm 5 \%$ periurbations measured from a terminaled 50 ohm source.
Accessorles supplled: one 1.2 m (4 r_{1}) 50 ohm cable, onc $\times 10$ divider tip, one X 100 divider ip, one probe handle, iwe red color coding slecves, two clear plastic insulating caps. Iwo jade gray insulating caps, one $5.1 \mathrm{~cm}(2 \mathrm{in}) 6-32$ ground lead, one 15.2 cm (6 in .) $6-32$ ground lead, one $6-12$ adapter tip and one $6-32$ alligator tip.
Power: supplied by instruments with probe power jacks or a Model 1122A probe power supply.
Length: approx overall lenglh, $147.3 \mathrm{~cm}(58$ ").
Welght: nct, $0.2 \mathrm{~kg}(6 \mathrm{oz})$. Shipping. $0.9 \mathrm{~kg}(2 \mathrm{lb})$.

1111A AC current amplifier

Deflecilon factor: (with a 50 mV /div oscilloscope delleciion factor) in XI, ImA/div $1050 \mathrm{~mA} / \mathrm{div}$: in X $100.100 \mathrm{~mA} / \mathrm{div}$ to $5 \mathrm{~A} / \mathrm{div}: 1.2$. 5 scquence in XI or X 100 .
Accuracy: in XI. $=3 \%$; in X $\times 100,=4 \%$.
Rise lime: 18 ns .
Nolse: < $100 \mu \mathrm{~A}$ p-p. referenced 10 input signal.
Maximum ac current: above $700 \mathrm{~Hz}, 50 \mathrm{~A} p-\mathrm{p}$, below 700 Hz . decreases at $1.4 \mathrm{~A} / 20 \mathrm{~Hz}$.
Output Impedance: 50 ohms.
Slze: $38.1 \mathrm{H} \times 130.2 \mathrm{~W} \times 152.4 \mathrm{mmD}\left(13 / 2^{\prime \prime} \times 51 / \mathrm{c}^{\prime \prime} \times 6^{\prime \prime}\right)$.
Welght: net, approx. $0.91 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, 1.36 kg (5 lb).
Power: 115 or $330 \mathrm{~V}=10 \%$. 50 to 440 Hz . 1.5 wales.

1110A Current probe

Senslifilty: without 100 ohm termination. ImV/mA: with $1(x)$ ohm termination, $0.5 \mathrm{mV} / \mathrm{mA}$.

Accuracy: $\pm 3 \%$.

Bandwidth

Lower -3 dB point: withoul 100 ohm icrmination, approx 1700 Hz : with 100 ohn termination, approx 850 Hz .
Upper -3 de polnt: with 4 pF capacitive load, approx 45 MHz : with 30 pF capacitive load, approx 35 MHz .
Rlse time: with 4 pF capacitive load, approx 7 ns: with 30 pF capacitive loud. approx 9 ns.
Insertion Impedance: approx 0.01 ohm shumled by $1 \mu \mathrm{H}$; capacitance to ground $<3 \mathrm{pF}$.
Maximum dc current: 0.5 A .
Maximum ac current: 15 A p-p above 4 kHz ; decreasing below 4 kHz at $3.8 \mathrm{~A} / \mathrm{kHz}$ rate.
Welght: net, $0.45 \mathrm{~kg}(\mathrm{l} \mathrm{lb})$. Shipping. $0.91 \mathrm{~kg}(2 \mathrm{ib})$.
Dimensions: probe aperiure, 3.9 mm ($8 / a x^{\prime}$) diameter; overal) length. $1.5 \mathrm{~m}(5 \mathrm{ti})$.
Ordering inlormation
Price
1125 A impedance Converier Probe $\quad \$ 220$
1111A Current Amplifier $\$ 370$
H110A Current Probe \$150

176

104918

Probe accessories

Terminatlons

10100C: S0 ohm feedthrough.
101008: 100 obm (± 2 ohm) 「eedihrough for 1110 A cutrent probe.
Probe tip adapters
100118 BNC probe ilp adapter: for probes $10004 \mathrm{D} \cdot 10006 \mathrm{D}$. 10007B, $10008 \mathrm{~B}, 10013 \mathrm{~A}, 10014 \mathrm{~A}, 10015 \mathrm{~A}, 10016 \mathrm{~B}$, and 1124 A . HP P/N 10004-69515 IC probe tlp adapter: provides convenient connection to dual in-line packages for probes $10004 \mathrm{D}-10006 \mathrm{D}$. 10007B, 10008 B, 10013 A .10014 A . $10015 \mathrm{~A}, 10016 \mathrm{~B}$. and II24A.

Probe tip kits

Probe tip kits. Modets 10036B and 10037B, extend usefulness of 10004D. 1000SD. 10006D. 10007B, 10008B. 10013A. 10014A. 10015A. 10016 B .1124 A standard size probes and HP miniature probes. Modal 10036B includes an assomment of lips for the following: $2.0 \mathrm{~mm}(0.08 \mathrm{in}$.$) jack: 0.6 \mathrm{~mm}(0.025 \mathrm{in}$.) and $11.4 \mathrm{~mm}(0.045 \mathrm{in}$.) square pin: $1.0 \mathrm{~mm}-1.6 \mathrm{~mm}(0.040-0.062 \mathrm{in}$.) dia pin: and a long pin lip. Model 10037 B includes six 0.6 mm (0.025 in .) square pin fips. Probe tip kit Model 10035 A for 10001A-10003A probes contains pincer jaw, bananz lip. pin tip. and spring tip.

Model 10034A probe adapere kil consists of an assonment of 5 - 32 screw-on tips, and two ground lead cables which allow miny methods of connecting ihe ground leads in a circuit. A 6-32 10 slip-on adapter allows these lips to be used on 10004D-10006D. 100078. $10008 \mathrm{~B}, 10013 \mathrm{~A}, 10014 \mathrm{~A}, 10015 \mathrm{~A}, 10016 \mathrm{~B}$, and 1124 A probes. The kit constis of one 15.2 cm (6 in .) and one 30.5 cm (12 in) ground lead. onc hook tip, one alligator tip, one pin tip. one sip for 0.6 mm (0.025 in.) square pins, one banana tip, and one slip-on 106 - 32 adap. ter.

Servicing and viewing accessories

Plug-In extender
Model 10407B: 180 system extender (metă) frame extends both plug-ins). Allows calibration and mainenance while a unit is operating.

Vlewing hoods

10116A: collapsible light shicld for 1220 series oscilloscopes.
10140A: collapsible vicwing hood for 1700 series and I223A oscilloscopes.
10178A: viewing hood for 12.7 cm (5 in .) rectanguar CRT bezels.
Light Illters
10173A: RFI filter and contrast screen for 1700 series and I223A oscilloscopes.
10178A; metal mest conitast screen for I8J. I84 oscilloscopes.
Amber plastlc filer: HP P/N $5030-0530$. for 12.7 cm (5 in.) rectangular CRT.
Smoke gray plastic lliter: HP P/N 5020-0567. for 12.7 cm (5 in .) rectangular CRT.
Blue plastic filler: HP P/N $5060-0548$, for 12.7 cm (5 in .) rectangular CRT,
Blue light iliter: HP P/N $01740-02701$ for 1700 series and 1223A oscilloscopes
Rack mount slldes and adapters
1700 series oscllloscopes. 1500 A Logle State Analyzer
10491B rack mount adapter: adapts 1700 series oscilloscopes and 1600 A Logic State Analyzer to standand 483 mm (199) rack:
$222 \mathrm{~mm}\left(8314^{\prime \prime}\right)$ high. $540 \mathrm{~mm}\left(218 \mathrm{~s}^{\prime \prime}\right)$ deep.
180 and 181 rack style oscilloscopes
A slide adapter is required to secure an oscilloscope to the slides.
Fixed sildes: HP P/N 1490-0714, $55.9 \mathrm{~cm}\left(22^{\prime \prime}\right)$
Plval sildes: HP P/N 1490-0719. $55.9 \mathrm{~cm}\left(22^{\circ}\right)$.
Slide adapler: HP P/N 1490-0768 (required for all slides).
Frant panel cover
HP P/N 5040-0616: provides from panel protection for 1700 series oscilloscopes, 1600A Logic Stale Analyzer.

Ordering Informallon

Price

10100C 50 ohm Fcedthrough Termination
10100B 100 ohm ($=2$ ohm) Fecdihrough Termination
10011B BNC Probe Tip Adapter
10004-69515 IC Probe Tip Adapler
10034 A Probe Tip Kii
10035A Probe Tip Kit
10036B Probe Tip Ki1
10037B Probe Tip Kil
10407B Plug-in Extender
j0116A Light Sbie)d for 1220 series (sscillancopes
10140 a Viewing Hood for 1700 series and 1223a oscilloscopes
10176A Viewing Hood for 12.7 cm (5 in.) rect. CRT 10173A RFI Filter and Contrast Sereen for 1700 series and I223A oscilloscopes
10178A Mebl Mesh Contrase Screen for 181. 184 oscilloscopes
$5020-0530$ A mbes Plastic Filter for $12.9 \mathrm{~cm}(5$ in.) re- $\quad 510.50$ clangular CRT
$5020-0567$ Smoke Gray Plastic Filler for 12.7 cm (5 in)) $\$ 18$
rectangular CRT.
$5060-0548$ Blue Plastic Filter for 12.7 cm (5 in.) rectangular CRT
0174(1)-02701 Blue Ligh1 Filler for 1700 scries and

1223A oscilloscopes

104918 Rack Mouni Adapler for 1700 serics oscillo- $\$ 100$
scopes, 1600 A Logic Slale Analyzer
1490-0714 Fixed Slides for 180.181 rack style oseillo- $\$ 75$ scopes
1490-0719 Pivoled Slides for 180. 183 rack style oscil- $\$ 105$ loseopes
1490-0768 Slide Adapter, required for securing slides $\$ 85$
10 180.181 rack sryic oscilloscopes
5040-0516 Front Pand Cover for 1700 series oscillo. \$9
scopes. 1600A Logic Sune Analyzer

123A Description

Model 123A is a lightweight compact camera which lits directly on HP 1700 series oscilloscopes with 6×10 diy CRT"s. The camera does not require extemal power and only weighs $1.6 \mathrm{~kg}\left(3^{1 / 2} \mathrm{lb}\right)$ making it ideal for use in field applications. The 123A has a range finder for easy focusing using a split image teconique. This range Finder also serves as a viewing port so that you can make minor CRT intensity and graticule illumination adjustments with the camera in place. For convenience in selting up the display the camera has a swing-away feature allowing full visibility of the CRT screen. Cenirols ate color coded for optimum settings and are located outside of the camera for easy reading and fast adjustment to reduce initial selup zime.
The 123A mounts direculy or with adaplers to the oscilloscopes as listed in the oscilloscope/camera adapter table.

123A Specifications

Reduction ratio: conimuously adjustable from I:I to $1: 0,65$.
Lens: 56 mm . $\mathrm{r} / 3.5$ lens: aperture ranges $\mathrm{f} / 3.5, \mathrm{c} / 4,6 / 5.6, \mathrm{r} / \mathrm{8} . \mathrm{f} / \mathrm{I} \mathrm{I}$, f/ $/ 6$, and $\mathrm{I} / 22$.
 Cable has ihumbserew lock for time exposures. X-type contacs provided 10 lrigger or synchronize other equipment with shuter relcase.
Graticule lliumination: supplied by the oscilloscope.
Camera back: $83 \mathrm{~mm} \times 108 \mathrm{~mm}\left(31 / 2^{\prime \prime} \times 41 /{ }^{\circ}\right)$. Polaroid(${ }^{(1)}$ pack back.
Mounting: lifi on/off mounting with posilive lock. Mounts direcely on HP 1700 series oscilloscope with 6×10 div CRT's. Adapters are available to fit other seopes. sec Camera Aecessorics.
Range finder: viewing pon provides split image of the CRT to allow selling of the focus.
Vlewing: range finder viewing por allows viewing the CRT with carnent in position. Camera swings away for wide angle viewing.
Focus: adjustable with eamera back closed or open: split image focusing plate provided for use when object-to-image ratio is changed.

Weight: net, 1.6 kg ($31 / 2 \mathrm{lb}$). Shipping. 2.3 kg (5 lb).
Accessorles furnlshed: combination splít image focusing plate and reduction ratio scale, and insinuction manual.
"Polaracic' (6) by Pofar did Corp.

197A Description

Model 197A is a versalite, general purpose oscilloscope camera thal can be used for many trace recording applications. All controls
are located oulside of the camera for easy reading and fast adjustment during setup. The controls are also color coded for optimum seltings for most photos which reduces initial setup time.
An electronically-controlled shuter, with all solid-state circuits for reliable operation, provides accurate exposure times from tha to 4 seconds. The shutter may be operaled remotely by providing a closure to ground and a contact closure is provided when the shutter is open to allow symehronization of other equipsoent.

The reduction ratio (i.e., object-to-image ratio) may be varied from 1:) to 1:0.7 with a screwdriver adjusiment. This allows the optimum amount of a graticule to be photographed, which is useful when making multiple exposures or when used on different size graticules. The camera can be quickly focused to match the reduction ratio with the split-image focus plate supplied with the camera.
The 197A is supplied with an $83 \mathrm{~mm} \times 108 \mathrm{~mm}\left(31 / s^{\prime \prime} \times 9^{1} / 4^{\prime \prime}\right)$ Polaroid pack back. The back may be rotaled 90° from the normal horizontal position to a vertical position and can be moved through II detented positions for multiple exposures. It may also be replaced with a Graflok (B) back which allows use of sheet or roll 万ilm.
"Gatiak"(8) ty Gratiex, inc.

197A Specifications

Reduction ratio: continuously adjustable from 1:1 10 1:07. Refer. ence scale provided on focus plate.
Lens: $75 \mathrm{~mm}, \mathrm{f} / \mathrm{I} .9$ high transmission lens; apenure ranges $\mathrm{f} / \mathrm{I} .9$ to f/16.
Shutter speeds: $1 / \mathrm{ss}, 1 / \mathrm{ss}, 1 / 8,1 / 4,1 / 2,1,2,4$ seconds. Time and Bulb: shutter has a sync contact closure output for ingecring extemal equipment and an input jack for remote operation.
Gratleule Illumlnatlon: supplied by oscilloscope. Refer to Oplions for intemal graticule illumination.
Camera back: $83 \mathrm{~mm} \times 108 \mathrm{~mm}\left(3 \% 4^{\prime \prime} \times 4 \% s^{N}\right)$ Polaroid pack back (another back is availahle, see Options): backs may be interchanged withour refocusing and may be rolated in 90 -degrec increments.
Mounting: lift on/off mounting with positive lock, swing-away hing. ing to left. Mounts directly on most HP oncilloncopes with 12.7 cm (5°) round or rectangular CRTS. Adaplers are ayailable to fit other scopes and displays, see Camera Accessories.
Vlewing: low-angle, direct viewing through a flexible facemask.
Muliple exposure: back can be moved through II detented positions ($1 / \mathrm{cm}$ per detent at $1: 09$ object-to-image ratios).
Focus: adjustuble focusing wibh lock: splif image focusing plate provided.
Dimenslons: $267 \mathrm{H} \times 194 \mathrm{~W} \times 356 \mathrm{mmD}\left(10^{1 / 2} \times 75 / \mathrm{s}^{\prime \prime} \times 14^{\prime}\right)$. Welght: net, 4.5 kg (10 lb). Shipping, 7.3 kg (16 lb).
Power: $115 \mathrm{~V}=10 \%$. 48 to 440 Hz .6 walls.
Accessorles furnishedi comb. split image focusing plate and reduction ratio scale. $2.3 \mathrm{ma}(7.5 \mathrm{ft}$ power cord. and instruction manual.

Optlons
 Prlce
 003: Graflok back in place of pack back loo iniwial
 N/C order)

006: replaces standard 197A adapter with 10375A add $\$ 25$ adapter 10 directly fit 1332A. 1333A, and 1335A dis. plays. Adds shutter open light indicator"
007: meets UL listing requiremenls for medical and add $\$ 25$ dental elecrronic equipment (minimum order 10)
008: replaces standard 197A adapter with 10376 A add $\$ 50$ adapler to directly fit 1223A, 1715A. 1725A. 1740A. 1741A. 1743A oscilloscopes
012: factory wired for 230 V operation N/C
H02: provides intemal graticule illumination using ul$\$ 125$ Imviolel light with an OFF, ON switch. Not required for oscilloscopes with graticule illumination*

Ordering intormation

1234 Oscilloscope Camera
Opt 910: udditional manual add $\$ 7.50$
197A Op1 001: Oscilloscope Camera (less wiruviolet light) $\$ 870$ Opt 910: additional manual
add $\$ 3.50$
-Wien Options OCG and H02 are ordered together, shumer open Ifigh indicator is not included. Ether aption masy be canvertors hack to a standard 197A by KF P/ה 00197-63201.

Fllm backs for 197A camera

Model 197A has the Polaroid Film Bicik as standard equipmenr. The Graflok Back may be orderud initially as an option al no extra charge.
10353A Pack fllm back: uses Polaroid Land Film. $83 \mathrm{~mm} \times 108$ $\mathrm{mm}\left(3 \% " \times 4^{1} h^{\prime \prime}\right)$, with eight exposures.
103528 Graflok back: requires a film holder available from local camera stores. The back accepts Polaroid Land $102 \mathrm{~mm} \times 127 \mathrm{~mm}$ ($4^{7} \times 5^{\prime \prime}$) 5ilm holder, standard cul-film holders, film-pack adapters,
and roll film holders. For additional information about film holders that will fit the Graflok back. contact your local camera stores.

Camera bezel adapters

The following Hewlet-Packard adapters provide mounting of Hewlet1-Packard, Tektronix, and Dumont cameras to HewlettPackard as well as Tekrromx and Dumont oscilloscopes. Refer 10 (he oscilloscope/comeras adapicr table for a cross-relerence of these adapier/camera/oscilloscope combinations.

10358 B

10374A

10361 A : adapts Tekironix CI2 camera to HP $127 \mathrm{~mm}\left(5^{\prime \prime}\right)$ rectangular CRT (180C style bezels).
10362A adapts Tekironix C27 and C50 cameras to HP 127 mm (5") reclangular CRT (180C style bezels): C50. C51, C52, C53 require Tektronix battery pack.

10363A: adapis Tekironix C30A, C31. C32, or C40 cameras to HP $127 \mathrm{~mm}\left({ }^{\prime \prime}\right)$ reclangular CRT (180 C slyle bezels).
10106A: adapts Tekironix C30A. C31. C32. or C40 camerns to HP 1700 series scopes with 6×10 div CRTs.
10367A: adapis 195A \& 197A cameras to HP 182 scope.
10369A: adapts 123 camera to HP $127 \mathrm{~mm}\left\{\mathrm{~S}^{\prime \prime}\right\}$ receiangular CRT (180 C style) \& HP 127 mm (5") round CRT.
10370A: adapts 123A camera to HP 182 large screen CRT.
10371A: adapts 123 A camera to Tekironix 422/453/454/485 scopes. 10372A: adapis 123A camern to Tekironix 464/465/466/475.
-10375A: adapts 197A. 195A cameras to 1332A, 1333A, \& 1335A displays, Tektronix 600, $5100, \& 7000$ series scopes.
-10376A: adapis 195A \& 197A cameras to 1700 series with 8×10 div CRTs and 1223 A scopes.
10377A: adapts Tektronix C30A. C31, C12. or C40 cameras to HP 1700 series with 8×10 div CRT's and 1223A scopes.
16491A: adapts 123 A eamera 101700 series with 8×10 div CRT's and 1223A scopes.
'See 197k Opicins D06 \& 008 belore artering inge staples for I97a

Carrying cases

10358日: constructed of fiberglass and aluminum with padding for protection during transit. The carrying case will accommodate the 195A, 197A. \& 198A cameras.
10374A: carrying ease for 123A camera with slorage space for I pack of film.

Ordering intormation	Price
10353A Pack Film Buck	\$130
103528 Graflok Eack	\$180
10361A Camera Adapler	527
10362A Camera Adapter	\$27
10363A Cameri Adapter	\$45
10106^ Camera Adapier	\$50
10366B Camera Adapter	\$201
10367A Camera Adapler	\$34.
10369A Camera Adapter	\$50
10370A Camern Adither	\$28
10371A Camera Adapter	\$28'
10372A Camera Adapter	\$30
10375A Camera Adapler	\$901
10376A Camera Adapter	\$65
10377A Camera Adapter	\$65
1649 LA Camera Adapter	\$130
10358B Cartying Casé	\$140
10374A Carrying Case	\$30

Osellloscapa/Lamers adadear Tatul													
OSCILOSCOPE	CAMERA												
HEWLETT.PACKARO	HEWLETT-PACKARD					IEKIROHIX INC.				DUMOHY			
	123A	${ }^{1} 18 /$	ग108a/B	197a	${ }^{3} 198 \mathrm{~A}$	C12	C2]	Csam/31/32/40	C50 Sarias	4504-1	433-1	4501-7B	321A
S-in. Round CRT	103693	Direct	Dliect	Direct	Olimal	--	--	-	—	Driect	Direl	Dliect	Direci
S-in Reclangular CRI ${ }^{\text {S }}$	10369A	Direct	${ }^{2} 103504$	Dired	Direel	${ }^{2} 10363$	290362A	10363 A	32103624	21036008	${ }^{3} 10360 \mathrm{~A}$	1103604	1103604
182	10370a	10367A	-	103674	-	-	-	-	-	-	-	-	-
1332A/1333A/1335A	7	10375 A	-	¢10375	-	5	5	5	Oirent	-		-	-
$\begin{aligned} & 1700 \text { Series } \\ & i 6=10 \text { div CRTs } \end{aligned}$	Oireel	-	-	-				101064	-	-	-	-	-
$\begin{aligned} & 1700 \text { seties } 1223 \mathrm{~A} \\ & \text { (4, } 10 \mathrm{~d} \boldsymbol{c} \text { csrs) } \end{aligned}$	16891角	10376 A	-	-10376A	-	-	- -	10377A	- -	- -	- -	- -	- -
ICNTRONIX INE.						Notes 1. This charl only includes HP sdagler and camera compaliblity, for other comblnafions, contact your fiald Engineer. 2. The I0361A and 10362 A adapter hinge mounts interiere with the Find Beam pushbutton on 180 mainirames. 3. Model 195A, 195A/B, 198A camaras and 10355A, 10360A camera Edaplore are no longer In production. 4. 197A Option (108 includes the 10376A which directly fits 1715A, 1725A, 1740A, 1741A 1743A. 1223A scopes. 5. Taktonix Inc. cameras with adaplers for 7000 serles soopas can ba usod with hi li32A. i333A, \& 1335A Dispiays. 6. 197A Oplion 006 includes the 10375A wheh MIs HP 1332A, 1333A, \& 1335A displays, Tektronix 600, 5100 \& 7000 series oscilloscodes rirectly. 7. Adapter aveilable on special order, contact your hif Fiald Enginetr. 8. Toktronix C50, C51, C52, C53 require Toktronix baltory pack. 9.5 in. rectangular CRT's with 180 C type bezels, e.g. 1600 A							
S-in Round SA9	$\begin{gathered} 10369 \mathrm{~A} \& \\ 31035 \mathrm{~A} \end{gathered}$	${ }^{3} 10355 A$	10335A	${ }^{3} 10355 \mathrm{~A}$	210335								
5-In, Recli \& 560 Serles	-	103568	-	10356A	103564								
329 Series	$\begin{gathered} 10369 A \& \\ 103564 \\ \hline \end{gathered}$	10356	-	103566	10356A								
464; $265 / 466 ; 475$	10372A	-	-	-									
422/453/454/485/323/324	1037 LA	-	-	-	-								
600, 5100 \& 7000 series	\cdots	10375A	-	${ }^{103754}$	-								
DUHOKI													
5-in Round CRI	$\begin{aligned} & 10369 A \mathrm{~A} \\ & 1035 S A \\ & \hline \end{aligned}$	-10855A	D real	${ }^{\prime} 10355 A$	${ }^{3} 103154$								

Testmobiles: save bench space, easily moved
Models 1007A, 1008A, 1114A \& 11178

Introduction
Hewlett-Packard Testmobiles offer convenient portability for your oscilloscopes or insirumentation systems. The lop iray on lhese testmobiles maty be tilted for positioning your insinument for catsy operation. The scleclion of testmobiles range from a basic roodel designed to hold a single oscillocerpse or other insirument such as the II14A. 10 a teslmohile thin cin be adapled to provide a complete mobite lest system. such as the 1008A or III7B. Refer to the testmobile/insinument compalibility chan for assistance in selecting the testmobile that will best fit your requirements.
Testmobile/instrumeni compatibility

Tesimodila Madel Nuntar	Iusummem
10072	Alr hewieth-Parkasd 180, 1200, 1220. and 1700 Series cabinet style oscilloscopes, or other instruments that meet the height and wemht equirements.
1008 A	All Hearlett-Packard instruments that are contigured to be moumted in a standard 48.3 cm (19 in .) rack and meet the eestmobile herift and weight requirements.
11144	180 and 1200 cabince style. and 1220 and 1700 Series. 1600A, 3580k
11178	All \|nstuments listed aboue

1007A, 1008A Description

The 1007 A and 1008 A testmobiles provide a sturdy, lightweighe. sable platorm for your oscilloscope or instrumentation system. Large mar-resistant rubber wheels with a wide track move quicrly and smoothly, even over uneven floor surfaces. The top irays on the se testmobiles are convenient table-lop height and can be tilled to
a convenient viewing angle betwcen 30° above and 30° below the horizontal position with a lotal of seven delent positions in 10° increments. The caps on each side rail are designed to conveniently hold three probes to reduce the possibility of damaging probes nol in use.

Many options are avalable so that the 1007 A or 1008 A can be easily atailared to your specific requirements. Refer to the 1007A/ 1008A Option Selection Chart 10 select the resimobile and options best suited to your requirements.
1007A, 1008A Option selection charl*

Opt 001, storage shelf. lowd limit 18 kg (40 ld).	$\begin{aligned} & 1007 \mathrm{~A} \\ & 1008 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 d\} 30 \\ & 100 \\ & 1 \end{aligned}$
OpI 002 storage shelf and tower bahine. laud límill 18 kg (40 اb) an each	$\begin{aligned} & 1007 \mathrm{~A} \\ & 1008 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \text { sod } \$ 90 \\ & \text { add } 5!c u 0 \end{aligned}$
Opl003: $15 \mathrm{~cm}(6)$ locking trawer with shell on 10p. load Ilmil il kg (25 ib) in drawol ant 18 kg (40 lb) on sheif	$\begin{aligned} & 10072 \\ & 1008 \mathrm{~A} \end{aligned}$	add 5150 1dd 2160
ODD 004: Iho storvige calune15 whth shell on top. cambinod load limit, cabinets and shall, 45 kg (100 lb)	$\begin{aligned} & 10074 \\ & 10084 \end{aligned}$	$\begin{aligned} & 300185 \\ & 0085145 \end{aligned}$
0pr005: storage cabing and drawer in upper pestion with shet on top, load limit 18 kg [00 tal aft sheit. 18 kg (40 lb) in cabinet and 11 kg (25 ibi in diswet	$\begin{aligned} & 10078 \\ & 1008 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \operatorname{aod} \$ 205 \\ & 300 \$ 285 \end{aligned}$
Optook: storage cabinet with shalf on top, and drawein lower position, load limit is kg (40 ib) en shelt, 	$\begin{aligned} & 1007 \mathrm{~A} \\ & 1008 \mathrm{~A} \end{aligned}$	3065205 add 1215
Opt O071 Fo locking drawers with shelf on 4ap, load Hmit $18 \mathrm{~kg}(40 \mathrm{~m})$ on the sivelt and 11 kg (25 lb) in each drawer.	$\begin{aligned} & 10074 \\ & 10084 \end{aligned}$	$\begin{aligned} & \text { aod \$260 } \\ & \text { add } \$ 1275 \end{aligned}$
Ogttoge, Dower strip with five outhets tor convenient instimment operation. This option rot coxtpotible with basic testmobisle and must be oratered with one of othet options (001 truru 007).	$\begin{aligned} & 1007 / \\ & 1008 A \end{aligned}$	$\begin{aligned} & \text { add } \$ 30 \\ & \text { add } \$ 30 \end{aligned}$

"Lood limits of these ooptions are In zodition to those of the basic testmoblle ilimits In the speoficalions.

1007A, 1008A Specifications

Compatibllity : see Testimobileilnstrument compalibility chart,
Tilt angle: $-30^{\circ} 10+70^{\circ}$ in scven 10° positions.
Load limits
1007A: 34 kg (75 lb) on tilf Iray.
1008A: 45 kg (100 lb) on tilt tray: when instriments are mek mounted on the bottom of the tmy. the max weight on the titl tray is 27 kg (60 lb) and 18 kg (40 lb) on the rack mounts.
Safety: alihough many Hewlelt. Packand instruments may be slacked on top of each other while on a laboralory bench. these stacked instruments may not be stable on a testmobide. The following size limits and the maximum weights for the basic tesimobiles and the virious options must nol be exceeded.

1007A: the Model 1007A in designed for use with any HP cabinel style instrument that does not cxceed 315 mm ($12 \mathrm{H}_{\mathrm{g}}{ }^{\prime \prime}$) width and a depl of $508 \mathrm{~mm}\left(20^{\prime \prime}\right)$ as measured from the front casting. The height of the instrument(s) must not exceed 330 mm ($13^{\prime \prime}$): if the instrument is less than $127 \mathrm{~mm}\left(5^{\prime \prime}\right)$ high the tie-down slrap will not operate properly.

1008A: the Model 1008A is designed lor use with any HP rack widh instnment that does nol exceed a depth of $508 \mathrm{inm}\left(20^{\prime \prime}\right)$ as measured from the front casting (i.c. 1610 A or 16IIA). The height of the instruments(s) must not exceed $330 \mathrm{~mm}\left(13^{\prime \prime}\right)$: i「 the instrument is less than $127 \mathrm{~mm}\left(5^{\prime \prime}\right)$ bigh the tie-down strap will not operale properly.
Dimenslons: see outlinc drawings.
Wheel slre: 102 mm (4") diameter.

Welght, basic testmoblle

1007A; net. $11 \mathrm{~kg}(25 \mathrm{lb})$ Sbipping. $19 \mathrm{~kg}(4 \mathrm{lb})$.
1008A; nt. 13 kg (29 lb). Shipping. 22 kg (48/b).
1114A Description
Model 1114 A is a general purpose testmobile designed for 180 and 1200 cabinet style, and 1220 und 1700 serics osciloscopes, witheut special adapters. A channel in the till tray posifions the front feel or the oscilloscope and a nylon tie-doun sirnp securely holds the insimment in place. The combination tilt tray handle/release lever allow's ont-hand adjusiment of viewing angle, from 15° below horizonial to 60° above. A base imy provides space for oiher insirumencs/accessomes. Large rear wheels allow easy pushing over caspeted or rough flow surfaces, and locking front casters hold the tesimobile in pasition.

1008A

1117 B

Satety: the IIITB is designed to accommodate instruments that do not exceed 406 mm ($166^{\prime \prime}$) in height on the till (ray.
Dimenslons: see outine drawing.
Wheel size: $102 \mathrm{~mm}\left(4^{\prime \prime}\right)$ diameter.
Welght: net, 41.3 kg (91 1b). Shipping, $49.4 \mathrm{~kg}(109 \mathrm{lb})$.
Instrument mounting hardware supplted; \& serews for rack mounting insiruments (HP P/N 2731-0002); 8 cup washers (HP P/N 3050-0007): 8 nylon washers (HP P/N 3050-0248); 8 Tinnerman nuts (HP P/N 0590-0172).
Optlonal accessaries
Model 10475A: $7.6 \mathrm{~cm}\left(3^{\prime \prime}\right)$ drawer
Waight: net. 4.1 kg (9 lb). Shipping, 5.9 kg (13 lb).
Model 10476A: 20.3 cm (8 ") drawer.
Welght: act. 5.4 kg (11 lb). Shipping. 8.2 kg (18 lb).

Ordering information

Price
Sce 1007A. 1008A Option Selection Chart for option prices for these restmobiles.
1007A Testmobile \$210
1008A Testmobile $\$ 230$
$01008-68701$ Rack Mount Kit for 1008 A. 13.3 cm (5.25 ") high for mounting under the till tray
$01008-68702$ Rack Mount Kit for 1008 A .19 cm
(7.50") high for mounting under the tile tray
$\$ 43$
$1114 A$ Tesimobile $\$ 160$
III7B Testmobile less drawers \$375
10475 A $7.6 \mathrm{~cm}\left(3^{\prime \prime}\right)$ drawer for 1117B B $\$ 70$
$10476 \mathrm{~A} 20.3 \mathrm{~cm}\left(8^{\prime \prime}\right)$ drawer for 1117 B $\$ 90$

Hewletl-Packard's cathode-ray tube displays offer OEM's and end users top performance. versatility, and reliability for all types of systems-from spectrum. network. and chemical analyzers, and automatic tesi systems to computer graphics and radar. These displays are complete unils which include the cathode-ray tubc, verical and horizontal deflection amplifiers, a video (Z.Axis) amplifier, and high and low voliage power supplies. A Graphics Translator is available which accepts digital data from the Hewlent-Packard interface bus (HP-IB) or RS-232C interface bus and converts it to analog voltages for driving the non-storage HP small screen and large screen displays.

Periormance features include high resolution. ligh writing speed, constant light output, bright easyto-read displays, and reduced power requirements. Versatility is assured with a variety of standard options that allow you to tailor a display to your system's needs. Reliduility and serviceability are built into these displays with well-designed interior layout pluge in board construction, and other features made possible by HewlettPackard's highly devcloped CRT lechnology.
The yokeless clectroslatic deflection used in HP displays increases writing speed, reduces power requirements. and simplifies operation when compared to magnetic denection displays. The moss important ad-
vantage is that characters and vectors can be writen about ten times faster than with magnetic displays.
Graphics translatop
Model 1350A Graphics Translator aceepts digitul data from an interface bus and convers it to X, Y, and Z analog voltages for driving elccurostatic non-storage displays. The 1350 A is compalible with the Hewlett-Packand interface bus (HP-IB) and the RS-2.22C incerface bus (optional). and the HP non-storage small screen and large screen displays.

Small screen displays

Model 1340A features finxibility, convonicnec. and cost effectiveness, making it ideal for most instrumentation systems. Resolution, viewing area, and brightness are suitable for spectrum, network. vibration. transient. pulse height, and digital logic analyzers. The 1340A may be ordered in a varicty of configurations: with or without a cabinet, with or without conirol panel. with de supply, or almost any combination to allow casy integration into a system or instrument.

Model 1332A is a high resolution, high brightness display with a 158.8 mm ($61 / 4$ inch) diagonal CRT with an overall height of only 133.4 mm ($51 / 4 \mathrm{in}$.). The 1332A is designed to meet the stringent requirements of medical diagnostic and insirumentation sys-

tcm applications. The major features in the 1332 ^ include a small crisp spol size thal varies by no more than 10% over the quality area: multiple gray levels with focus independent of intensity setting; high stability of position. gain. and brightness; regulated CRT flament vollage to reduce light output variations with changes in line voltage: large $115 \mathrm{~cm}^{3}$ display area: bright 22.5 kV CRT; and Underwriters Laboratories Listing.
One application of the 1332A is in medical diagnostic ultrasound. In this valuable diag. nostic rechnique, a focused beam of harmless ulerasound energy is used to detect the intemal structure of the body. This technique is especially fruiful in obstetrics. as it is often able to reveal potential problems early in pregnancy, with no danger of harmful side effects to mother or fetus. The 1332A's brightness and large screen area allow easy viewing. while is stable light outpul and uniform spol size characteristics yield bigh quality pholographs for laler study and for permanent reconds.
$5 \mathrm{MH} x$ bandwidth, large display area, and excellent picture quality make the 1332 A ideal for use in insinsmentation systems. System applications include spectrum analyzers, network analyzers, automatic test systems, Fourier analyzers. spectrophotomery, chemical analysis, and nuclear magnetic resonance.

The 1333A is a high resolution $8 \times 10 \mathrm{~cm}$ display especially designed to permit ditennostic-quality photographs from state-of-the-an nuclear. ultmsonic. thernographis, and X-ray scanning systems. The small 0.02 mm spot size, wide range of gray scales. good contrast, and stable light oufpur provide exceptional image quality, a necessliy in medical diagnoslic systems and applications requiring precisely controlled image parameters. Image quality combined with high luminous power density and speed make the 1333A ideal for recording rapid sequence dynsmic studics in nuclear médicine and for capturing transient displatys in ulraskond wark.

Model 1336A Display Molule's $100-$ lines/cm resolution nakes it ideal for all high-revolution inaging requirements such as mulif-im:uing gamma cameras, scamuing eleciron micruscopes, and scanning fuger microprohes. This display uses a monoaccelemtor CRT 10 produce an intense 0.1 mon ($0.001399^{\prime \prime}$) dianueter spot Intermal suithes alow selection of X, Y, and \angle invplifier tharacteristios. The kammat corrected Z-axis amplifier gatm characteristic causes the CRI' light output to vary linearly within 20 多 in respunse to Z -axis input sienal changes. Thin gamma correction is especially conveniend for photographic recording when using film having a linear but narrow dynamic range.

The 1336A Display Module is powered by the 1336P Power Supply Module which may be separated from the 1336A for application Mexibility.

Small screen storage displays

Model 1335A high resolution. slorage CRT display offers medical and instrumenlation OEM users a varable persistence. storage, and non-storage CRT display with excellent periornance. Outstanding picture quality and amplitier performance with a
frame designed for OEM use make the 1335A a significant advancement in storage displays.

A stored resolution of approximately 20 lines per em (50 lines per in.) with a spol size that is relatively independent of inlensity selting or Z-axis input sigoals enhances the CRT image in applications requiring focusing over a wide range of inlensity levels, Variable persisience allows the elimination of flicker in some presentations with the ability to increase the persistence to match the refresh rate.
The I335A CRT is oprimized for informition display and offers a bigh resolution image with excellent contrast and unifumity in medical diagoostic applicritons. Fine inage detail and a well focused spot at all imensity levels and positions make the 1335 A ideal for use in Spectum, Fourier, Network, and Chemical analysis is well as antomatic test systems.

In system applications. the 1335A offers flexibility in selecting Erise. Store. Write. Conventional and Variable Persistence modes. These operating modes can he selected with the manual fron panel controls, remote program inputs, or a combinaLion of both.
Large screen dlaplays
Five large screen graphic displays are available for OEM computer graphic and instrumentation applications. Linear whitioge speed. in these drsplays. is an unmatched $25.5 \mathrm{~cm} / \mu \mathrm{s}$ ($10 \mathrm{in} . / \mu \mathrm{s}$) for visible writing and is capable of slew rates in excess of 255 $\mathrm{cm} / \mu \mathrm{s}$ ($100 \mathrm{in} . / \mu \mathrm{s}$) when the spot does not thave to be seen. These speeds are altained with a yuk eless. electrostatic deflection sysicm which consumes much less power than the multiwinding coils of magnetic deflection systenis. Maximum powerconsumption of these displays is a low 110 watts compared to 500 or more for others. Additionally. the much faster response of electro-

Static deflection permils as much as 10 limes the amount of information to be displayed in a given period as that of magnetic displays.

Fast amplifier response $(5 \mathrm{MHz}$ bandwidth) and electrostatic CRT deflecion also simplifies system programming since vectors and characers can be written randomly from anywhere in the display area in less time than the sequential programming recessary for faster scan magnetic displays. Since coils are not used for deflection, no delay line is needed 10 properly synchronize Z-axis blanking with spol movement thus reducing the possibility of display smearing and also making the display easier to interface with insystem.

Model 1321A has a 533 mus (21 inch) diagonal display with excellent geomery and bilearity and a small 0.51 mm (0.020 inch) epot size. The large $305 \times 305 \mathrm{~mm}$ (12 $x 12$ inch) quality area is idead for presenting complex graphic information while using the additional viewing area for character writing.
Model 1317A is a 432 mm (17 inch) diagonal displany which is the largest $X-Y$ display presently made that mounts direculy in a $483 \mathrm{~mm}(19$ inch) rack with its long CRI axis hori\%ontal. This large, high resolution display is ideal for the readout in computer graphic and instrumentation systems, since il mosunts directly in standard 483 mm (19 inch) EIA rack.

Mordels 1350A (483 mm, 19 inch. diagonall) and $1311 . A(356 \mathrm{~mm}, 14$ inch. diag(snal) displays are housed in optional altractive plistic covers which when ordered with a cilt stand, make them ideal for table rop applications.
Model 1304A has a 20 cm (7.9 in) $\times 25$ cm (9.8 in .) display area. The cabinct is fudy compalible with the Hewlett-Packard System-ll modular enclosure system for more velsatility in OEM applciations and better access for servicing.

The 1350A Graphics Translator draws all 96 upper and lower case letiers and most of the special characters of lie full ASCII sct. They can be drawn in four difiercnt sizes and be rotaled 90°.

1350A Description

Introciuction
The Model 1350A Graphics Translator converts digital data to X. Y. and Z analog for driving high resolution directed beam nonsturage displays such as the HP small screen and large sereen displays. The 1350 a accepts digital information from the HewletsPackard interface bus (HP-IB) or RS-232C interince bus (optional) and stores the dala in a $I K$ word digis memory (R AM) which is continually accessed to generate vectors or thatacieth 10 refresh one or nore directed beam displays. TTL outpuis allow different information to be presented on differeni displays. Ench thgital word can be a vector coordinate or an upper or lower case \AA SCII character. A character ROM generates the vectors for each ASCII character. therefore each character uses only one word of RAM. An optional ROM will provide an addinonal 512 user definable vectors for graticules and special characiers. The use of stroke vectors resulis in a much higher resolution display than is possible with a raster scan technique.

The RAM memory can be divided inio 32 addressable and selectively erasible files. A file of information can be flashed on and off for highlighting display information of special interest. e.g.. a malfunctiontog pump in a process control system. Erasing a waveform that intersects olther waveforms and graticules does not leave blank spaces al intersections. which is a common problem with rasier scan displays.

The 1350A Graphics Translator is reconmended for use with (lirected beam displays with al least 3 MHz bandwidh to take advintage of the 1350 A high speed vector generaling capability. Use of the HP I332A. 1333A. I336A or I340A small screen displays or the HP 1304A, 1310A. I311A. I317A or 1321A large sereen displays will insure bright veetors with good contrasi.

Appllcations

Integrated circult layout: the selectable 32 files of memory of the graphics Iranslator soft copy cinn represent 32 differene layers of an IC. providing quick layer by lnyer analysis to insure every rectangle is in the correct layer and location.

Dala acqulsflion: the 1350A ts ideal for generating a dynamic dis. play of infomation from an automatic data acquisition system such as the HP 3052A controllud by the HP 9825A computer. The higher quality display generated and the abilicy to highlight any of the 32 files of memory. make real cime decision making or analysis of the dati easy.

Digitizing PC board and IC layouts: soft graphics provide instant verificulion that the HP 9864 A Digitizer graphics tablet information is correct.
Analytical Instrumentation: sofí copy for generating gas and liquid chromalographs data displays permits checking of and adjusiment of temperatures, how rates. and solvent preparalion before a hard copy printout or $\mathrm{X} \cdot \mathrm{Y}$ plolter reconding is made.

Harbor and river navigatlonal radar syatems: the harbor, shoreline, and labeling can be placed in different memory files from ship localion. velocity, and direction veciors. If a paricular ship is in potential danger. parameters can be made to llash for emphasis.

Process control systems: complicaled process control systems require high resolution graphic representation for analysis and quick update.
Numerlcal control: sof copy display plots of 1001 path reveal programming errors before aclual machining is done. An atphanumeric listing with text mode permits quick location of errors. Additional appllcatlons include: land use layout: auto and ajrfrance design: sireraft simulation and traines: air traflic contro): building, bridge. and tunnel design: siructural anitlysis of components; molecular structure display; bighway design and analysis: medicat EKCifilG analysis: and financial and slock market anolysis.

1350A Specifications

Input Intertace: I6-bit (bit parallel. byte serial) HP-lB listener only that conforms to IEEE 488-1976. Dhia acceptance rate is $2 \mu \mathrm{~s}$ per chatacter.
X, Y analog output: $+0.2 \mathrm{Vdc} t \mathrm{o}+1.2 \mathrm{Vde}$ into son $, \mathrm{X}, \mathrm{Y}$ analog vectors between addressable points. Positive ap and to the right.
Z analog output: 0 10 1 V unhlanked, - I V blanked. into 50Ω.
Relreeh rate; dependent on total lengith or vectors displayed. Contact your HP Field. Engincer for exace relresh rale for a given application.
Addressable resolution: 1000×1000 points.

Memory

2048 Vectors or characters.
Addressable fles: 32 which can be crased or blanked. Files may be of any length.
Addressable write polnteri allows new data to be written from that address forward.

Character generafors

\& x 12 Resolution stroke characters. Modified full ASCII sel (comparible winh HP 9x?5A keybourd).
4 Programmable slzes: IX, 2X, 4X, sX.
80 Characters per line and SI lines (not to exceed mentary size) al IX character size.
2 Programmable orientatlons: 0° and 90°
Character strokes are stored in plug-in ROM. 4 TTL blanking outputs for presenting information from different memory files on dif-「erent displays.
General
Input connector: rear panel. conforms to IEEE 488-1976.
Output connectors: 3 rear panel BNC's for X. Y. Z. with shields grounded.
Front panel
Indicator Ilghts: power interrupt. listen data. lisien program.
talk, power on.

Onlolf gwith

Operating environment
Temperature: (operating) $0^{\circ} \mathrm{C}$ 10 $+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ 10 +-130 F$)$: (non-operating) $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$.
Humldity: to 95% relative humidity at $40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Altitude: loperating) 104600 m (15000 ft): (non-operating) to 6300 m (25 000 fl).
Shock: 30 g level witb 11 ms duration and $1 / \mathrm{s}$ sine wave shape.
VIbration: vibrated in three planes ior 15 min. each with 0.25 mm ($0.010^{\prime \prime}$) excursion. 10 to 55 Hz .
Power: selectable 100, 120.220 or $240 \mathrm{Vac} .+5 \%$, - 10%, 48 Hz to 440 Hz , max power 100 VA (approx 100 W). Average power dissipit tion al 60 Hz and 120 V withoul any options is approx 74 W .
SIze: approx. $88 \mathrm{mmH} 426 \mathrm{mmW} 498 \mathrm{mmD}\left(3.5^{\circ} \times 16.8^{\prime \prime} \times 19.6^{\prime \prime}\right)$ Welght: net. 9.5 kg (2 l lb). Shipping. 11.8 kg (26 lb),
Accessorles supplled: one 2.3 m (7.5 fi) line cord (90° IEC 10 NEMA S.ISP. 3 conductor for use in Canada. Mexico. Japan, and U.S.), one Operating Guide.

Optlons

001: RS 232 C inlerfixce with selectable baud rates in
Price lien of HP-IB interface
010: Additional character ROM with 512 user defina. ble vectors for gralicules and special characters. Each characler can use from 1 to SI2 of the $5 / 2$ available vectors. This is the only limit on the number of special characters.
Note: special options can also be provided to subsitule any desired characters for the modified full ASCII sel normally provided, e.g., TTY ASCll inslead ol HP 9825 A keyboard symbol set, or fortign sharaclers. elc. Contact your HP Field Engineer for informalion.
1350 Graphics Translator

186

thD CATHODE-RAY TUBE DISPLAYS

Small screen displays
 Model 1340A

1340A Option 31 insialled in 10380A cabinet

1340A Description

The Model 1340 A small acreen display ofiers Mexibility, convenience, and cosi-effectiveness tor OEM system designers. The basic display modulc is nugged and easy to inlegratc into an instrument or system console.
The funcrionsal centrols for intensity, focus. X and Y position, X and Y gain. and imece alignment can be lochted to suil your design criceria. The standand display module includes a control pancl that can be located so the right of the module or in a remote position. With Option col you can omit the coniral panel and use your own contsols. Since the above functions ine de inputs (0.5 volts) to the integrated-circuit amplifiers, you can provide them from an appropriate part of your circuiry.

Electronlcs

The benefits of the 1340A come from a new approach to electrical and mechanical design. Integrated circuits contain most of the X and Y amplifier components as well as the Z-axis circuilry, improving reliability as well as reducing cost. X and Y attenuatos, input impedance. polarily, and bandwidih limiting are internally switch selectable. This provides flexibility to designers and inventory convenience when you use the 1340A in more than one instrument or sysiem.
In addilion to the optional display unat wilhout conirol pancl, many OEM designers will appreciate the de supply option of the 1340A. This option delctes the power transformer. rectifiers. and power line cable. Power musi be supplied from your own insirament or system. Thise voltages are required: unregulated 24 Vdc . and regulated - 15 Vde and 165 Vde.

Mechanical Construction

The mechanical design of the 1340A module is a form of unitized construction, which is extremely rugged without a cabinet. The display inegrates easily into almost any instrument or system console design.

If you wish to simplify the cabinet design for your system, there are several OEM cabinets for the 1340A (see Oprions). These are allmacivoly cityled and designed to accommodate circuiry for a variely of instrument applicalions.

Serviceability

Ease of servicing is inherent to the 1340 A . The use of 1 C amplifiers minimizes the number of discrele components that can fail. Reliability of the design has been verified by extensive testing.

The power supply and amplifier boards arc easily removed, giving you several service oplions: remove the entire module for service off-site, substirule pe boards and repair removed boards at a cencral location, or on-sire, componem level repair. Your Field Engineer can arrange an HP^{P} service suppor plan 10 meat your needs.

Applications

The price-performance range of the 1340A makes it ideal for almost every instrumentation system. Resolution, viewing area, and brightness are suitable for spectrum, network. vibration, transient. pulse height, and digital logic analyzers. The CRT writes a clear, crisp trace either directly from analog circuits or from digital memory on a refreshed basis.

The 1340A can be used in a nudiber of non-destructive test systems or instruments. The de gain adjustment is helpful in remotely programming changes of the paramelers being displayed. This cupability is often useful in magnetic test systems and could be a benefil in uerasonic test instruments.

The 1340 A is adaptable 10 geophysical measurement systems. particularly the de power Option 002. This option simplifies integration into your system and reduces the weight of the display. The reduced weipht is a benefit with aibome receivers or other systems thot require minimum size and weight.
The 1340A may also be used as a basic display for communication system analy,en, chemical and scientific anslysis systems, and some medical diagnostic systems. And it provides an economical operator interface in special production test systems. With the optional full rack module cabinets you have space to mount your own lest system circuiury.

1340A Specifications

For complete specifications contact your HP Field Engineer. Vertlcal and horizontal ampllifers
Alse itme: $\leqslant 120 \mathrm{~ns}$ ($10 \% 1090 \%$ points) [or full sereen deffection (or less).
Bandwldth: de co $>3 \mathrm{M} \mathrm{Hz}$ (3 dB down) for $S \mathrm{~cm}$ or less dellection. Phase Shlt: $<3^{\circ}$ to 1 MHz for full screen signal inpuls.

Deflection factor: $100 \mathrm{mV} / \mathrm{div}$. Front panel adjusiable from 8010 $200 \mathrm{~m} V /$ div. Intemal S: 1 attervators for X and Y inpuns. I div $=1.2$ $\mathrm{cm}(0.47 \mathrm{in}$.)
Linear wriling speed: $\leq 25 \mathrm{~cm} / \mu \mathrm{s}$ ($10 \mathrm{in} . / \mu \mathrm{s}$).
Setting time: signal setules to within one spot diameter of final value in $\leqslant 300$ ns for any on-screen position. Snitial off-screen deflection. if any. must not exceed specified dynamic range
Linearity: 5% of full scale along major axes.
Input RC: approx $\mid M \Omega$ shunted by $\leqslant 50 \mathrm{pF}$. Internally switchable 1050 Sl.

Dilft

Poeltion: $\leqslant 0.5 \mathrm{~mm} / \mathrm{hr}(0.02 \mathrm{in} . / \mathrm{hr})$ and $\leqslant 1 \mathrm{~mm}(0.04 \mathrm{in})$ in 24 hours with covers installed after 15 min- warmup.
Gain: $=1 \%$ under all combinations of specified line vollage with covers installed after 15 min . warmup and temperalure betwoen $+20^{\circ} \mathrm{C}$ and $\left.+55^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F} \text { and }+13\right)^{\circ} \mathrm{F}\right)$.
Crosstalk: $<0.25 \mathrm{~mm}(0.01 \mathrm{l})$ with one input ecrminated in 50Ω and the other axis exciled by a I V. 500 kHz signal: $<0.5 \mathrm{~mm}$ $\left(0.02^{\prime \prime}\right.$) al $3 \mathrm{M} . \mathrm{Hz}$ when driven from a 50Ω source.

2-axls amplifier

Rlse Ilme: <70 ns (cw bandwidh is approx 5 MHz).
Blanking range: a IV change io the Z input voltage causes a full seale chauge in brightness. The cutorf level can be sel from +0.2 Vde to I Vde with the intersity control.
Blanking polanty: a posilve going input voltage into the Z input increases brightness. Iatemally switchable polarity.
Input RC: approx $1 \mathrm{M} \Omega$ shunted by $\leqslant 40 \mathrm{pFF}$. Intenally switchable 105012.

Maximum Input: $\pm 50 \mathrm{~V}$ ($\mathrm{dc}+$ + peak $a c$) with $1 \mathrm{M} \Omega$ input irapedmace: $\pm 3.5 \vee$ (dc + pcak ac) for 5018 inpul impedance
Gain: intemally adjustable over $2: 1$ a menuation range.

Cathode-ray fube

Type: pont detlection accelemtor, approx 6.6 kV accelerasing potentiad. Aluminized P3I phospher, elecirostatic focus and deflection.
Viewing area: $114 \mathrm{~cm}^{2}\left(17.7 \mathrm{in}^{.}{ }^{8}\right): 8 \times 10$ division area: 1 div $=1.2$ cm (0.5in.).
Graticule: intermal, parallax free, non-illuminated.
Spot size: < 0.38 mm ($0.015^{\prime \prime}$) at center screen and Jess than .57 mm ($0.022^{\prime \prime}$) throughus quality area, measured using shrinking raster meithod. Line resolution at center screen is approx 25 lines/cm (64 lines/ín.).
Trace allgn: rotates X-axis into geometric alignment with CRT viewing area.

General

Input connectors: BNC female connector for each axis mounted to rear pancl. with shield grounded.
Line power: 100, 120, 220, or 240 Vac selectable on rear pancl. $+5 \% 10-20 \%: 48 \mathrm{~Hz}$ to 400 Hz . Average power dissipation al 60 Hz and 130 Vac is approx 30 walls.
Stize: 128 H (front panel opening) $\times 163 \mathrm{~W} \times 438 \mathrm{mmD}\left(5.1^{11} \times 6.4^{\prime \prime}\right.$ $\times 17.2^{\prime \prime}$).
Welght: Opt 315: nel 6.8 kg (15 lb), with covers and seat. Shipping 8.6 kg (19 lb).

Operalling environment

Temperature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10+131^{\circ} \mathrm{F}\right):-40^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}$ (-40 $0^{\circ} \mathrm{F} 10+158^{\circ} \mathrm{F}$) non-operating.
Humflity: 5% to 95% relative llumidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$.
Aititude: 104600 m (15000 ft): 15300 m (50000 n .), nonoperaling.
Shock: 30 g level shock, 11 ms duration, and $1 / \mathrm{g}$ sine wave shape.
Vibration: vibrated in three planes for 15 min . each with 0.38 cm
(0.015 in.) excursion. 5 Hz to 55 Hz : 1 min .foctave, 10 min . each resonance.
Accessorles aupplled: one blue contrast filter, one operators guide, one 2,3 (7.5 ft) line cord 90° IEC to NEMA 5.15 P , 3-conductor) for use in Caniada. Mexico. Japan and the United Slates. (Contine your HP Field Engineer for oher line conds.)

Options and accessorles

Model 10380A Cabinet and Frame Rit provides an emply 13.4 cm ($51 /{ }^{\circ}$) high half-rack module for mounting beside the 1340 A . The kit includes the half-rack module, connecting hardware for the 1340 A . and full rack width top and boutom covers. The kıl plus a display gives you a complete instrument cabinet in which to install your own system components.

1340A Option 315 Installed in 10380A cabinet
Option 317 includes a 1340 A display module with a complete fullrack cabinet and space to mount the 1340A module plus your own system components. The overall length is 51 mm (2°) shoner than the 10380A Cabinet: however, the display module occupies less total space than the 1340A Option 316 mounted in the 10380A.

1340A Option 317

NOTICE TO USERS: The 1340A is designed and manufactured primarily for OEM syntem applications. Therefore, without Option 315 or Option 317. protective covers are not provided and internal wining connections of HAZARDOUS VOLTAGES ARE EXPOSED. Operator protection from these hazardous voltages must be provided by the purchaser and/or user of the instrument. Is in doubl, URDER OPTION 315 or OPTION 317.

Options

The options listed are unique to the 1340A. Power cord and safety options listed for other srmall screen displays are also available on the 1340A. Contacl your HP Field Engineer for complete 1340A Options lisring and pricen.

Module options

001: Display Moviule withour control panel

Price

002: Display Module and control oanel with less \$25 de inpul voltages
Cabinet options
315: Display Module with System $11133 \mathrm{~mm}\left(51 /{ }^{n}\right)$ high. half-rack width cabinet, 381 mm ($15^{\prime \prime}$) long and with control panel
316: Display Module will rear bracket for mounting in 10380A (side-by-side cabinel) or 10386a(ventically stacked cabinel) with 457 mm ($18{ }^{\circ \prime}$) side sints. Fronl casting, rear canting. ive $457 \mathrm{~mm}\left(18{ }^{\prime \prime}\right)$ situts, no covers.
317: Display Module with system 11133 mm ($5 / \mathrm{s}^{\prime \prime}$) high, fultrack width cabinet with 381 mm (15") long struls. $448 \mathrm{~mm}\left(17 \mathrm{~s} / \mathrm{h}^{\prime \prime}\right)$ overall length. Painted blank front pancl included
CRT Options
039: P39 : aluminized phosphor, with 8×10 div graticule
add $\$ 30$
604: P4 aluminized phosphor, no graticule
631: P31 日luminized phosphor, no graticule
639: P39 aluminized phosphor, no graticule Ordering information
1340A Display Module (with control panel)
add $\$ 35$

10380A Cabinel and Frame Kil (side-by-side)
10386A Cabinet and Frame Kil (vertically stacked)
$\$ 925$
$\$ 150$
$\$ 150$

Small screen displays
Models 1332A, 1333A, 1335A \& 1336S

1332A, 1333A, 1335A, and 1336S Description
Models 1232A. 1333A. 1335A, and 1336S are high-quality cathode-ray tube displays designed to satisfy a wide range of OEM medical and clectronic instnement display needs to 5 MHz . The major differences belween these displays are their CRT's which are optionally available with or without intemal. parallax fisee graticules.

Model I332A has a lage $9.6 \times 11.9 \mathrm{~cm}$ display area with the sesolution and piclure quality required for medical diagnostic systems plus a bright display for differentiating belween many gray shades, or for viewing in brighty lighicd areas.

Model 1333A has a high resolution CRT with an $8 \times 10 \mathrm{~cm}$ viewing area specifically optirsized for photographic applicailons such as gamma camera syslems. The 1333A's combination of high resolution. luminous power density, and speed permits crisp easy-to-read. diagnostic-quality photographs to be obtained from state-of -the-art nuclear, ulerasonic, thermographic, and X-ray scanning systems,
Model 1335A's high resolution $8 \times 10 \mathrm{~cm}$ storage display offers medical and instrumentation OEM users a variable persistence, slorage, and non-storage CRT display with excellent performance. Outstanding picture quality and amplifier performance combine to make the 1335 A a signiticant advancement in storage displays.

HP's small screen displays are ideally sulted to all types of measurement systems applications such as spectrum and nelwork analysis, Fourier analysis, automatic measurement, or in conJunction with Model 1350A Graphic Translator as a readout for HP-IB measurement systems, as illustrated here.

Model 1336 consists of an $8 \times 10 \mathrm{~cm}$ display module (1336A) and a separate power supply module (I336P) for mounting flexibility. The 100 -lines/em resolution display is ideal for all high resolution imaging requirements.
The 1332A. 1333A, and 1335A have post deflection accelerator CRT's to assure a bright, crisp Irace. The 1336 display uses a new mono-accelcralor CRT design to produce an intense $0.1 \mathrm{~mm}\left(0.004^{\prime \prime}\right)$ diameter spol and exceptional resolution witb low power consumption. An opaque aluminum layer behand the phosphor except in model 1336 S . which is non-aluminized) enhances irace brigh1ness while blocking siray light from the CRT filaments that could reach photographic film during time exposures.

Regulated. low power ivrive gun and flood gun filaments assure a constant lighe output under varying line conditions. More importandy, the low power flament uperation significanlly extends CRT life and eliminates grid and other stray emissions common 10 older. less efficient designs.

Models 1332A, 133A, 1336A/P, and 1335A (Op1 330) are listed with Underwriters Laboratorics in accordance with the UL 544 Medical Salety Standard which defines detailed patient protection requirements. Regular inspection of our production facility by UL assures you that this pacient prolection is built into the display that you purchase.

The 1332A. 1333A, and 1335A are 13.3 cm ($51 / \mathrm{Hin}$.) high, half rack width. $49.5 \mathrm{~cm}(19 / 2 \mathrm{in}$.) long packages that can be combined with identical empty modules 10 föm an allractive full width horizontal or vertically statked OEM instrument. The 1336A Display Module has the same dimensions and the 1336P Power Supply Module has the same height and width but is $33.5 \mathrm{~cm}\left(139 / \mathrm{s}^{\prime \prime}\right)$ deep. If the 1336A/P are to be mounted together, 1336P Option 018 may be ordered to provide the same cabinel depth as the 1336A, with locking hardware 10 form a standard EIA rack widih unit.

Picture clarity

Model 1332A: spot size is only $0.305 \mathrm{~mm}(0.012 \mathrm{in}$.) diameter at high intensity levels and remains focused over the entir: range of inten-

Ulira-high resolution unilform light output, and long-term stabllity of the Model 1336 Syeild optimum photographic image quality as Illustrated in this lull body gamma camera bone study.
sity levels. This resolution makes the 1332 A well suited for applications requiring sharp foususing on mulliple gray shades or varying writing speeds with frequent video drive level chaoges. Spot resolution. within the quadiy area, varies by less than 10% making the display especially useful in applications where sharp focus is required throughout the quality area. An example of this is where alphanumeric characiers are mixed with vaces, surves, or graphs.

The large $9.6 \mathrm{~cm} \times 11.9 \mathrm{~cm}$ vicwing area and bright display make the 1332A ideal for the OEM with both visual and some photographic requirements. Display brighmess lets you view the display

Fine image detail and a well-focused spol al all intensity levels make the 1335A ideal for use in Spectrum, Fourler. Network, and Chemical analysis as well as automatic test systams.

Empty half-width trame, available as an accessory, provides an atractive full-width or double-height package with an Integrated appearance with space for your special clrculis.
in high ambient light conditions while mantaining resolution and gray shades for photographic work. Whenever uniform photographic reconding of the display becomes critical. the 1333A or 1336 should be uscd.
Model 1333A: is specilically designed for phutographic recording where display aniformisy and high resolution images are essential. Spot size is a crisp 0.20 mm (0.008 in .) diameter everywhere on its 8 $\times 10 \mathrm{~cm}$ display, which allows resolution of 193354 picture elements. The spol remains round and sharply focused in all areas of. the screen and at varying intensity levels. eliminating the need to readjust focus or asligmatism controls. No compromises are needed for optimizing overall image sharpness in applications where all areas of the sereen contain critical information and the Z-axis drive level varies widely. For displays that do not require the entire screen, sharply focused alpharumeric messages such as patient idenlification or operator instructions can be insented along the extreme edges and comers for maximum use of the display area.

Light output uniformity is fully specified, both overall and for small increments, which assures you that the information content of the display is an accurate representation of the imput signals. Addi(ionally, light output drift is specified, including all) effects of the Z-axis ampliñer, high volage supply, and CRT. A regulated dc CRT filament voltage is also used to assure constant light output independent of line voltage flucluations. The regulated de filament voltage also reduces the possibility of interference patterns resulting from correlation between inpul signal frequencies and the high voltage oscillator or power line frequencics.

The well-designed interior layout and use of plug-in boards, mulliconductor cables, and multi-pin connectors make the 1332A. 1333A, 1335A, and 13368 very servicaable.

Modal 1335A: the CRT can be operated io nor-storage, storage, or variable persistence modes. In the non-storage mode (called CONVENTIONAL), and CRT operates similar to a mono-accelerator conventional CRT with an exceptionally small spot that focuses uniformly over the entire quality area. Resolution is approximately 40 lines per em (100 lines per in.). In addition. spot size is relatuvely independent of intensity settings or Zaxais input signals, elimimating the need to refocus at each intensity scluing. This characteristic enhances the CRT image in applications requiring the CRT 10 focus on a wide mage of intensity levels. Applications include those where markers intensify areas of interest, where chargeters or vectors are written. and anywhere that the writing speed or drive levels of the beam vary. The light oulput remains extremely stable because of regulated CRT filament voltages and an exceptionally stable Z-axis amplifier.

The same excellent CRT performance is maiolained in the Variable Persistence operating mode. Persistence is continuously adjustable with a front panel control, from approximately 0.20 s 10 full storage. This mode alows you to eliminate flicker on some presentations by increasing the persistence to match the refresth rate. The variable persistence mode is selected by pressing the WRITE pushbution.

The slorage CRT is preset to store dots having a Z-axis width of 1 μ s or greater for up to 30 minutes. The storage mode offers the greatest contrast because the background is completely dark. An internal adjustment allows an increase of writing speed to capture faster signals with reduced storage time and trace to background conirast. Another adjustment may be used to enhance either the storage time of the trace or the stored brightness of the stored images. Stored resolution is over 20 lines per cm (50 lines per in.) and stored traces relain sharp delails.
Model 1336S: the 13365 800-lines $/ \mathrm{cm}$ resolution makes this display ideal for all high-resolution imaging requirements such as multiimaging gamma cameras. scanning electron microscopes, and scanning auger microprobes. A mono-accelerator CRT with an accolerating potential of 5 kV produces an intense, 0.1 mm ($0.004^{\prime \prime}$) diameter spol. New contributions in electron gun and circull design make is possible to provide this high resolustion with only 100 watts power consumption.

The CRT is Jesigned to prevent spurious light from reaching pholegraphic film during long time exposures. Lighl outpul uniformily is tested to assure that the information content of the displayed image is an accurate representation of the inpur signids.

Considerable effort has been laken in developing the structural. thermal, RFI, and modular characterisfics of this mechanical frame to provide you with the bese possible display for your OFM system.

All frequently used conirols are adjustable from the front panel for maximum accessibility when the display is mounted in a rack. cahinet. or system. The most frequently used controls, such as inrensity. focus, and position have knobs while infrequently used controls such as astigmauism, trace align, and X and Y gain are screwdriver adjustments. The 1336A has a 10 -tum dial on the inteosity control 10 allow precise reseang of trace brightess for repeatable photographic resulis. A front parel door covers the controls of the 1332A. 1333A, and 1335A for a more pleasant appearance and reduces the chancu of misadjusiment by unlrained personnel. The ac line switch is mounted on the rear panel to prevent inadvenent turn-off and adlows the display to be powered through the common system power bus.

Serviceablilty

Construction of these displays is modular, rugged, and extremely serviceable. Printed circuit boards are plug-in type with interconnections through edge connectors and multiconductor wire strips that connect to sockets on the boands. Serviceability also extends to CRT replacement which, with a knowledgeable technician, can be accornplished in approximately ten minutes. Calibralion time is kepl 10 a minimum with easily accessed and independent adjustments.

Optlons and accessories

A wide range of oplions are available to permit you to tailor the display to your specific requirements: refer to Specifications for a complete listing. Accessories available include rack mounting kits. OEM half module frames and rack slides, and BNC shoning caps for use with certain Options. For convenient system interconnection. Model 10488 A 3.6 m (12 n) Display Cable is nvailable as an accessory. Model 197A Opi 001/006 camera is adapted for direct necording of I332A. 1333A. 1315A. and I336A displays. Refer to the individuas display data sheet, for a complete description of accessories.

1332A, 1333A, 1335A, and 1336A/P Specifications

Vertical and horizontal ampllifers
Pesponse (1332A, 1333A, 1335A)
Rlse time: $\leqslant 70 \mathrm{~ns}$ (10% to 90% points) for full screen deflecion or tess.
Bandwidth: Jc to approx 5 MHz for $7.6 \mathrm{~cm}\left(3^{\prime \prime}\right)$ deflection (1332A). 5.1 cm (2") defleclion (1333A. 1335A).
Phase shift (1332A, 1335A): $<1^{\circ}$ de to 1 MHz (mcasured wilh X and Y gin sel to max).
Deflection Iactor (horlzontal and verteal): $100 \mathrm{mV} / \mathrm{div}$ (I V p-p for 10 div deflection horizontal: 0.8 V p-p for 8 div dedection, vertical). Adjustable from approx $80 \mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} / \mathrm{div}$ ($1336 \mathrm{~A}, ~ 100$ $\mathrm{mV} / \mathrm{div}$ to $200 \mathrm{mV} / \mathrm{div}$).
Setting tlme: (1332A, 1333A, 1335A) signal settkes to within one spot diameter of final value in $\leqslant 300 \mathrm{~ns}$. (1336 A) signal setiles io within $=0.5$ spol diameter of Sinal value in <500 ns.
Llnear writing speed (1332A, 1333A, 1335A) : $\geqslant 25.4 \mathrm{~cm} / \mu \mathrm{s}$ (10 in. $/ \mu \mathrm{s}$).
Inpuis: rear panel BNC connectors with shield grounded. (I336A) fully differential. (I332A. I333A. I335A) fully differential inpu(5 available, see Options.
Inpul AC: (1332A. 1333A, 1335A) mpprox 1 Mn shunted by $\leqslant 00$ pF. (I336A) approx $10 \mathrm{k} \Omega$ sluanted by $\leqslant 70 \mathrm{pF}$: internally switchable to 50Ω.

Maximum Input: $=50 \vee(\mathrm{dc}+$ peak ac) for high input impedance. $=2.5 \mathrm{~V}$ (dc + peak ac) for 50Ω inpur impedance.
Dynamic range; beam may be deflected off screen up to $1 / 2$ screen diameter in any direction provided that the zero inpul posstion is on screen, withoul degradation of specification.
Crosstalk: (1332A. I333A, I335A) $\leqslant 0.254 \mathrm{~mm}, 0.010 \mathrm{in} .$. (1336 A) $\leqslant 0.038 \mathrm{~mm}, 0.0015 \mathrm{in}$. , with one input terminated in 50Ω and the oulher axis cxcited by a 1 V . 500 kHz signal.
Drlit
Position: $\leqslant 0.5 \mathrm{~mm} / \mathrm{hr}$ and $\leqslant 1.02 \mathrm{~mm}(0.040 \mathrm{in}$.) in 24 hr with covers instadled and after is min. vammup.
Galn: < 1% under all combinations of spectfied line voliage with
covers installed after 15 min. warmup and temperature between
$+30^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right.$ and $\left.+131^{\circ} \mathrm{F}\right)$.
Common mode relectlon rallo: (I332A. I333A or I335A Opl 106 only) al leasi $40 \mathrm{~dB}(100$: I) up to 10 kHz for 1 V (ful screcon) jnpuls; at least 25 dB) (18:1) at I MHz for I V (full screen) inputs.

Z-axls amplifier

Rige tme: (1332A. 1333A, 1335A) $\leqslant 25 \mathrm{~ns}$, (1336A) $\leqslant 40 \mathrm{~ns}$: civ bandwizih approx 5 MHz .
Blanking range: a I V change in Z-axis input voltage cillses a full scale change in brightness.
LInearlty (1336A): light outpu: varies tinearly with Z-axis inpul voltage withon 20%.
Blanking polarlty: (I332A, I333A. I335A) a posilive-going inpul Z-axis voliage increases brighiness. (I336A) fully differential; a posilive or negative-going input into the positive or negative inputs. respectively, increnses brigheness.
Input: rear pancl BNC connectors with shield grounded. (1336A) fully differentinl. (1332A, 1333A, 1335A) fully differenitial inputs availahle, sec Oplions.
input RC: (1332A. 1333A, I335A) approx I megohm shunled by
$<60 \mathrm{pF}$. (1336A) approx $10 \mathrm{k} \Omega$ shunted by $<70 \mathrm{pF}$; incemally switchable to 50ת.
Maximum Inpul: - $50 \mathrm{~V}(\mathrm{dc}+\mathrm{pcak} a c$) for high inpus impedance:
$=2.5 \mathrm{~V}(\mathrm{dc}+\mathrm{pea} k \mathrm{ac})$ for 50Ω input impedance.
Galn: intemally adjustable over 3.5;1 altennation range.
Llght output stabllity (dritt): spol photometer measurements of light outpur made al one hour intervals will not vary more ihan 10% from previous measurement for any location within the uscabl- display area, under all specified conditions of line voltage and iempeiature with intensity sel to>5\% of peak brightness.
Cafhode-ray fube (1332A)
Type: eiectrostatic focus and delleciion. approx 22.5 kV acceleraring polential. aluminized P3) phosphor (sec Oplions for other phosphors).
Vlewing area; $114 \mathrm{~cm}^{2}\left(17.7 \mathrm{in} .^{2}\right)$, ipprox 9.6 cm verically by 11.9 cm horizontally ($3.8 \mathrm{in} . \times 4.7 \mathrm{in}$.).
Qually area: centcr 9 div horicontally and center $\overline{7}$ div verically, Qratlcule: $8 \times 10 \mathrm{div}$ intemal graticule. $I \mathrm{div}=1.2 \mathrm{~cm}$ (0.47 in .). Spot size: 50.3 mm (0.012 in .) al center sereen. Does nol viny by more than loye over entire quality area with inensity held consiant, measured using shrinking rabler method. Linc resolution is approx 31.5 lines/cm (80 lines/in.).

LIne brightness: al leas: ($70 \mathrm{~cd} / \mathrm{m}^{-1}$ (50) tll at a writing speed of 0.254 $\mathrm{cm} / \mu \mathrm{s}$ ($0.1 \mathrm{in} . / \mu 5$) . 60 Hz refresh rale, P3I phosphor, $0.3 \mathrm{~mm}(0.012$ in.) spor size.
Geometry: $<3 \%$ pincushion and barrel disionion over usesble display area.
Linearlty: $<3 \%$ of full scalc along major axes.
Calhode-ray fube (1333A)
Type: clectrostatic focus and deflection, approx 12 kV accelerating polential, aluminized P31 phosphor.
Vlewling area: $80 \mathrm{~cm}^{2}\left(12.4 \mathrm{in}^{2}\right), 8 \mathrm{~cm}$ verically by 10 cm horizonrally ($3.1 \mathrm{in} . \times 3.9 \mathrm{in}$).

Quallty area: 8 cm verically by 10 cm horizontally ($3.1 \mathrm{in} \times 3.9$ in.).
Gratlcule: none, sce Options.
Spot gize: $50.20 \mathrm{~mm}(0.008 \mathrm{in}$. J overentire quality area. Measured using shrinking raster method, line resolution is approx 49 lines/cm (135 lines/in.).
Llght output
Line brigthness: $34.3 \mathrm{~cd} / \mathrm{m}^{-}(10 \mathrm{fl})$ al a writing speed of 0.254 $\mathrm{cm} / \mu \mathrm{s}$ ($0.1 \mathrm{in} / \mu \mathrm{s}$). 60 Hz refresh rate. P3I phosphor. 0.02 mm (0,008 in.) spol size.
UnHomily: with a $\mathrm{I}: 1$ phologrsph of the CRT display using Polaroid Type 107-084 film, input signals adjusted for uniform stimulation of the entire CRT screen area and exposure parameters adjusted for an average reflection densily or 0.3 to 0.6 in the resultanl print, the difference bclween any uvo points on the pho-
lograph in a centered $7 \times 9 \mathrm{~cm}$ rectangular area in Icss than one step on a Kodak 12-step gray scale
LInearity: < 3% of full scale along major axes.
Stray emisslon: no stray emissions from the CRT will be visible on Polarily Type 107 ASA 3000 film after a 30 min. lime expasurc with the camera lens set to $/ / 1.9$. I: I magnification ratio.

Cathode-ray tube (1335A)

Type: electrostalic focus and deflection. approx 8.5 kV accelerating potential. aluminzest P3i phosplor.
Vlewing area: $71.2 \mathrm{~cm}^{2}\left(11.2 \mathrm{in} .^{.}\right.$), approx 8 cm venically by 10 cm horizonlally ($3.1 \mathrm{in} . \times 3.9 \mathrm{in}$).
Quallty area: center 9 div horizontally and centes 7 div verically.
Graticule: $8:<10$ div intemal graticule, 1 div $=0.95 \mathrm{~cm}(0.37 \mathrm{in}$).
Geometry: < s\% pilucishion and barrel distontion over uscable display area
LInearlty: <3\% of full scale ilong major axes.
Conventlonal (non-store) parameters
Spot size: 0.254 mm (0.010 in .) over entire quality area. Measured using shrinking moster method. Non-stered line resolution is approx 39 lines/cm (100 liness/in.).
Line brlghtness: $68 \mathrm{~cd} / \mathrm{m}^{4}(20 \mathrm{fl})$ at a writing speed of 0.254 $\mathrm{cm} / \mu \mathrm{s})(0 . \mathrm{lin} . / \mu \mathrm{s}), 60 \mathrm{~Hz}$ refresh mec. P 3 I phosphor. 0.0354 mm (0.010 in .) spor size.
Persistence: approx $40 \mu \mathrm{~s}$.
Storage parameters
Stored resolution: approx 20 lines/cm (5l lines/in.).
Brightsess: $>680 \mathrm{~cd} / \mathrm{m}^{2}(>200 \mathrm{n})$ in WRITE modc.
Erase Ilme: < 500 ms .
Storage time: $>1 \mathrm{~min}$. al full brighlness in WRITE mode. exlending to $>30 \mathrm{~min}$. in STORE mode at lower brighuness.
Varlable persistence: continuously adjustable from 0.2 s to full storage (onc minute).
Dot writing time: will store a dot anywhere inside the quality area havisg an unblanking time of $\{\mu \mathrm{s}$.
Writing speed: $>50 \mathrm{~cm} / \mathrm{ms}$.
Cathode-ray tube (1336A)
Type: mono acceileraior. approx 5 kV accelerating potential. PII phosphor. electrostatic foeus and deflection.
Vlewling area: $80 \mathrm{~cm}^{\mathrm{F}}$ ($12.4 \mathrm{in} .^{2}$), approx 8 cm verically by 10 cm horizontally ($\mathbf{3} .1 \mathrm{in} . \times 3.9 \mathrm{in}$).
Quallity area: a $7 \times 9 \mathrm{~cm}$ reciangle wilh a 1 cm radius on each comer.

Gratlcule: none (sec Options).
Resolution; 100 lines/cm (254 lines/in.) within quality arca, measured using shrinking raster method.
Spot shape: ratio of major to minor diameter of spot $\leqslant 1.5$:) within quality area.
Llght output: $3.5 \mu \mathrm{~W}$ using a $4 \times 4 \mathrm{~cm}$ I28-line focused raster with an 80% duty cycle and $a \mathrm{~J} \mathrm{~cm}^{2}$ radiometric delector in contact with the CRT Face, PII phosphor. With P3I phosphor. $6 \mu \mathrm{~W}$ (see Oplions).

Light output unliformlity

Overall: the light ourpul varies by $\leqslant 16 \%$ belween any two points within the quality area.
Incrementat: the derivalive of light oulput with respect to posilion is $\leqslant 6 \% / \mathrm{cm}$ averaged over any $2 \% \mathrm{p}$-p change anywhere within the quality area.
Geometry: < 30% pincushion or barrel distortion within qualiry area. Linearly: < 3 分 of full scale along major axes.
Remote programming (1335A)
(TTL compatible. excepı Variable Persisience)
Aemotely programmable functlons: Erase. Wrice. Siore. Conventional. and Variable Persislence.
Remote selection: a single TTL control line disables the frome panel Erasc. Write. Store, Conventional, and Variable Pesistence functions and mansfers comicol to the remote inputs.
Control enable: separate TTL inputs to enable front panel Erase and/or Variable Persistence controls during remete operation.
Varlable persistence; an extemal dc voliage between 0 and +10 V sets the persistence. Or. a pot can be connected through the Remote Input consecter to control persistence if 10 Vde is nol available.
Erage verly: a TTL High outpul during Erase (will drive len low power gates).
Sately protection (1332A, 1333A, 1335A)
Implosion: 1 ransparem safety panel between CRT and bezel prolecis viewer (Opi 561 or 330).
X-ray emlsslon: <0.5 mr/hr measured wilh Vicioreen Model 440 RFIC.
UL Ilsting: with Opı 315 and 561 meets Underwriters Laboratories Listing 478 for Elecironic Data Processing Equipment: with Opt 330 meets Underwriters Listing for Dental and Medical Elecrronic Equipment.
NOTICE: Lhese displays are designed and manufactured primarily for OEM syslem applications. Therefore, without Opt 315 or Opt 330. the top and bottom protective covers are not provided and intemal winng connections of HAZARDOUS VOLTAGES ARE EXPOSED and operator protection must be provided by the purchaser and/or user of the insitrument. If in doubl order Opi 315 or 330 which provide the covers.

Salety protection (1336A/P)

UL lisung: meets Underwriters Laboratories Listing 478 for Electronic Data Processing Equipment and Underwitiers Listing 544 for Dental and Medical Electronic Equipment.
X-ray emlssion: $<0.5 \mathrm{mr} / \mathrm{hr}$ measured with Victoreen Model 440 RF/C.
General
Inputconnectors: (1332A. 1333A, 133SA) rear pand BNC for X. Y. and Z inputs wilh shields grounded. (1336A) two rear panel BNC for each axis.

Front panel confrols (1332A, 1333A, 1335A)
Knobs: position X. position Y. focus, and intensity.
Pushbuttons (1335A): Erase, Write, Slore, and Conventional.
Screwdrlver adfustments: Trace Align. Astigmatism, Gain X. and Gain Y.
Front panel controls (1336A)
K nobs: Intensity (10-tum knob with Iums-counting dial). Position
X, Position Y
Screwdrlver adjustments: Trace align, X gain, Y gain. Focus (focus adjustmene requires special tool, supplied with Model 1336A).
Line power Indicator: from panel lamp.
Operating environment: temperalure, $0^{\circ} \mathrm{C}$ so $+55^{\circ} \mathrm{C}$ ($+{ }^{3} \mathrm{~F}$ to $\left.+131^{\circ} \mathrm{F}\right)$, non-operaling, $-40^{\circ} \mathrm{C}$ 10 $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} \quad 10=158^{\circ} \mathrm{F}\right)$; humidity. 5\% 1095% relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$: altitude. $104600 \mathrm{~m}(15000 \mathrm{nt})$. non-operaling to $7000 \mathrm{~m}(25000 \mathrm{ft})$; shock, 30 g level with 11 ms dumeion and $1 / 2$ sinc weve sbape; vibration, vibrated in three planes for 15 min . each with $0.254 \mathrm{~mm}(0.010 \mathrm{in}$.) excursion, $0.38 \mathrm{~mm}(0.015 \mathrm{in}$.) excursion, for $1336 \mathrm{~A} / \mathrm{P}$, 10 to 55 Hz .
LIne power (1332A, 1333A, 1335A): selectable 100. 120. 220. or 240 $\mathrm{Vac},+5 \%$. $-10 \%(-20 \%, 1333 \mathrm{~A} ; 48 \mathrm{~Hz}$ to 66 Hz ; max power (1332A) 50 VA (approx 40 W$).(1333 \mathrm{~A}) 60 \mathrm{VA}$ (approx 50 W). (1335A) 65 VA (approx 55 W). Average power dissipation al 60 Hz . and 120 V without any options is approx 24 W (1332A), approx 40 W (1331A) арprox 35 W (1335A).
Line power (1336A/P): selectable 100. 120. 220 , or $240 \mathrm{Vac},+5 \%$ $10-20 \%$; 48 to 66 Hz "; max power l25 VA (approx 100 W).

Size: 146 H (ircluding feel) $\times 213 \mathrm{~W} \times 524 \mathrm{mmD}\left(53 \mathrm{~m}^{\prime \prime} \times 83 \mathrm{~m}^{\prime \prime} \times\right.$
20s/8"). Standard 1336p Power Supply is $335 \mathrm{~mm} D\left(139 / 20^{\prime \prime}\right)$; urder 1336P Op: 018 for same depth as 1336A

Welght

1332A, 1333A, 1335A: net, 8.6 kg (19 1b) with covers and feet: shipping. 10.5 kg (23 lb). Covers, feel. lill sand, and Irim are not supplied with slandard displays.
1336A: net, $7.1 \mathrm{~kg}(15 \% / \mathrm{lb})$. Shipping $10.2 \mathrm{~kg}(22 / 4 \mathrm{lb})$.

Accessorles supplled (1332A, 1333A, 1335A); one blue conirast filicr, one 2.3 m (7.5 nt) line cord (90° IEC to NEMA S-I5P, 3-conductor for use in Canada, Mexico. Japan, and the United Slates), one Operating and Service Manual, and for the 1335A one remote program connector.
Accessorles supplied (1336S): one clear CRT implosion shicla. one Operalor's Nole, one 2.1 m ($7.5 \mathrm{ri}_{\mathrm{i}}$) line cond (90° IEC io NEMA 5-15P, 3-conductor for use in Canada, Mexico, Japan and the Uniled States), one $1.5 \mathrm{~m}(5 \mathrm{ft})$ eable for interconnection of power supply and display module.
OPTIONS (1332A, 1333A, 1335A)
Price

X and Y ampliflers

Deflection factor

100: $500 \mathrm{mV} / \mathrm{div}, 5 \mathrm{p}$-p for full-screen deffection add $\$ 20$
101: I V/div. 10 V p-p for full-screen deflection

Polarlty

105: negative X and Y inputs move beam up and right
(BNC connectors)
106: full differential inpuls, sbieid grounded (BNC add $\$ 20$

N/C
add \$25 conneclors)

Input Impedance
110: 50 ohms
Rise lime
120 (1332A): 25 n5 X \& Y amplifier rise time add $\$ 200$
Z-axis Input (vided amplifler)
Blanking range
200: 0105 V
201:010 10 V
Polarlty
205: negauve input unblanks trace, BNC connector with shield grounded
206: fully differential input. BNC connector with shield grounded
Input Impedance
210: 50 ohms
Galn characterlstics
215: light output varics linearly ($\pm 20 \%$) with a linear change in Z -axis input vollage (gamma correction)
Digital Input
216: TTL blanking leve). High state ($+2.5 \mathrm{~V} 10+5 \mathrm{~V}$)
blanks any analog Z-input signal. Low state (0.0 V to 0.8 V) returns blanking to analog Z -axis input.

Cathode-ray tube
Graticule/phosphor type
004 (1332A): P4 aluminized phosphor with 8×10 div intemal graticule
007° (1232A): P7 aluminized phosphor with 8×10 div internal graticule and amber contrast filter
011 (1332A, 1333A): PII aluminized phosphor with 8 $\times 10$ div internal graticule
031 (1333A): P3] alluminized phosphor with 8×10 div inlernal graticule
039 (1332A): P39 aluminized phosphor with $8 \times 10 \mathrm{div}$ internal graticule
604 (1332A): P4 aluminized phosphor without internal graticule
6D7' (1332A): P7 aluminized phosphor with amber fivter, wihoul intemal graticule
611 (1332A, 1333A): Pl| aluminized phosphor, without intemal graticule
631 (1332A, 1335A): P3) aluminized phosphor. without inlenal grallcule
639 (1332A): P39 aluminized phosphor without internal graticule

- P39 a nosphor la recommented in liel jop.

Magnetlc shield

560 (1332A); full magnelic shield on CRT add $\$ 95$
Contrast fliters
NOTE: the plaslic filter serves as integral implosion prolection for the viewer, therefore these displays cannot be ordered without the standard or an oplional filler
561: clear. replaces filler supplied with standard and some optional phosphors, and is required for UL EDP Equipment Listing
582 (1332A, 1335A): clcar. RFI coated surface also includes metalized front panel
add $\$ 50$

General

Ac line cords
300: 2.3 m (7.5 fi) removablc, 240 V max. 3 -conductor 90° IEC to Greal Britain. Singapore
301: 2.3 m (7.5 ft) removable. 240 V max. 3 -conductor IEC to Australia. New Zealand
302: 2.3 m (7.5 ft) removable, 240 V max. 3 -conductor 90° IEC to East and West Europe
303: $2.3 \mathrm{~m}(7.5 \mathrm{f})$ removable. 340 V max. 3 -conductor IECIONEMA 6-ISP (USA. Canada, Japan. Mexico) 304: 77 cm (30 in .) coiled, extends $101.8 \mathrm{~m}(6 \mathrm{it})$. removable, 120 V max, 3 -conductor IEC to NEMA 5-15P (USA. Canada, Japan, Mexico) (nol available with Opl 315 or 330)
307: hospical grade power cord
AC Ilne voltage tolerance
310 (1332A, 1336A): $+5 \%$. -20% tolerance at 100 . 120, 220, $\mathbf{2 4 0}$ Vac setling. Increases power dissipation to approx 50 watts (1332A). 60 walls (1335A)
Front and rear panel modifications
322: replaces standard intensity control with a 10 -tum conlrol with counting dial
323: front panel screwdriver adjustments on left side of front pancl changed to intemal adjustments
324: (1332A, 1331A) adds 25-pin connector to X, Y, and Z-axes signal inpuls wired to the positive signal inputs (input capacilance is increased to approx 120 pF)
a25 (3332A): scalc illumination to illuminate phosphos backeround for pholographing intemal graticule (available with standard P31 phosphor and OpI 011 and 039 only)
326: front panel controls on right side changed to screwdriver adjusiments. These include intensiry. focus, position X . and position Y (also includes scale illumination when OpI 325 is ordered for 1332A). When OpI 322 is specified with OpI 326, the intensity control is as described in Opl 322 and the focus. posi. tion X . and position Y become serewdriver adjustments

Safety protection

315: includes covers, feet, trim, and tilt stand (required for UL EDP Equipment Listing)
330: meels requirements for UL Listing for Dental and Medical Electronic Equipment. Includes special thrce-conductor as linc cond, specially marked covers. feet, tith stand. trim, UL label, and Opt 561
560: meets requirements for Canadian Standards Association Safery Cenification. Includes Opt 315 with CSA labeling
Operating/service itteralure
910 (1332A): exira sel of produci manuals
910 (1333A, 1335A): textra seı of producl manuals
OPTIONS (1336A Display Module)
X ānd Y amplifiers

Deflectlon factor

100: $500 \mathrm{mV} / \mathrm{div}, 5$ Vp-p for full sereen deflection
101': I V/div. 10 V p-p for full ierten deflection
Input Impedance
110: 50 ohms
Z-axis Input (video amplifier)
Blanking range
200: 0 10 5 V
201: 0 to 10 V

Dlgital Input

216: TTL blanking level. High state ($+2.5 \vee 10+5 \mathrm{~V}$) blanks any analog Z -input signal. Low state (0.0 V 10
0.8 V) relums blanking to analog Z-axis inpul. Rear panel input through BNC connector

```
    Nil
    N/C
    N/C
```

 N/C
 add $\$ 5$
add $\$ 10$
add $\$ 50$
add 550
add $\$ 10$
add $\$ 30$
add $\$ 60$
add $\$ 25$
add $\$ 70$
add $\$ 75$
add $\$ 75$

Cathode-ray tube
Gratlcule/phosphor type
011: P11 phosphor with 8×10 div intemal graticule ($1 \quad \mathrm{~N} / \mathrm{C}$
$\operatorname{div}=1 \mathrm{~cm})$
031: P31 phosphor with 8×10 div intermal graticule ($1 \quad$ add $\$ 30$
div $=1 \mathrm{~cm}$)
631: P3I phosphor in place of PII. without inemal add $\$ 30$ graticule
Fpont and rear panel modifications.
323: all knob controls on front panel (Intensity. Posi- add $\$ 25$
(ion X, Position Y) changed to screwdriver adjustments
324: add 25 -pin connector to reas panel. X. Y. and add $\$ 30$
Z-axes signal inputs wined to the positive signal inpuls (inpul capacitance is increased to approx 120 pF)

Safery
331: meets HTM8 listing for ure in Medical Equip. add $\$ 50$
ment
332: meess CSA siandard for use in Medical Equip- add $\$ 50$
ment
333: meets VDE slandard for use in Medical Equip- add $\$ 50$
ment
OPTIONS (1336P Power Supply Module)
$A C$ line cord
300: 2.3 m (7.5 ft) removable, 240 V max. 3-conductor $\quad \mathrm{N} / \mathrm{C}$
90° IEC to Great Britain. Singapore
301: $2.3 \mathrm{~m}(7.5 \mathrm{ff})$ removable. $240 \vee$ max. 3 -conductor $\quad \mathrm{N} / \mathrm{C}$
IEC to Australia. New Zeadand
302: $2.3 \mathrm{~m}(7.5 \mathrm{ft})$ removable, 240 V max, 3 -conductor $\quad \mathrm{N} / \mathrm{C}$
90° IEC to NEMA S-ISP (USA, Canada, Japan
Mexico)
303: 2.3 m (7.5 ft) removable, 240 V max, 3 -conductor
IEC so NEMA 5-15P (USA. Cunadr. Japan, Mexico)
304: 77.2 crn (30 in .) coiled, extends 101.8 m (6 ft)
removable, 120 V max. 3-conductor IEC 10 NEMA 5-15P (USA, Canada, Japan, Mexico)
NOTE: Units ordered with OpI 300-304 are not UL
Listed for use in medical and dental systems (UL 544).

Safety

331: meets HTM8 listing for use in Medical Equipment
332: meers CSA standards for use in Medical Equip- add $\$ 50$
men!
333: meers VDE slandards for use in Medical Equip- add $\$ 50$ ment
Connecting cable
$001: 0.3 \mathrm{~m}$ (1 fi) interconnecting cable in licu of $1.5 \mathrm{~m}(5 \quad \mathrm{~N} / \mathrm{C}$
fi) cable
002: no interconnecting cable for supplying power 10 display module
Cabinel length
018: cabinet length same as 1336A. Includes locking hardware to attach power supply module 10 display module. Assembled pair are one standard EIA rack width. Rack mounling fanges. with or withour handles, and pivoting or fixed slides are available for rack mounting the combined uniss: see Cubinets. System II.

Ordering information
1332A Smail Screen Display $\$ 1400$
$\begin{array}{ll}\text { 1333A Small Screea Display } & \$ 1700 \\ 1335 \text { A Small Screen Display } & \$ 2030\end{array}$
$\begin{array}{ll}\text { 1335A Small Screen Display } & \$ 2030 \\ 1336 \text { S (Complelc Sysiem) } & \$ 4450\end{array}$

1304 A

1304A, 1310A, 1311A, 1317A, 1321A

Description

Hewlet1-Packard's Models 1304A. 1310A, 13)1A, 1317A, and J32IA Large Screen Dísplays offer the high wriling speed and fasi setbing dime needev in high densicy information systems such as computer graphic, analytical revearch, and radar. The advanced electrostalic deflection systems used in these displays provide writing speeds of $25 \mathrm{~cm} / \mu \mathrm{s}(10 \mathrm{in} . / \mu \mathrm{s}$), and large and small step settling times of $k \mu s$ or less. The yokeless electrostatic deflection also ximplifies operation, eliminates geomerric correction cireuits and onnecessary delay lines, and reduces power requirements and weight. High CRT acceleraling polentials of 27 or 28.5 kV assure bright, easy-to-read displays, and a small spol size gives you a crisp. clear image over the large quality area.

The Model B04A offers high writing speed and fast setting time, and is a cost-cffective solution for applications such as Fourier or spectrum analysis, chemical or physical analysis. calculator-based graphics, or other applications where informstion densily does not require the higher resolution of the 1310A. I3IIA. 1317A , or I32IA. The dinplay is looused in the Hewlelt-Packard System-Il modular chassis with its mounting flexibilsty and selection of accessory hardware.

The I3IOA, I311A. I3I7A, and I32IA are clectrically almost identical but offer a wide variety of display sizes and conngumlions to fil slmost any bigh-specd. large screen OEM display requirements.

The I32IA has the highesi overall resolution (screen areat divided by spot size) of any HP CRT display. making it the choice for computer gruphies or other applications where maximum infonmation density is the main considuration. The I3I7A is ideal Tor standand 48.3 cm (19 in .) rack-mount applications requing the largest possible sereen area in the minimum vertical rack space. For tablelop applications such as remote monitors, Models I310A and I3IIA ofter an attractive modem styled stand-alone packige. Bobl of these displays may be mounted in standard 48.3 cm (19 in.) racks or in your own cusiomer designed enclosures.

1304A Specificatlons

Vertical and horizontal amplitiers

Rlsetlme: $\leqslant 70 \mathrm{~ns}, 10 \%$ to 90% points, for full screen deflecition or less.
Bandwidth: de to $5 \mathrm{MH} /$ (3 dB down) for 10 cm (3.9 in .) deflection or less.
Phase shift: < ${ }^{*}$ to 250 kHz for full screen signal inpuls
Deflectlon facior: front panel adjustable from $8010120 \mathrm{mV} / \mathrm{div} .1$ div $=20 \mathrm{~mm}$ (0.8 in .). Internally selectable $5: 1$ or $10: 1$ attenuators independenty sertable for X and Y inputs.

Linear witling speed:' $>25 \mathrm{~cm} / \mu \mathrm{s}\{-.9 .8 \mathrm{in} . / \mu \mathrm{s})$.
Setting tme: (large and small step) ,ignal selliles co wilhin one spot diameter of finai value in ≤ 300 ns for any on screen final localion. Initial off sereen detlection (if any) must not exceed specified dynamic range
Repeatabllity: < 0.15% crror (full screen) for readdressing a poinl from any on or off screun location within the specified dynamic range.
Crosstalk: $<0.25 \mathrm{~mm}$ (0.01 in .) with one input terminated in 5012 and the o1her axis excited by a $1 \mathrm{~V}, 500 \mathrm{kHz}$ signal ($<0.5 \mathrm{~mm}$ at 5 MHz , when driven from a lemminaled 50Ω source).
Inputs: fully differential: BNC comneclors have grounded shicids. Input RC: $\geqslant 100 \mathrm{k} \Omega$ shunted by $\leqslant 65 \mathrm{pF}$. Can be se. 1050Ω miernally.
Maximum Input: $\pm 50 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) for high impedance input termination: $=2.5 \mathrm{~V}$ (dc + peak ac) for 50Ω input termination.
Polarity: a positive signal inpul to the (+) inpul moves beam up or to the right. A negalive signal inpol to the (-) inpur moves the beam up or to the right.
Position: front manel controlh aflow undeflected spot to be sed of screen from amywhere within the viewing areat. Spol fossition with both inputs shorted and position pots electrically oentered is at approx geomeltic center of the viewing alea.
Dynamic ranga: beam may be deflected off screen up to $1 / 2$ sereen dinmeter in any direction provided that the zero input position is on seneen withoul degradation of specifications.
Drif
Postion: $1.0 \mathrm{~mm} / \mathrm{hr}$. (0.04 in . /hr.) and a max of $2.3 \mathrm{~mm}(0.1 \mathrm{in}$.) in 24 hrs with covers installed afier 15 min. warmup.
Galn: $<1 \%$ under all conditions of specified line voltage with
covers installed after 15 min . warmup and ismperature beiween
$+20^{\circ} \mathrm{C}$ and $+55^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right.$ and $\left.+131^{\circ} \mathrm{F}\right)$.
Crosstalk: $<0.23 \mathrm{~mm}(0.01$ in.) with onc inpul terminated in 501) and the other axis excited by a $1 \mathrm{~V}, 500 \mathrm{kHz}$ signal $(<0.5 \mathrm{~mm}$ al 5 MHz).
Z-axis amplifier
Alsetime: <25 ns (cw bandwidh is approx 5 MHz).
Blanking range: a 1 V change in Z -axis input voltage causes a full scale change in brightness (intemally switch-selectable to 5 V or 10 \vee). The culoff level can be set from +0.2 Vdc $10-1$ VJc with the intensity contral. With the intensity conirol full cew. brightress is limited 10 a bafe level for any Z-ax is inpul volage.
Blanking polarity: fully differential. A positive or negalive going input volage into the positive or negative inpuls. respectively. increases brightness.
Input: fully difierential; BNC connecors have grounded shields.
Inpul RC: approx $\geq 100 \mathrm{k} \Omega$ shunted by $\leqslant 65 \mathrm{pF}$. Cin be sel co 50Ω intemally.
Maximum inpul: $=50 \mathrm{~V}(\mathrm{dc}+\mathrm{pcak} \mathrm{ac})$ for high impedance inpul iermination; $=2.5 \mathrm{~V}$ (de + peak ac) for 50 (1 input termination. Gain: intemally adjustable over 2.5: I altenuation range.
Focus correcilon: amplifier automatically corrects focus voltage for changes in grid to cathode voltage.

Galhode-ray tube

Type: posl deПecijon accelemtor, approx 27 kV accelerating poiential. Aluminized P3I phosphor. electostatic focus and deflection Viewing a rea: $500 \mathrm{~cm}^{2}$ (77.4 in. ${ }^{7}$): 20 cm (7.9 in .) verlically by 25 cm (9.8 in.) horzontally.

Gratlcule: none with standard instmment (sec 1304A Oplions).
Quallty area; 30 cm (7.9 in .) venically by $25 \mathrm{~cm}(9.8 \mathrm{in}$.$) horizon.$ tally.
Resolution
Spot size; <0.5 num (0.02 in.) (with 30 V drive from gnd to cathode) over entire quality unea measured using shrinking raster method.
LInes: mpprox 20 lines/am (50 lines/in.): measured with shrinking raster melhod, inside quality area.
LIne brightness: $\geqslant 19.2 \mathrm{~cd} / \mathrm{m}^{2}(5.617)$ at writing speed of $2.5 \mathrm{~mm} / \mu \mathrm{s}$ ($0.1 \mathrm{in} . / \mu \mathrm{s}), 60 \mathrm{~Hz}$ refresh rale, P31 phosphor. and tocused spol. LInearlty: <3c; of full scalc along major axes.
Geometry: <? ? pincushion and barrel distonion within qualìy ared
bD CATHODE-RAY TUBE DISPLAY

Models 1304A, 1310A, 1311A, 1317A\& 1321A (cont.)

1310A
Trace allgn: rotates X-axis inio geometric alignment with CRT viewing area.
Orthogonallty: separately aligns Y -axis perpendicular to X -axis.
Safety protectlon
Implosion and Impact: CRT meets UL safely requirements and execeds requirements of lEC 348 (IEC 65).
High voltage: anode lad is permanenty bonded 10 CRT .
X-ray emission: <0.5 mr/hr measured with Viccorcers Model 44 RF/C.
UL Ilstings: standard instrument meets requirements of UL 478 for Electronic Daw Products. Theseby meeting OSHA (Sub-par S) approval. Opcion 330 meets requirements of UL 544 for medical and dental equipment. See 1304A Options (Operator Safery) for additional safely standard compliances.

General

X, Y, and Z Inpuls: rear panel BNC female connectors, wo for each axis.
Front panel controls: located behind door on front panel. Knobs-Intensity. Focus. X Position. Y Posilion. Screwdriver adjusiments-Trace Align. X Gain. Y Gain, Astigmatism.
LIne Indicator: froni panel green LED.
Power: selectable 100.120 .220 . or $240 \mathrm{Vac}+5 \%,-20 \%$: 481066 Hz^{*} : max power $100 \vee \mathrm{~V}$ (approx 85 W). Average power disxipation at 60 Hz and 120 Vac is approx 60 W .

NOTE Ihese displays meet all electrical specifications from 4810440 Ha , bul do nol meet tho ac Jine lo chassis leakage requirements of UL 544 (Medical and Dentall) listíng atbore 66 Hz
Slze: $321 \mathrm{H} \times 425 \mathrm{~W} \times 530 \mathrm{~mm} \mathrm{D}\left(125 / \boldsymbol{m}^{\prime \prime} \times 163 \mathrm{~m}^{\prime \prime} \times 207 \mathrm{~g}^{\prime \prime}\right)$.
Welght; net. 20 kg (44 lb.); shipping. $28.2 \mathrm{~kg}(62 \mathrm{lb}).$.
Operating environment: lempcrature: $0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10\right.$ $\left.+131^{\circ} \mathrm{F}\right)$ - non-operating. $-40^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F} 10+158^{\circ} \mathrm{F}\right)$; bumidity. $5 \% 1095 \%$ relative humidicy at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$; alcitude, $104600 \mathrm{~m}(15000 \mathrm{n})$-non-operaling $10 \mathrm{l} .300 \mathrm{~m}(50000 \mathrm{nt})$: vibralion, vibrated in three planes for 15 min. each with $0.38 \mathrm{~mm}(0.015$ in.) excursion. 5 Hz to $\$ 5 \mathrm{~Hz}$, I min. per octave, 10 min. each resonance.
Accessories supplled: one Operating and Service Manual, one 2.3 m (7.55 A) line cord (90° IEC 10 NEMA S-ISP. 3-conductor) for usc in Canada. Mexico. Japan. and the United States. See 1.304A Options for other available line cords.

1310A, 1311A, 1317A, 1321A Specifications

Vertical and horizontal amplifiers
Rise time: $\leqslant 75 \mathrm{~ns}, 10 \% 1090 \%$ points, for full screen deflection or less.
Bandwldth; de 10 approx 5 MHz (3 dB down) for 8.9 cm (3.5 in.$)$ deflecion or less in 1311 A .10 .2 cm (4 in .) in $1317 \mathrm{~A}, 12.7 \mathrm{~cm}$ (5 in.) in I310A or 1321A.
Phase shift: $<0.1^{\circ}$ to 50 kHz and $<1^{\circ} 10250 \mathrm{kHz}$ for full screen signal inpuLs.

1311A
Deflectlon factor: (1317A, 1321A) front panel adjustable through the range indicated.

1317A: from approx $39 \mathrm{mV} / \mathrm{cm}(100 \mathrm{mV} / \mathrm{in}$.) to $69 \mathrm{mV} / \mathrm{cm}$ (175 mV/in.).
1321A: from approx $33 \mathrm{mV} / \mathrm{cm}$ ($83 \mathrm{mV} / \mathrm{m}$.) to $58 \mathrm{mV} / \mathrm{cm}$ (147 $m \mathrm{~m} / \mathrm{in}$.).
Deflectlon factor (1310A, 1311A): front panel adjustable through the range indicated.

	venical	Horizontal
13104	froni apporex 35.8 mV/am ($97 \mathrm{mV} / \mathrm{V} / \mathrm{I}$) $1060.9 \mathrm{mV} /$ cm ($153 \mathrm{~m} \mathrm{~m} / \mathrm{in}$)	from approx $26.2 \mathrm{mV} / \mathrm{cm}$ (67 mvim) 1045.9 mW cm ($117 \mathrm{mV} / \mathrm{n}$.)
13114	Hom appiax $46.3 \mathrm{mV} / \mathrm{cm}$ (118 $\quad \mathrm{V} /(\mathrm{m})$.1081 mV) com ($207 \mathrm{mV} / \mathrm{mh}$)	Gram apprar 35.8 mV/cm (90 mV (in.) 10 50.9 my/ cm (153 mY/n.)

Linear writing speed: $>25.4 \mathrm{cmu} / \mu \mathrm{s}$ ($>10 \mathrm{in} . / \mu \mathrm{s}$).
Setting time: (large step) signal setucs 10 within 1 spot diameter of final value in $<500 \mathrm{~ns}(1310 \mathrm{~A}, 1311 \mathrm{~A}, 1321 \mathrm{~A})$. <1 $\mu \mathrm{s}$ (1317A). for any on or off screed movement. Off screen deflection not to exceed one screen dismeter. (Small step) signal setties to within 0.25 mm (0.010 in .) of final value in $<200 \mathrm{~ns}$ for any 2.5 mm (0.10 in .) step. Repeatabllity: <0.15\% error (full screen) for re-addressing a poinl from any on or off screen direction. Off screen deflection nol to exceed one screen diameter.
Crosstalk: $<0.38 \mathrm{~mm}(<0.015 \mathrm{in}$) with one ingut terminalod in 50Ω and the other input excited by a I V. 500 kHz signal.
Spot jitter and motlon: (1310A, I311A. 1321A) $<0.13 \mathrm{~mm}(<0.015$ in.): (1317 A) $<0.25 \mathrm{~mm}$ (<0.010 in.).
Inputs: (I3IOA. I311A) BNC connectors with floaling shield: (I317A, 1321A) BNC connectors with grounded shield. Separale differenkial inputs (shield grounded) available for 1317A. 1321A; see Oplions,
Input RC: center conductor $10 \mathrm{k} \Omega$ shunted by approx 40 pF . Shield input ($1310 \mathrm{~A}, 1311 \mathrm{~A}$ only) is 47Ω io ground and can be replaced with $10 \mathrm{k} \Omega$ for full differential input. A switchable 50Ω lemination beIween shield and ground is also provided.
Maximum Input: $\pm 50 \mathrm{~V}$ ($\mathrm{dc}+$ peak ac) for high impedance inpul termination. $\pm 5 \mathrm{~V}$ (dc + peak ac) for $\mathrm{So} \mathrm{\Omega}$ input temination.
Polanty: positive vertical inpul moves beam up; positive horizontal input moves beam right. Polarity can be reversed by changing internal lead connections.
Position: front panel controls allow undefected spot to be set off screen from anywhere within the viewing asea. Spot position with both inputs shored and position pots electrically centered is at approx geometric center of the viewing area.
Dynamic range: at least ± 1.5 screen diameters from center screen. LInearlty: (1310A, 1311A, 1321A) 1% of full scile display along major axes within quality area: (1317A) $<3 \%$ of ful scale display along major axes within quality area.
Drift: $2.3 \mathrm{~mm} / \mathrm{hr}$ ($0.05 \mathrm{in} . / \mathrm{hr}$.) and $2.5 \mathrm{~mm}(0.10 \mathrm{in}$.$) in 24$ hours with covers installed after $1 / 2$ hr warmup.

The yokeless electrostatic dellection system used In HP large screen displays results in low power consumption and increased rellabilily. important factors in remote locations such as this round-the-clock weather radar. Notice the line of tornados and rain squalls.
(Pholo courlesy of Bendix Avionics, Inc.)

Z-axis amplifiar

Rige time: < 20 ns (cw bandwidth is approx 15 MHz).
Blanking range; a I V charge in Z-axis input voltage causes a full scale change in brightness. The cutoff level can be set from 0 Vdc 10 -1 Vde widh the inensiry control.
Blanking polarity: prositive input unblanks CRT, intemally revers ible for negative unblanking.
input: BNC connector (shield grounded). Differential input avaitable on 1317A. 1321A: see Options.
Input RC: approx $10 \mathrm{k} \Omega$ shunted by approx 60 pF . 50Ω termination may be selecled with intemal swith.
Maximum Input: $\pm 50 \mathrm{~V}$ (dc + peak ac) for high impedance inpul temination, $=5 \mathrm{~V}$ (dc + peak ac) for 50Ω input termination.
Offset: (1317A, 1321A) intemal adiustment provides $\pm 1 \mathrm{~V}$ offset (continuous) to blanking range.
Galn: intemally adjustable over 2.5:1 attenuation range.
Cathode-ray tube
Type: post deflection accelerator, approx 28.5 kV accelerating potential: P3I aluminized phosphor standard (refer to Options for othes phosphors): electrostatic focus and deffection.
Vlewing area
1310A: 48 cm (194) diagonal: approx $28 \mathrm{~cm}\left(11^{\prime \prime}\right)$ vertically by 38 cm (19') thorizontally.
1311A: 36 cm ($14^{\prime \prime}$) diagonal; approx 22 cm (8/2") verically by 28 cm (11") horizoneally.
1317A: $43 \mathrm{~cm}\left(17^{\prime \prime}\right)$ diagonal: approx $26 \mathrm{~cm}\left(10 \% 4^{\prime \prime}\right)$ vertically by 34 cm ($131 / 2^{\prime \prime}$) horizontully.
1321A: 53 cm (21") diagonal: approx 30 cm ($12^{\prime \prime}$) verrically by 35 cm ($14^{\text {² }}$) horizontally.
Quality area
1310A: $27.9 \mathrm{~cm}\left(11^{\prime \prime}\right)$ by 27.9 cra ($11^{\prime \prime}$).
1311A: $21.6 \mathrm{~cm}\left(81 / /^{n}\right)$ by $21.6 \mathrm{~cm}\left(88 夕^{\prime}\right)$.
1317A: 25.4 cm (10°) by 25.4 cm (10°).
1321A: 30.5 cm (12") by $30.5 \mathrm{~cm}\left(12^{\prime \prime}\right)$.

Spot size and resolution: measured using shrinking rasicr method. at center screen, at indicaled drive level.

Model	Sporsje	Resolullon	Drive level (Voltr angue euroft a chi eriid)
$\begin{aligned} & 13110 A \\ & 1317 A \\ & 1011 \mathrm{~A} \end{aligned}$	$\begin{gathered} 051 \mathrm{~mm} \\ 10.020 \mathrm{in.1} \end{gathered}$	19.7 inesfem (50 lines.'in.)	50 V
13114	0.38 mm 10.015 (in.	26.3 lines 1 cm 166. 7 linesin:	30 V

Spot slze within qually area: measured using shrinking raster method, no more than 1.5 times spot size al center screen.
Line brightnese: $\geqslant 82.4 \mathrm{~cd} / \mathrm{m}^{2}$ (24 fl) al a writing speed of 3.5 $m \mathrm{~m} / \mu \mathrm{s}(0.1 \mathrm{in} .1 \mu \mathrm{~s}), 60 \mathrm{~Hz}$ refresh rate, P 31 phosphor, $0.51 \mathrm{~mm}(0.02$ in.) spot size on 1310A, 1317A, 1321A, and $0.38 \mathrm{~mm}(0.015 \mathrm{in}$.) spot size on 1311A.
Geometry: (1317A. 1321A) $<3 \%$ (1317A). $<2 \%$ (1321A) pincushion and barrel distortion within quality area.
Phosphor protection: circuit automatically decects absence of beam deflection and limis beann current 10 a safe bul viewable level. Dynamic focus: automatically corrects spor geomeny for position on screen and beam intensity (video drive level).
Contrast rallo: $4: 1$ or greater with $340 \mathrm{~cd} / \mathrm{m}^{2}$ (100 n) ambient light and CRT face in a vertical plane. Measured by photomerrically summing the trace and background brightness and then dividing by background brightness.
Trace allgn: rotates X-axis into geometric alignment with CRT viewing area.
Orthogonality: separalely aligns Y -axis perpendicular io X -axis.

Safety Protecflon

Implosion and Impact: CRT meetr UL implosion and impact safery requirements and exceeds requirements of IEC 348 (IEC 65). High voltage: anode lead is permanenty bonded to CRT.
X-ray emission: <0.5 mr/hr measured wilh Victoreen Model 440 RF/C.
UL listinga
1310A, 1311A: Opl 008 meets requirements of UL S44 for Medical and Dental equipment.
1317A, 1321A: standard instrument meets requirements of UL 478 for Electronic Data Prodacts. thereby meeting OSHA (Subpars S) approval. Opt 008 meers requirements of UL 544 for Medical and Dental equipment.

General

X, Y, Z inputs: rear panel BNC female connectors. X and Y inputs have a floating shield and the Z input has a grounded shield.

Front penel controla

1310A, 1311A: controls and adjustronts located on froat panel include Intensity (knob control). Focus, Asugmatism, X position. and Y position (screwdriver adjus(ments). Additional serewdriver adjustments located behind a front parel mask are Trace Align. Orthogonality, Gain X, Gain Y.
1317A, 1321A: Intensity. Position X, Gain X. Position Y, Gain Y. Trace Align. Orthogonaliyy, Facus, and Astigmatism controls located below the CRT behind a binged door.
Line indicator: lamp mounted bethind front pancl (behind hinged door on 1317A, 1321A).

Power

1310A, 1311A: 115 Vac $\pm 10 \%$ or $230 \mathrm{Vac}=10 \%$, 48 Hz to 66 Hz^{*} : max power 115 VA (approx 100 W .
1317A, 1321A: selectable 100, 120, 220. or $240 \mathrm{Vac}+5 \%,-10 \%$; 48 to $66 \mathrm{~Hz}^{*}$: max power in 1317A. 115 VA (approx 100 W). in 1321A, 135 VA (approx 110 W .

- Hore. these displays meet all electrical spen licalions from 48 ta 440 Hz , but do not meel the

1317A with standard rack mount ears fits in 48.3 cm (19 in .) rack

1321A

Dimensions

1310A, 1311A: lapprox overall dinensions withoul rack mount adaplers or bit sland) 1310 A . $422 \mathrm{H} \times 497 \mathrm{~W} \times 660 \mathrm{mmD}$ ($16^{3} / \mathrm{h}^{\prime \prime}$ $\left.\times 19^{4} / 66^{\prime \prime} \times 26^{N}\right): 1311 A, 319 \mathrm{H} \times 425 \mathrm{~W} \times 578 \mathrm{~mm} \mathrm{D}\left(12^{1 / / 36^{\prime \prime}} \times\right.$ $16^{3} \%^{\prime \prime} \times 22^{3} 5_{4}$). Coniact your local HP Ficld Engineer for a dala sheet with dimensional drawings.
1317A: approx 410 H (including feet) $\times 419 \mathrm{~W} \times 572 \mathrm{~mm} \mathrm{D}$

1321A: approx 483 H (with fect) $\times 527 \mathrm{~W} \times 632 \mathrm{~mm}$ D averall ($19^{11} \times 20^{3} / 4^{1 "} \times 24^{\prime \prime} / x^{\prime \prime}$)

Welght

1310A: net. $24 \mathrm{~kg}(53 \mathrm{lb}$): with covers 26.8 kg (59 lb). Shipping. $32.2 \mathrm{~kg}(92 \mathrm{lb})$.
1311A: nel. 18.1 kg (4) lb): with covers 20.4 kg (4.5 lb). Shipping. 28.1 kg (53 lb).

1317 A : net. 26.3 kg (58 lb). Shipping. 33.4 kg (75 lb).
1321 A : nel. $36.3 \mathrm{~kg}(80 \mathrm{lb})$. Shipping. $43.1 \mathrm{~kg}(9.5 \mathrm{lb})$
Operalling environment: icmperature. 0 to $+55^{\circ} \mathrm{C}\left(+12^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$ - non-operaling. $-40^{\circ} \mathrm{C} 10+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$: humidity, to 955° relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right.$): dilude. 10 $4600 \mathrm{~m}(15000 \mathrm{ft}$)-non-operating, to 7600 m (25000 ft): vibrarion. vibraled in three planes for 15 min . cach with $0.25 \mathrm{~mm}(0.010 \mathrm{in}$.) exeursion. J0 10 5 5 Hz .

Accessories supplled
1310A, 1313A: rack mount adapter, front pancl cover, one power cord, and ane Operating and Service Manual.
NOTICE TO USERS: the 1310 and 1311 A are designed and manufactured primarily for OEM systems applications. Therefore, withoul Opt 003, the Top and Boltom Protective Covers are not provided and intemal wiring connections of HAZARDOUS VOL'TAGES ARE EXPOSED. Operator protection from these hazardous voliages must be provided by the parchaser and/or user of the instruments. If in doubr. ORDER OPT 003.
1317A, 1321A: one 2.3 n ($\overline{7} .5 \mathrm{ft}$) power cord, and one Operating and Service Manual.

1304A Optlons and accessories

Optlons

Price

X and Y ampliflers

Deflecilon factor

100': $500 \mathrm{mV} / \mathrm{div}, 5 \mathrm{~V}$-p for rull screen deflection
101': $1 \mathrm{~V} / \mathrm{div}^{2} 10 \mathrm{~V}$ p.p for full screen deflection
Input Impedance
110': 5012
Z-axls Input (video ampllfier)
Blanking range
200: 0105 V
201': 01010 V
Input Impedance
210: 50』
Digital Input
216: TTL Blanking level. High state $(+2.5 \mathrm{~V} 10+5 \mathrm{~V})$ blanks any Z-axis analog inpul signal. Low slete 0.0 V 100.8 V) returis blanking to analog Z-axis inpul. Input through rear panel BNC connector
217: same as 216. except polarity reversed
218: 4 bil binary inpul allows binary sefection of 16 levels of gray shades, TTL levels. Seuling time $\leqslant 300$ ns. Levels linear wirhin $=20 \%$. Includes 25 pin pro gram connecior mounted to rear panel. When Oplion 218 is ordered with Oplion 216 or 217. TTL blanking inpul is provided through both a BNC connector und the 25 pin remole connector.

Cathode-ray tube

Gratlcule/phosphor type
004: P4 aluminized phosphor with 10×12 divincemal graticule (3 siv $=2.0 \mathrm{~cm}, 0.79 \mathrm{in}$.)
031: P11 aluminized phosphor with 10×12 div internal graticule ($1 \mathrm{div}=2.0 \mathrm{~cm} .0 .79 \mathrm{in}$.)
039: P39 aluminized phosphor with 10×12 div inlernal graticule ($1 \mathrm{div}=2.0 \mathrm{~cm} .0 .79 \mathrm{in}$.)
604: P 4 aluminized phosphor in lieu of P 43
639: P19 aluminized phosphor in liev of P43

Contrast fllters

561: clear anli-glare filter replaces standard neutral densily contrasl filter
563: blue anli-glare filler replaces standard neulal density contrasififer
General
AC IIne cords
300: 2.3 m (7.5 t) removable, 240 V max. 3 conductor 90° IEC 10 Greal Britain, Singapore
$301: 2.3 \mathrm{~m}$ (7.5 ff) reniovable, 240 V max. 1 conductor IEC to Australia. New Zealand
302: 2.3 mm (7.5 fi) removable. 240 V max, 3 conduclor IEC 10 Easl and Wesi Europe
303: $2.3 \mathrm{~m}\left(7.5\right.$ fi) 2 removable, 240 V max. 3 conducror IEC to NEMA 5-IS P (USA. Carada. Japan. Mexico) 304: 77.2 cm (30 in .) coiled. extends to 1.8 m (6 ft) removable. $120 \vee$ max, 3 conductor IEC to NEMA S-IS P (USA. Canada, Japan. Mcxico) \{nol available with Opi 330)
$306: 2.3 \mathrm{~m}(7.5 \mathrm{ft})$ removable, 3 conductor IEC to Swilzerland
307 : hospilal grode power cord
Rear panel connector
324: adds 25 pin connector to ratr panel. X. Y. and Z-signal inputs wired to the positive signal inputs (NOTE: inpul capacitance increases to approx $1 \geq 0$ $\mathrm{pF})$
add \$5 add $\$ 5$ add $\$ 5$

HP large screen displays are ideal for high density information such as thls waterfall display, showing machine vibration frequency and amplitude versus ilme.
(Photo courlesy of Spectral Dymamics, Inc.)

Operator safety

330: meels UL Listing 544 for Medical and Dental Electronic Equipment. [ncludes special three conductor ac line cond, specially marked covers, and UL label 331 : meels HTM8 Listing for use in Medical Equipment
332: meets CSA standands for use in Medical Equipment
333: meets VDE standards for use in Median Equipment
-These options ant internally switch seleciable on standard 13044 displays.

Accessorles

Front handle kit (P/N 5061-0093): includes front handles bat fis on cach side of the front panel frame. with attaching hardware. NOTE: these handles cannol be used with Rack Flange Kii P/N 5061-0081.) Aack flange kit (P/N 5061-0081): is used to mount the 1304 A in a standard 48.3 cm (19 in. .) ElA or RETMA rack. Kit includes two 31.1 cm ($121 / 4$ in.) high flanges and altachimg hardware. (NOTE; these mounting flanges are not compatible with Front Handle Kit P/N 5061-0093)
Rack flange and tront handle comblnatlon kit (P/N 5061-0087): includes 1 wo 31. 3 cm (12144 in.) high flanges for mounting the 1304A in a standard 48.3 (19 in.) EIA or RETMA rick. iwo front handles, and altaching hardware
Flyed sllde klt (P/N 1494-0017): provides fixed chassis slides for installing the I304A in an HP rack enclosure: for other rack enclosures, one slide adapter bracket kit. P/N 1494-0023, is required
Plyoting slide kit (P/N 1494-0028): provides pivoling chassis slides for installing the 1304A in an HP ruck enclosure: for other rack enclosures, one slide adapter bracket kir, P/N 1494-0023. is required
Sllde adapter bracket kll (P/N 1494-0023): is required for insialing a 1304 A in non-HP rack enclasures with chassis shide kits P/N $1494-0017$ or 14940026
Input slgnal cable, Model 10488 A : provides convenient connection between the display and signal source. The cable contains threc color-coded 50s? cosxial cables with three nale BNC connectors on sach end for the $X . Y$. and Z-inpuls. Approx length is 3.6 m (12 f)

1310A, 1311A, 1317A, 1321A Options and accessories

Options

003: (1310A, I311A) top and bollom covers with till stand. 1310A front panel nomenclature oriented for reading in the horizontal position. (Rack mount adapter nor supplied with Opi 003 instruments.)

005: green contrast filter for 1310A, 1311A, or 1317A green conlrasl filter for 1321 A
006: blue contrasi filter for 1310 A blue contrasi filier for I311A blue contrast filter for 1317A blue contrasi filker for 1321A
008: (1310A. I3IIA) meets UL Listing 544 for Medical and Dental Electronic Equipmenc: includes covers 008: (1317A, 1321A) meets UL Listing 544 for Medical and Dental Electronic Equipment
009: (1310A. 1311A) tilt sland for use with Opi 008 instruments
050: (1317A. 1321A) TTL blanking level. High state. +2.5 V to 45 V blanks any analog Z-input. Low state. 0.0 V 100.8 V returns blanking to analog Z-axis input $051:(1317 \mathrm{~A}, 132) \mathrm{A})$ differential inputs to X, Y, and Z amplifiers. Inputs for each axis through separate BNC connectors (shields grounded)
052: (1317A. I321A) 4-bit binary Z-axis inpul provides 16 levels of gray shades (TTL compatible). Setuing lime $\leqslant 300$ ns
053: ($1317 \mathrm{~A}, 1328 \mathrm{~A}$) linear light outpu1 ($\pm 20 \%$) with respect to Z-axis drive change (gamma correction)
054: (1317A, 1321A) sume as 050 except polarity re versed
055: (1317A) fixed slides for ElA standard rack, 48.3 cm (19 in .)
604: aluminized P4 phosphor in lieu of P31
607: aluminized P7 phosphor in lieu of P31, includes amber contrast filter with anti-glare surface 839: aduminized P39 phosphor in lieu of P31

Accessories

Cover klts: (1310A. I31|A) top and bottom cover for field installation. For desk top operation, a till stand is required since the covers are not designed to suppon an instrument.
1310A Cover Kit P/N 01310-68710 \$140
1311A Cover Kil P/N 01311-69709
Tilt stand kits: (1310A, I3||A) provide field insiallation of tiln stand for stand alone operation.
1310A Till Stand Kil P/N 01310-68702
1311A Tilt Stand Kit P/N 01311-68702
Rack mounling kits: (1310A, 1311A) rack mounling adaplers are supplied with standard instnments on ini(ial order or may be ordered as a kit.
1310 A Rack Mounl Kit P/N 01310-68701
13IIA Rack Mount Kis P/N 013|l-68701
Sllde kis: (1310A. 1311A) fixed slide kils are available for mounting the 1310A and I3IIA Displays in a standard 48.3 cm (19 in .) rack. A pivoling slide kil is also avalable for the $13|\mid A$.
1310A Fixed Slide Kir P/N OI310-68704
1311A Fixed Slide Kit P/N 01311-68704
1311A Pivoling Slide Kit P/N 01311-6870S
1310A Front panel Inserts: allow changing orientalion of fronl pancl conlrol nomenclature for ease of reading when 1310A mounting is changed (rotated 90°).
For vertically mounted display order P/N 01310-00202
For horizontally mounted display order P/N 0131000204
add $\$ 50$
add $\$ 60$
add $\$ 45$
add $\$ 30$
add $\$ 50$
add $\$ 60$
add $\$ 175$
add $\$ 25$
add 8175
add \$25
add $\$ 25$
add $\$ 100$
add \$50
add $\$ 25$
add $\$ 100$
add \$30 add $\$ 100$
add $\$ 30$
$\$ 140$
$\$ 235$
$\$ 280$
$\$ 70$
$\$ 70$
$\$ 210$
$\$ 200$
$\$ 140$
$\$ 11$
$\$ 7$
55.5

1317A. 1321A) referio 1304A Accessories for description
Ordering Information
Price
1304A Large Screen Display
Opt 910: exun manual
1310A 48 cm (19 in.) Display
Opt 910: extra manual (covers 1310A \& I3IlA)
1311 A 36 cm (14 in.) Display
Opt 910: extra manual (covers 1310A \& I3IIA)
1317A Large Screen Display
Opt 910: extra manual
132IA Large Screen Display
Opi 910: exira manual
OEM discounts oralfable
$\$ 2400$
add $\$ 7$
$\$ 3800$
add $\$ 8.50$
$\$ 3500$
add $\$ 8.50$
$\$ 3600$
add \$16
$\$ 4200$
add $\$ 1$?

Introduction

Hewlett-Packard power supplies are avadable in many types, sizes, and ratings. There are laboratory supplies used in circuit development, modular supplies 10 power systems, high power supplies for industriat processes. and many special purpose supplies ranging from constant-current sources to bipolar power supply amplificrs
The true value of a power supply
The best power supply for the job must first satisfy al the physical criteria: voltage and current ratings, periormance specifications. size. and features. Bul equally imporant are the less tangible aspects that affect the real cost of ownership. Such factors as the experience and experise of the manufacrurer's engineering staff should be considered. Are his designs conservative-does he use quality components/does he have eslablished QA procedures?
If you have a problem or need application assistance, are the manufacturers' reps accessible, responsive, and knowledgeable? Are spare parts and service available on a word-wide seale?
These factors do not show up on a spec shect, but are closely relased to a company's capability and responsibility towards its customers. When you purchase a power supply from Hewletl-Packard, you receive guaranleed product performance plus all the intangibles that add up to long-term value-and it usually costs no morc.

Regulation techniques

HP power supplies are designed using one of four proven stabilization techniques: series. switching. SCR, and SCR preregulator/series regulator.
Serles regulation: this rechnique uses a feedback loop to conirol the voltage drop actoss a series-pass transistor located between the recified dc inpul and the ouput terminals of the power supply. The feedback nelwork senses changes in the outpul voltage and develops an error signal which adjusts the drop across the series transistor such that it maintains the output terminal voltage at the desired ievel. Goad regulamon (0.001% lo 0.05%). low ripple and noise (50 $\mu \mathrm{V}$ to mV), and fast transtent response ($<50 \mu 5$) characterize this type of regulator.

With all its attribules of excellent performance and circuit simplicity, the series regulator has one drawback; it is relatively inefficient (rypically 30 to 40%). Heat sinks are employed to dissipate the heat generated by the scries transistors and this necessarily increases the size and weight of the supply.

All linear OEM modular and low power lab supplies use this technique.
Extended range serles regulation: this technique usey a pair of triac switches with appropriate consrol logic 10 automatically select different transformer secondary laps depending on the oulput voltage and current demand placed on the supply, and the AC input voltage and frequency. Several voltage-current combinations can thereby
be supplied from the inpul restifier to the following series regulator. This extends the range of voltage (or current) output available within the power rating of the supply beyond that obtained from a simple series regulator. Model 6002A uses this techrique.
Switching regulation: this techaique regulates the output voltage by essentially switching a series transistor on and off at a mpid rate (aboul 20 kHz) and delivering this "choppod" current to an output filter. A feedback network senses changes in the output and feeds back a correction signal which adjusts the cransistors on-off dury cycle to maintain a constant oulput voltage. Since a cransistor dissipates very litule power when it's fully on or off, the regulator has excellent efficiency (lypically $55-80 \%$).

Besides low power dissipation, another advantage of this rechnique is that the high pulse repection rates make ponsible the use of imnsformers, induclors, and filler capacitors that are much smaller than those required for operation at power line frequancies.

Stabilization performance of the switching regulator is somewhal lower than the series regulator (typically 0.2% regulation: 20 mV mas. 40 mV p-p ripple and noise) but well suiled for the majority of OEM system applications.
SCR regulatlon: in many high power applicalions, the righ segulation and low ripple and noise characteristics of the series regulator can be beneficially raded for economy. effeciency. and compact size. This is where the SCR regulator is most valuable. Typical performance spectications for SCR supplies are 0.05101% regulation. 50 mV mas. $500 \mathrm{mV} \mathrm{p}-\mathrm{p}$ ripple and noise. $50-200 \mathrm{~ms}$ transient response, and 70% cfficiency. Regulation is accomplished by sensing both the $A C$ input and DC output of the supply and generating a firing pulse for SCR's located in two legs of a bridge rectiner. If the oulpuc voltaye tries to decrease. the connrol circuit generates the firing pulse earlier in the inpul half cycle. More voluage is then passed through the SCR to the output filter to raise the output voltage to the correct level.
SCR pre-regulator/serles regulator: this technique incorporates the best of bouh worids, and is used in most medium to high power, high perfomance power supplies. In these supplics. the SCR pre-regulator changes the rectifier output in coordination with the output vollage of the supply so that only a simall voltage drop is maintained actoss the series pass mansistor. This reduces the power dissipation in the seres elegents and grealy improves the efficiency (up ta 70%). Typical periormance specificalions are similar to series regulated supplies except for slower iransient response.

Selecting power supplles

By model number: if you know the model number. you can find the power supply de. scription page from the numerical index in the front of ihis catalog.
By voliaga rating: the condensed listing on the following two pages lists power supplics in order of output voleage rating. The referenced calalog page covers detailed specifications

Specification definitions

Amblent temperature: the temperature of the air immediately surrounding the power supply.
Auto-parallel operation: a master-slave connection of the outputs of two or more supplies used for obtaining a curtent outpul greater than can be obtained from one supply.
Auto-serles operation: a master-slave connection of the outpuls of two or more supplies used for oblaining a volzage greater than can be oblained from one supply.
Auto-tracking operation: a master-slave connection of two or more supplies each of which has one of is output terminals in common with one of the output terminats of all of the other supplies.
Complementery tracking: a mister-slave interconsection of two supplies in which the voluge of the slave is equal to or proportional 10 that of the master and of opposite polarity with respect to a common pois.
Compliance voliage: the output voltage of a power supply operating in the constant-curtent mode.
Constant-current (CC) power supply: a power supply that stabilizes output current with respect to changes in influence quantities. Thus, for a change in load resistance. the output current remains constant while the ousput voltage changes by whatever amount лecessary to accomplish this.
Constant-voltage (CV) power supply; a power supply that stabilizes output voltage with respeci to changes in intiluence quantikics. Thus. for a change in load nesistance. the outpul voltage re mains constant while the oulpul current changes by whatever amount necessary to accomplish this.
Constant-vollage/constant-current (CV/CC) power supply: a power supply that operates as a constant voltage power supply or a constant-current power supply depending on load conditions. It acts as a constant-voltage source for compuralively large values of load resistance and as a constant-current source for comparatively small values of load resistance.
Constant-voltage/current-limiting (CV/CL) power supply: a power supply similar to a constant-voltage/constant current supply except that al comparalively small values of load resistance. its output current is limited instead of being stabilized.
Growbar: see overvoliage protection.
Current ilmiting: the action of limiting the output corrent of a constant-voltage supply to some predetermined maximum value (fixed or adjustable) and automatically restoring the output voltage to its normal value when the owentoad or shorn circuit is removed. There are three types of current limiting: 1) by constant-valagel constant-current crossover, 2) by decreasing the output voltage as the current increases, 3) by decreasing bolh voltage and current as the load resistance decreases (referred to as foldback or cutback current limiting).
Drift: the maximum change of an output voltage or current during an 8 -hour penod following a 30 -minute warmup, with all influence and control quantities maintained constant during the warm-up time and the period of drifi measurement. Drif includes both periodic and random deviations over the bandwidth from zero frequency (dc) to a specified upper frequency limit (usually 20 Hz).
Load effect: formerly known as load regulation, load effect is the change in the steady-state value of the stabilized output voltage or corrent resulting from a full-load change in the load current of a conslant-voltage supply or the load voltage of a constan-curent supply, with all other infuence quantities maintained constant.
Load effect transient recovery time: the time interval between a specified step change in the load current of a constant-voltage supply (usually a full-load or 5 -amp change, whichever is smaller) or in the load voltage of a constant-current supply and the instant when the stabilized output quantity retums to and stays withim the specified transient recovery band.
Master-slave operation: a method of interconnecting two or more supplies such that one of them (the master) serves to control the others (the slaves). The outpuls of the slave supplies always remain equal to or proporional to the output of the master. The outputs of
the master supply and of one or more slaves may be connected in series. in parallel. or with just their negative or positive output termunals in common. (See also complementary tracking.)
Nominal value: the value that ex ists "in name only". not the actual value. For example, in the case of a power supply with a calibmted output control, the nominal value is the value indicated by the control setting. For a supply with a fixed output, the nominal output is the output indicated on the nameplate. The nominal value of a $120-$ volt $\pm 10 \%$ line voltage is 120 volts.
Oulput impedance: the complex ratio of a sinusoidal voltage and simusoidal current al the outpul terminals, the one being caused by the other and being of external orisin.
Overcurrent protectlon: protection of the power supply and/or connected equipment against excessive output current.
Overtemperalure protection: protection of the power supply or parts of it against tempcratures exceeding speciūed values.
Overvoltage protection: prosection of the power supply and/or connected equipment against exceskjve oulpul volige. Overvoliage prolection is usually by means of a crowbar protection circuit, which rapidly places a low resistance shum across the supply's ounput terminals to reduce output voltage to a low value if a predetermined voltage is exceeded. A supply equipped with an overvoltage crowbar muse alsu be protected by a means of limiting or intertupting oulpul current.
PARD (acronym for pariodic and random deviation): the term PARD replaces the former term ripple and noise. PARD is the periodic and random deviation of a de oulput vollage or current from its average value, over a specinied bandwidth (20 Hz 1020 MHz : except Models 6s ISA-652§A: I Hz to 30 MH 2) and with all infleence and control quantities mainlained constart).
Programming speed: the maximum lime required for the programmed outpue voltage or current to change from a specified initial value (usually zero or maximum output) to a value within as specitied colerance band of a specified newly programmed value (for most model, 99.9% or 0.1% of maximum oulput, respectively; 99% and 1% for the 6104A-6116A. 6177C-6186C, and 6427B-6483C) following the onset of a step change in the programming input signal.
Remote control: also referred to as remole programming. remote control is the serting of the power supply voltage. current, or other function by means of an extemal control quantity such as a variable rexislance, voltage, or current or a dightal signal.
Remote sensing: remote sensing, or remote error sensing. is a means by which a power supply monitors the slabilized voluage directly at the load using extra sensing leads. The resulung circuit action compensates for voltage drops in the load leads (up to a specified limit).
Resolution: the smallest change in output voltage or current that can be obtained using the fromt pancl controls.
Reverse voltage protection: protection of the power supply against reverse voltage applied at the output icminals.
Slave operation: see master-slave operation.
Source effect: formerly known as line regulation, source effect is the change in the sleady-scate value of the stabilized outpot voltage or current reaulting from any change in the source voltage within its specified range, with all other influence quantities maintained constant. Source effect may be measured at any oulpul voltage and current within raling.
Temperature elfect coefliclent: the maximum steady-state change in a power supply's outpul vulage or current per degree Celsius following a change in the ambient lemperalure within specitied limits. with all uther influence quantities maintained constant.
Voltage ilmiting: the action of limiting the output voltage of a constant-curtent supply to some predetermined maximum value (fixed or adjustable) and automatically restoring the ouppul current to its nomal value when the lead conditions are restored so normal. There are wo types of voltage limiting: 1) by constant-volagel constant-curtent crossover. 1) by decreasing the output curtent as the voltage increases.
Warm-up time: the time interval after switching on a power supply until it complies with all performance specifications.

OC Volts	$0 \subset$ Amps （Nax）	Type	Model	Page
4－5．5	8	Low Cosi Lab	6384A \dagger	205
$0 \pm 58 \leq 20$				
Dual Range	1	GPSA．	6825A	218
$0=58=50$				
Dual Range	1	EPSA ${ }^{\text {a }}$	6826A \dagger	219
$5=0.50$	2	Modular	82005A \dagger	222
$5=0.50$	4	Modular	62005C \dagger	222
$5=0.50$	8	Modula	62005E \dagger	222
5 ± 0.50	16	Modular	62005G \dagger	222
Microplocessor				
5． $8=12$ lo 15．	18 \＆ 2 A			
＝0．25 Yriple	max	Modular	$63.3150 \dagger$	222
5 ± 0.25	22	DC－io－DC	61005 C	222
$5=0.25$	22	Modular	${ }_{63005 C} \dagger$	22
$\begin{gathered} 5 \& 121015 . \\ =0.25 \text { Triple } \end{gathered}$				
$=0.25$ Triple	$\max _{40 \& 10 A}$	0C－40－0C	613150	222
$5=0.50$	40	Modula	626051 \dagger	212
$5=0.25$	60	Modular	82605L \dagger	222
$5=0.25$	100	Modula	$62605 \mathrm{M} \dagger$	222
$0-6,0=20$	$2.5 \& 0.5$	Low Cosi	62368 \dagger	204
Truple		Lab		
0－7．5	3	Low Cost Lab	$62038+4$	205
a－7．5	5	Gen．Purpose	6281A才＊＊	206
0－8	1000	High fwr．	6464Cや＊＊	210
0－10	1	tow Cost Lab	6213A \dagger	204
0－10	1	Low Cosl	6214易	204
		Lab		
0－10	2	Plec．Volt	6113At＊＊	216
0－10	10	Gen．Purpose	6282At＊＊	206
0－10	20	Gen Purpose	62568t＊＊	200
0－10	50	Gen．Purpose	825981＊＊	208
a－10	100	Gen．Purpose	62608t＊＊	208
$\begin{gathered} 0=10 \& 0=10 \\ \text { Dual Range } \end{gathered}$	0.5	BPSA＊	6827at	215
12 ± 0.60	15	Madula	62012A	222
12 ± 0.60	3	Modular	82012C \dagger	228
12 ± 0.60	6	Modular	$620125 \dagger$	222
$12=0.60$	12	Modilar	62012 $6+$	222
$12=0.60$	23	Modular	626121 \dagger	222
$=12=0.60$ Oual	1.4	Modutar	62212A \dagger	222
$12-5,12-5.5$ Microprocessor	0．5，0．6， 3	Modular	623120	222
$\begin{gathered} \pm 1210=15 \\ \& 5=0.25 \text { Triple } \end{gathered}$	$2 \& 18 k$	Modular	833150 \dagger	227
$=12=0.60$ Dual	3.3	Modular	62212 ¢ \dagger	222
$\pm 12=0.60$ Dual	6	Modular	622126 \dagger	222
0－15	200	High Purs，	6453A9＊＊	210
$15=0.75$	1.25	Modular	62015At	222
$15=0.75$	2.5	Modular	62015C \dagger	212
$15=0.75$	5	Modular	62015E；	222
15－0．75	10	Modular	620156 \dagger	212
$15 \div 0.75$	20	Modula	$626151+$	222
$-15=0.75$ Dual	1.25	Modular	6221541	272
$\simeq 1585=0.25$	2818 max	Modular	833150 \dagger	227
$=15=0.75$ Dual	3	Modular	62215E ${ }^{\text {¢ }}$	222
$\pm 15=0.75$ Oual	5.2	Modular	$622156 \uparrow$	222
$0-16$ or 0－18	$\begin{aligned} & 600 \text { or } \\ & 500 \end{aligned}$	High Pwr．	6446C \dagger	210
$\begin{aligned} & 0-18 \& 0-\dot{2} 20 \\ & \text { Oual Tracking } \end{aligned}$	$1 \& 0.5$	Low Cost Lab	$62378 \uparrow$	208

TAyailable on GSA Contract Number GS－00S－0AG6a
－Way be used with the 59501A HP－IB Isotated D／A Converter／Power Supply Programmei ＋May be user with the 6 gace Mattiprogrammer when equipped wift Dithmi ixo． － $\mathrm{BPSA}=$ Bipular Power Supply／Araplifies．

OC Yolts	DC Amps （Hax）	Type	Mode）	Page
$0=20,0-6$	0.582 .5	Low Cos 1	623681	204
Tiple		Lab		
$0 \pm 20,0-18$	0.581	Low Cost	6237B	204
Jripla		Lab		
0－20 \＆0－40	0.680 .3	Low Cost	6204日t＊	205
Dual Range		Lab		
0－20 \＆0－40	0.680 .3	Low Cost	62058 ${ }^{\text {¢ }}$＊	205
Two Dual Range		Lab		
0－20	1	Prec．Yolt．	6111At＊＊	218
0－20	1.5	Low Cost	62018 ＋	205
		Lab		
0－20 80－40	1.58	Low Cost	$62008 \dagger^{*}$	205
Dual Range	0.75	Lab		
0－20 \＆20－40				
Oual Ranga	281	Prec．Yolt．	6J14At＊	216
0－20	3	Gen．Pupose	g284At＊	206
0－20 \＆0－20				
Two Oulputs	3\＆ 3	Gen，Putdoso	6253A10	208
0－20	10	Gen，Purpose	6263Bt＊	208
0－20	10	Gen．Purpose	6286A	206
0－20	15	High Pwr．	6427日t＊	210
0－20	20	Gen．Purpose	62648 ${ }^{\text {＋}}$	208
$0-20$	45	High Pwr．	6428 Bt	210
0－20	50	Gen．Puppose	62618t＊	208
20－40 \＆0－20				
Oual Range	182	Prec．Volt．	6114At	216
0－24	3	Gen．Purdose	6224Bt＊m	208
24 ± 1.20	1.75	Modular	62024Ct	222
$24=1.20$	3.75	Modular	62024E†	272
$24=1.20$	7.5	Modular	62024G \uparrow	222
$24=1.20$	12.5	Modular	625241 \dagger	222
0－25	0.4	Low Cost Lab	6215A1	204
0－25	0.4	$\begin{aligned} & \text { Low CosI } \\ & \text { Lab } \end{aligned}$	621681	204
$0-2590-50$				
Dual Range	180.5	Gen，Puppase	6220日十＊＊	206
$0-25$ \＆0－25				
Two－Tracking	2	Gen Purpose	62278t＊＊	214
$28=1.40$	0.7	Modular	620288 \dagger	222
$28=1.40$	1.5	Modular	62028C \dagger	222
28 ± 1.40	3.25	Modular	62028E \dagger	222
28 ± 1.40	6.5	Modular	62028G \dagger	22
$28=1.40$	10.7	Modular	62628J \dagger	222
0－30 \％0－60	180.5	Low Cosi	6206Bt＊	205
Dual Range		Lab		
0－36	10	High Pwr．	$6433 \mathrm{~B} \uparrow *$	210
0－36	100	High Pwr．	$64568+$	210
0－36	300	High Pwr．	6469Ct＊＊	210
$\begin{aligned} & 0-40 \& 0-20 \\ & \text { Ousl Range } \end{aligned}$	0.380 .6	Low Cost Lab	62048 \dagger	205

t Avalable on GSA Contraci Number GS－00S－04663
－Way be used with the 59501A HP－IB Isolated D／a Converter／Power Supply Fropismmer． －May of used min the 69403 Multiprogramme when equipped with Option 040. －BPSA－Bidersr Power Sucdy／Amplitiet．

OC Volts	OC Amps （Max．）	Typo	Mosel	Page
$\begin{gathered} 0-40 \&: 0-20 \\ \text { Dual Range } \end{gathered}$	0.380 .6	Low Cos！ Lab	62058 ${ }^{\text {＊}}$	205
0－40	0.5	Prec．Voh．	6112At＊＊	216
0－40	0.75	Low Cost Lab	6202Bt＊	205
0－40 8 0－20	0.75 \＆	Low Cost		
Dual Range	1.5	Lab	6200B＋	205
0－4080－40				
Two Culpuls	1.581 .5	Gen．Purpose	6255A	208
0－40	1.5	Gen．Purpose	6285At＊＊	206
0－40	3	Gen．Purposa	62628†＊＊	218
0－40	5	Gen．Purposa	62668†＊＊	2 B
0－40	5	Gen．Purpose	62914T＊	206
0－40	10	Gen．Purpose	6267Btos	204
0－40	25	High Pwr．	$64348{ }^{\circ}$	210
0－40	30	Gen．Purpose	62688 t	208
0－40	50	Gen．Purposa	62698Tt＊＊	208
$48=2.40$	0.45	Modular	62048A \dagger	272
48 ± 2.40	1	Modula	62048C \uparrow	202
$48=2.40$	2	Modular	$620488 \dagger$	272
48 ± 2.40	，	Modular	620486 \dagger	212
0－50	0.2	Low Cost Lab	62LYAT	204
0－50	0.2	Low Cost	6218A \dagger	204
0－50（Comptianca）	0－0．5	Prec．Cur．	8177C	218
$0-50$ \＆0－25	0．5 \＆ 1	Gen．Purpose	62208t＊＊	208
$\begin{aligned} & 0-50 \& 50-100 \\ & \text { Oual Range } \end{aligned}$	$0.8 \& 0.4$	Prec．Volt．	6115 ${ }^{\text {¢ }}$ ¢ ${ }^{\text {＋}}$	216
$0-50 \& 0-50$				
Two－Trackling	1	Gen，Purdose	$62288 \dagger$＊＊	214
0－50	1.5	Gen．Pupoese	62268 ¢＊＊	206
$\begin{aligned} & 50-100 \& 0-50 \\ & \text { Dual Range } \end{aligned}$	0.480 .8	fiec．Voll	811591＊＊	216
0－50	$10-4$	HP－1日	60024	213
0 ± 50	5	Dig．Prog． Voll．	6129C＋	224
$0=50$	1	Oig．Prog． Voil．	61300 \dagger	224
0 ± 50	1	EPSA＇	6824A个＊	219
$\begin{array}{r} 0-60 \text { \& } 0-30 \\ \text { Dual Range } \end{array}$	$0.5 \& 1$	Low Cosi Lab	6206日 ${ }^{\text {＊}}$	205
0－60	1	Gen．Purpose	6294At＊＊	208
0－60	3	Gen．Pumose	6296A ${ }^{\text {＊}}$	206
0－60	3	Gen．Puspose	62718t＊＊	208
0－60	5	High Pwr．	6438 Bt ＋	211
0－60	15	Gen．Purdose	6274B \dagger＊	208
0－60	15	High Perl．	64398 ${ }^{\text {c }}$	211
0－64	50	High Pwr．	6049at	210
0－64	150	High Pwr．	$6472 \mathrm{C} \mid$	210
0－100（Compliance）	$=0.016$	Dig．Prog．	6140A	224
0－100	0.1	Low Cost Lab	6211A ${ }^{\text {¢ }}$	2 CH
0－100	0.1	Low Cost Lab	62l2at	204

1 Available an GSA Contract Number GS－00S－04－663．
－May de used with the 59501A HP－IB Isolated D／A Conyerter／Power Sagidy Progrsmmar．
＊May be used with the 69408 Multiprogrammer when equilped will Omion 040.
－BPSA＝Eipolar Power Supplyiannplifier．

DC Volts	DC Amps （ Hax ）	Type	Model	Page
0－100	0.2	Prec．Volt．	$61164+$	218
0－100（Compliance）	0.25	Prec．Cur．	61816†	218
0－100	0.75	Gen Purpose	6299at＊＊	206
$0=100$	0.5	0 Ig .8 log ． Volt．	61316	224
a－100	100	High Pur．	6475C＋	210
0－120	2.5	High Pur．	$64438{ }^{*}$	210
0－160	0.2	Low cost Lab	6207 BT	205
0－220	50	High PW，	6477C＋	210
0－300（Compllance）	0.1	Prec．Cor．	6186Ct	218
0－300	35	High Pwr．	64796．	210
0－320	0.1	Low Cost Lab	62098t＊	205
0－320	1.5	Gen．Puppose	895的 \dagger	208
$\begin{aligned} & 0-440 \text { or } 0-500 \\ & \text { or } 0-600 \end{aligned}$	$\begin{aligned} & 25 \text { of } 20 \\ & \text { of } 15 \end{aligned}$	High Pwi，	$6483 C+$	210
1－600	1.5	High Pwi．	64488 ¢	210
0－1000	0.2	High Voll．	652LA \dagger	215
0－1600	0.005	High Volt．	6515at	215
0－2000	0.1	High Volt．	6522at	215
0－3000	0.006	Prec Voll．	61104 1	216
0－3000	0.006	High Volt．	$65164 \dagger$	216
0－4000	0.05	High Volt．	6525A \dagger	215

tAvailable on GSA Contract Numser GS－00S－04669．
－May be used with the 59501A HP－IE isolated D／A Converter／Porror Supply Programmer．
－May be used wilt the 6940B Multipragaammes when equipperd with Dptioll 040.
－ $\mathrm{GPS} \mathrm{h}=$ Bipolat Powet Supplyj Ampl：fier．

Power Supply Digital

 Programming Interfaces| Descrlption | Model | Page |
| :---: | :---: | :---: |
| HP－IA Is olated D／A Converter／Power Supply | 59501A | 212 |
| Programmer：one channel，1wo programmuble | | |
| ranges．Provides HP－IB interface for programming either oulput voltage，or current | | |
| （whenc curnent programming is available as | | |
| deseribed in specifications for individual power supply model）of power supplies designated | | |
| with a －symbol in the above condensed listing | | |
| ＂mudel＂column．Interfacing detaiks are covered in publicauion 5952－3990． | | |
| Mulilprogramer：a highly versalile 1／0 expinder and convener that can conirol up to 240 power supplies from one HP－1B port or one IG－bil duplex I／O channel．II will control oulpul voltage and current of pow＇er supplies designated with a symbol in the above condensed listing＂model＂column when they are equipped with Option 040．Additional Mulsiprogrammer capabllities include digital $1 / 0$ for monitoring crowbars，ralays for oulput switching，A／D converters for measuring power supply output． timers for automatic power supply sequencing，etc． Ask your HP field engineer far the 48 －page Multiprogrammer Oata Sheet，publication number 5952－3982，for complere detalls． | 6840］ | 597 |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |
| | | |

Low cost lab: compact, single and triple outputs
Models 6211A-6218A, 62368 and 6237日

- 10W output . . . Low ripple and noise
- Compact, Impact-resistant stackable case
- Short-circuit proof

6211A, 6218A

Description

These popular low-cost bench supplies are designed for generad laboratory use and are cquipped with front-panel mounted voltage controls. a combination volt/ammeter, and outpul binding posis. Ourpue vollage is continuously variable. via coarse and fine controls from 0 V to 15% above the maximum rated output. A switch selects either output voltage or current for display on the panel meter.

Load conncetions are made via three binding posts. Either the + or the - post may be grounded through an adjacent GND icrminal or the supply may be operaled noating at up to 300 volts above ground.
The Constan Voliage/Constant Current Models have concentric coarse and fine current controls which allow setting the current-limit point 10 any value within the current rating. Using these controts. the CV/CC supplies can also be operated as constiant current sources with 500μ A load regulation. All CV/CC models can be connected in series or parallel.
The Constant Vollage/Current Limiting (CV/CL) Model supplics are shon-circuit prolected by a fixed current limiting circuit which is activated at approximately 120% of rated load current. The CV/CL models can be connecled in series only.

Ratings

Yolts	Amps	Houol	L0:0 Etiect	Source Eliect	$\begin{gathered} \text { PRRD } \\ \text { R } 1 \text { חI } / \mathrm{g} \cdot \mathrm{p} \end{gathered}$	Moda
0-10	1	62134	4 mV	4 mV	$200 \mu \mathrm{~A} / 1 \mathrm{mV}$	colct
D-10	0-1	6214A	4 mv	4 mV	$200 \mathrm{\mu R} / 1 \mathrm{mV}$	CV/CG
0-25	0.4	6215A	4 mv	4 mV	$200 \mu \mathrm{~N} / 1 \mathrm{mv}$	CVICL
0-25	0-0.4	6216A	4 mV	4 mV	$200 \mu{ }^{\prime} 11 \mathrm{mv}$	CV/CC
0-50	0.2	62174	4 mv	4 mv	200 mNI mV	CV/CL
0-50	$0-0.2$	62186	4 mv	4 mv	$200 \mu \mathrm{~A} / 1 \mathrm{mv}$	CV/CC
$0-100$	0.1	62114	8 mV	4 mV	$200 \mu \mathrm{Ni} 1 \mathrm{mv}$	CVICL
0-100	0-0.1	6212 A	8 mr	4 mv	$200 \sim N+1 \mathrm{mV}$	cvice

Slze: $1.13 \mathrm{H} \times 83 \mathrm{~W} \times 368 \mathrm{mmD}\left(3.35^{n} \times 5.25^{\prime \prime} \times 8^{\prime \prime}\right)$.

Accessories and options

Price
1421A Rack kit for one, iwo. or three supplies.
$\$ 45$
Opt 028: 230 V ac single phase inpul $\quad \mathrm{N} / \mathrm{C}$
Ordering informatlon
6213A, 6215A, 6217A CV/CL Low Cosi Lab Supplies $\$ 130$ 6211A CV/CL Low Cosi Lab Supply
6214A. 6216A. 6218A CV/CC Low Cost Lab Supplies $\$ 160$ 6212A CV/CC Low Cost Lab Supply

- 0 to $6 \mathrm{~V} \& 0$ to $\pm 20 \mathrm{~V}$. Model 6236B
- 0 to $18 \mathrm{~V} \& 010 \pm 20 \mathrm{~V}$. Model 6237B
- Variable tracking control

6238B. 6237B

Description

Microprocessors, digital and linear incegrated circuits, and displays used in lab development frequenly require triple output power supplies for operating protorypes. The 6236B and 62378 are valued addinions to the design bench due to their multiple output voliages. small size. ease of operation and application-related performance.

These compact constant-voltagelcument-limiting supplies combine $010 \pm 20 \mathrm{~V}$ tracking outputs mated at 0.5 amps with a single output rated at 0 10 +6 voles at up to 2.5 amps in the 6236 B . and 0 to +18 volus al 1 amp in the 6237B

Controls, meters. and binding posts are logically arranged on a neady latid out front panel. One vollage control simulancously adjusts the 20 V and -20 V outpuls, which (rack within $1 \% 10$ power operitional amplifiers and cireuits requiring balanced voliages. A tracking ratio control can disable the lil tracking feature and set the negative output to a lower voltage than that of the positive output. Once the tracking ratio contro) has established a voltage ralio beIveen the positive and negative outputs, the ratio remains constant as the $=20 \mathrm{~V}$ voltage conirol varies both ourpurs. Another voliage control sel the 0 to $+6 \mathrm{~V}(6236 \mathrm{~B})$ or 0 to $+18 \mathrm{~V}(6237 \mathrm{~B})$ output. All outpuls are protceled againsi overload and short-circuil damage by fixed current limiting circuits.

Specifications (both models, unless otherwise indicated)
 DC Output

62368: 0 to $6 \mathrm{~V}(2.5 \mathrm{~A}$ at 6 V reducing 10 I A al 0 V): and 0 to +20 \checkmark and $-30 \vee$ al 0.5 A with variable dual tracking.
62378: 01018 V at I A : and $010+20 \mathrm{~V}$ and -20 V al 0.5 A , with variable dial tracking.
AC input: 120 V ac nominal, 104 V io $127 \mathrm{~V}, 47-63 \mathrm{~Hz} .112 \mathrm{~W} .1 .2$ A.

Load effect (load regulation): $0.01 \%+2 m \vee$ (all oulpuls).
Source effect (line regulation): $0.01 \%+2 \mathrm{mV}$ (all outpuls).
PARD (ripple \& nolse): $0.35 \mathrm{mV} \mathrm{rms}, 1.5 \mathrm{mV} \mathrm{p}-\mathrm{p}$ (20 Hz to 20 MHz).
Resolution: 30 mV for 6 V outpur. 70 mV for other outpus
Drift (stablity): following 30 -minutes warm-up is $0.1 \%+5 \mathrm{mV}$.
Output valtage overshoot: no overshoot.
Temperature coefticlent: $0.02 \%+1 \mathrm{mV}$ output change per degree c.

Temperature ratings: operating: 0 to $40^{\circ} \mathrm{C}$: storage: -40 to $+75^{\circ} \mathrm{C}$.
Size: $89 \mathrm{H} \times 216 \mathrm{~W} \times 319 \mathrm{mmD} \mathrm{D}:\left(3.50^{\prime \prime} \times 8.50^{\prime \prime} \times 12.50^{\prime \prime}\right)$.
Welght: $4.3 \mathrm{~kg}(9.5 \mathrm{lb})$.
Color: olive gray.
Options and accessories
Opt 100: $87-106 \mathrm{~V}, 47.63 \mathrm{~Hz}$ input
Opt 220: 191-233 V. 47.63 Hz input
Opt 240: $208.250 \mathrm{~V}, 47-63 \mathrm{~Hz}$ іпри
14513A Rack Kit for one supply
14513A Rack Kil for one supply
Ordering Information
6236B Triple Ouipul Power Supply
6237B Triple Oulput Power Supply
$\$ 3.45$
$\$ 345$

Floating output (up 10300 V above ground) - can be used as a positive or negative source

- Remote sensing

6200B-6203B, 6207B.
6209B. CV/CC

Description

Models 6200日-6209B

This series of low-cosi bench supplies includes nine models covering an oulpul voltage range from $0-7.5 \vee$ to $0-320 \vee$. All models equipped with coarse and fine oulput voltage conerols (excepl Models 6207 B and 6209 B , which have 10 -Ium voleage contmols), vole ampere meter, meter functiondrange switch, and front and rear outpuiteminals. In addition, on the dul-range models $\langle 6204 \mathrm{~B}-6205 \mathrm{~B}$). an oulput range switch permits the selection of either a high or a low oulpul voltage range.

Model 6205 B combincs the versatility of a dual power supply with the fiexibility of auto-parallel and auto-scries operation to extend the
the fexibility of auto-parallel and auto-scries operation to extend the
output ratings of this supply $1020 \mathrm{~V} / \mathrm{L} .2 \mathrm{~A}, 40 \mathrm{~V} / 0.6 \mathrm{~A}$, and $80 \mathrm{~V} / 0.3$ Λ. In addition, using the supply's auto-iracking capability, opposite polarity vollages ($\pm 30 \mathrm{~V}, \pm 40 \mathrm{~V}$) can conveniently be oblained from this one supply.

The Constant-Voltage/Current-Limiting supplies (6204B-6205B),
The Constani-Voltage/Current-Limiting supplies ($6204 \mathrm{~B}-6205 \mathrm{~B}$),
are short-circuit protected by a fixed current limiting circult which is activated al approximately 110% of rated load cument. The currentactivated al approximately $1 J 0 \%$ of raled load current. The current-
limit point ean be reduced by changing the value of a single intemal reststur. For the Consiant-Voltage/Constant-Current supplies, concentric coarse and fine current controls allow the current-limit point centric coarse and fine current controis allow the eurrent-imit paint
to be set to any value within the current rating. U'sing these controls. the CV/CC supplics can also be operated as constant-current the CV/CC supplics can also be operated as constant-current
sources.

Units may be bench operated or rack mounted individually or in pairs using accessory rack mounting hardware.

6204B, 6206 CV/CL

Specifications

RATNES		Model	Perpormance						GCMERAL	
Dt Ounput			load Effect	Source Efrect	$\begin{gathered} \text { PaRD } \\ \text { IMS/A-D } \end{gathered}$	Comuol Mode and Resolution	Aemole Contral Coeरlisients	$\begin{gathered} \text { Pawer } \\ 115 \mathrm{Y} \text { act } 10 \% \end{gathered}$	Options	Pratis
Volls	Rmps									
44-5 5	1)-8	53841	? mv	2 mv	1 mvis mV	CI/Cl $15 \mathrm{mV} / \mathrm{NA}$	NA	$\begin{aligned} & 48-6 \mathrm{~s} \mathrm{~Hz} \\ & 1.4 \lambda 120 \mathrm{w} \end{aligned}$	28	3330
0-73	0-3	62038	5 mV	3 mV	$200 \mu^{\prime}+1 \mathrm{ImV}$	$\begin{gathered} \mathrm{CV} / \mathrm{CC} \\ 5 \mathrm{mN} / 2 \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 20011 / \mathrm{V}=1 \% \\ & 300 \mathrm{O} / \mathrm{A}=10 \% \end{aligned}$	$\begin{aligned} & 49-440 \mathrm{~Hz} \\ & 0.9 \mathrm{~A} .70 \mathrm{~W} \end{aligned}$	9. 11, 15, 28	\$215
0.20	e-1.5	62018	13.01\% -4 mv	00150.4 mv	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$\begin{gathered} C W / C C \\ 5 \mathrm{mVII} \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 2001 \% V=1 \pi / 6 \\ & 1414 / 4=10 \% \end{aligned}$	$\begin{aligned} & 48-44 \mathrm{~Hz} \\ & 08 \mathrm{H} .65 \mathrm{~W} \\ & \hline \end{aligned}$	9. $11.15,26$	3255
$\begin{gathered} \text { Dual isinge } \\ 0-20 \\ \sigma \\ 0-20 \\ \hline \end{gathered}$	$\begin{aligned} & 0-i) 6 \\ & 0-03 \end{aligned}$	62048	D.01\% + 4 mv	$0.0100+2$ niv	$200.12 / 1 m v$	$\begin{gathered} C V / C L \\ 10 \mathrm{mV} / \mathrm{NA} \end{gathered}$	$200: \mathrm{NK}=1 \%$	$\begin{aligned} & 48 . ~ \\ & 0.40 \mathrm{HL} \\ & 0.44 \mathrm{~W} \end{aligned}$	9.11. 15. 28	5250
$\begin{aligned} & \text { Duad lange } \\ & 0-20 \\ & o \quad \\ & 0-10 \end{aligned}$	$\begin{aligned} & 0-15 \\ & 0-0.75 \end{aligned}$	62008	$001 \% \mathrm{c}+4 \mathrm{mV}$	$0.01 \% \cdot 4 \mathrm{mb}$	$20011 \mathrm{~N} / 1 \mathrm{my}$	cuice 10 mb 2 mA		$48-440 \mathrm{~Hz}$ $\text { O9A. } 70 \mathrm{~W}$	$9,11.15,28$	\$280
IWD HHOL ranges $0-2010-40$ and $0-200040$	$\begin{aligned} & 0-0.6 / 0.3 \\ & 0-0.6 / 0.3 \end{aligned}$	6205B	$0.010-4 \mathrm{mV}$	0.01\% - 4 mY	$200 \mu \mathrm{~V} / \mathrm{ImV}$	$\begin{gathered} \mathrm{CV} / \mathrm{Gi} \\ 10 \mathrm{mV} / \mathrm{Na} \end{gathered}$	$200 \operatorname{niv}_{\text {NIS }}=1 \%$	$\begin{aligned} & 48-810 \mathrm{~Hz} \\ & 0.3 \AA .50 \mathrm{~W} \end{aligned}$	9. $11.15{ }^{15}, 28$	\%
$\begin{gathered} \text { Qual tumpe } \\ \text { of } 30 \\ \text { of } \\ 0-60 \\ \hline \end{gathered}$	$\begin{aligned} & 0-1 \\ & 0-0.5 \end{aligned}$	820E日	$0 \mathrm{glc}=-4 \mathrm{~m}$	$0.01 \%+1 \mathrm{mb}$		CV/GL 10 mivina	$30011 \mathrm{~N} / \mathrm{V}=1 \%$	$\begin{aligned} & 48-440 \mathrm{H}_{2} \\ & 1 \mathrm{~A}, 60 \mathrm{~W} \end{aligned}$	9. 11, 15, 28	30.
0.50	c-0.75	62028	C01\% 0.4 mv	0.01\% 6.4 mV	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$\begin{aligned} & \text { CV/CC } \\ & 10 \mathrm{mV} / 1 \mathrm{mok} \end{aligned}$	$\begin{aligned} & 200 n / \mathrm{V}=1 \% \\ & 1 \mathrm{k} \Omega / \mathrm{A}=10 \% \end{aligned}$	$\begin{aligned} & 48-440 \mathrm{H} \\ & 084.65 \mathrm{~W} \\ & \hline \end{aligned}$	9. $11,15.28$	\$255
0-160	0.2	62078	002080	$002 \mathrm{cc}-2 \mathrm{mv}$	$500,4140 \mathrm{mV}$	$\begin{gathered} C W C C \\ 25 \mathrm{~mW} / 500 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{aligned} & 3000 \mathrm{RV}=15 \\ & 15 \mathrm{ha} / \mathrm{A}=10 \% \end{aligned}$	$\begin{aligned} & c \theta_{-53 ~} \mathrm{~Hz} \\ & 1 \mathrm{~A} .60 \mathrm{~W} \\ & \hline \end{aligned}$	9. 15. 28	5325
a-320	0-0.1	82098	0.02\% +2 mV	0.02:\% ? mV	$1 \mathrm{mv/40} \mathrm{mv}$	$\begin{gathered} \text { CV/CC } \\ 40 \mathrm{mV} / 200, \mu \mathrm{~A} \end{gathered}$	$\begin{aligned} & 300 \% / V=1 \% \\ & 150 \mathrm{kV} / \mathrm{A}=10 \% \end{aligned}$	$28-13 \mathbf{H}$ $1 \wedge 60 \mathrm{~W}$	9. 13. 28	\$325

[^12]- Bench or rack mounting
- Multi-function meter

6205B CVICL
Two, Dual Range Outputs
Model 6384A
This low-cost beлch supply is designed specifically for use with digital-logic integrated circuits. Its ouput ratings and superior performance, combined with the protection of built-in overvoleage crowbar and current limiting circuits. make il an excellent IC supply for boih laboratory and systems usc.

Specifications-general

Dift: $0.1 \%+5 \mathrm{mV}$ per 8 hours $(6384 \mathrm{~A} .0 .3 \%+10 \mathrm{mV}$ anter 2 -how) warm-up.
Temperature coefficient, per ${ }^{\circ} \mathrm{C}: 0.02 \%+1 \mathrm{mV}$ (6384A, 3 mV / ${ }^{\circ} \mathrm{C}$).
Load effect translent recovery: $50 \mu \mathrm{~s}$ to recover within 10 mV or nominal oulput voluge. ($50 \mu \mathrm{~s}$ and 40 mV for 6384 A).
Overvoltage protection crowbar (oplional on 6200B-6206B)
Option 011 on 62008-6206B: adjustment range from 2.5 V 10 104% of maximum rated output of supply, plus 2 V . Minimum operating sctuing (margin) is 104% of nominal output, plus 2 V .
Standard feature on 6384A: trip voltage factory sel at 6.25 V : field adjustable down to $S \mathrm{~V}$.
Temperature ratings: operating. 0 io $50^{\circ} \mathrm{C}$. Storage. $-4010+79^{\circ} \mathrm{C}$.
These supplies are convection cooled.
Rear panel terminals
DC output: 6200B-6209B have front and rear output terminals: Model 6384A has only rear ourput terminals.
Remote sensing: terminals are provided to correct for load lead voltage drop.
Auto-serles, auto-parallel, and auto-lracking operation: Models $62008-6209 \mathrm{~B}$ have termínals for muluple supply operation.
Slae: $89 \mathrm{H} \times 216 \mathrm{~W} \times 317 \mathrm{mmD}\left(3.50^{\prime \prime} \times 8.50^{\prime \prime} \times 12.50^{\prime \prime}\right)$.
Welght: net. $4.5 \mathrm{~kg}(10 \mathrm{lb})$. Shipping, 5.4 kg (12 lb).

General purpose: 25-200 W output

 Mōels 62208-6299A- Constant voltage/constant current operation
- Remote sensing and programming
- Auto-series, -parallel, \& -tracking operation

8281A. 6284A. 6289A. 6294A, 6299A

6202A, 6286A.
6291A. 6296A

6220B, 6224B, 6226B

6253A. 6255A

Specifications

Ratings			PIPFORMAKCE							
DC Output			Losd CHect		Source Etfect		PARD (rats $/ \mathrm{p}$ - p)		Orith (stablity)	
Volis	Amps	Madel	Yolugs	Curom	Voltaga	Currenl	Vollago	Current	Vollapa	Current
0-75	0-5	6281A	5 miv	0.01\% + $250 \mu \mathrm{~A}$	$0.01 \%+2 \mathrm{mV}$	$001 \%+250 \mu \mathrm{~A}$	$200 \mu \mathrm{VII} \mathrm{mv}$	4 mA rms	$0.10 \%+25 \mathrm{mV}$	$0.1 \%+12.5 \mathrm{ma}$
D-10	[-10	52924	0.01%, 1 mV	$0.05 \%+1 \mathrm{~mA}$	$0.014 m+1 \pi r$	$0.057 \%+1 \mathrm{~mA}$	$500 \mu \mathrm{~V}$;25 mV	5 ma mms	$0.1 \%_{0}+25 \mathrm{mV}$	0. $19: 6+25 \mathrm{~mA}$
$\begin{aligned} & 0-20 \\ & 0-20 \end{aligned}$	$\begin{aligned} & 0-3 \\ & 0-3 \end{aligned}$	6293A*	0.01\% - - mY	0.01\% $+250 \mu \AA$	$0.02 \%+2 \mathrm{mV}$	$0.05 \%+250 \mu k$		2 mA mm	0.1\% 25 2 m	0. Fio +7.5 mA
D-20	0-3	6284A	0.01\% $\%$ + 4 mb	$0.010{ }^{2}+350 \mu \mathrm{~A}$	$0.010 \cdot 2 \mathrm{mb}$	$0.01 \%+250 \nu 4$	$300 \mu \mathrm{~V} / 2 \mathrm{mV}$	2 mA mms		1. $1 \%+7.5 \mathrm{~mA}$
0-20	$0-10$	82864	$001 \%-1 \mathrm{mV}$	005\% +1 mA	$0.01 \% \sim 1 \mathrm{mv}$	0.05\% +1 mk	$500 \mu \mathrm{~V} / 25 \mathrm{mv}$	5 ma rms	$0.1 \%+25 \mathrm{mV}$	$0.1 ?$
0-24	0.3	62248	$0.01 \%_{0}+4 \mathrm{mV}$	0.01\% 20.250 A	$0.01 \% \cdot 2 \mathrm{mv}$	0.01\% $+250 \mu \mathrm{~A}$	$200 \mu \mathrm{~V} / 1 \mathrm{mV}$	$200 \mu \mathrm{~A} / 1 \mathrm{~mA}$	D. 1% \% 2.25 mV	$0.15 \mathrm{c}+7.5 \mathrm{~mA}$
$\begin{aligned} & 0-25 \\ & 0-50 \end{aligned}$	$\begin{aligned} & 0-1 \\ & 0-0.3 \end{aligned}$	62209 ${ }^{-2}$	$0.01 \% \mathrm{c}-2 \mathrm{mv}$	0.01\% $+250 \mu{ }^{4}$	$0.01 \%+2 \mathrm{mV}$	0.01\% + $250 \mu \mathrm{~h}$	$200 \mu \mathrm{~L} / 2 \mathrm{mV}$	$200 \mu \mathrm{~A} / 1 \mathrm{~mA}$	$0.1 \%+5 \mathrm{mV}$	$0.1 \%+5 \mathrm{mk}$
$\begin{aligned} & 0-40 \\ & 0-40 \end{aligned}$	$\begin{aligned} & 0-1.5 \\ & 0-1.5 \end{aligned}$	62554*	0.01\% 0 + 2 mv	0.01\% $0.250 \mu \mathrm{~h}$	$0.01 \%+2 \mathrm{mb}$	Q.019a 250 nut	$200 \mathrm{mV11} \mathrm{mV}$	$500 \sim$ A 1 ms	$0 . \%$-2.5m	D. $136,4 \mathrm{~mA}$
0-40	0-1.5	62854		000\% $250 \mu \mathrm{~L}$	$0.01 .10-2 \mathrm{mv}$	0.01\% +2501 AL	2000μ // 1 mV	500 pA rms	0.1\% 2.2 .5 mv	0.1% d-4 mA
0.40	0-5	52911	$0.01 \% \mathrm{a}+1 \mathrm{mv}$	0.05% - 1 mA	$0.010 \% 1 \mathrm{mv}$	$0.05 \%+1 \mathrm{mh}$	$500 \mu \mathrm{~V} / 25 \mathrm{mV}$	3 mA	01\% 2.2 .5 mV	0.1\% + 12.5 mA
0-50	0-15	62786	$0.01 \%+2 \mathrm{mv}$	0.01\% $\%$ - 250 \% ${ }^{\text {a }}$	$0.01 \% \times 2 \mathrm{mv}$	0.01\% $+250 \mu \mathrm{~A}$	$200{ }^{\text {a V }} 11 \mathrm{mV}$	$200 \mu \mathrm{NV} 1 \mathrm{~mA}$	$0.8 \% \cdot 25 \mathrm{mv}$	$0.15=4 \mathrm{~mA}$
0.50	0-1	8294A	$0.01 \% 0^{\circ}+2 \mathrm{mv}$	$0,010 \mathrm{~m}+250 \mu \mathrm{~h}$	0.019\% -2 mV	$0.01 \%=2501 . \mathrm{A}$	200μ ¢ $V 11 \mathrm{mV}$	$500 \mu \mathrm{ims}$	$0.15{ }_{\text {coic }} \rightarrow 25 \mathrm{mV}$	0. $136+23 \mathrm{nLA}$
0-60	0-3	62864	$0.013_{0}+1 \mathrm{mV}$	0, 0590.1 mA	0.01\% 1 + 1 mV	0005\% - 1 mA	$500 \mu \mathrm{~V} / 25 \mathrm{mV}$	3 mA mm	0.1%-25 mV	0. 1% \% + 7 3 mA
0-109	0-0, 75	62998	$0.0 \mathrm{E}_{0} \mathrm{~b}+2 \mathrm{mV}$	0.01% \% $250 \mu \mathrm{~h}$	$0.010_{0}+2 \mathrm{mV}$	0.01\% 250 ma	$200 \mathrm{\mu V} / 1 \mathrm{mV}$	500 un rims	$0.10 \cdot 0+2.5 \mathrm{mv}$	$0.1 \mathrm{e}+2 \mathrm{~mA}$

- Models 6253 A and t 255 h contain two identical, Independenity atjustable powef supplites.
- - Model 62208 has a single, Aual range output with ratings of 0-25V at 0-1 A or 0-50 Val 0-0 5 A .

By combining the versatility of a dual power supply with the flexi－ bility of auto－series and auto－parallel operation．twice the maximum rated oulput voltage or current of each section can be obtained from the one supply．In addition，using the supply＇s auto－track ing capabil－ ity，opposite－polarity voltages（ $\pm 20 \mathrm{~V}$ for Model 6253A or $\pm 40 \mathrm{~V}$ for Model 6255A）are possible．

6220B，6224B，and 6226B

These Constant－Voltage／Constant－Current supplies are designed for general laboratory use．All have excellent regulation．low ripple and noise，and high speed programming characteristics．Large easy $10-\mathrm{read}$ meter scales． 10 － 1 um voltage and current controls，and front and rear ourput terminals enhance ease or operation．Model 62208 is is a dual－range instrument with output ralings of $0-25 \mathrm{~V}$ at $0-1 \mathrm{~A}$ or $0-50 \mathrm{~V}$ at $0-0.5 \mathrm{~A}$ ．It is the only model of the three employing convection cooling．Models 6224B and 62．26B have single outpust of $0-24 \mathrm{~V}$ at $0-3 \mathrm{~A}$ and $0-50 \mathrm{~V}$ at $0-1.5 \mathrm{~A}$ ，respectively．

Accessortes and options

The accessories and options available for use with Models $6220 \mathrm{~B}-6299 \mathrm{~A}$ are listed on page 220.

Speciflcations－general

Losd effect translent recovery：ime， $50 \mu \mathrm{~s}$ ．Level． 15 mV ．
Meter accuracy： 3% of full scale．
Power：standard input voltage is $115 \mathrm{Vac} \pm 10 \%$ ．Order option 028 for 230 V ac $\pm 10 \%$ operation．Inpul power frequency，maximum input current，maximum power consumption are：62208，48－840 $\mathrm{Hz}, 0.5 \mathrm{~A}, 44 \mathrm{~W}: 6224 \mathrm{~B}, 48-63 \mathrm{~Hz}, \mathrm{I} .8 \mathrm{~A}, 164 \mathrm{~W}: 6226 \mathrm{~B} .48-63 \mathrm{~Hz}$ ． 1．8 A．I64 W：6253A，48－440 Hz 2.6 A． $235 \mathrm{~W} ; 6255 \mathrm{~A}$ ． $48-440 \mathrm{~Hz}$ ， 2．6 A． $235 \mathrm{~W}: 6281 \mathrm{~A}, 48-440 \mathrm{~Hz}, 1.3 \mathrm{~A} .118 \mathrm{~W}: 6282 \mathrm{~A}, 57-63 \mathrm{~Hz}$ ． 3.5 A． $200 \mathrm{~W}: 6284 \mathrm{~A}, 48-440 \mathrm{~Hz}, 1.5 \mathrm{~A}, 128 \mathrm{~W}: 6286 \mathrm{~A}, 57-63 \mathrm{~Hz}$ ， $5.5 \mathrm{~A}, 320 \mathrm{~W}: 6289 \mathrm{~A}, 48-440 \mathrm{~Hz}, 13 \mathrm{~A}, 110 \mathrm{~W} ; 6291 \mathrm{~A}, 57-63 \mathrm{~Hz}$ ． 5．5 A， $280 \mathrm{~W}: 6294 \mathrm{~A}, 48-440 \mathrm{~Hz}, 1.3 \mathrm{~A}, 114 \mathrm{~W}: 6296 \mathrm{~A} .57-63 \mathrm{~Hz}$ ． 4．5 A． $250 \mathrm{~W}: 6299 \mathrm{~A}, 48-440 \mathrm{~Hz} .1 .5 \mathrm{~A}, 135 \mathrm{~W}$ ．
Slze：6220B．6224B．\＆6226B： $166 \mathrm{H} \times 130 \mathrm{~W} \times 294 \mathrm{~mm} \mathrm{D}\left(61 / \mathrm{m}^{\prime \prime} \times\right.$
 $\left.19^{n} \times 157 / \mathrm{H}^{\prime \prime}\right) .6281 \mathrm{~A} .6284 \mathrm{~A} .6289 \mathrm{~A}, 6294 \mathrm{~A} .6299 \mathrm{~A}: 37 \mathrm{H} \times 209 \mathrm{~W} \times$
 $131 \mathrm{H} \times 210 \mathrm{~W} \times 435 \mathrm{~mm} \mathrm{D}\left(55^{3} 3^{\circ} \times 81 / 4^{\prime \prime} \times 17 / \mathrm{H}^{\prime \prime}\right)$ ．
Temperature：operating， 0 to $55^{\circ} \mathrm{C}$ ；storage，-40 to $75^{\circ} \mathrm{C}$ ．

Specifications，continued

REAUTE CONTROL FEATURES								Gembral					
Resiorance Coeticient		Yoliapa Cosritesent		Spread UP＂		Speed．Down		Byarvalime		Wetght			
Voitig：	Curramt	Vollage	Curfora	NL	1.	NI	fl	Rapap	Margin	Nom	Shlpoing	Optionia	Price
200n／v $=1 \%$	200n\％ $\mathrm{A}=10 \%$	1 Y／V－7\％	$0.2 \mathrm{~V} / \mathrm{A}=10 \%$	1 ms	2 ms	10 ms	6 ms	7．5－10 Y	4\％ 24	6.4 kg／） 4 lb	$7.2 \mathrm{~kb} / 16 \mathrm{~kb}$	9，11．15，25． 30	2360
2001リV： 1%	$10014 \cdot 2 \times 10 \%$	1 Viva 5%	$100 \mathrm{mV} / \mathrm{A}=10 \%$	10 ms	200 ms	92	40 ms	1－13 V	7\％＋1v	11．348． 25 lb	13.6483014	3．9，11，15，26，40	4：9
2000／v $=1 \%$	$500 \cap / A=10 \%$	$1 \mathrm{~V} / \mathrm{Y}=1 \%$	$0.33 \mathrm{~V} / \mathrm{A}=10 \%$	36 ms	80 ms	40 Jms	100 ms	25－23v	4\％ 28	$12.7 \mathrm{~kg} / 28 \mathrm{lo}$	17.3 kg 39 ls	9，10，11，15，28， 50	3 LC 5
20011： 6 －1\％	5000： $2=10 \%$	$1 \mathrm{WV}=1 \%$	$0.33 \mathrm{~V} / \mathrm{A}=10 \%$	30 ms	40 ms	200 ms	200 ms	25－234	4\％	5.4 kgin io	7.2 ke 16 lo	9． 11.15 .28 .40	2296
2000／4 $=1 \%$	10017／ $\mathrm{A}=10 \%$	1 V ¢ $=1 \%$	300 mW／A－ 10%	150 ms	150 ms	98	70 ms	2－22．V	7\％－18	10.8 kgi 26 ib	13.1 kg 29 Lt	5，5，11，15， 28	3153
$2001114-1 \%$	5000 $0: A=10 \%$	$1 \mathrm{~V} / v=1 \%$	$0.33 \mathrm{vm}=10 \%$	4 ms	10 ms	50 ms	15 ms	NA	Na	7.3 kgr 16 th	9.5 kg 21 tb	15，22，40	2：59
	$\begin{aligned} & 1 \mathrm{NA}=10 \% \\ & 2 \mathrm{WR}=10 \% \end{aligned}$	$1 \mathrm{w} / \mathrm{z}=1 \%$	$\begin{aligned} & 1 \mathrm{~V} / \mathrm{A}=10 \% \\ & 2 \mathrm{~V} / \mathrm{A}=10 \% \end{aligned}$	$\begin{aligned} & 12 \mathrm{~ms} \\ & 50 \mathrm{~ms} \\ & \hline \end{aligned}$	$\begin{array}{r} 30 \mathrm{~ms} \\ 120 \mathrm{~ms} \\ \hline \end{array}$	$\begin{aligned} & 206 \mathrm{~ms} \\ & 40 \mathrm{~ms} \end{aligned}$	$\begin{array}{\|c\|} \hline 30 \mathrm{~ms} \\ 120 \mathrm{~ms} \\ \hline \end{array}$	NA	NA	$3.9 \mathrm{ht} / 13 \mathrm{lc}$	6.8 kg／ 15 lb	15． 3.20	S32．
20011／4－13\％	5000： $2=10 \%$	$18 \%-1 \%$	$0.65 \mathrm{~V} / \mathrm{A}=10 \%$	15 mis	45 ms	200 ms	40 ms	2．5－3．4 4	$4 x_{0} \cdot 23$	127 kg 28 kg	17 T kgi 39 lb	9．20，11，15，28， 40	5500
z000 $N=1 \%$	3000月， 10%	$1 \mathrm{~V}^{\prime \prime} \mathrm{v}=1 \%$	$0.56 \mathrm{Y} / 14 \div 10 \mathrm{c}$	15 ms	25 ms	200 ms	40 ms	25－44 4	4\％ 2.28	64 ME 14 it	$7.2 \mathrm{~kg} / 16 \mathrm{tm}$	4，11，15，28， 40	610
200s／1\％$=1 \%$	200 $12 / 1-100 / 4$	1 V	$200 \mathrm{~mW} / \mathrm{A}=10 \%$	275 mm	275 ms	135	276 ms	$6-63 \mathrm{~V}$	7n＋14	113 如 25.5	$12.7 \mathrm{~kg} / 28 \mathrm{lt}$	5．3，11，15， 2 B	3495
2001／2V $+1 \%$	$50011 / A=10 \%$	1 V／	1 V／A	20 ms	65 ms	200 ms	50 ms	Ma	NA	$73 \mathrm{~kg} / 35 \mathrm{lb}$	$8.2 \mathrm{~kg} / 16 \mathrm{lb}$	15，22， 40	4453
$3000 / 3=1 \%$	$1 \mathrm{k}(1) / \mathrm{A} \cdot 10 \%$	1 LL －1\％	$1 \mathrm{~V} / \mathrm{h}=10 \mathrm{~m}$	25 ms	20 ms	25	175 ms	5－65 4	$4 x_{0}+28$	5.9 kg 213 lb		9，11，15，25， 20	8330
30012／V－7\％	5000m $=10 \%$	1 Y／V $\times 1 \%$	$333 \mathrm{mV/A}-10 \%$	600 ms	600 ms	55	1．1s	9－66 Y	7\％＋1V	71.3 hg 2.25 lt	127 kg 28 sto	5，5，11，15， 28	3495
30002／L－1\％	$1 \mathrm{k}(1 / \mathrm{A}+100 \%$	I $Y_{i V}+1 \%$	$13 \mathrm{~V} / \mathrm{h}-10 \%$	25 mis	200 ms	15 s	200 ms	$20-100^{\text {V }}$	80.4	5.9 hg .13 lo	6.8 kg／ 7516	13．15，26， 40	5345

－Built－in overvoltage protection＊
－Constant voltage／constant current operation
－Remote programming and sensing

6283B．62658，6266B，6271B

6274B

6259B，6260B，6261B，6268B，6269B
－Remote sensing
－Auto－series，－parallel，and－tracking operation
－$\leqslant 50 \mu \mathrm{sec}$ load transient recovery

6256B，6264B，6267B

Models 6256B－6274B

This series of high－performance Constant Voltage／Conslant Cur－ rent supplies includes thirteen models with output ratings form 10 to 60 V ．All models employ a Iransistor series－regulator／Iriac－ preregulator circuit to achieve high efficiency．excellent regulation． low ripple and noise，and moderate programming speeds in a com－ paci full－rack width package．

Scparate coarse and fine voltage and cument controls allow the voltage and current outputs to be varied from zero to the maximum rated value，Crossover from constant voltage to constant curent operation occurs avtomatically when the load cyirent exceeds the value established by the curtent control seltings．
－These sily featuras zoply $106256 \mathrm{~B}-6214 \mathrm{~B}$ only．

Specifications \dagger

RAMMGS			PERCOAMAHCE							
OC Ourpor			Losd Effect		Source efioct		PARD（mos／p－p）		Orift（sisblity）	
Volts	Amps	Madel	Volcage	Current	Yollypa	Curien	Vollage	Curroni	Yolerate	Curiemt
Q－10	0－20	62868	0．01\％ $0200 \mu \mathrm{~V}$	0．02\％${ }^{2}+500 \mu \mathrm{~m}$	0．01\％	0.02%＋ 500 jch	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	5 mA rms	$0.03 \%+500 \mu \mathrm{~V}$	0，03\％ 0 ＋ 6 mk
Q－30	e－50	\＄2590	$0.01 \%+200 \mu \mathrm{~V}$	$0.02 \%+1 \mathrm{~mA}$		0．02\％－ 1 mA	$500 \mu \mathrm{~V} / 5 \mathrm{mY}$	25 mA mms	0．03\％＋2mv	003\％－10 ma
0－10	D－100	6280日	$0.01 \% \mathrm{c}+200 \mu^{2} \mathrm{~V}$	$0.020{ }^{\circ} \mathrm{c}+2 \mathrm{mb}$	0．01\％＝ $200 \mu \mathrm{~V}$	0．0280 +2 ms	$300 \mu \mathrm{~V} / 5 \mathrm{mV}$	50 mA ms	$0.03 \%+2 \mathrm{mV}$	1．03\％+23 mn
0－20	0－10	E263B	0．02\％$+200 \mu \mathrm{~V}$	0．02\％ 0.500×4	001\％ $200 \mu \mathrm{~V}$	0．02\％＋ 500 －4 4	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	3 mA mms	$003 \%-500 \mu v$	003\％＋ 6 mA
D－20	0－20	82648	$0.01 \%+200 \mu \mathrm{~V}$	0． 22%－ $500{ }_{\mu} \mathrm{A}$	0.01% \％ $200 \mu \mathrm{~V}$	0．0240． 300 kH	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	3 ma ms	0． 05% \％ 500814	$0.03 \%+6 \mathrm{~mA}$
$0-20$	0－50	82818	0.01% \％ $200 \mu \mathrm{~V}$	0．02\％＋ 1 mA	0．01\％＋ $200 \mu \mathrm{LV}$	$0.02000+1 \mathrm{~mA}$	$500 \mathrm{\mu v} / 5 \mathrm{mV}$	25 mA ms	$0.03{ }^{\circ} m+2 \mathrm{mv}$	0．03\％＋ 10 mA
0－70	0－3	62858	0.01% ． $200 \mu \mathrm{~V}$	$0.0296+50012 k$	$0.01 \%+200 \mu^{4}$	$0.020 \cdot 500 \mathrm{~mA}$	$200 \mu \mathrm{H} / 10 \mathrm{mV}$	3 mA mms	00330－500 ${ }^{0}$	0．00\％＋ 3 mA
0－40	0－3	62668	0．01\％ $200 \mu \nu$	0．02\％$\cdot 500 \mu \mathrm{~A}$	0．01\％－ $200 \mu \mathrm{~V}$	0．0\％\％＋ $5.90{ }^{\mu} \mathrm{A}$	$200 \mu \mathrm{~V} / 10 \mathrm{mV}$	3 mA ms	$0.0339+500 \mu \mathrm{~V}$	$0.03 \%+3 \mathrm{~mA}$
$0-40$	0－10	62578	$0.012+200 \mu^{4}$	0．02\％＋ $500 \mu \mathrm{H}$	0．01\％＋ 200 少	0．020\％＋ $500 \mu \mathrm{~h}$	$200 \mu \mathrm{Vil} 10 \mathrm{mv}$	3 mk 2ms	$0.03 \%+2 \mathrm{mv}$	0．03\％＋ 3 mA
0－40	0－30	62888	0．01\％$+200 \mu . \mathrm{V}$	0．02\％＋ 2 mA	$0.04 \%+200 \mu \nu$	002\％ 02 ma	$1 \mathrm{mv} / 5 \mathrm{mV}$	20 mA mms	$0.035+2 m v$	$0.0390+5 \mathrm{~mA}$
0－40	n－50	67598	0．01\％＋ $200{ }^{2} \mathrm{~V}$	$0.0230+2 \mathrm{mn}$	0．01\％＋200 $\mu \mathrm{V}$	0.02%－ 2 mA	$1 \mathrm{mV} / 5 \mathrm{mV}$	25 ma rms	$0.030 \mathrm{c}+2 \mathrm{mb}$	0043\％ 10 ma
0－60	0－3	62718	0．01\％＋ $200 \mu \mathrm{~V}$	$0089 \%+500, \mathrm{AH}$	$0.015+20004$	002\％＋ $500 \mu \mathrm{~A}$	$200{ }^{2} \mathrm{~V} / 10 \mathrm{mv}$	3 mA ms	0．03\％－ 500 HV	0．03\％ 5 ＋ 3 mA
0－66	0－15	5274日	0．01\％＋ $200 \mu \mathrm{~V}$	1．02\％＋500 min	0．01\％＋ $200 \mu \mathrm{~V}$	0.02%＋ $500 \mu \mathrm{~A}$	$200 \mu \mathrm{~V} / 20 \mathrm{rav}$	5 mA mms	0．03\％－ $2 \mathrm{m4}$	$0.63 \%+5 \mathrm{~mA}$
0－320	0－1．5	305A	0．007\％or 20 mv	－	0.507% or 20 mV	－	1 mv ims	－－	$0.100+5 \mathrm{mV}$	－

[^13]Additional features include build-in overvollage crowbar protection: remote error sensing: and auto-series, auto-parallel, and auto tracking operation. The crowbar trip point adjusument and associated overvollage indicator are conveniently located on the front panel.

Auto-series, auto-parallel, and auto-lracking connections should ordinarily include no more than three supplies. If a specific application requires the use of more than three supplies in any of the three connections. consult your local HP Field Engineer for additional information.

All dc output, ac input, sensing. control, and programming connections are made to rear-panel terminals. Either the positive or negative output terminal may be grounded or the supplies may be operated floating at up to 300 volts above ground. Models 6256 B , $6263 \mathrm{~B}, 6264 \mathrm{~B} .6265 \mathrm{~B}, 6266 \mathrm{~B}, 6267 \mathrm{~B}$, and 6271 B are convection cooled. All other models in this series employ cooling fans.

Model 895A

Model 895A is a gencral purpose Constont-Voltage/CumeniLimit supply. Ouput volcage is adjustable from $0-320 \vee$ via a front pancl lo-turn potentiometer with concentric lock and a single-turn Fine control. Separate voltage and current meters provide continuous indication of power supply outputs. High performance specifications include 0.007% line and load regulation and I mV rms ripple and noise. Remote sensing and programming are standard features.

Accessorles and options

The accessories and options available for use with Models $6256 \mathrm{~B}-627 \mathrm{~B}$ B. 895 A are listed on page 220.

Specifications-general

Load elfect transiont recovery: lime- $50 \mu \mathrm{sec}$. Level- 10 mV Resolution: voltage conirol-less than 0.02%. Current controlless than 0.15%.

Temperature coeffictent per ${ }^{\circ} \mathrm{C}: ~ 0.01 \%$ of outpul plas $200 \mu \mathrm{~V}$ $(895 \mathrm{~A}-0.03 \%+1.5 \mathrm{mV}$).
Temperalure ratings: operating, 0 to $55^{\circ} \mathrm{C}$: Storage. -40 to $75^{\circ} \mathrm{C}$.
Remote control programming: these power supplies are capable of being programmed in constant vollage and constant curreat operation by using an external resistance or DC voltage with coefficients as shown in the table below.

Rear teminal wiring configurations for remote control operation are specified in the operation and service coanual supplied with the power supply. For remole control programming procedures and cirming considerations. contact your local HP field engineer.
Power: input vollage is 115 V ac or $230 \mathrm{Vac} \pm 10 \%$. $57-63 \mathrm{~Hz}$. For other input voltage and frequency options available, see option listing below and page 220. Standard inpul voltage, maximum input curcent. and maximum power are: 6256B. 115 V ac. 5 A .375 W : $6259 \mathrm{~B}, 230 \mathrm{~V} \mathrm{ac}, 6 \mathrm{~A}, 850 \mathrm{Wt}: 6260 \mathrm{~B} .230 \mathrm{~V} \mathrm{ac}, 12 \mathrm{~A} .1600 \mathrm{~W}$; $6261 \mathrm{~B}, 230 \mathrm{Vac}, 12 \mathrm{~A}, 1500 \mathrm{~W} ; 6263 \mathrm{~B}, 115 \mathrm{Vac}, 4.5 \mathrm{~A}, 350 \mathrm{~W}^{\prime}$; 6264 B .115 V ac. $8 \mathrm{~A}, 600 \mathrm{~W}+\mathrm{f} 6265 \mathrm{~B}, 115 \mathrm{Vac}, 3 \mathrm{~A} .180 \mathrm{W*}: 6266 \mathrm{~B}$. $115 \mathrm{Vac}, 4 \mathrm{~A} .325 \mathrm{~W} \cdot: 6267 \mathrm{~B}, 115 \mathrm{Vac} .8 \mathrm{~A}, 550 \mathrm{Wt}: 6268 \mathrm{~B} .230 \mathrm{~V}$ sc, $12 \mathrm{~A} .1600 \mathrm{Wt}: 6269 \mathrm{~B}, 230 \mathrm{~V} \mathrm{ac}, 18 \mathrm{~A}, 2500 \mathrm{~W}$ t: $627 \mathrm{~B}, 115 \mathrm{~V}$ $\mathrm{ac}, 4 \mathrm{~A}, 300 \mathrm{~W}^{*} ; 6274 \mathrm{~B} .115 \mathrm{Vac}, 15 \mathrm{~A}, 1200 \mathrm{~W} \dagger: 895 \mathrm{~A}$. 115 Vac . 8.7 A, 585 Wt.

- Diresewire, five fool Ac powe cerd incluved with power supoly.

Thiree lermiral tamyer strip providec on power supply to AC power connections.
SLze: 6263B, 6265B, 6266B. 6271B: $83.7 \mathrm{H} \times 483 \mathrm{~W} \times 479.4 \mathrm{~mm} \mathrm{D}$ $\left(3.296^{\prime \prime} \times 19^{\prime \prime} \times 18.875^{\prime \prime}\right) .6256 \mathrm{~B}, 6264 \mathrm{~B}, 6267 \mathrm{~B}, 6274 \mathrm{~B}: 127 \mathrm{H} \times 483$ $\mathrm{W} \times 479.4 \mathrm{mmD}\left(5.00^{\prime \prime} \times 19^{\prime \prime} \times 18.875^{\circ}\right) 6259 \mathrm{~B}, 6260 \mathrm{~B}, 6261 \mathrm{~B}$, $6368 \mathrm{~B}, 6269 \mathrm{~B}: 173 \mathrm{H} \times 483 \mathrm{~W} \times 479.4 \mathrm{~mm} \mathrm{D}:\left(6.812^{\prime \prime} \times 19^{\prime \prime} \times\right.$ 18.875") 895A: $128.6 \mathrm{H} \times 483 \mathrm{~W} \times 463.6 \mathrm{~mm} \mathrm{D}\left(5.062^{\prime \prime} \times 19^{\prime \prime} \times\right.$ $18.25^{\prime \prime}$).
Typical output Impedance: approximated by a resistance in series with an inductance: 62568, $0.1 \mathrm{~m} \Omega .1 \mu \mathrm{H}: 6259 \mathrm{~B}, 50 \mu \Omega, 1 \mu \mathrm{H}$: 6260B. $20 \mu \Omega .1 \mu \mathrm{H}: 6261 \mathrm{~B}, 100 \mu \Omega .1 \mu \mathrm{H}: 62638,500 \mu \Omega, 1 \mu \mathrm{H}$: $6264 \mathrm{~B}, 200 \mu \mathrm{\Omega}, 1 \mu \mathrm{H}: 6265 \mathrm{~B} .2 \mathrm{~m} \Omega, 1 \mu \mathrm{H}: 6266 \mathrm{~B}, 1 \mathrm{~m} \Omega$. $1 \mu \mathrm{H}$: $6267 \mathrm{~B} .500 \mu \mathrm{\Omega} .1 \mu \mathrm{H}: 6268 \mathrm{~B}, 200 \mu \Omega, 1 \mu \mathrm{H}: 6269 \mathrm{~B}, 100 \mu \Omega .1 \mu \mathrm{H}$; $627 \mathrm{IB}, 5 \mathrm{~m} \Omega .1 \mu \mathrm{H}: 6274 \mathrm{~B}, 1 \mathrm{~m} \Omega .1 \mu \mathrm{H}: 895 \mathrm{~A} .40 \mathrm{~m} \Omega$. $16 \mu \mathrm{H}$.

Specifications, continued

MEMOTE COMTROL FEATURES								GEMCRAL						
Resistance Coens.		Voliage Coetr.		Spres Up.		Spead Down-		Ourrvollage		Woleght		Optioma	Price	
Yohage	Current	Vohage	Cumme	HL	π	ML	fl	Ranje	Mongin	Not	Shioping			
$2004174=140^{\circ}$	$10 \mathrm{ImA}-10 \mathrm{sa}_{0}$	$1 \mathrm{VN}=10_{4}$	$25 \mathrm{~m} \\| \mathrm{if}=10 \%$	60 ms	60 ms	5 see	100 ms	2-12 ${ }^{\text {V }}$	59% +18	$15.8 \mathrm{~kg} / 35 \mathrm{it}$	$18.1 \mathrm{~kb} / 60 \mathrm{ld}$	5, 9. 10, 15, 22, 27, 28, 40	5670	
	$4 \mathrm{~N} / \mathrm{A}-10 \%$	$1 \forall N=150$	$10 \mathrm{mb/}=10 \%$	70 ms	70 ms	200 ms	100 ms	2-12 V	5\%-2v	31.3 kg 669 lt	35.3 kg 278 it	5. 9. 10. 15, 22, 26. 27. 40	s1000	
$200 \mathrm{n} / \mathrm{V}=1 \mathrm{~s}=$	$\underline{20 / A}=10 \%$	$1 \mathrm{VN}=1 \%$	$5 \mathrm{mV} / \mathrm{A}=100^{\circ} \mathrm{c}$	70 ms	70 ms	200 ms	35 ms	2-12Y	5\%-2v	$43.9 \mathrm{~kg} / 97 \mathrm{lb}$	$48 \mathrm{x} / 210515$	5.9.10.15.16. $22,27.40$	81160	
$2000 \sim N=1 \%$	100 01/ - 100	$1 \forall N=1 \%$	$50 \mathrm{mV} / \mathrm{A}=10 \mathrm{~F} / 0$	150 ms	150 mas	1 sac	350 mm	$2-23 \mathrm{~V}$	5\% + IV	15.4 xgras is	$18.6 \mathrm{~kg} / 4 \mathrm{l} 1 \mathrm{is}$	5. 9, 10, 15.27. 27. 28, 40	5633	
$200 \mathrm{n} / \mathrm{N} \pm 10 \%$	$10 \mathrm{IVR}=105^{\circ}$	$1 \mathrm{VN}=3 \%$		140 ms	140 ms	10 sec	150 ms	2.5-23v	5\% + 14	21.3 kg 477 lt	$24.5 \mathrm{~kg} / 14 \mathrm{is}$	3, 9, 10, 15, 22, 2, 28, 40	3726	
$200 \mathrm{nNV}-15$	$4 \mathrm{fin}=10 \%$	$1 \mathrm{VN}=1 \%$	$10 \mathrm{nW} / \mathrm{A}=10 \%$	150 ms	150 ms	250 ms	250 ms	2-23V	500+2v	$35.3 \mathrm{ke} / 2 \mathrm{id}$	39.4 kg ¢ $\mathcal{7}$ ID	5, 9, 10, 15, 22, 26, 27, 40	11080	
200 ¢LV $=19$	300 $0 / \mathrm{A}=10 \%$	$1 V N=15_{0}$	$161 \mathrm{mV} / \mathrm{A}=10 \%$	275 ms	215 mis	12 sfc	1.5 soc	2.5-45V	$59_{a}+14$	15.4 kg 34 tb	$18.6 \mathrm{mg} / 4110$	5, 5, 10, 35, 22, 22, 28.40	1560	
$200 \mathrm{fLV}=10{ }_{6}$	$200020 \mathrm{~A} \cdot 10 \%$	$1 \mathrm{VIN}=10$	$100 \mathrm{mV} / \mathrm{A}=10 \%$	215 ms	275 ms	13 sec	1.5 sec	2.5-45 4	$5 \%+1 v$	13.4 $\mathrm{mg} / 34 \mathrm{ls}$	18.6 kg 4110	3, 9, 10, 15, 22. 27. 28.40	5835	
200 S $2 \mathrm{~N}=1 \%$	$300 \mathrm{E}^{\prime} \mathrm{A}=10 \%$	$1 \mathrm{VN}=1 \%$	$50 \mathrm{mv/a}=10 \mathrm{~m}$	275 ms	275 ms	13 sec	750 ms	2.5-45 V	5\% 9.17	$17.7 \mathrm{~kg} / 39 \mathrm{lt}$	$20.8 \mathrm{~kg} / 66 \mathrm{ld}$	3, 9, 10, 15, 22, 21, 28.40	3729	
$2000 \mathrm{NW} \cdot 11^{\circ} \mathrm{C}$	$6 \mathrm{O} / \mathrm{A}=10 \%$	$1 \mathrm{VN}=1 \%$	$16.7 \mathrm{mV} / \mathrm{A}=10 \%$	300 ms	300 ms	1 sect	650 ms	4-45 V	3\%+1V	34.4 kg 76 lo	38.1 kgiga it	5, 9, 10, 15, 27. 25. 27, 40	110601	
$200 \mathrm{IS} / \mathrm{V}=1 \mathrm{I}_{0}$	$418 / A=10 \%$	$1 \mathrm{viv}-1 \mathrm{~N}_{7}$	$10 \mathrm{mv} / \mathrm{A}=10 \%$	350 ms	350 ms	1 sac	690 ms	\&-45 V	5\% + 1v	$40.3 \mathrm{~kg} / 89 \mathrm{ta}$	$44 \mathrm{~kg} / \mathrm{Sc} \mathrm{lb}$	5, 9, 10, 15, 22, 27. 40	51110	
300 OTV - 1\%	$300 \mathrm{O} / \mathrm{A} \pm 10 \%$	$1 \mathrm{VFV}=1 \mathrm{la}$	$167 \mathrm{mV} / \mathrm{L}=10 \%_{0}$	600 mss	600 ms	7 sec	2 sec	$6-56 \mathrm{~V}$	5 $\mathrm{N}_{2}+1 \mathrm{~V}$	15.4 kg! 31.16	$18.6 \mathrm{~kg} / 31 \mathrm{lb}$	5. 9, 10, 15, 22, 27, 28.40	5600	
$300 \mathrm{O} / \mathrm{N}=100$	67 12/A $+10 \%$	$1 \mathrm{~V} / \mathrm{V}=1 \%$	33.3 mV/A $=10 \%$	600 ms	500 ms	40 sec	800 ms	$6-66 \mathrm{~V}$	$5 \%+18$	21.7 hy/4s it	$24.5 \mathrm{kd} / 54 \mathrm{it}$	5, 9, 10. 15, 22, 27, 28, 40	3880	
300 oiv	-	-	-	-	-	-	-	Ha	NA	$22.6 \mathrm{~kg} / 50 \mathrm{lb}$	29.4 处 $/ 58 \mathrm{lb}$	-	68.5	

[^14]
General purpose：300－11，000 W output

 Models 6427B－64日3C－Outstanding value－low cost／watt
－Up to 75% efficiency at full output
－Constant voltage／current operation

64278－6483C

Description

This series of SCR－frgulated power supplies is designed for high－power applications requiring a fixed or variable DC source with moderate regulation and ripple．For supplies with beter regula－ tion．faster response ilme，and lower ripple，sec models 6256B－ 6274 B and 895 A ．on page 208.

Operating tealures

All supplics in this series are of the Constant－Yoltage／Constant－ Current lypc．Large easy－to－read panel meters continuously monitor oulpul voluage and current．

Input and output power．retrote sensing，remote programming． and auto－scries．－parallel，and－tracking connections are made to bus batis and terminal blocks on the rear panel．

Protectlve features

In addition to the overload protection imherent in Constant voltage／Constant Current operation．there are many ocher buill－in protective 「ealures included in these supplies．The features vary within the three model classifications as follows：
6427日－6448B：（1）Reversc voltage protection．（2）Fused AC input． 8453A，6456B，6459A：（1）AC line loss protection circuir monitors 3－phase inpur and culs of SCR＇s and opens outpul bus if a phase drops out：opemtion resumes when AC input relurns to normal．（2） 3－phase inpur circuí breaker．（3）Optional intemal crowbar（Opition 006）protects load from overvoliage condition．
6464C－6403C：（1）Higb－temperalure protection thermostal opens input to power iransformer and lights frome panel indicator if supply oventeats．（2）Prolonged overioad protection circult is activated and lights frori panel indicstor if oulput currenl exceeds approximately 115% of maximum rating．（3）Optional intermal crowbar（except on 6464 C prolects loud from overvoltage condition．（4）Tum－on circuit limits peak line current during slan－up into low impedance loads．（5） Phase－billance circuil permits operation with line－10－line input volt－ age inbalance up to 8% ．（6）Overcurrent and over－voltage circuits of master and slave supplies used in auto－serics．－parallel．or－（racking operation can be interlocked．

Auto－serles，－parallel，－tracking operatlon

Supplies may be connected in amo－series，or auto－tracking．（Ex－ cept 6448B and 6483C．which cannot be connected in auto－series．）
Up to three lower power models（ $6427 \mathrm{~B}-6448 \mathrm{~B}$ ）may be con－ nected in any of the above conligurations．Higher－power model （ $6453 \mathrm{~A} / 6483 \mathrm{C}$ ）interconnection should ordinarily include no more than two supplies．

Remote sensing

Remote sensing permits regulation al the load connection，rather than at the output teminals of the power supply．In all cases，there are limists to the permissible load－lead voltage drops．as follows：

Models 6427B－64488： 2 volts in negarive outpul lead．
Models $\operatorname{ta53}$ A． $6456 \mathrm{~B}, 6459 \mathrm{~A}$ ；I volt in negative oulput lead． Models 6464C－6483C； 3 volis in negalive output lead．

Specificationst

rammes					PERFORMAHEE				
DC Ourpan			Loas Eftea		Source Eliecl				
Yoliss	Ampsis	Model	Yoltagi	Eurrimi	Vehtago	Curramt	PARO \triangle P－p／rims	Tomperatura Contliciad	Dift
0.8	D－1000	babal	0．05\％ $0-5 \mathrm{my}$	0． $3 \%+1 \mathrm{~A}$	0． $05 \% \mathrm{c}+5 \mathrm{mv}$	（0， 18 \％+1 A	80 mvaiv	0．03\％＋ $100 \mathrm{\mu v}$	$0.3 \%+1 \mathrm{mb}$
0－15	0－200	64530	0． 2%＋ 10 mvit	1\％\％or 2 Att	$620.0+10 \mathrm{mvt}$	1\％or 2 Att	150 mV ／ms	0．0596＋2 mV	$025 \% \sim 10 \mathrm{my}$
（1－15 0： 18	$0-600$ or 500\％	6466C	0．05\％＋5 mV	$0.1 \%+0.6$ 2	$0.05 \mathrm{~F}_{\mathrm{p}}-5 \mathrm{mV}$	0．8\％ 0.5 A	$150 \mathrm{mv} / 1 \mathrm{Y}$	0．0．3\％＋ $2.00 \mathrm{\mu} \mathrm{H}$	$0.29+1 \mathrm{mv}$
（－20	0－15	64278	20 mb	150 ma	10 mv	150 mA	$40 \mathrm{mV} / 400 \mathrm{mv}$	0．05\％＋5 mV	$0.15 \%+15 \mathrm{mv}$
0－201	C－85	6428日	40 mr	450 mA	20 niv	4 40 mA	$40 \mathrm{~mW} / 500 \mathrm{mV}$	0．05 0.5 mb	$0.15 \%+15 \mathrm{mv}$
O－3i	0－10	64338	36 miv	100 mh	18 miV	100 mA	$36 \mathrm{mb/SNO} \mathrm{mY}$	0．03\％＋ 3 mv	$0.1 \%+15 \mathrm{mV}$
（－36	0－100	6458B	0． $2 \% \mathrm{i}+10 \mathrm{mbit}$	1\％¢ 1 Ait	$0.290+10$ nivit	1\％orlaft	120 mV ms	0， $05 \%+2 \mathrm{mV}$	0．25\％＋ 10 mb
0－36	0－300	B4E96	0．05\％＋ 5 mb	0.15 \％ 0.3 A	0．05䉼－5mv	$0.1 \% \sim 0.3 \mathrm{~A}$	$180 \mathrm{mv} / \mathrm{I}$	0．03\％＋ $100 \mu \mathrm{~V}$	$0.15 \%+1 \mathrm{mv}$
O－40	0－25	68348	40 mv	200 mm	IE．mu	200 mA	$10 \mathrm{mv/} 500 \mathrm{mV}$	$0.03 \%+5 \mathrm{mV}$	0.1%－ 2.0 mb
0－60	0－3	64388	50 mV	30 mk	30 my	50 mm	$170 \mathrm{mV} / 800 \mathrm{mV}$	$0.03 \%+30 \mathrm{mV}$	$0.18 \%+30 \mathrm{mv}$
0－60	0－15	64389	120 mV	150 mA	60 niv	150 mA	$60 \mathrm{mv} / 500 \mathrm{mV}$	$0.03 \%+10 \mathrm{mV}$	$0.15+30 \mathrm{mV}$
0．62	0－50	c3s84	0，2\％＋ 10 mvgh	1\％or 0.5 Al （t	$0.2 \%+10 \mathrm{mVH}$	156 or 0.5 Att	360 mV mm	$0.05 \%+2 \mathrm{mV}$	$0.25 \%+10 \mathrm{mV}$
0．64	0－150	6412C	$005 n \%+100 \mathrm{mv}$	$0.1 \%+0.15 \mathrm{~A}$	0．05\％＋ 100 mv	0．15\％＋0 15 A	$160 \mathrm{mv} / 2 \mathrm{~L}$	$0.03 \%+4 \mathrm{mV}$	$0.1544+16 \mathrm{mv}$
0－110	$0-100$	64768	005\％\％＋ 100 mV	0．1\％＋0．1 A	0．05\％＋ 100 mV	0．1\％－D．1 A	220 mviz V	$0.03 \% 6+5 \mathrm{mV}$	$0.15 \%+20 \mathrm{mV}$
$0-120$	0－25	64430	120 ml	25 mA	60 ml	25 mA	$240 \mathrm{mv} / 800 \mathrm{mv}$	0．03\％＋ $20 . \mathrm{mv}$	$0.1 \%-60$ miv
0－220	0－50	64170	0．05\％＋ 100 my	0． $1 \%-50 \mathrm{~mA}$	0 05\％－ 100 mv	0． 8% \％ 50 ma	$330 \mathrm{mv/2} \mathrm{~V}$	0．07\％＋ 6 mY	$0.15 \%+35 \mathrm{mV}$
0－300	0－35	64795	0．05\％＋ 100 mv	0． $10 \mathrm{a}+35 \mathrm{~mA}$	10 05%＋ 100 mV	0． 1%－ 35 mm	$330 \mathrm{mu} / \mathrm{S}^{5}$	$00.3 \% \%^{\circ}+11 \mathrm{ml}$	$0.15 \%+45 \mathrm{mV}$
0－640， $500 \pi 600$	0－25．20．15	B4asc	0．05\％＋ 100 mV	0． $148+35 \mathrm{~mA}$	0．5\％＋＋ice mV	C $15 \% 33 \mathrm{~mA}$	$600 \mathrm{mv} / 3 \mathrm{y}$	$003 \%+20 \mathrm{mV}$	0． $15 \%+80 \mathrm{mV}$
1－600	$5 \mathrm{~mm}-1.5 \mathrm{~A}$	64888	IV	40 mm	600 mV	15 mA	$600 \mathrm{mv} / 2 \mathrm{~V}$	$0.037 \%+100 \mathrm{mv}$	0.1%＋ 300 mv

[^15][^16]

Remote programming
The voltage and curreal outputs of the supplies can be pro－ grammed by a remole resistance．or，for most models，a voliage source．Programming speeds and coefficients are dewiled in the specifications table．
AC power requirements
The AC power requirements vary with the three model elassifica－ tions（see option listings）．When powered from a 50 Hz source（pos－ sible with Oplion 005），the rms ripple and transient response specifi－ cations increase by 50% ．The p－p ripple specification is unchanged by line frequency．
Dimensions
Models 6427B，6433B， 8438 B and 6443B： $89 \mathrm{H} \times 483 \mathrm{~W} \times 445$ $\mathrm{mm} \mathrm{D}\left(3^{1 / 2^{\prime \prime}} \times 19^{\prime \prime} \times 17^{11 / 2^{\prime \prime}}\right)$ ．

Models 6428B，6434B，6439B，\＆6448B： $133 \mathrm{H} \times 483 \mathrm{~W} \times 426 \mathrm{~mm}$ D（ $51 / h^{* *} \times 19^{\prime \prime} \times 16^{3 / 4}$ ）．
Models 8453A，6458B，\＆6459A： $356 \mathrm{H} \times 483 \mathrm{~W} \times 464 \mathrm{~mm} \mathrm{D}$（ $14^{\text {² }}$ $\times 19^{n} \times 18^{1 / 4}$ ）．
Models 6464C，6466C，6469C，6472C，6475C，6477C，6479C，\＆
6483C： $667 \mathrm{H} \times 426 \mathrm{~W} \times 664 \mathrm{mmD}\left(26^{\frac{1}{4}} \times 19^{\prime \prime} \times 26^{1 / \mathrm{g}^{\prime \prime}}\right)$ ．

Options

Price
AC，Input power

64278－6448B

Std： $115 \mathrm{~V} \mathrm{ac},=10 \%$ ．single phase． $57-63 \mathrm{~Hz}$
N／C
027： 208 V ac，, $\mathbf{r} 10 \%$ ，single phac， $57-63 \mathrm{~Hz}$
N／C
028： 230 V ac，$+10 \%$ ，single phase， $57-63 \mathrm{~Hz}$ N／C
D05：realignment for 50 Hz operation
N／C
6453A，6456B，6458A：AC input connections are by means of a 4 －conductor connector al sear of unit．A matching Hubbell No．7413G plug（HP pan number 1251－1570）is furnished．
001 ： $208 \vee$ ac．$=10 \%$ ，3－phase， $15.5 \mathrm{~A} /$ phasc． $57-73$
Hz
002 ： $230 \mathrm{~V} \mathrm{ac}, \pm 10 \%$ ，3－phase， $14 \mathrm{~A} / \mathrm{phase}, 57-63 \mathrm{~Hz}$
$031: 380 \mathrm{Vac} .=10 \%$ ， 3 －phase． $8.5 \mathrm{~A} /$ phase， $57-63 \mathrm{~Hz}$
032： $400 \mathrm{Vac}=10 \%$ ，2－phase， $8.0 \mathrm{~A} / \mathrm{phase}, 57-63 \mathrm{~Hz}$
003： $460 \mathrm{ac} . \pm 10 \%$ ．2－phase． 7 A phase． $57-63 \mathrm{~Hz}$
005：realignment for $50 \mathrm{H} \%$ operation
N／C
N／C
add \＄55
add $\$ 55$
N／C
8464C－6493C：AC inpul connections are by means of enclosed 4 wire terminal block．
D01： $208 \mathrm{Vac},=10 \%$ ，3－phase，SS A／phase，57－63 Hz
$002: 230 \mathrm{~V} \mathrm{ac}, \pm 10 \%$ ．3－phase， $50 \mathrm{~A} /$ phase， $57-63 \mathrm{~Hz}$
$031: 380 \mathrm{Vac}, \pm 10 \%$ ．3－phase， 30 A／phase． $57-63 \mathrm{~Hz}$
032： 400 V ac，$=10 \%$ ，3－phase， $28.5 \mathrm{~A} /$ phase． $57-63$
Hz
N／C
add $\$ 200$
add $\$ 200$
$003: 460 \mathrm{~V} \mathrm{ac}. \pm 10 \%$ ．3－phase． $25 \mathrm{~A} /$ phase， $57-63 \mathrm{~Hz}$
005：realigument for 50 Hz operation add $\$ 210$

008：internal overvoltage protection crowbar
$6459 \mathrm{~A} .6477 \mathrm{C}, 6479 \mathrm{C} .6483 \mathrm{C}$
add $\$ 345$
6453A．6456B
$6472 \mathrm{C}, 6475 \mathrm{C}$
6469 C
6466 C
add $\$ 395$ add $\$ 460$ add $\$ 510$ add $\$ 570$

Specifications，continued

REMOTE COHTRAL											Qemisal			
Resaluilan		Las trmaiant Recoverys	Healstaner Coeilliciant		Volisite Costicland		Up		Down		HM		Options 4	Price
V	6		Voliaga	Curent	Vohafe	Current	H．	12	Ht	$f 1$	kg	it		
5 mb	1 A	$100 \mathrm{~mm}, 500 \mathrm{mb}$	2000／$/=2 \%$	10\％ $4: 7 \%$		$5.2 \mathrm{mvin}=3 \%$	1.6 －	0.63	5.5	0.15	235	518	1．2，3．5，23，31， 32	\＄4530
65 mb	1 A	$30 \mathrm{~ms}, 150 \mathrm{mv}$	$200 n / \mathrm{V}=2 \%$	IRM	0.4 Y／V	$36 \mathrm{mb/a}$	18	0.5 \％	205	0.25	108	23.8	1，2，3，5，6，10，31，32	\％ $\mathrm{L}^{6} 60$
15 mv	0.3 h	$100 \mathrm{mg}, 500 \mathrm{mV}$	$200 \Omega / \mathrm{V}=2 \%$	1．661／／A $=2 \mathrm{R} \mathrm{\%}$	1 VYY－13\％	$10.3 \mathrm{mV} / \mathrm{A}=7{ }^{\circ} \mathrm{A}$ ．	1.68	0．E］	15：	0．28	226	500	1．2，3，5，6，23，31， 32	53980
10 mV	7.5 mA	$200 \mathrm{~ms}, 2.50 \mathrm{mv}$	200n $N=2 \%$	20n1／	：Y／Y	NH	0.33	145	1003	1.48	16.3	35	5．10，27， 28	5350
10 mv	225 mA	$200 \mathrm{~ms}, 200 \mathrm{mb}$	20日！ $2 v=2 \%$	E1p A	IVIV	Na	1.25	0.75	655	0.7 s	30.4	67	6．10．27． 28	8780
9 mv	5 mi	20 fms ． 200 mv	760日V $=2 \%$	3011／a	1 Viv	Ha	0.3 s	1.43	4108	1.45	14.9	33	5． $10,27,28$	5535
90 mp	05A	50 ms .300 ml	20an $/ \mathrm{V}=24$.	20／6	165 mviv	$60 \mathrm{mN} / \mathrm{F}$	15	0.51	60 s	Q．5s	108	238	$1,2,3,5,6,10,31,32$	\＄1850
3 Bmy	0．3A	$100 \mathrm{~ms}, 500 \mathrm{ml}$	200014： 8 C	3．33n／h $-2{ }^{2} \mathrm{c}$ c	$10 / 4$	20．6mviA $\times 7 \%$	1.6 s	$3 \leq$	205	0．5s	225	560	1，2，3，5，6，23，31， 32	53660
10 my	125 ma	209ms， 200 mv	200174－？\％	120／8	1 Viv	Na	0.3 s	1.25	75.	1．28	30.4	6）	5．10，27， 28	5745
9 miv	25 mA	200 css 300 nv	3000% 上． 20.0	600／a	1 VY	N／	0.55	2.58	200：	2.55	18	31	5，10，21， 28	8540
9 m	7.5 mA	$200 \mathrm{~ms}, 600 \mathrm{mb}$	1601） $\mathrm{V}=2 \%^{\circ}$	2012ia	$1 \mathrm{Wi4}$	NA	D． 3.3	1，35	35：	1.38	27.6	61	3．10．27， 2 E	3600^{2}
110 mV	D． 25 A	50 ms .000 mV	sabnv $=2 \%$	40：	91 miviv	$120 \mathrm{mv/a}$	1 s	0.58	45 s	0.75	108	238	1．2．3，5，6． $10,31.32$	51850
64 giv	015 and	100 ms， 750 my	$30051 / v \pm 290$	6．751／$=2 \%$	$1 V / V=3 \% \cdot$	$412 \mathrm{nViA}=7 \%$	1.65	2．5；	553	0.75	226	500	1．2，3，5．6．23，31，3？	\＄3660
22 mir	01 A	100 ms，iv	309LV－\％\％	1094－29\％	1 Viv $\rightarrow 3 \%$	$52 \mathrm{mb} / \mathrm{A} \times 7 \mathrm{~F}$	15 ：		$8 \mathrm{SO}_{3}$	0．78	226	500	1，2，3，5，6，23，32， 22	235 9
30 mv	13 mm	206me 6000 mb		120n． 1	1 V	A ${ }^{\text {A }}$	058		2109		14	31	5． $10,27.28$	\＄500
4 ATV	50 mu	100 mm ． 2 V	$3000 / \mathrm{V}=2 \%$	20贝才 $=2 \%$	$1 \mathrm{~V} \cdot \mathrm{~V}=3 \%$	$124 \mathrm{mV} / \mathrm{R}=7 \%$	1.58		935	13	226	300	1．2．3，5．6．73，31． 32	83450
60 mv	35 mA	$100 \mathrm{~ms}, 3 \%$	$30002 ; \mathrm{V}=290$	28．612／ $\mathrm{A}=2 \%$	$1 \mathrm{~V} / \mathrm{V}=3 \times$	（1） $\mathrm{mv} / \mathrm{A} \pm 7 \%$	151		75 s	16 s	226	500	1．2．3，5，6，23，31． 32	\＄3550
Gumv	2.51 ha	$100 \mathrm{~ms}, 5 \mathrm{~V}$		$40 \Gamma \mathrm{H} / \mathrm{F}=2 \%$	$\underline{1 V i V}=3 \leqslant$	$0.25 \mathrm{~V} / \mathrm{A}=7 \%$	2.51		120.3		226	500	1，2，3，5，6，23，31，32	83910
60 mi	975 ma	$200 \mathrm{~ms}, 3 \mathrm{~V}$	3000／K $=2 \%$	600n／A	1 ViV	Nh	0．2 3	15	455	2	27.6	61	5，30，27，2\％	5770

Afor operation with a 50 itz input（possibie only with Option 05 ，The mes sipple and transient response specifications are incruased by somis
asee page 2201w cantiple option and accessory descriplions．

- HP-IB power supply control
- HP-IB-to-power-supply isolation
- Programmable range

Description

The 59501A is an isolated digita-to-analog converter designed to provide a convenient interface between the Hewlett-Packard Interface Bus and HP power supplies. With the 59501A, a wide range of DC vollages and currents becomes automarically controllable via the HP-IB. With proper wining. the buill-in isolation devices protect other instrumentation on the HP-IB from damage that could be caused by power supply oulputs. In addition. an intemal control circuit holds the output level near zero unil programmed dith is received. A programmable High/Low range control impraves renolution by ten-to-one.
Power supply control is accomplished itrough the 59501A's programmatle outpul voltage and programming network (see figure 1). By making the appropriate conncctions between the 59501A's rear lerminals and the remole programming lerminals on the supply, the output voltage (or curtent) of the supply can be programmed from zero to its full rated output. The 3950 1 A front panel controls provide fast and easy calibration of power supply outputs. The Zero Adjust enabies the user to correct for small offsets in power supply response 10 programmed inputs. The Power Supply Full Scale Adjust (part of programming network) enables the utser io set the maximum outpul desired from the poiver supply when the 59501A is programmed to its maximum value. For example. this adjustment would normally be used to calibrate the maximum programmable output of a 320 V de power supply to 320 vohs. However, it could also be used to set the naximum to 200 volls.

In addition to its ability in program power supplies, the S9S0IA also can be used directly as al low level DC signal source. Unipolar and bipolar output modes atre availahle with output voltages programmable from zero to 9.94 volls, or minus 10.0 to plux 9.98 volts. Output current up to 10 milliamps is available and is automaticilly limited to protect the 50501 A and user equipment. The sysola produces ar full seale voltage change in approximabley $250 \mu \mathrm{sec}$ from the time the digital data is received

- Programmable 10 -volt DC output
- Unipolar/Bipolar operation
- Fast digital to analog conversion

Speciflcations

Dightal to Anslog Converter
DC Output voltage: programmable in high or low mages within the voltage limits shown below. Output mode is unipolar or bipolar and is selected by a dear pancl switch.

Unlpolar: 0 to 9.99 V (low range, 0 to 0.999 V .
Blpolar: -10 to +9.98 V . (low range, -1 to +0.998 V).
DC Output current: 10 mA maximum.
PARD (RIpple and Noise): $2 \mathrm{~m}^{\prime}$ rms' $10 \mathrm{~m} V \mathrm{p}-\mathrm{p}$.
Resolution: unipolar. 10 mV (low anlee, I mV). Bipolar. 20 mV (low range, 2 ml).
Accuracy: specified at $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$.
Unipolar: $0.1 \%+5 \mathrm{mV}$ (low range, $0.1 \%+1 \mathrm{mV}$).
Blpolar: $0.1 \%+10 \mathrm{mV}$ (low range, $0.1 \%+2 \mathrm{mV}$).
Stabllity: change in output over 8 hour interval under constant line. load. and ambient following a 30 minute warm-up. Slability is included in accuracy specification measusements over the temperalure range indicated.

Unlpolar: $0.04 \%+0.5 \mathrm{mV}$ (low range, $0.04 \%+.1 \mathrm{mV}$).
Bipolar: $0.04 \%+1 \mathrm{mV}$ (low range. $0.04 \%+.2 \mathrm{mV}$).
Temperature Coefficlent: unipolar. $0.01 \% /{ }^{\circ} \mathrm{C}+0.5 \mathrm{mV} i^{\circ} \mathrm{C}$ dow range. $0.01 \% i^{\circ} \mathrm{C}+0.1 \mathrm{mV} / /^{\circ} \mathrm{C}$. Bipolar, $0.01 \% 1^{\circ} \mathrm{C}+0.5 \mathrm{n} \mathrm{V}^{\prime} \mathrm{C}$ (low range. $0.01 / /^{\circ} \mathrm{C}+0.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
Zero adjust: plus or minus 250 milivolls.
D/A Full scale adjust: plus or minus 5%.
Programming speed: the time required for oulput the from zero to 99% of programmed output change is $250 \mu \mathrm{sec}$ (meanured with resistive load connected to output ieminals).

Power Supply Programming

Programming network specitlcatlons: in the following specifications. M represents the calibrated full scale value of the supply being progianmed and P is the actual programmed outpul. The full scale value (M) can be any value within the supply's output range and is calibrated with the S9SOIA programmed to tis maximum high range oulpur.
Accuracy: specificed at $23^{\circ} \mathrm{C} \leq 5^{\circ} \mathrm{C}$.
Unipolar: $0.05 \% \mathrm{M}+0.25 \% \mathrm{P}$ (low range, $0.01 \% \mathrm{M} \div 0.25 \% \mathrm{P}$).
Blpolar: $0.1 \% \mathrm{M}+0.25 \% \mathrm{P}$ (low range, $0.02 \% \mathrm{M}+0.25 \% \mathrm{P}$).
Is olatlon: 600 Vdc between HP-IB data lines and output terminals.
Tomperature Coeflcient: $0.00 .5 \% \mathrm{M} /{ }^{\circ} \mathrm{C}+0.015^{\circ}: \mathrm{P} /{ }^{\circ} \mathrm{C}$ (lnw range. $0.01 \% \mathrm{M} /{ }^{\circ} \mathrm{C}+0.015 \% \mathrm{P} /{ }^{\circ} \mathrm{C}$).
Programming resolution: $0.1 \% \mathrm{M}$ (low range, $0.01 \% \mathrm{M}$).
Programming speed: D/A programming speed plus the programming speed of the power supply.
General
Temperature ranga: operating: $01055^{\circ} \mathrm{C}$. Slorage: $-401075^{\circ} \mathrm{C}$. Power: 100, 120, 220, or $240 \mathrm{Vac}(16 \%-13 \%) 47-61 \mathrm{~Hz}$. 10 VA (sciectable on rear panel).
Size: $101.6 \mathrm{H}>212.9 \mathrm{~W} \times 294.6 \mathrm{~mm} \mathrm{D}\left(4^{\prime \prime} \times \$.39^{\prime \prime} \times 11 . \mathbf{6}^{\prime \prime}\right)$
Welght: Nel 1.16 kg 13 lb$)$. Shipping $1.81 \mathrm{~kg}(4 \mathrm{lb})$.
Ordering Intormation Price
5950 IA HP-IB Isolited D/A Power Supply Programmer $\$ 500$
10631A HP-1B cable 1 m (3.3 fi)
10631 B HP-IB cable 2 m (6.6 fi)
1063)C HP-1B cable 4 m (13.2 n)

565
$\$ 75$

- 200-watt extended range
- Constant-voltage/constant-current operation
- HP-IB programming option
- Built-in overvoltage protection crowbar
- CV/CC operating status indicators
- Remote analog programming and sensing

Descrlptlon

The Model 6002A offers a new level of performance and usefulness in laboratory power supplies. It employs a unique regulation control concept that automatically yields a conlimuous span of vollage and currene ratings within the basic 200 -watl power rating boundary. This is beneficial in that more eurrent is available at lower voltages. and higher volages are available at a given current level than cata be oblained from conventional 200 -walt supplies.

Conventional 200 -wall power supplies, rated for 50 volis or 20 voits ean operate only within the shaded regions shown in Figure I. The 6002A not only provides the outputs of the two conventional supplies, but also delivers the exira oulput capability shown between 20 and 50 volts.

Figure 1.

This "extended range" capabitity of the 6002A provides the user with a single power supply lbat cin cover a wide variety of applicalions in the lab or as a sysicm component without his having to specify both the outpul voltage and current.

System lealures/remote control

Analog programming of output voltages and current can be accomplished through the use of semotely controlled resistince or voltage applied to rear panel terminals. Additional conerol terminals are provided ior remote load volage sensíng, auto-series or parallel operation, and for remotely activaling ite crowbar circuin, A pulse pulse oulput from the crowbar terminal indicates the overvoltage circuit has been self-activaled. A voltage step change appearing on iemminal indicales a changeover to or from constanl-current operation.

HP-IB option

Digital programming viá Opl 00 J permits conerol of oulput voltage or current by the Hewlett-Packard Interface Bus (HP-1B). Two programmable ranges allow better resolution below 10 voles or 2 amps. The selection of HP-18 control of either vollage or current is done by rear panel switches.

Specificatlons

DC output: vollage and current oulpul can be indlysted over the ranges indicaled by front panel conerols. analog programming, or an oplional HP-IB interface.

Voltage: 0-50 V. Current: 0-10 A.
Maximum 200 Walls autput [som 20 V 10.50 V .
Load effect: constant-vollage, $0.01 \%+1 \mathrm{mV}$. Constant-curtent, $0.01 \%+1 \mathrm{~mA}$.
Source effect: CV, $0.01 \%+1 \mathrm{mV}: \mathrm{CC} .0 .01 \%+1 \mathrm{~ms}$.
PARD (ripple and nolse): rms/p-p. 20 Hz to 20 MHz : CV, I $\mathrm{mV} / 10 \mathrm{mV}$; CC, 5 mA rms.
Temperature coelficlent: $\mathrm{CV}, 0.02 \%+200 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}: \mathrm{CC} 0.02 \%+5$ ma/ ${ }^{\circ} \mathrm{C}$.
Drift: CV. $0.05 \%+1 \mathrm{mV} / 8 \mathrm{hrs}: C C .0 .05 \%+\leq \mathrm{mA} / 8 \mathrm{hrs}$.
Fesolutlon: frorst pancl controls: $C V .10 \mathrm{mV} ; C \mathrm{C} .10 \mathrm{~nm}$.
Outpul Impedence: approximavely $0.5 \mathrm{~m} \Omega$ in series with I $\mu \mathrm{H}$.
Load tranaient recovery: 103μ s for output voltage 10 recoter wibin is m^{\prime} of nominal voltage selting following a load current change of $50 \% 10100 \%$ or 100% to 50% of full lomtl current.
Remote control coetflclents: resisiance progrimming: CV, 1 $\mathrm{kn} / \mathrm{V}=7 \% . \mathrm{CC} .100 \Omega / \mathrm{A} \pm 7 \%$. Vollage programming: $\mathrm{CV} \mid \mathrm{V} / \mathrm{V}$ $-20 \mathrm{mV}, \mathrm{CC}, ~ 50 \mathrm{mV} / \mathrm{A} \pm 10 \mathrm{\%}$.
Response tlme: maximum fime for outpul volage to change beIween 01099.9% or 10 (r\% 100.1% of maximun rated oulput vollage, Up Programming: no load, 100 ms ; full load, 100 ms . Down - Progranming: no load, 400 ms : (y)l load, 200 ms .
Overvoltage prolectlon: irip valiage adjustable from 2.5 V to 60 V . DC oulpul lsolatlon: ISO V de.
Power: $100.120,220$, or 240 V ac $(-13 \%,+6 \%), 48-63 \mathrm{~Hz}$,
Temperature rating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ operaling, $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$ stor. age. Supply is cooled by built-in ran.
Size: $180 \mathrm{H} \times 212 \mathrm{~W} \times 422 \mathrm{mmD}\left(6.97^{\prime \prime} \times 8.36^{\prime \prime} \times 16.6^{\prime \prime}\right)$,
Weight: ne1, 14.5 kg (32 lb). Shipping. 15.9 kg (35 lb).
HP-1日 Opilon
Programmsble ranges: high $(0-50 \mathrm{~V}$ or $0-10 \mathrm{~A})$, low $(0-10 \mathrm{~V}$ or 0-2 A).
Programming speed: same as response time.
Accuracy: Hi range: $\mathrm{CV}, 0.2 \%+25 \mathrm{mV}: \mathrm{CC}, 0.2 \%+25 \mathrm{~mA}$. Lo range: $C V, 0.2 \%+10 \mathrm{mV} ; \mathrm{CC}, 0.2 \%+25 \mathrm{~mA}$.
Resolution: Hi range: $C V, 50 \mathrm{mV}: \mathrm{CC}, 10 \mathrm{~mA}$. Lo range: $C V, 10 \mathrm{mV}, \mathrm{CC}, 2 \mathrm{~mA}$.
Isolaton: 250 Volis de from bus data lines to power supply.

Options	Prlce
$001:$ HP-IB Interface	add $\$ 350$

6002A Extended Range DC Power Supply
$\$ 800$

62278

- Auto-parallel and auto-series capability
- Constant-current in addition to constant-voltage outputs

62288

Description

These versatile lab supplies eitel house two identical so wregnlated power supplies. A convenient front panel swifch selects ellher independent or tracking operation. In the track mode, the right supply tracks the left within $0.2 \% \pm 2 \mathrm{~m} V$. The lracking mode is especially useful for powering operational amplifiers. push-pull stages, deflection systems, or any application where plus and minus voltages must track with insignificant error. The independent mode permits operation of the iwo supplies individually, in auto-patathel or in allto-series.

Each side of the dual supply can be operated as a constant-voltage or constant-current source, and each has ils own crowbar for overvoltage proteclion. In the iracking mode, an overvoltage condition in cither supply trips boih crowbars. The power supply outputs are isolated up to 300 V from output to chassis or outpett to output.

Specifications

DC output: 6227B.0-25V@0-2A:6228B.0-50V@0-1 A.
AC Input: 115 or $230 \mathrm{Vac}=10 \%, 48-63 \mathrm{~Hz}, 260 \mathrm{~W}$. Sclecled by rear panel switch.
CV load effect (load regulation): for a load current change equal to the current rating of the supply: 0.01 禺 +1 mV .
CC load effect: for a load vollage change equal to the vollage rating of the supply: $0.01 \%+250 \mu \mathrm{~A}$.
Source elfect (llne regulation): for a change in line voltage beiwcen 104 and 127 V ac or 208 and 254 V ac at gny oulpul voltage and current within ralıng; $C V, 1 m V: C C, 100 \mu A$.
PARD (rlpple and nolse): as any line vollage and under any load condition wilhin raling (20 Hz to $20 \mathrm{MH} \mathrm{\%}$) $\mathrm{CV}, 250 \mu \mathrm{~V} \mathrm{~ms} / \mathrm{AmV}$ p-p: CC. $250 \mu \mathrm{~A}$ ms/2mA p-p.
Temperature coeflclent: output change per degree Celsius change in ambient following 30 minule warm-up: CV. $0.02 \%+200 \mu \mathrm{~V}$: CC. $0.02 \%+300 \mu \mathrm{~A}(6227 \mathrm{~B}): 0.02 \%+150 \mu \mathrm{~A}(6228 \mathrm{~B})$.

Drift (stablity): solal drift is output (de to 20 Hz) over 8 -hour inter. val under conntinl line, load, and ambient following 30 -minule warm up: CV, $0.2 \mathrm{~m}, 2 \mathrm{mV} ; \mathrm{CC}_{3} 0.2 \%$ । $3 \mathrm{~mA}(0.3 \%+1.5 \mathrm{~mA} .6228 \mathrm{~B})$. Remote resistance programming: $\mathrm{CV}, 200 \Omega / \mathrm{V} \pm 1 \%: \mathrm{CC}$. $500 \Omega / \mathrm{A}=10 \%(6227 \mathrm{~B}), 1 \times \Omega / A \pm 10 \%(6,229 \mathrm{~B})$.
Programmling speed (CV): up-progiamming: no load. $40 \mathrm{~ms} / 50 \mathrm{~ms}$: full load, $200 \mathrm{~ms} / 350 \mathrm{~ms}$. Down-programming: no load. $400 \mathrm{~ms} / \mathrm{ls}$: full load, $75 \mathrm{~ms} / 50 \mathrm{~ms}$.
Outpul impedance (typlcal): approxinkited by a resistance in series with an inductance: $2 \mathrm{mil} / 2 \mu \mathrm{H}$ (6227 B); $6 \mathrm{~m} \Omega / 6 \mu \mathrm{H}(6228 \mathrm{~B})$. Resolution (IIne conlrol): vollage, $5 \mathrm{mV}(6227 \mathrm{~B}), 10 \mathrm{mV}$ (6228B):
current. $1 \mathrm{~mA}(6227 \mathrm{~B}), 0.5 \mathrm{~mA}(6228 \mathrm{~B})$.
Internal overvaltage crowbars: duriag independent operation. each supply is protected by its own crowbar. In the tracking mode, an overvoliage in cither supply results in tiring both crowbars.
Trlp voltage margin: the minimum uip voltage above the operating output vollage of the supply to prevent false crowbar tripping: 7\% of the outpur voltage $\div 1.5 \mathrm{~V}$.
Trlp voltage range: 62273, 5-28 V dc. $6228 \mathrm{~B}, 5.55 \mathrm{~V}$ dc.
Tracking error: in lracking mode. the slave supply is matched within $0.2 \% \pm 2 \mathrm{mV}$ of the muster.
Translent recovery time: in constanl voliage. Uhe outpul will recover in $50 \mu \mathrm{sec}$ to within 10 mV of its nominal value for a resislive load change demanding an output cument change equat to the cibrrent sating of the supply. The nominal output voltage is defined as the mean between the no load and full load voluges.

Temperature rallings

Operating: $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$.
Storage: $-40^{\circ} \mathrm{C}$ 10 $+75^{\circ} \mathrm{C}$.
Coolling: nalural convection.
Welght (net/shlpping): $11 / 12.9 \mathrm{~kg}$ ($24 / 28 \mathrm{lb}$).
Slze: $155 \mathrm{H} \times 197 \mathrm{~W} \times 310 \mathrm{~mm} \mathrm{D}\left(6^{1.2} \times 7^{\prime \prime \prime} \times\left(21 /{ }^{\prime \prime}\right)\right.$.
Flolsh: mini gray panel with olive sury case.

Optlons

009: 「our ten-lum output voltage and cyrrent conimols replace all four concentric cuarsc and fine voltage and current controls
015: liour 3-digit graduated turns-counting diais and 10-Ium conirols replace concentric coarse and fine voluge and cument controls.
040: inturfacing for Multiprogrammer operation. Prepares scandard $H P$ power supplies for resistance programming by the HP Multiprogrammer.

Accessorles

S060-8769: rack kil for maunting one or two dual \$55

supplics

5060-8760: filler panel to block unused half of mack
Price
add \$100
add \$250
add \$150 when mounting only one dual supply

Ordering informailon

62278 Dual Tracking Power Supply
$\$ 725$
6228B Dual Tracking Power Supply

POWER SUPPLIES
 General purpose: high voltage output
 Models 6515A-6525A

Mode

- Short circuir proof
- Precise vollage control-four-decade thumbwheel or switch-and vernier
- Convection cooling

6521A, 6522A, 6525A

Description

6521A, 6522A, 6525A

This series of high performance power supplies has broad application both in the liaboritory and in the sysiem, They have sufficient omput current to power devices such as TWT's. klystrons, magnetrons, backward-wave oseillators, high-power gas lasers, electronbean welding devicec, elc. Oulpul voltage is set easily and precisely by a three-decade thumbwheel switch plus a humbwheel vemier providing 0.002% resolution. In constant-voliage operation. a single-lum current conirol allows the current-limit point to be sel to any value within the enrent rating. In constant-current operalion. the currem control varies the oulput current while the voltage conatols (thumbwheels) provide an allinstable voliage limit. The supplies are protected agains! revene voltage that could be generaled by an active load. Protection from reverse curtent requires, pre-loading the supply with a dummy load to ensure that the supply oupuls eurrent through the entire operating cycle of the load. Either the positive or negative terminal may be grounded or the supply may be operaled foating at up 102000 V above ground.
6515A and 6516A
These high-voltage power supplies are lower in cost and output power than the 6521A.6525A supplies. Their small sizc. low price, and shor-circuit-prosi operation make them excellent ligh-voltage labontory supplies, or high-vollage syslem supplies where current requirements are no more than 6 mA .

Model 6515A employs a sixteen-position rolaty switch and a ientum vemier control to adjust the output voltage. The rotary switch selecis ontput voltage increment from 0 to 1500 V in 100 -volt steps: the vemier conimal permis line adjustment (100 mV resolution) over any 1010 -voll span. Model 6516 A uses at three-decade thumbwheel

\author{

- Floating output-can be used as a positive or negative source
 - Front-panel meters
 - Bench or rack mounting
}
swich plus a chumbwheel vermier for convenient and precisc (1.0 Y resolution) output volage control.
Non-adjustable current-timit protection is provided on both modcls. On Model 6.516 A . The cintent-limilt paint is fised til approximutely 8 mA . On Model 6 SI5A, the current limit value varies with the selected ouput voltage range as follows ivoltage rangeicurrent limit: $0-300$ V/7.5 mA. $400-700$ V/6S mA, $800-1100 \mathrm{~V} / 32 \mathrm{~mA}$. $1200-1500 \mathrm{~V}: 25 \mathrm{~mA}$. Both supplies are protected ugainst reverse voltages that could be generaled by an active load. Pre-loading is necessary to protect the supplies from reverse currents. Fither the positive or negative terminal may be grounded or the supply may be operated noating at up to 1000 V above ground. Units are packaged in half-rack-widih cases. They may be bench operated or mounied individually or in pairs using actessory rack-mounting kils.

Specifications

6521A, 6522A, 6525A
Accuracy: 1% of thumbwheel swich selting.
Temperature rating: operating, 0 10 $55^{\circ} \mathrm{C}$: slorage, $-40 \mathrm{to}+75^{\circ} \mathrm{C}$.
Temperature coefficient, per ${ }^{\circ} \mathrm{C}$: voltage, 0.012% of +1 mV . Current: $6521 \mathrm{~A}, 0.2 \%+0.2 \mathrm{~mA}: 6522 \mathrm{~A}, 0.2 \%+0.1 \mathrm{~mA}: 6525 \mathrm{~A} .0 .2 \%$ +0.05 mA .
Output impedance, typical: 0.1 ohm in series wish $1 \mu \mathrm{H}$.
Load eflect translent recovery: $50 \mu s$ to recover within 0.005% or 20 mV , whichever is greater.
Output modes: automatic cross-over constant-voiluge/constantcurtenl.
Meters: 2% of full sente accuracy. Scates: 6521A:0-1 kV \& 0-200 $\mathrm{mA}: 652 \mathrm{~A}: 0-2 \mathrm{kV}$ \& $0-100 \mathrm{~mA}: 6525 \mathrm{~A}: 0-4 \mathrm{kV}$ \& $0-50 \mathrm{~mA}$.
Power: 115 V ac ± 105. $48-440 \mathrm{~Hz} .4 \mathrm{~A} .270 \mathrm{~W}$.
Welght: nel, $19 \mathrm{~kg}\langle 42 \mathrm{lb})$. Shipping, $28.5 \mathrm{~kg}(6.3 \mathrm{~b})$.
Slze: $133^{H} \times 483 \mathrm{~W} \times 457 \mathrm{mmD}\left(5.25^{\circ} \times 19^{\prime \prime} \times 18^{\prime \prime}\right)$.

6515A and 6516A

Accuraoy: $6516 \mathrm{~A}, 1 \%$ of thambwheel switch selting.
Temperature reting: operating, 0 to $55^{\circ} \mathrm{C}$: stomge. $-4010+75^{\circ} \mathrm{C}$.
Temperature coefflclent, per ${ }^{\circ}$: voltage, $0.02 \%+2 \mathrm{mV}$.
Load effect transient recovery: 100 , 2 s to recover within $0,01 \%$ or 16 mV , whichever is greater.
Output modes: constant voltage with fixed current limit.
Meters: 2% of full scale accuracy. Scales: $6515 \mathrm{~A}: 1.8 \mathrm{kV}: 6516 \mathrm{~A}$: 3.5 kV .

Power: 6515A: IIS V ac $=10 \%, 60=0.3 \mathrm{~Hz}, 0.16 \mathrm{~A}$. 19 W .
$6516 \mathrm{~A}: 115 \mathrm{Vac}=10 \%$. $57-63 \mathrm{~Hz}$. I A. do W.
Welght: $65 \mathrm{ISA}:$ nel, 4.1 kg (9 lb). Shipping. 5.0 kg (11 ib). $6516 \mathrm{~A}:$ net. $7.7 \mathrm{~kg}(17 \mathrm{Jts}$. Skipping. 9.5 kg (21 lb).
SIze: $6515 \mathrm{~A} .89 \mathrm{H} \times 216^{\mathrm{W}} \times 299 \mathrm{mmD}\left(3.50^{\prime \prime} \times 8.50^{\prime \prime} \times 11.75^{\prime \prime}\right)$. $6516 \mathrm{~A}, 133 \mathrm{H} \times 216 \mathrm{~W} \times 406 \mathrm{mmD}\left(5.25^{\prime \prime} \times 8.50^{\prime \prime} \times 16^{\prime \prime}\right)$.

ratinds			PERFORMANEE										SEXERA	
OC		Motel	10.0 fiteer		Source Eifect		PARD (Ims/ $0-0$)		Dilli		Resolution		Options	Fint
Valts	ma		Vortake	Cureme	Vollage	Cutrent	Vollage	Curent	Voltsge	Current	\checkmark	c		
C-1940	O-200	85219		$\underline{20 n m(m)}$	0.0650000820 mV	1 ch	$1 \mathrm{mvi5u3} \mathrm{mv}$	2 mR mis	0. $0.35 \%+3 \mathrm{my}$	0. 253 s . +0.5 mm	20 mv	C.Gma	None	bres
$0-1600$	5	6515A	0.01% or 16 mw	HA	0.01\% of 16 mb	NA	$2 \mathrm{my/Ls} \mathrm{mv}$	Há	0.05\% 0.5 mf	缡	100 mr	NA	1519	5355
$0-2000$	0-140	6522a	0.005% or 20 miv	So. of 1 mm	0. 095% ar 20 mV	1 mk	$1 \mathrm{mv/50t1} \mathrm{int}$	1 mA rmas	$0.036 \%+3 \mathrm{mV}$	0.25 \% - $12 \times 2 \mathrm{ma}$	40 mv	0.3 mA	None	\$1195
0-3000	5	6518A	0.01% or 16 mV -	\% ${ }^{\text {a }}$	$00 \mathrm{l}^{2 / 2}$ of 16 mbr	NH	: miviso mive	NH	n $055 \%-3 \mathrm{my}$	N	1 V	HA	19	\%195
1-4000	0-5ij	6525A	0,005\% or 20 mV	$2=011 \mathrm{~mA}$	$0005{ }^{\circ} \mathrm{O}$ a 20 iny	$1 \mathrm{ir} \mathrm{F}^{\text {a }}$	$1 \pi / 2 / 500 \mathrm{mV}$		6. $13.15 \% \cdot \mathrm{mq}$	0.2 mc , 1112 ma	xilimb	115 ma	Nione	51185

- Whichever is larger
a See page 220 for complete option and accessary descriptions
- 0.025% output voltage accuracy
- 5-minute warm-up
- Built-in overvoltage crowbar

6110A

6114A. 6115A
Specifications \dagger

- Constant-voltage/current-operation
- Thumbwheel or ten-turn voltage controls
- 0.1% output voltage accuracy

6111A. 6112A, 6113A, 6116A

Description

6114A, 6115A

These 40-wall precision power supplien are ideal for applications where an accurate, highly stalle, and casy-1o-use source of de vollage is required. Both models feature automatic dual range operation. For example. Model 6114A can supply $0-20 \mathrm{~V}$ at $0-2 \mathrm{~A}$ and $20-40$ V at $0-1$ A. without manual range sivitching. Automatic output current muge crossover occurs when the supply is providing greater than one-half of the maximum rated output voltage.

Oulput valtage controls

Pushbution voltage controls on Models 6114 A and 6115A allow the output voltage to be sel mpidly and accurately. The senting is displayed in large. easy-ioread numerds. A gifh digit, sel via in thumbwhecl on the switch assembly, provides oulpul voliage resolu. tion of $200 \mu \mathrm{~V}$.

Oulput current controls

A fron-panel control allows the outpul current to be set to any desired value within the maximum rating. Using this control, the supplies can be operated as constant-cimen sources with 0.01 pht cument regulation. A light-emitiling diode current mode indicator immedrately lights either when the supply is operated in the gross current linitit region, or when the oulput current level established by the selting of the from panel combol is reached.

PAILKES			PEAPORMAMCE							Orifl (stablity)	
DC Outpu1		Modsi	Lozd EHECI		Source Eliect		PARO (mms $(p-a)$		Temperature coericient		
Yolts	Aanps		Vollage	Eurrent	Yollape	Cumbnt	Vallago	Cuntal		8-hour	90 day
0-10	$0-2$	6113A	$0.001 \%+100 \mu \mathrm{~V}$	NH	00010	NA	$40 \mu \mathrm{Vi} 100 \mu \mathrm{~V}$	NR	0.001\%-10 A ${ }^{2}$	0.01\% + $100 \mu \mathrm{~V}$	-
0-20	4-1	6111R	$0.003 \%+100 \mu Y$	NA	0.001\%	NA	$40 \mu V / 100 \mu V$	NA	$0.001 \%+10 \mu \mathrm{~V}$	$0.01 \%+100 \mu \mathrm{y}$	-
保-20. 20-:0)	0-2. 1-1	5114A	$\begin{gathered} 0.0005 \%-100 \mu^{\prime} \mathrm{K} \\ +100 \mu \mathrm{k} \\ \hline \end{gathered}$	$\begin{gathered} 0.01 \% \\ +500 \mu \mathrm{~A} \\ \hline \end{gathered}$	$\begin{gathered} 0.0005 \% \\ +40 \mu \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & 0.005 \% \\ & +40 \mu \mathrm{~h} \end{aligned}$	$20 \mu \mathrm{~V} / 200 \mu \mathrm{~V}$	$\begin{gathered} 2 מ \cap \\ \mu A!m A \\ \hline \end{gathered}$	$0.001 \%+15 \mu \mathrm{k}$	$\begin{aligned} & 0.80: 5 \% \\ & +35 \mu \mathrm{y} \end{aligned}$	$\begin{aligned} & 0.0075 \% \\ & .30 \boldsymbol{\mu v}^{7} \\ & \hline \end{aligned}$
$0-40$	$0-0.5$	6112 A	$0.001 \%+100 \mu \mathrm{~V}$	NA	0.001%	NA	$40 \mu V / 100 \mu V$	NA	$0.001 \%+10 . \mu V$	6. $01 \%+100 \mu V$	-
0-50, 50-100	$\begin{aligned} & 0-0.8 . \\ & 0-0.4 \end{aligned}$	61154	0,0005\%-50 μv	$\begin{array}{r} 0.01 \% \\ -500 \mu \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & 0.0005 \% \\ & +100 \mu \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.005 \% \\ & +13 \mu 4 \end{aligned}$	$40 \mu \mathrm{~W} / 200$ HiV*	$\begin{gathered} 200 \\ \mu{ }^{2}!\mathrm{mA} \\ \hline \end{gathered}$	0.001\% +15 $\mathrm{\mu}^{2} \mathrm{~V}^{-}$	$\begin{gathered} 0.0015 \% \\ 15 \mu \mathrm{u} \\ \hline \end{gathered}$	$\begin{gathered} 0.0075 \% \\ -30 \mu v \\ \hline \end{gathered}$
$0-100$	0-200) mA	6116A	0.0101%	Ni	0.101s	NH	$40 \mu V / 200 \mu 4$	Fis	$0.0010 \%+10 \mu v$	$0.010^{\circ} \mathrm{c} \cdot 100 \mathrm{NL}^{4}$	-
0-3000	$0-6 \mathrm{~mA}$	61104	0.001\% $100 \mu \mathrm{l}$	NA	0.603%	NA	$2 \mathrm{mb} / 5 \mathrm{mV}$	Na	0.001\% +50 H V	0.018 - $500 \ldots$	-

. Reler to page 201 for complete specification definitions and page 220 for opion descriptions.

- Specified wrth linal decade pot set to zero. It pot is set to value other than jero, pot wiper jump effect may cause driff of $0.0015 \%+200 \mu^{2}$ ($20-$ day).
- $200 \mu V p-p$ noise is typical with a maximumin $400 \mu V p-p$ spike of less than 1 mese duration occurring repetition sate of twice power line frequency under worst case condirions ol diedt lifie. full output voltage. When eperated at 400 Hz input peak-to-peak npple is less than 10 ar .

Remote programming

These supplies can be remote programmed by means of on externit volage or resistance. When remote resistance pragrammed. pul voltage accuracy is 0.01% plus the accuracy of the remore programming resistor, and output eurrent accuracy is 0.25% plus the accuracy of the remote programming resistor.

For computer conirolled applieations. these supplies are designed 10 be digieally programmed with the HP Model 6940B Muhtiprogrammer or 6941 B Multiprogrammer Extender. They can also be used with the 59901A HP-18 Isolated D/A Power Supply Programmer.

Overvoltage prolection

A circuit lechnique used in these supplies causes the output voltage to drop completely 10 zero once the overvoltage protection circuit has been trigered, rather than to only $1-3 \mathrm{~V}$ as is typical with other SCR crowbars. This same circuil technique also permits the trip threshold to be set as low as 0.5 V . Thus providing load protection at very low ourput volizge levels.

6111A, 6112A, 6113A and 6116A

Although these 20 -walt precision powes supplies do not provide quitc the level of performance and flexibllity of Models 611414 and 6115 A . they are lower in cost and are suitable for many precision power applications. Output voltage is adjusied by a five-decade thumbwheel voltage programmer for convenient and precise (100 μV resolution) adjustment of output volage. A single-1um current control allows full-range adjustment of the current-limit point. Additional features include a volt/ampere meter and associated meter function switch. The four-position function switch selects either of two output voliage or output eurrent ranges (X1, X0.1) for display on the panel meter.
The \dot{d}-c output of these supplies is floating, allowing the supplies to be used its either positive or negative sources. Terminals for +OUT, -OUT. and GND are provided on both the front and rear of the supply. The rear terminal sirip also includes terminals for remote resistance programming, remote sensing, and auto-series, auto-tracking operation.

Unils are packaged in $51 / /$-inch high, half-rack cases which may be bench operated or rack mounted using accessory rack mounting handware.

6110A

Model 6110A is designed for applications requining a precise and stable source of high-valrage de power. Output voltage is set easily and precisely by a five-digit thumbwheel programmer providing? mV resolution. A non-adjustable current-limit circuit protecis the supply from ali overload conditions regardless of degrece or duration. Plus and minus output connectors (Type UG-931/U) are provided on the front panel. Mating connectors (Type UG-932/U) are supplied with each unit. Either the pasitive or the negative terminal may be grounded. or the supply may be operated floating al up to 1.000 volls above ground. Units are packaged in 5%-inch high, halfrack cases which are suitable for bench or rack installation.

General specifications-(see table also)

Temperature rating: all precision madels; operaling 0° to $50^{\circ} \mathrm{C}$. Storage, -40° 10 $+75^{\circ} \mathrm{C}$.
DC output isolation: output terminals of precision models may be floated up 10300 V above ground. High voltage precision madel 6110 A may be floged to 1000 V .
Remote sensing: provided on all precision models excep16110A.
Power: 104-127 or 208-250 V ac selected by switch. $48-440 \mathrm{~Hz}$. 150 VA maximum.
Size: $166 \mathrm{H} \times 197 \mathrm{~W} \times 336 \mathrm{mmD}\left(61 / 2^{\prime \prime} \times 7 / 4^{\prime \prime} \times 131 / \mathrm{m}^{\mathrm{n}}\right)$.
Welght: nci, 7.7 kg (17 lb). Shipping, 9.5 kg (21 lb).
$6111 \mathrm{~A}, 6112 \mathrm{~A}, 6113 \mathrm{~A}$ and 6116A
Power: 115 V :c $=10 \%, 43-63 \mathrm{~Hz}, 0.5 \mathrm{~A} .52 \mathrm{~W}$ (for 230 V . order Opin. 028).
Slze: $133 \mathrm{H} \times 216 \mathrm{~W} \times 318 \mathrm{mmD}\left(5 \% 4^{\prime \prime} \times 81 / 2^{\prime \prime} \times 121 / 2^{\prime \prime}\right)$.
Weight: nel, 5 kg (1 llil). Shipping. 6.8 kg (14 lb).

6110A

Power: 115 V ac $\pm 10 \% .57-63 \mathrm{~Hz}$. I A. 50 W (for 230 V .50 Hz , onder Opl 019).
Slze: $133 \mathrm{H} \times 216 \mathrm{~W} \times 406 \mathrm{~mm} \mathrm{D}\left(\mathrm{S} 1 /{ }^{\prime \prime} \times 81 / \mathrm{m}^{\prime \prime} \times 16^{\prime \prime}\right.$).
Welghe: net. 8.6 kg (19 lb). Shipping. $10.4 \mathrm{~kg}(23 \mathrm{lb})$.

Accuracy	Hes okripiat		Lasif Transient Recovery	$\begin{aligned} & \text { Ourpul } \\ & \text { Mode } \end{aligned}$	HEMDIE CONTROL								CENERAL		
		Bulput 2 (tyolesi)			Actisianoe Corfilcient		Voleage Coefficiont		UP*		DOWK.		OVervailage Fiotacalon	cplionsa	Price
					Vorlage	Cumeat	Voliapt	Curreat	NL	FL	$\mathbf{N L}$	亿			
$0.1 \%+1 \mathrm{mv}$	$20 \mu \mathrm{~V}$	$\begin{aligned} & 0.2 \mathrm{mu} \\ & -1 \mathrm{\mu H} \end{aligned}$	NA	CV/CL	$\begin{aligned} & 151, \% \\ & =0.1 \% \end{aligned}$	NA	$1 \% / 4=0.1 \%$	NA	NA	MK	NA	NA	Op1 11, 3-13 V	11. 28, 80	\$495
0.3\% + 3 mv	$200 \mu \mathrm{~V}$	$\begin{aligned} & 0.5 \mathrm{ma} \\ & +1 \mu \mathrm{H} \\ & \hline \end{aligned}$	N/	SVICL	$\begin{array}{r} 1 \mathrm{~kg} / \mathrm{V} \\ -0.1 \% \\ \hline \end{array}$	4A	$1 V / V=0.1 \%$	16A	N:	NA	NA	Ni	$0011123-23$ Y	11, 28, 40	5485
0.025\%-1 ml	$200 \mu \mathrm{~V}$	$\begin{aligned} & 0.05 \mathrm{~m} 11 \\ & +3 \mathrm{jH} \\ & \hline \end{aligned}$	$\begin{aligned} & \angle 50 \mu \mathrm{~s} . \\ & 30 \mathrm{miv} \end{aligned}$	CVICE	$\begin{gathered} 2 \hbar 0 / \mathrm{y} \\ \pm 0.01 \% \\ \hline \end{gathered}$	$\begin{aligned} & 50011 / \mathrm{A} \\ & =0.25 \% \\ & \hline \end{aligned}$	$1 \mathrm{~V} / \mathrm{V}$	$\begin{gathered} 05 Y / A \\ -\quad 30 \\ \hline \end{gathered}$	175	1/5 5	350 ms	100 ms	STD, 05.45 .7	9. 15	\$755
$0.1 \%+1$ mV	$200 \mu \mathrm{~V}$	$\begin{aligned} & 2 \mathrm{mal} \\ & +1 \mu H \\ & \hline \end{aligned}$	NA	CH'CL	$\begin{aligned} & 140 \% \\ & -0 \%= \end{aligned}$	N_{h}	$1 W^{2} \% \pm 01 \%$	HA	W,	N4.	NA	81	O01 12. $25-412 \mathrm{~V}$	11.78.48	\$495
0.025\% - 1 mV	$200 \mu \mathrm{~V}$	$\begin{aligned} & 0.05 \mathrm{mll} \\ & .3 \mathrm{p} \cdot \mathrm{H} \end{aligned}$	$50 \mathrm{us}$ $50 \pi v$	CY/CC	$\begin{aligned} & 2 \mathrm{k}(1) / \mathrm{y} \\ & 0.01 \% \\ & \hline \end{aligned}$	$\begin{aligned} & 1 \mathrm{kn1/A} \\ & =0.25 \% \end{aligned}$	$1 W_{1}$	$\begin{aligned} & 1 \mathrm{ViA} \\ & -1 \omega_{0} \end{aligned}$; 5	: 5	500 ms	175 ms	STC. 03-110V	9. 15	5775
$0.05 \%+1 \pi \nu$	$200 \mu{ }^{\prime}$	$\begin{gathered} 16 \mathrm{mot} \\ \times 1+\mathrm{H} \\ \hline \end{gathered}$	NA	EVICL	$\begin{aligned} & 1 \text { hily } \\ & 9.1 \% \\ & \hline \end{aligned}$	Na	18V8:1] \%m	ill	* 4	Na	NA	NA	Dpt 13. 20-105 V	11.28	\$405
0.15s + 106 Tr	20 nV	-	NA	cricl	呺	NH	Na	W	N/	NA	KA	NA	NA	19	88.0

[^17]i Accurscy is equal to acculacy of remots progismenigg device $=200 \mu \mathrm{~V}$

Special purpose: constant current sources Models 6177C, 6181C \& 6186C

- Continuously variable voltage limit
- Output useful to micro-ampere region

Description

These solid-state conslant-current sources ane ideal for semiconductor circuil development. component lesting, and precision clec. rroplating applizations.
Their high-specd remote programming characteristics make these supplies useful in lesting and sorting semiconductors, resistors, relays. meters, elc. The ability 10 superimpose ac modulation on the dc oulpul permits the supplies to be used for measurement of dynamic or inctemental impedance of circuit components.

Specifications

Load effect (load regulation): less than 25 ppm of output +5 ppm of range switch selling for a load change which causes the output vollage to vary from zero lo maximum.

- High output impedance-no output capacitor

Source effect (line regulation): less than 25 ppm of output +5 ppm or range swith setting for a change in the line vollage from 104 to 127 V ac (or 127 to 104 Vac) at any outpul current and vollage within raling.
Load effect translent racovery: less than 800μ for recovery 10 within 1% of nominal output current following a full load change in output voltage. (On 6186C, recovery time for $100 \mathrm{~mA} / 10 \mathrm{~mA} / 1 \mathrm{~mA}$ ranges is $1 \mathrm{~ms} / 1.6 \mathrm{~ms}$:4 ms. respectively.)
Temperature coefficient: output change per degree C is less than 75 ppm of output current +5 ppm of rage switch setting.
Drift (ata blify): less thar 100 ppm of outpul current +25 ppm of range switch setting. Stability is measured for eight hours after one hour warm-up under conditions of constane line, load, temperature. and output setting.
Resolution: 0.03% of range switch selling.
Temperature rating: operating $0.1055^{\circ} \mathrm{C}$, storage, $-4010+75^{\circ} \mathrm{C}$.
Accessories
Price
5060-8764: rack adapier for rack mounting one or two 6177 C or b 181 C supplies $\$ 50$
5060-8762: rack adapler for rack mounting one or two 6186 C supplics
5060-8530: Filler panel for Models 6177C. 618 IC
5060-8760: filler pancl for Model 6186C
Options
015: tiree-digit graduated tums-counling current control replaces front panel current knob
028: 230 V ac $\pm 10 \%$. single-phase input. Models 6177 C and 6181C only

Ordering information
6177C. 6181C Constant Current Source
6186C Constant Current Source

Motal			sinc	81816	sime
Qutbin Clarrntil			9-500 ma	8-2.30 1 md	
Yuilije Coraplinicas			0-50 ¢ 4e	$0-100 \times 12$	C. 3004 \% Ac
Dutpua Emas		1	0-5 ma	0.2 .5 mm	0-1 ma
		日	0-500 nax_{4}	0-25 ma	O-10 mi
		c	0-500 ma	$0-950 \mathrm{mh}$	$0-100 \mathrm{mh}$
As ingel			06 A 35 Wa in 12 Y ac: lac 230 Y as ise Cptide .024	115 y $x=20 \%$ 48-63 kt 06A. SS Wat 115 V ze 	$115 / 230 \mathrm{Yac}, 48-63 \mathrm{hm}$ 0.9 A 20 W at 115 y at 115:230 y ac vauton
Constane Curnen Remota Frogammith:	Voltuge Controt lacturacy $0.5 \operatorname{sen}_{\text {a }}$ al ootput curtent 10.4% ot ranges	Rango A	$200 \mathrm{mW/mh}$	$1 \mathrm{~V} / \mathrm{ma}$	$10 \mathrm{~V} / \mathrm{mb}$
		Range B	$20 \mathrm{mb} / \mathrm{mid}$	$100 \mathrm{my} / \mathrm{ma}$	$12 / \mathrm{mh}$
		Ranpe 5	1 mivind	lo meval	$381 \mathrm{mb} / \mathrm{md}$
	Fiesislance Control 14 of 	Hank 4		2 1217m	2in 411 ma
		Dango 8	40 otmuma	200 othms/ma	$1111 / \mathrm{ma}$
		Range C	8 ahmyma	36 otma/ma	200 ohma/mh
Voltaze Limt Remote frogiammany	Yoltage Control IAccuracy 20% \%		I Y/\%	1 wiv	1 k
	Resistaias Comiral		250 mims/v	13scims/V	820 shmis/V
	necariy		75\%	25\%	15\%
		Rangu 4	- 300 Meg C C S Soil	$\mathrm{R}=1 \mathrm{I} \mathrm{O} \mathrm{Meg}, \mathrm{C}=10 \mathrm{o}^{\circ}$	$R=10,000 \mathrm{Mez} \mathrm{c}=900 \mathrm{ar}$
		Eange $\mathrm{B}^{\text {a }}$	$\bar{x}=55 \mathrm{Neg}, \mathrm{C}=0.005 \mu \mathrm{~F}$	$\mathrm{f}-133 \mathrm{Mec}$ C $\mathrm{C}-100 \mathrm{pl}$	$\mathrm{B}-1.000 \mathrm{Meg}, \mathrm{c}=300 \mathrm{pf}$
		Rangr C	A $-13 \mathrm{MkF}_{\text {\% }} \mathrm{C},-0.05 \mu \mathrm{l}$	$\mathrm{A}-153 \mathrm{Meg} \mathrm{C}-1000 \mathrm{gl}$	
with either output terminal grounded.		RuETEA			
		Range 8		6 ph mad 100 wh p-F	$2 \mu \lambda$ rmu $50 \mu h$ D-F
		Range C	160 phrms/ 2 map -p		
 			6 mm	6 mm	10 m
Dimentions,			 		
Werete Thel 3mppugi					

[^18]

at 500 Hz .
$1+14 \times$ ppetition above $40^{\circ} \mathrm{C}$ the maumum potput curent must be retuced hrearty to 80% of tating at $55^{\circ} \mathrm{C}$ Imaumum temperatiare
Shimimum voltage obtainsble witi woltage limit cantroi it 0.56

- High-speed remote programming
- Overload protection
- Wide-band response

B825A-6827A

6824A

Model 6824A

Although this model does nol provide quite the level of performance and flexibility of Models 6825A through 6827A, it is lower in cost and is suitable for many applications.

As a power supply, this unit offers Constarl-Voleage/CurrentLimiting operation, remote programning, and Auto-Series, AutoParallel operation.

As a power amplifier. the unit exhibits a high signal-eo-noise ratio with s 20 dB gain from de 1010 kHz . It is useful in servo systems, as a pulse or oscillator amplifier. for motor control, and a variety of other applications.

General specifications

Temperature: operating. 0 to $55^{\circ} \mathrm{C}$. storage. $-4010+75^{\circ} \mathrm{C}$.
Power: 6824A. standard input vollage is $104-127 \mathrm{~V}$ ac. $48-63 \mathrm{~Hz}$. Order Option 028 for $230 \mathrm{~V} \pm 10 \%$ operation. 6825A, \& 6826A. 6827 A , switchable, 100 . 120.220 , or $240 \mathrm{~V} \mathrm{ac},-13 \% \mathrm{c}+6 \%$, $48-63$ Hz .150 W .
Dimenslons: $6824 \mathrm{~A} .131 \mathrm{H} \times 209 \mathrm{~W} \times 303 \mathrm{mmD}\left(53 / 32^{1 "} \times 87 / 32^{4} \times\right.$ $\left.11^{13} / s^{\prime \prime}\right) .6825 \mathrm{~A}, 6826 \mathrm{~A}$ \& $6827 \mathrm{~A} .155 \mathrm{H} \times 198 \mathrm{~W} \times 316 \mathrm{mmD}$ $\left(6^{3} / 83^{\prime \prime} \times 7^{205 / 33^{"}} \times 12^{7} / h^{4} e^{\prime \prime}\right)$.
Welght: $6824 \mathrm{~A}, 7.3 \mathrm{~kg}$ (17 lb) $.6825 \mathrm{~A}, 6826 \mathrm{~A}$ \& 6827 A .8 .2 kg (18 (b).

Power supply specifications

altinas			PLRFORMANEE												
at Oulpul		Moutel	1040 EIfLCI		Source Elfert		Pars (tms/p-p)		Transiems Agcovery		Resolution		Dutpel ? (Iyplazi)	$\begin{gathered} \text { Oplians } \\ \hline \end{gathered}$	Pisin
Volls	Amps		Voitaga	Current	Yolugg	Current	Yollage	Current	tune	Level	valuay	Cureant			
$\begin{aligned} & -5 \vee 10+5 \vee 1 \\ & -20 \vee 10+20 \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-2.0 \mathrm{~A} \\ & \text { Both Ranges } \end{aligned}$	6025A	$0.01 \%+1 \mathrm{mv}$	0.01\% - $250 \mathrm{\mu m}$	$0.01 \%+2 \mathrm{mv}$	0.01\% + $250 \mu \mathrm{~A}$	10/30 my	5.15 mA	190	20 mv	40 mv	6 HL	0.5m0.1\% μ^{4}	9	\sin
$\begin{aligned} & -5 y: 0+5 w \\ & -50 y 10+50 v \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} 0-1.0 \mathrm{~A} \\ \text { Both Ranges } \end{array}$	8826A	$0.01 \%+1 \mathrm{mv}$	0.01\% +250	0.01\% + 5 mv		B: 35 mV	a8.5 mk	180μ	5 m m	13il mV	3 mA	$1 \mathrm{mR}, 1.5 \mathrm{HH}$	9	35
$\begin{aligned} & -10 \mathrm{~V} 10+10 \mathrm{~V} \\ & -100 \mathrm{~V} 10+100 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 0-0.5 \mathrm{~h} \\ & \text { Both Ranges } \end{aligned}$	6827a	6.01\% 1 + mv	0.01\% + 250 $\mu \mathrm{A}$	0.01\% + 10 mV	$0.01 \%+250$ 哈	10/50-V	$04 / 5 \mathrm{mk}$	$100 \sim 13$	100 m	200 mv	1.5.mA	$2 \mathrm{mln} 4^{4} \mathrm{H}$	4	38,
$-50 \vee 10+50 \mathrm{~V}$	0-1.0 A	6824 A	0.02\% +5 mv	-	$0.02 \%+5 \mathrm{mv}$	-	10 mYrms	-	100 s	0.02\% 5 5inv	-	-	-	9. 28	3505

\ddagger Refer to page 201 tor comprete specitication definitions.
4 See page 220 for complefía option and accessory descriplions.

Power amplifier specifications

ranngs			Pearormakce									
Oulpul		Model	Voluage Gain		Froquency Response, $+1,-3$ di		Olsiorion at full orripul		Ingul 2 (Typical)	Programminit Cooficients		
Velts	amps		Mxed	Varlable	fixed 6aln	variable oain	100 Hz	10 kHz		Gain ${ }^{\text {a }}$	Vollaga	Curent
$\begin{gathered} 10 \mathrm{~V}-0 \mathrm{O} \\ 40 \mathrm{Vp} \mathrm{p} \\ \hline \end{gathered}$	2 ifl	6835a	$\begin{array}{r} 1 x \\ 4 x \\ \hline \end{array}$	$\begin{aligned} & 0-2 x \\ & 0-8 x \\ & \hline \end{aligned}$		$\mathrm{AC}-15 \mathrm{kHz}$	0.1% IHD	0.5\%	10 kn	$\begin{array}{r} f(10.24 \mathrm{kN}) \\ 4 \mathrm{R}(10.24 \mathrm{kO}) \\ \hline \end{array}$	$\begin{aligned} & 1 V / Y \\ & 4 V / Y \end{aligned}$	$2 \mathrm{~A} /$
	1 Apk	6826A	$\begin{array}{r} 1 x \\ 10 x \\ \hline \end{array}$	$\begin{aligned} & 0-2 x \\ & 0-20 x \\ & \hline \end{aligned}$		$\mathrm{dc}-15 \mathrm{kHz}$	0.1\% THD	0.5\%	10 kn	R(f10 24 ks$)$ $10 \mathrm{RT} / 10.24 \mathrm{kn}$	$\begin{array}{r} 1 \mathrm{VN} \\ 10 \mathrm{NV} \\ \hline \end{array}$	1 NV
$\begin{gathered} 204 \\ 200 \sqrt{p-p} 0 \text { ot } \\ \hline \end{gathered}$	0.54 gk	6827a	$\begin{array}{r} 2 x \\ 20 \mathrm{x} \\ \hline \end{array}$	$\begin{aligned} & 0-4 x \\ & 0-40 x \end{aligned}$	dc-30 \times Hz	dic - 15 kHz	01% 「HD	1\%	10 AO	2 A1/ 10.24 kll $20 \mathrm{R} / 102 \mathrm{hk} \Omega$	$20{ }^{3} \mathrm{VN}$	1 Al
	1 ADK	68248	-	$0-16 x$	-	$\mathrm{dc}-10 \mathrm{dHz}$	0 \% $\%$ IHD	-	2 kO	-	$1 \mathrm{~W} / \mathrm{V}$	-

[^19]A wide range of options is available to modify standard models to meet the requirements of a parricular application. Various low cosi lab. gencral purpose and special purpose power supply descriplions are found on pages 204 through 219. To determine which oplions are available for a panicular power supply, refer to the appropriate product page. Always check the AC input voliage, current, and frequency requirements for the siandard model and the $A C$ power available in the area or counlry where the power supply will be used. If oplions are required. Ibey must be specified with the order.

Options

005: 50 Hz ac input: optimizes power supplias thal requir idjuiment/modificalion for 50 Hz operation. Order only when listed as required in specifications for a particular model.
009: 1en-(um oulpul contro)s. Repiaces single-lum oulput voltage and current controls (where applicable and available). $6114 \mathrm{~A}, 6115 \mathrm{~A}, 6 \leq 04 \mathrm{~B}, 6206 \mathrm{~B}-6209 \mathrm{~B}$, 6294A, 6299A and 6824A-6827A
6200B-6203B, 6203B, 6256B-6293A, and 6296A
6227B. 6228B, 6253A, and 6255A
010: chassis slides. For access 10 rack mounted power supplies. 6256B, \& 62638-6267B
6253A. 6255A, 6259B-6261B, 6268B, 6269B. \& 6427B-6448B

Price

6453 人, 6456B \& 6459A
D11: interna overvoleage prolection crowhar. Protects delicate loads against power supply failure or operator error. Dual output models have dual crowbars
Single output models. where available.
Dual output models. 6205B. 6253A, \& 6255A
015: three-digit graduased ums-counting dial and tenium controls for oulput voltage and cument (where applicable and available). Improves resellability of power supply output
$6177 \mathrm{C}, 6181 \mathrm{C}, 6186 \mathrm{C}$. and 6515A
6II4A. $6115 \mathrm{~A} .6204 \mathrm{~B}, 6206 \mathrm{~B}, \& 6220 \mathrm{~B}-6226 \mathrm{~B}$
6207B. 6209B, 6294A \& 6299A
6200B-6203B. 6205B, 62568-6291A. \& 6296A
6227B, 6228B, 6253A. \& 6255A
016: IISV ac $\pm 105 \%$ single phase inpul. Consists of replacing power transformer and circuit breaker, and reconnecting bias transformer, RFl choke and fans. For model 6260B only
019: 230 V ac $\pm 10 \%, 50=0.3 \mathrm{~Hz}$, single phase input. Consisis of replacing inpun transformer, line cord and fuse. Option 019 applies oaly to models 6110A. 6515 A. \& 6516A
022: voltage and current programming adjusi. Allows the V and 1 programming coefficients and zero output to be conveniently adjusted to 0.1% accuracy via access holes in the rear pancl. Consists of four porenliometeri and resiblors located inside the rear panel. Oplion 022 applies only 10 models 6256B-6274B
023 : rack mounting aliachments, Factory installed for mounting model $6464 \mathrm{C}-6483 \mathrm{C}$ in a standard $19^{\prime \prime}$ rack. 026: 115 V ac $=10 \%$, single phasc input. Consists of replacing the inpul circuit breaker and reconnecting the power aransfomer, bias transformer. RFI choke, and fans. Opion 026 applies only to models 62598. 6261 B , and 6268B
027: $208 \mathrm{~V} \mathrm{ac} . \pm 10 \%$. single phase input. Consisis of reconnecting power inusformer laps, and other components where neccssary. Order only when listed in the specifications for a paricular mode?
028: 230 V ac $=10 \%$. single phase inpul. Consists of reconnecting powcr iransformer taps. and other componenls where necessary. Ordcr only when listed in the specificalions for a particular model
040: mulijprogrammer interface. Prepares standard HP power supplies for resistance programming by the 6940 B Multiprogrammer or 6941 B Mutiprogrammer Extender. This oplion includes Option 022, special calibration, and prorection check-out procedures (where required)
N / C

$\$ 30$
$\$ 60$
$\$ 100$
$\$ 85$
$\$ 160$
$\$ 250$

$\$ 70$
$\$ 130$550$\$ 75$

6111A-6113A
 6281A-6299A

```
575
```

6464C. $6466 \mathrm{C}, 6469 \mathrm{C}, \& 6472 \mathrm{C}$
$\$ 100$
6227B, 6228B. 6253A \& 6255A
100: 87-106 Vac. $47-63 \mathrm{~Hz}$, single phane imput
220: 191-533 V ac. $47-63 \mathrm{~Hz}$, single phase inpul 240: 208-250 V ac. $47-63 \mathrm{~Hz}$, single plase input (Note: options 100, 220 . and 240 are for models 6236 B and 6237 B only, and consist of setting an internal AC voluge selection switch and selecting approprialc line fuse.)

Accegsories

14513A: 31/2" high rack kil for one supply $\$ 2$
14513A and 14523A rack kits apply to the following models: 6200-6209B. 62368, 6237B. 6281A. 6284A. 6289A, 6294A, 6299A. 6515A
14523A: $312^{\prime \prime}$ high rack kil for two supplies
14515A: 51/3" high rack kit for one supply
14525A: 5V4" high rack kit for two supplies
14515A and 14525A rack kits apply to the following models: 6110A-6113A, 6116A, 6282A. 6286A, 6291A, 6296A. 6516A. 6824A.
14521A: rack kit for onc, two or three supplies
Includes two filler panels. Is521A rack kit applies 10 the following models: 6211A-6218A.
5080-8762: adapter frame for rack mounting one or wo $1 / 2$ rack width units or one, iwo or three $1 / 2$ rack widat units
This frame applics 10 the following models; 6114 A . 6115A, 6186C: 6220B. 623AB-6228B. 6825A. 6826A, 6827A.
5060-8764: adapter frame for rack mounting one or two $1 / 2$ rack widih unils.
This frame applies to the following models: 6177C.
$6181 C$.
5060-8759: Blank Filler Panel
This ,is rack width pancl applics to the following models: 6220B. 6224B. 6226B.
$\begin{array}{ll}N / C \quad 5060-6760: \text { Blank Filler Panel } \\ & \text { This } 1 / 2 \text { rack width panel applies the following mod- }\end{array}$
This $1 / 2$ rack width panel applies to the following mod-
els: $6114 \mathrm{~A}, 6115 \mathrm{~A}, 6186 \mathrm{C}, 6227 \mathrm{~B}, 6228 \mathrm{~B}, 6825 \mathrm{~A}$, 6826A, 6827A.
5060-6530: Blank Filler Panel
This $1 / 2$ rack width panel applies to the following models: 6177 C .6181 C .
14545A: caslers-set of four
Snap-on casiers for one 6464C.6483C power supply. (For rack mounting information on these supplies, see Opt 023)

Introduction

The selection of a power supply for today's system requires a critical and prudent evaluation. Sophisticated syslem electronics have placed more demands on the supply and, as always. the power supply is the very beart of your systenn. If in stops delivering power, your system will cease to operate.

Your evaluation should include not only the more obvious tectinical and cost considerations, bur also a look as some of the less tangible factors that make up the total purchasing power of your OEM dollar.

Quallty

HP's OEM supplies are totally proven before they are introduced. Each product goes through a complete development cycle. consisting of: (a) Engineering Breadboarding: (b) Lab Prototyping: (e) Production Prototyping: and (d) Production Pilot Runs. At each phase the units are cvaluated for safery, specification compliance, environmental performance. workmanship, and serviceability. In addition, all models undergo formal life and environmental lessing at a cenified facility before introuluction. MTAF

Mean Time Between Failure (MTBF) is a figure of merit that can be calculated and acrually verijied. It is a number that is onen quoted bul seldom understood. Frequently. the MTBF's of differenl manufacturers cannot be compared because they are calculated by different means. HP employs a comprehensive and conservative method of determing MTBF. A component data base is maintained to provide actual component failure statistics and the MTBF is adjusted downvard. if necessary, to reflect the actual working environment that the components will be exposed to.

Moreover. in produets where new design concepts are used, we verify Uheir reliability by running an acrual MTBF life test. Such was the case with the 62605M where Mil Spec 78IB. Test Plan IV, was utilized. As indicaled by the curve, after 140,000 hours of icsting the design hyporhesis was verified.

Life Test Acceptance Curve -62605 M

Although this meihod is expensive and lime consuming, it assures you of the HP quality hat you have come to accept.

Satety

To assist you in complying wiuh tightening safely regulations. all HP modular power supplies (including switching regulated) are designed 10 meet UL spees for L . S. applicutions. Considerations have also been given to international safety regulations. Only when lie manufacturer can provide you with a UL yellow card number, can you be assured of UL compliance.

Service Support

Hewlett-Packards service support is an-
other contributing factor in the lasting value of their products. HP is ready to respond to your service needs with an extensive chain of world-wide service and spare pants facilities. Staffed by compelcni technical personnel. these facilities can provide minimum um-around time and are backed by the full resources of the manutheluring division. In addition, all units :ire shipped with a complete Operating and Service Manual.

Speclal Design Group

In some applications of-the-shelf power supplies may not meet your needs. In these instances, our Special Design Group can provide product modifications, assembed power systems, and applications assistance to help with your specific requirement.

Make or Buy

A crucial question in the make or buy decision is whether or not you have the technical and financial resources available to manufacture your own supplics.
It is important ool to underestimate the dificulty involved in a power supply design. When evaluating your technical capabilitics keep in mind that: (a) Modem power supplies are state of the art components: (b) Time will be required for electrical and mechanical definition as well as for design. lab and praduction protolypes and cualuation; and (c) Engineers will be diverred from other projects.

To assist you in the cost aspects of your evaluation, we have prepared application note 236-1. This note assists you in conducting a Relum on investmen1 (ROI) annlysis by revealing both the obvious and hidden costs incured in the manufacure of your own power supplies. Contact your local HP sales office for a free copy.

EXAMPLE OG RATINGS AVAILABLE.
Contact your local HP Field Engineer for iniormation on models to meet your specific requirements.
Single Output-UL yellow card E51529

	Linear Requlated				20 kith Suriching Regulated			
	-Series	C-Sorles	E-Strias	G-Sarles	63000C-Saries	-Series	L-Serles	M-Serles
B V	$\begin{gathered} 62005 A \\ 12004 \end{gathered}$	$\begin{gathered} 62005 \mathrm{C} \\ 140 \mathrm{~N} \end{gathered}$	$\begin{aligned} & 62005 \mathrm{E} \\ & 18.000 \end{aligned}$	$\begin{aligned} & 62005 \mathrm{G} \\ & 116.0 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 63005 C \\ & (22000 \end{aligned}$	$\begin{gathered} \square 626031 \\ 40.2 A \\ \hline \end{gathered}$	$\begin{aligned} & 626051 \\ & 160000 \end{aligned}$	$\begin{aligned} & 62805 \mathrm{M} \\ & 100.04 \\ & \hline \end{aligned}$
12 V	$\begin{gathered} 62012 \mathrm{~A} \\ (1.5 \mathrm{~N} \end{gathered}$	$\begin{aligned} & \text { 62012C } \\ & \text { (3.0A) } \end{aligned}$	$\begin{aligned} & 62012 \mathrm{C} \\ & {[6.0 \mathrm{~A})} \end{aligned}$	$\begin{aligned} & 62012 \mathrm{~s} \\ & 120 \mathrm{~N} \end{aligned}$	(Note 2) (10.0 A)	$\begin{gathered} 4825121 \\ (230 A) \\ \hline \end{gathered}$	(kiste I) 13002	(There 1) (50.00)
154	$\begin{aligned} & 62015 A \\ & (1.25 A) \end{aligned}$	$\begin{gathered} 52015 \mathrm{C} \\ (25 \mathrm{~A}) \\ \hline \end{gathered}$	$\begin{array}{r} 620155 \\ 6.045 \\ \hline \end{array}$	$\begin{aligned} & 520150 \\ & 110.041 \end{aligned}$	(NOHO 2) (B.ON	$\begin{gathered} 4626151 \\ (20.0 \mathrm{~N}) \\ \hline \end{gathered}$	(Note 1) (24.04)	$\begin{aligned} & \text { 6i2.515K } \\ & \text { (40.0iN } \\ & \hline \end{aligned}$
24 V	$\begin{aligned} & 62024 A \\ & 6.754 \end{aligned}$	$\begin{aligned} & 52024 \mathrm{C} \\ & 11.75 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 620245 \\ & (3.75 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 620240 \\ 650 \end{gathered}$	一	$\begin{aligned} & 4526241 \\ & (125 A) \\ & \hline \end{aligned}$	Note 2: 115. 9 N	(Note 2) \{24 OA
28.	$\begin{aligned} & 62028 A \\ & (0.7 A) \\ & \hline \end{aligned}$	$\begin{gathered} 020280 \\ 11.545 \\ \hline \end{gathered}$	$\begin{aligned} & 62028 \mathrm{~L} \\ & (3.25 \mathrm{~A}) \end{aligned}$	$\begin{gathered} 520280 \\ (6.500 \\ \hline \end{gathered}$	-	$\begin{gathered} 462628 \mathrm{~d} \\ \{107 \mathrm{AJ} \\ \hline \end{gathered}$	(Note 2) $(12.9 i)$	$\begin{aligned} & \text { Mole } 21 \\ & 12! \\ & 12 \mathrm{AN} \end{aligned}$
46 V	$\begin{aligned} & 62(0884 \\ & (0.45 A) \\ & \hline \end{aligned}$	$\begin{gathered} 6204 \mathrm{ACC} \\ (1.04) \\ \hline \end{gathered}$	$\begin{aligned} & 62048 \mathrm{E} \\ & 120 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 62048 \mathrm{~B} \\ & \text { (4.04) } \end{aligned}$	-	-	$\begin{gathered} (\text { Note } 2) \\ 17.5 A) \end{gathered}$	$\begin{gathered} (N o t e 27 \\ (12.5 .4) \\ \hline \end{gathered}$
Liet Prame	\$15	\$228	1240		\$3\%	$\begin{aligned} & \text { } 55600 \\ & 4 \$ 505 \end{aligned}$	\$300	\$050

Dual-Output-UL yellow card E5152.9

$\pm 12 \mathrm{~V}$	$\begin{aligned} & 52212 \mathrm{~A} \\ & 1.4 \mathrm{~A} \dot{ } \end{aligned}$	-	$\begin{gathered} 62212 \mathrm{~B} \\ (3.3 A) \\ \hline \end{gathered}$	$\begin{aligned} & 622120 \\ & (60 \mathrm{n}) \end{aligned}$	-	-	-
-15	$\begin{aligned} & 622154 \\ & 11.25 A \end{aligned}$	二	$\begin{array}{r} 622150 \\ 130 A \\ \hline \end{array}$	$\begin{aligned} & 622^{1} 156 \\ & 15.24 \end{aligned}$	-	-	-
List Price	\$215	-	\$275	5410	-	-	-

DC-to-DC Converters
Triple-Output-UL yellow card E51529

	Linear Aepulated	
	Model 623120	Medel 633150
Butpat 1	$475{ }_{3 A} 10.25 \mathrm{~V}$	$\begin{gathered} 4.7510525 \mathrm{~V} \\ \text { isA (Mote 3) } \end{gathered}$
Output 2	$\begin{aligned} & 4.75 \mathrm{~V} \text { at } 0.3 \mathrm{~A}, 10 \\ & 12.5 \mathrm{Vat} 0.60 \mathrm{~A} \end{aligned}$	$\begin{aligned} & +11.410+15.154 \\ & 2 \mathrm{~A} \\ & \hline \text { (Note } 3 \text {) } \end{aligned}$
Output 3	4.35 V 910.38 A 10 12.5 Y at 0.60 A	$\begin{aligned} & -11,410-1575 \mathrm{~V} \\ & 2 \mathrm{~A}(\mathrm{Note} 3) \end{aligned}$
List Prioco	\$155	1485

	Singio output	Tnple Outpus
	Model 61005 C	Macel bi3isd
Output Ratings	$\begin{gathered} 4.75 \text { to } 5.25 \mathrm{~V} \\ 1022 \mathrm{~V} \\ \hline \end{gathered}$	(Same as Model G33150)
Lust Price:	S.018	5 S 25

1. Special ritings on special order basis al no auditional cost.
2. Spetcial ratings on special order Dasis at additional cost.
3. The ounputs if the Modets bi315D and 633150 can be operated anywhere within inest $12 A$. 2 A and 2 a individual kufient ratings providlng the lotal output power is miltain a 110 wath lowal ouspot reting.
Quantiny and OEM discoumes are aralable. These prices apply to oomestic U.S.A customers only.

Technical support, systems, accessories

OEM Modular Power Supply Technical Data and AN 236-1 are avaltable from your local HP Fiald Enginear.

Accessories for power systems

The Model 62410A Rack Mounting Tray can accomodate any combination of Series 62000 lincar supplies. Series 62200 dual linear supplies. and Series 62000 switehingregulated supplies totaling a ful) rack width or less. It can be installed in a 19 -inch rack directly or on slides. Detachable handies are included. The 62411A Blank Front Panet has a 2.25 -inch clearance when installed on the tray for meters. switches, lest jacks, and the model 62412A Blant Rear Panel has a 2.75 -inch clearance behind the panel to allow for the addition of connectors, terminal blocks, and fuse holders. Model 62413A Cooling Unit delivers 45 CFM of cooling air while occupying only 1,75 -incher of rack space. The 62414A Slide Kit has a 20 -inch slide for use with standard 19 -inch wide racks of 20 -inch depth. (Nol for HP 29400A or - B cabincts.) Model 624 ISA AC Distribution Panel is a mounting tray rear panel with a 3 -terminal barrier strip. line cond, and fuse holder already installed. The 62616A Coot ing Unit is 5.25 inehes high and delivers 150 CFM of rack cooling air. A 12692B Slide Kis has 22-inch slides for use with HP 29400A or -B cabinets.

62415A

62413 A

62416A

- Digitally programmable in binary or $B C D$
- HP-IE compatible option J99 \& 59301A
- Fast, accurate, bipolar output
- Digital inputs isolated from analog output
- Internal storage of digital data
- Digitally programmable current latch (on DVS models) or voltage limit (on DCS model)

Digital voltage sources

HP's family of digital voliage sources (DVS's') includes models $6129 \mathrm{C}, ~ 6130 \mathrm{C}$, and 6131C. All models are programmable in binary or 8421 BCD and have many systen-oriented features that cohance their use in automatic lesting and control environments. Among these features are: isolation belween the digusl inpul and analog output lines. digital storage of programmed inpu1s, programmable current latch. analog input, and current monitoring terminals.

Isolation

All digital lines of the DVS's are isolated from the analog oulput. This fealure is essential in intomatic lest systems lo avoid forming ground loops that could impair system operation and damage the computer and instruments.

Nearly all computer manufactures ground the power supplies for the digital $1 / O$ logic to the mainframe of the computer, which is connected to the ac power line ground. If a DVS did not have isolation, one of its analog outpul ierminals would be connected to the digital inpul common line.
Internal storage
The DVS's intemally store the computer's outpur magnitude (voltage selling), polarily, range, and output latch/limit digital inputs.s. when the computer's gate command is received. When the DVS has linished processing the digital input, it nolifies the computer by transmitting its flag. Since the DVS stores the digital dath, the computer does noi have to contindally refresh the DVS; it is free to carsy oul other imponant lasks. The DVS maintains its programmed outpui indefinitely. changing the oulput only when the computer changes the digital inpul data and sends another gate command.

In addition to eliminating the need for redundant programming by the computer, intermal storage also facilitates the conirol of multiple DVS's from a single computer $1 / 0$ channel. The number of DVS's What can be controlled from a single $1 / 0$ channel depends on the capabilities of the computer's $1 / 0$ data bus drivers. Most computers can easily drive up to eight DVS's.

Programmable current latch

Overcurreni proiection is provided by a current latch circuil which can be externally programmed to one of eighl values benween 2% and 100% (six values for the 6131 C) ef the umit's ruted output current. When aclivated, the current bateh circuit furns off the outpul power amplifier reducing the outpul current 10 less than 20 mA . The reaction time of the current latch circuit (time between the start of a corrent ovelded and um off of the power amplifier) can be adjusted by adding an external capacisor al the rear ieminals. The upper corrent limit is safeguanded by a separate fixed current limit circuil that prevents ihe onlput current from exceeding 110% of the current rating. The computer is continuously informed of possible current overload or curtent latch condilions by slatus outputs which are fed back to the programming source.

Analog imput

In automnlic test systems, it is often desirable 10 inject an ac "wiggle" on lop of a programmable de level to measure impedance at various voliage levels, to simulate worst case power supply condilions for a module under test, or measure component paramecers such as dynamic gain or Iransconductance. Many aulomatic conirol systems require this fealure 10 provide "dither" for the systern. All DVS's provide an analog input to fullill this need.
Current monitoring lerminals
The ouiput current of all DVS's can be measured without upsetting voitage accuracy by connecting a volimetcr across the current monitoring zerminals on the rear barrier sirip.
Digital current sources
The Digital Current Source, Model 6l40A is ideally suited for system applications requining a rapidly programmable, highprecision source of current.

The isolation, intemal storage, und analog input features described for the DVS's also apply to the DCS's. In addition. the DCS's have programmable voluge limiling and voltage monitoring rerminnals.

6130C. 6131C

AC power option
Price
028: iransformer tap change for 330 V ac $=10 \%$. single-phase inpul on 6130 C and 6131 C .

N/C
Standard interface options
J20: binary interface for 12661A 1/O programmer card for Hewlet1-Packard computers
J89: interfacing DCPS's with calculator-based test/ control systems. All DC.PS's may be modified to be compatible with ASCII-wo-Parallel Converer. Model 59301 A in calcularor-based systems. In addition to DCPS modification. Iwo items are supplied as par of Option J99: (1) a 1.83 m eable to connect DCPS to Model 59301A: (2) J99 Interface Note, containing Installation Instructions, Software Listings. Operating Instructions. and Diagnostics.
063: BCD interface for microcircuil logic levels
N/C
064: binary interface for microcircuit logic levels

Special options

If none of the standard interface options meet your requirements. quotaions for special options may be obrained from your HewlettPackard fietd engineer.
Accessorles avallable
14533 Pocket programmer permils manual programming of all inpul functions by switch closure $\$ 150$
14534A Pockel programmer extension cable (3 fi)
14535A HP computer interface kit includes I2661A computer 1/O card. 14539A cable, verilicalion software and BCS Driver. Up to eight DCPS's may be conirolled from one 14535A
14539A cable connects the first DCPS in a chain of up to eight instruments to the I266IA DVS programming card for Hewlett-Packard computers
14536A chaining cable connects an additional DCPS to the existing chain of DCPS's
Ordesing information 6129 C Digital Volage Source

Introduction

Hewlet1-Packard offers a wide selection of recorders and plotiers that record and display data accurately, quickly, and reliably. Some application areas are onasufacturing. education, laboratories. R \& D. and hospitals. The recorders can also be vilized by the original equipment manufacturer (OEM) to fulfill the need for recording and displaying data from the OEM's equipment. Models may be chosen from X-Y, strip chart, oscillographic, and instrmentation tape recorders. as well as graphic plotters for computer, timeshare, and calculator users.

X-Y recorders

These recorders are designed to plot Canesian coordinate graphs from de clectrical information. They may be selected in two basic chart sizes and from three basic levels of performance depending upon measurement needs. Cenain models have high sensitivity and high common mode rejection. Models are available with and without lime sweep capability. Metric and English instruments may also be sclected. Additionally, wo-pen models capable of simultaneously ploting two curves may also be chosen. Finally. whether the application be in Bio-Medical. Chemical. Material Testing, ete., a wide variety of X-Y Reconders is available to fit the requirement.

Plug-in modules

Te expand the versatility and application of one group of $X-Y$ Recorders. plug-in modules are provided. If an application changes. the needed measurement capability is atmanable by simply addine an inexpensive plug-in. Recorders utilizing the modutes are the 7004B and 7034A. Modules include Amplifiers. Time Bases, DC Offset. Filters, Null Deiectors, and Scanners. The flexibility inherent in the plug-in concept will allow the user 10 meet the constandy changing requirements of laboralory measurement.

Graptir plotiers

Complete graphic capability to computers or temminals. with a minimum of programming effort and soltware, is available from Hewlet1-Packard Graphic Ploters. Simple commands and data formats, which can be generated by almosi any computer in any language, are used to control the plotter.

The newest additions to the expanding Graphic Plotter family include the advanced-designed 7221 A and 9872 A . Boul models art microprocessor plotters that produce high quality, multicolor (red, green, blue, black pens) graphíc ploss on any size chart up 10280 mm $\times 432 \mathrm{~mm}$ (ISO A.3.) The 722) A plots from remole processing facilities: the standard ElA RS232C/CCITT V. 24 asynchronous serial ASCJl interface operates at any of eigh1 switch selectable baud rales from 75 to 2400 BAUD. The 9872A plots through HP-IB interface to a calculator, computer. or other controller using the IEEE 488-1975 standart interface.

Sisip chart recorders
HP Strip Chan Recorders produce accurale records in rectilinear coordinales. All two-pen models permit both channels to realize the full resolution of the chart width simultaneously. since the pens can overlap on the same chan without interference.

Selection of a servo-driven strip chan recorder depends upon the specific application The 7100 Series and 7130 A Series models offer one-pen and two-pen servo drive systems. The 7\%23A and 7143A offer singlepen only and utilize the linear motors with only one moving parn. The 7IS5B battery-operaled unit is useful in field appljcations as well as laboratory uses.

Osclliographlc recorders

Time correlation of multiple chanoels of data, instantaneous readout, and the capability 10 use calibrated units of the customer's choice are just some of the advantages of using direct writing Oscillographic Recorders. Permanent and easily reproduced records of signals from dc to 150 Hz can be made. From iwo to eight channels of recording are available. depending upon the recorder model selected.

With appropriate plug-in signal conditioners, the reconders can record electrical signals from microvolts to volis. Add Iramsducers and they can make records of all lypes of physical measurements, such as force, position. strain, stress, acceleration, and temperature. Plug-In preamplifiers

A wide line of preamplifiers is available for pressurized ink system recorders which provide unneathed flexibility.

Instrumentation tape recorders

The 3964A and 3968A are instrumentation lape reconders that provide significant benefits by recording on $1 / 6^{\prime \prime}$ lape as compared to recording on $1 / 2^{\prime \prime}$ tape. The units are designed to meet the demsnds of the individual and OEM users. Versability, porability, and durability are additional characteristics of these units.

Many standand features are also supplied. They include E-to-E mode for FM recording. Tape/Tach servo. Equalization, Remote Control. ACIDC calibrator, Flutter compensation, Voice capabil. ity, Unipolar operation (FM only). and Re-recording (Dubbing).

Recorder supplles kit

Recorder supplies; pen, paper. ink; for X-Y, Strip Chart, Oseillographic. Graphic Plotter, or Insirumentation Tape Recorders are available in starter kis. These kits can ensure onintermpled operation or unnecessary delay to recorder performance due to unexpceted ovenuse, or lack, of pen, paper, ink, or other recorder supplies.

To order a Recorder Supplies Staner kil, refer to the appropriate instrument(s) in this catalog. Model numbers are assigoed to the desired kit. A complete list of all supplies available is listed in the Recorder supplies catalog.
istinumanaman

Fast response $\mathrm{X}-\mathrm{Y}$ recorder, plug-in-modules

 Models 7004B, 7034A, \& 17170 serles plug-Ins- High performance

70048

- Plug-in versatility

17170A

17171A

17172A

The Hewlet1-Packard Models 7004B and 7034A provide accelera(ion of more than $3800 \mathrm{~cm} / \mathrm{s}^{2}$ ($1500 \mathrm{in} . / \mathrm{s}^{2}$) and slewing speed of 76 $\mathrm{cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s}$). The high accelcration allows the pen to follow small. quick input changes. Front and rear guard terminals are available for sigual inpuls. Guarding helps eliminate the common mode voltage effects that are troublesome when recording from low-level sources such as thermocouples. strain gauges and similar sources. Additional reatures include the proven Autogrip electrostatic paper holddown, the disposable ink pen, a RECORD/SETUP switch. knob locks. five way binding posts, tilt stand, to name a few.
Selection of the plug-ins is dependent upon the type of $X-Y$ recorder, as well as purpose. Two plug-ins per axis are placed in the mainframe. Each may be used individually or in series by setting the front panel swich.
$7004 \mathrm{~B}, 7034 \mathrm{~A}, 17170$ Series plug-Ins 9peciflcations 7004B and 7034A Periormance spechlcations

Plug-ins: accept 4 single-width; 2 per axis.
Type of input: floating and guarded signal pair. Available itrough front panel or rear connector.
Zepo set: may be set ± 1 fs from zero index.
Zero check switches: pushbution in each axis allows verification of recorder's zero position without removal or shorting of inpul signal.
Mainframe accuracy: $\pm 0.2 \%$ of full scale.
Range vernier: lockablc, covers 2.5 times range selling.
Slewing speed: more than $75 \mathrm{~cm} / \mathrm{s}$ ($30 \mathrm{in} . / \mathrm{s}$) independent of line voliage \& frequency.
Acceleration: more than $3800 \mathrm{~cm} / \mathrm{s}^{2}\left(1500 \mathrm{in} / \mathrm{s}^{2}\right)$.

Reference stablify: belter than $0.003 \% / 1^{\circ} \mathrm{C}$.
Terminat based ilnearty: $=0.1 \%$ of iull scale.
Resettablity: $=0.05 \%$ of full scale.
7004B and 7034A General spechlcations
Paper holddown: aulogrip grips charts up to size of platen.
Pen lift: local and remote control (contact closure or TTL).
Dimensions: 70048: $267 \mathrm{~mm} \mathrm{H} \times 445 \mathrm{~mm} \mathrm{~W} \times 121 \mathrm{mmD}\left(101 / 2^{2}\right.$ $\left.\times 171 / \mathrm{s}^{\prime \prime} \times 4^{4} / \mathrm{i}^{\prime \prime}\right) .703 \mathrm{sA} \cdot 267 \mathrm{~mm} \mathrm{H} \times 445 \mathrm{~mm} \mathrm{~W} \times 121 \mathrm{mmD}$ ($\left.101 / 2^{\prime \prime} \times 1712^{\prime \prime} \times 4 \times 1 /{ }^{\prime \prime}\right)$.
Welght; $7004 \mathrm{~B}:$ nel 12.7 kg (88 lb). Shipping 14.1 kg (42 lb).
7014A: nel 7.3 kg (16 lb). Shipping 14.1 kg (3 llb).
Power; 115 or 230 V ac -10%. 50 to 400 Hz . approx. 85 VA (dependent on plug-in).
17170A DC Coupler specticatlons
Input range: single, fixed calib range of $50 \mathrm{mV} / \mathrm{cra}(100 \mathrm{mV} / \mathrm{in}$. $)$.
Input resistance: $1 \mathrm{M} \Omega$ conscant.
Common mode rejecton: 120 dB at de \& 70 dB al $50 \mathrm{~Hz} \&$ above with 100Ω betiveen low side \& guard connect point with source imped. $10 \mathrm{k} \Omega$ or less.
17171A DC Ampilifer specifications
Input ranges: $0.25,0.5,1,2.5,5,10.25 \mathrm{mV} / \mathrm{cm} .0,05,0.1 .0 .25$.
$0.5,1,2.5 .5 \mathrm{~V} / \mathrm{em}(0.5 .1 .2 .5,10,20.50 \mathrm{mV} / \mathrm{in} . .0 .1 .0 .2$. 0.5 . 1.2,5.10 V/in.).

Input resistance: 1 M .
Common mode rejection: 120 dB al de \& 100 dB at 50 Hz \& above with 100 a between low side \& guard conneet point al 0.25 $\mathrm{mV} / \mathrm{cm}(0.5 \mathrm{mV} / \mathrm{in}$). CMR on others decreases $20 \mathrm{~dB} / \mathrm{decade}$ step in attenuation.
System accuracy: $=0.2 \%$ full scale.

100 kHz : AC (slow response) $- \pm 0.25 \%$ from 30 Hz to 50 kHz from 5 Hz to $30 \mathrm{~Hz} \& 50 \mathrm{kHz} 10100 \mathrm{kHz}$.
Linesilty (ac): expressed as \% of fs, measuring from 0.5% of fs .

5 Hz	50 Hz	
-0.35%	-0.25%	$=0.35 \%$

Warmup time: 3 minutes nom.
Zero drift (referred to Input): $\pm 30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$.
Offeat: up 10 Ifs of offset using recorder"s zero.
Slze; double width occupies both plug-in spaces in axis.
17178A DC Attenuetor specificatione
Input ranges: $0.05,0.1 .0 .25 .0 .5 .1,2.5,5.10 \mathrm{~V} / \mathrm{cos}(0.1,0.2,0.5$,
I, 2, 5. 10. $20 \mathrm{~V} / \mathrm{in}$.).
Input realetance: IM』.
Common mode rejaction: 120 dB at dc \& 70 dB al 50 Hz \& above with 100Ω between low side \& point where guard is connected (at $50 \mathrm{mV} / \mathrm{cm}$ or $100 \mathrm{mV} / \mathrm{in}$.). Other ranges CMR decreases $20 \mathrm{~dB} / \mathrm{decade}$ step in altenuation,
Syatem accuracy: $=0.2 \%$ of full scale.
Optlons and accessories
001: metrically scaled \& cidibrated ($7004 \mathrm{~B} / 7034 \mathrm{~A}$)
002: X-axis retrans pot. $5 \mathrm{k} \Omega=0.1 \%$ linearity (7004 B)
(7004B)
001: merrically scalcd (17170A/17171A/17172A/ N/C
17177A/17178A)
001: + 3 to 20 V enable, 0 V disable (17173A)
001: symbol plolling capability (6) (17012B/C)
002; - 3 to -20 V disable. 0 V enable (17173 A)
003: -3 10 -20 V enable. 0 V disable (17173A)
900: rack mount kit
910: exira manual
creases filter response.
Rejection: $>55 \mathrm{~dB}$ al $50 \mathrm{~Hz} \&$ higher ($1 / 4 \mathrm{~s}$ rise ime) or $>70 \mathrm{~dB}$ at 50 Hz \& higher (1) s rise time). Front panel selection.
17178A Scanner epecifications
Input: fronl pancl oninialure binding posts isolated from grouod (high \& low only). Mainframe input-utilizes existing input connectors.
Altanuator: fixed atienuator in decade steps from $\times 1$ io X 0.00). Variable altenuator provides continuous coverage.
Input Impedance: $100 \mathrm{k} \Omega$.
Accuracy: 0.2% of full scale.
Scan rate: adjust. from 0.1 to $4 \mathrm{~s} / \mathrm{scan}$.
17177 A AC/DC Converter DC preamplifler epecificatlons Input rangea; $2.5 \mathrm{mV} / \mathrm{cm}$ to $10 \mathrm{~V} / \mathrm{cm}$ ($5 \mathrm{mV} / \mathrm{in}$, to $20 \mathrm{~V} / \mathrm{in}$.) in 1. 2, 5 steps.
Minimum usable Input (ac only): $=0.2 \%$ of full scale.
Meximum allowable Input: 300 V peak.
Type of Input: floating \& guarded sig. pair. No rear inputs.
Input impedance: $1 \mathrm{M} \Omega$ shunted by less than 40 pF .
Maximum allowable cource realstance: $10 \mathrm{k} \Omega$.
Common mode rejection: 80 dB at dc $\& 50 \mathrm{~Hz} \&$ above with 100Ω beeween low side \& guard connect point \& at $2.5 \mathrm{mV} / \mathrm{cm}(5$ mV/in.). CMR on other ranges, decreases $20 \mathrm{~dB} /$ decade step in attenustion.
Rlea/tall time (ac only, 10-90\%): Slow response (5 Hz to 100 kHz) 2.5 s max; fast response (50 Hz to 100 kHz) $0.5 \leq$ max.
Collbratton (ac only): responds to average value of input waveform; calib in ms value of sinewave.
Accuracy ($\%$ of is): $\mathrm{DC}- \pm 0.5 \%$: AC (fasl response) $-=0.25 \%$ from 150 Hz to $50 \mathrm{kHz}, \pm 0.5 \%$ from $50 \mathrm{~Hz} 10150 \mathrm{~Hz} \& 50 \mathrm{xHz} 10$.

17024A Reconder Supplies Starter Kit-Egglish (7034A)
17025A Recorder Supplies Starter Kit-Meuric (7034A)
17026A Recorder Supplies Stanter Kit-English (7004B)
17027A Reconder Supplies Starter Ki1-Metric (7004B)
Ordering Information
$7004 B \times-Y$ Recorder $(28.26 \times 43.18 \mathrm{~cm})\left(11^{\prime \prime} \times 17{ }^{\prime \prime}\right) \quad \$ 2100$
$7034 \mathrm{X} \times$ R Reconder $(21.59 \times 28.26 \mathrm{~cm})\left\langle 81 / \mathrm{s}^{\prime} \times 1 \mathrm{I}^{\prime \prime}\right\rangle \quad \$ 2040$
17005A Chart Advance (7004B only)
17170A DC Coupler Plug-in
$\$ 60$
17171A DC Amplifier Plug-io $\$ 410$
17172A Time Base Plug-in $\$ 300$
17173A Nul Detector $\$ 380$
17174 B DC Offset Plug-in $\$ 190$
17175A Filer Plug-in
$\$ 165$
17176A Scanner Plog-in
17177A AC/DC Convener Plug-in $\$ 545$

- $\$ 750$

17012B/C Point Plotter
$\$ 215$
－Floating Guarded inputs

7035B

The 7035 B is a hugh－quality．low cost instrument desigued for use in peneral purpose applications．Each axis bas an independent servo system with no interaction between channels．The 7035 B plots two graphs from two de signals representing the function being mea－ sured．

Input terminals accept either open wires or plug type connectors． Five calibrated ranges from $0.4 \mathrm{mV} / \mathrm{cm}$（ $1 \mathrm{mV} / \mathrm{in}$ ．） $104 \mathrm{~V} / \mathrm{cm}$（ 10 V／io．）are provided in each axis．A variable range conurol pennits scaling of signial for full scale deflection．High inpul impedance（ 1 megohm on all but the first two ranges），foated and guarded input． and 0.2% accuracy is provided．

Each closed－loop servo system uses a high－gain，solid－state servo amplifier，servo moidr，long－life balance potentiometers．photo－ chopper，לow pass ilter，goarded inpuls，and altenuator and balance circuil．

A plug－in Lime base，Model 17108A．operates on either axis to provide five sweep specde from $0.21020 \mathrm{~s} / \mathrm{em}$ ．The unil is self－ contained．external．and designed to directly plug into the 7035B input terninals．Any number of recorders may be driven simultane－ ously．provided the combined parallel input resistance is $20 \mathrm{k} \Omega$ or more．

7035B Speciflcations

Performance specificatlons
 Input ranges

Metric： $0.4,4,40,400 \mathrm{mV} / \mathrm{cm}$ and $4 \mathrm{~V} / \mathrm{cm}$ ．
English：\＆． $10,100 \mathrm{mV} / \mathrm{in}$ ．： 1 and $10 \mathrm{~V} / \mathrm{in}$ ．Continuous vemier berween ranges．
Types of Inputs：noaled and guanded signal pair；rear inpui connec－ tor．
Input realatence

Range		Input madseance
$0.6 \mathrm{mV} / 6 \mathrm{~m}$	（1 mV／In，	Potentiometric位sentially （nfinite at null）
Variable		$11 \mathrm{k} \Omega$
4 mbicm	$110 \mathrm{mb} / \mathrm{lm}$.	$100 \mathrm{k} \Omega$
， 40 mbichem	（100 mv／in．）	10
Variabia	（100 min	1 M
400 mivian	（1）vilo．）	1ma
Vactiable		1 M
4 уizan Variable	（30 V／im．）	1 180

Normal mode rejection：$>30 \mathrm{~dB}$ al 60 Hz ； 18 8Bocatave above 60 Hz ．
Maximum allowable source Impadance：no restrictions except on fixed $0.4 \mathrm{mV} / \mathrm{cm}$（ $1 \mathrm{mV} / \mathrm{in}$ ．）range．Up $1020 \mathrm{k} \Omega$ source imped－ ance will nol ahter recorder＇s performance．
－Disposable pens

70358 with 17108A

Accuracy：± 0.25 of full scale．
Llnearlty：$=0.1 \%$ of full scale．
Resettablity：$\pm 0.1 \%$ of full scale．
Zero sel：zero may be sct up 10 one full scate in any direction from zero index．Lackable zero controls．
Slewing speed： $50 \mathrm{~cm} / \mathrm{s}$ ．（ $20 \mathrm{in} / \mathrm{s}$ ）nominal at 115 V ．
Common mode relectlon：conditions for the following data are line frequency with up to $1 \mathrm{k} \Omega$ between the posilive input and guard connection point．Max．de common mode voltage is su0 V ．

Ranfa		DC（CMA）	AC（CMR）
Mersts	English		
［） $4 \mathrm{mV} / \mathrm{cm}$	imvin．	130 dg	$100 d B$
4 nivicm	10 mvilin		BJ 8 B
10 mbicm	100 mvir	gc de	60 \％
$400 \mathrm{mV} / \mathrm{cm}$	V / ln ．	70 dg	4080
$4 \mathrm{~V} / \mathrm{cm}$	10 V ！ m	30 ¢ 8	20 d日

General specifications

Psper holddown：sutogrip electric paper holddown grips $216 \mathrm{~mm} \times$ $279 \mathrm{~mm}(81 / \mathrm{in} . \times 11 \mathrm{in}$.$) chans or smaller．Speciil paper not re－$ quired．
Pen Ift：electric pen lift capable of being remotely controlled．
Dimenslons： $265 \mathrm{mmH} \times 445 \mathrm{~mm} \mathrm{~W} \times 121 \mathrm{mmD}\left(10^{7} / \mathrm{mic} \times 17 \% /{ }^{\prime \prime}\right.$ $\times 4^{8 / 4^{\prime \prime}}$ ）．
Welght：nct， 8 kg （ 18 lb ）．Shipping． $10.9 \mathrm{~kg}(24 \mathrm{lb})$ ．
Power：Iis or $230 \mathrm{~V}=10 \%$ ， 50 to 60 Hz ，approximately 45 VA ．

17108A Specifications

Sweep speeds： $0.2 .0 .4 .2,4.20 \mathrm{~s} / \mathrm{cm}$（0．5．1．5． $10.50 \mathrm{~s} / \mathrm{in}$.$) ．$
Accuracy： 5% of recorder full scale．
Unearlty： $0.5 \%^{\circ}$ of full seale（ $20^{\circ} \mathrm{C}$ 10 $30^{\circ} \mathrm{C}$ ）．
Output voltage： 0 to 1.5 V ．
Power：replaceable mercury battery（ 100 hr ）．

70358 Options and accessories Prlce

Opt 001；metric calibration
Opt 003：retransmitting potentiometer on X－axis $5 \mathrm{k} \Omega \quad$ add $\$ 90$ $=3 \%$
Opt 020：modification for use with models 3580A and add $\$ 295$
$3581 \mathrm{~A} / \mathrm{C}$
Opt 908：rack mount kit add \＄15
Opt 910：exira manual add $\$ 10$
17108A Time Base Plug－In
$\$ 260$
17108AM Time Batse Plug－In（metric）
$\$ 260$
17024A Recorder Supplics Starner Kit—English \＄41
17025A Recorder Supplies Stanter Kit—Metric $\$ 4.3$
7035日 General Purpose X－Y recorder

RECORDERS \＆PRINTERS $h p$
 Low cost OEM，lab X－Y recorders

Models 7010日 \＆7015B
－Low Cost

7010日
The 70108 is a low cost，one－pen X－Y recorder that accepts either 150 A4 or $81 / 2 \times 11$ inch chart sive．Featuring maximum electrical and mechanical fexibility，it is specifically designed for the OEM user concemed with cosl and space．Options include sensitivity from 5 mV icm，a time base sweep with remote TTL iriggering，input Cilters，clectric pen lift with TTL remote control．conerol punel，and carrying case．

A low cost，full capability $X-Y$ recorder，the 7015 B offers ful recording without add－on opfions or extemal equipmen1．Full capa－ bility fearures include Interoal Time Base．Matched input Filters， Remose Pen Lift，and TTL Level Remote Contro）．The intemal time base exn be slowed 10% hour sweep and has aulomatic pen control and remote triggering for sweep sian and resel．The filters reduce the always present signal noise．Rentote pen lift provides the assurnice of an acceptable graph during a quick plot．TTL level remote contsol provides an easy interface with extemal cquipment or systems．

Stindard equipment on both units includes the electrostatic paper holddown，rear connector，and disposible pen writing system which iocludes a universal pen holder that will accept most commercial fiber tipped pens．

Performance specifications

Panges

Input voltages： 7010 B －single range． $0.1 \mathrm{~V} / \mathrm{in}$ ．（Maric opl．： $5 \mathrm{mV} / \mathrm{cm}$ ）． 7015 B －Metric Option； $5 \mathrm{mV} / \mathrm{cm}, 50 \mathrm{mV} / \mathrm{cm} .500 \mathrm{mV} / \mathrm{cm}$ ．
Engllsh： 0.01 V／in． $0.1 \mathrm{~V} / \mathrm{in} . .1 \mathrm{~V}$ in．Vemier adjusiotent over－ lapping all ranges．
Thme Base：7015B 0．5，1，5，10，50， $100 \mathrm{~s} / \mathrm{in}$ ．（Option 001 ，metric calibration is $0.1,0.5,1.5,10.50 \mathrm{~s} / \mathrm{cm})$ ．Remote swecp slart and resel via TTL level or conlact closure．
Type of lnputs： 7010 B －Floating with inputs thru rear connector on circuit thard：7015B．Floating with inpuls thru binding posts or rear connector on circust boand．Mating rear connectors furnished for both units．
Inpui resistance：I M Ω constant．
Normal mode rejectlon： 7015 B －greater ihan 50 dB at 50 and 60 $\mathrm{Hz}(40 \mathrm{~dB} /$ decade roll－off above 60 Hz ）．
Common mode rejection： $100 \mathrm{~dB} d \varepsilon, 90 \mathrm{~dB}$ ac（decriases $20 \mathrm{~dB} /$ decade slep in altenuntion）．Measured with lk unbalance in HI terminal on most sensifive range．
Common mode vollage： 40 V dc and peak ac maximum（conforms 10 IEC 348）．
Accuracy：$=0.3 \%$ of full stale al $25^{\circ} \mathrm{C}$（includer linearity and resel－ tability）．For 7015 B add $=0.2 \%$ of deflection when on ocher than most sensitive range．Temperature coeflicient $\pm 0.02 \%$ C．Time Base $1.5 \%=0.1 \%^{\circ} 1^{\circ} \mathrm{C}$
Resertablity：less chan 0.2% of full scale．
Overshoot：less than 2% of full scale．
Slewing Speed：greater than $50 \mathrm{~cm} / \mathrm{s}(20 \mathrm{in} / \mathrm{s})$ ．
Zero set：7015B－zero may be placed anywhere on writing area or electrically offscale up to one full scale from zero index．Adjustment by 10 －num high resolution conlro）．
Environmental：operuting cemperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ：relative humid． ity 95% RH to $40^{\circ} \mathrm{C}$ ．
－Full Capability

General specifications

Writing system：fiber tipped disposable pen．For specialized appli－ cations．a universal pen holder is provided to accepl most commer－ cial fiber lipped pens．
Writing area： $18 \times 25 \mathrm{~cm}\left(7 \times 10^{\prime \prime}\right)$ ．
Platen slze：holds ISO A4（ $21 \times 29.7 \mathrm{~cm}$ ）and $8^{1 / 2} \times 11 \mathrm{in}$ ．charl size or smaller．
Slze： $267 \mathrm{H}, 432 \mathrm{~W}, 135 \mathrm{~mm} \mathrm{D}\left(10.50^{\prime \prime} \times 17^{\prime \prime} \times 5^{\prime \prime}\right)$ ．
Chart holddown：autogrip electric char Ad holddown grips chart size or smaller．
Pen IIIf： $7010 \mathrm{~B}-$ mantal（electric with TTL remote control is op－ tional）：7015B－elecric（remote via TTL level or contact closure）．
Power；switch selectahle for $100.120,220.240 \mathrm{~V}$ ac $+5-10 \%$ ： 47.5 to $440 \mathrm{~Hz}: 70 \mathrm{VA}$ miximum．
Welght：net， 7.2 kg （ 1618 ）；shipping 10 kg （ 22 lb ）．

Optlons and accessorles 7010 B	Price
001：Mettic calibmation	N／C
002：Conirol panel－provides power on／off，power	\＄75．
indienter ligh1，servo standby，chan hold，zero con－ irols，and if ordered．electric pen lift	
003：Electric pen lift（renmote via TTL or contact clo－ sure）	$\$ 85$
004：Delcles recorder case	less \＄10
005：X－axis single sensitivity $10 \mathrm{mV} / \mathrm{in}$ ．（ $5 \mathrm{mV} / \mathrm{m}$ with Opt 001）	N／C
006：X－axis single seasifivily I V／R． $10.5 \mathrm{~V} / \mathrm{cm}$ with ogiton 001）	N / C
007：Y－Axis single sensitivity $10 \mathrm{mV} / \mathrm{in}$ ．（ $5 \mathrm{mV} / \mathrm{cm}$ with Opl 001）	N／C
008：Y－axis single sensitivity） V / in ．（ $0.5 \mathrm{~V} / \mathrm{cm}$ with Op1 001 ）	N / C
009：X－axis sweep rate of $1 \mathrm{~s} / \mathrm{in} .(0.5 \mathrm{~s} / \mathrm{cm}$ with Opl $001{ }^{*}$ ）	\＄100
010：X－axis sweep rate of $10 \mathrm{~s} / \mathrm{in}$ ．（ $5 \mathrm{~s} / \mathrm{cm}$ with Opl $001 *)$	\＄100
011：Cartying case（not to be used for shipping）	\＄105
012：Inpui filer（both axes）	\＄40
013：Rear Connector＇（ 37 pin subminiature＂ D^{\prime}＇）	\＄651
＊Options 009 and 010 include electrie pen lift	
7015日	
001：Metric calibration	N／C
004：Carrying case（not 10 be used for shipping）	\＄105
908：Rack mouni kit	\＄15
910：Exira manua	\＄10
17024，Recorver Supplies Stanter Kit－English	\＄41
17025A Recorder Supplies Starer Kit－Metric	\＄43
908：Rack moun kit	\＄15
70108 OEM X－Y Recorder	\＄1075

Price
N／C
$\$ 75$.

805
less $\$ 10$
N / C
N / C
N／C
N / C
$\$ 100$
$\$ 100$
$\$ 105$
$\$ 40$
865
＊Options 009 and 010 include electrie pen li\｛t
7015日
001：Meltic calibrulion
r shipping
$\$ 105$
Rack mount kil
S15
17024，Recorver Supplies Staner Kit—English
17025A Recorder Supplies Starter Kit—Metric \＄43
70108 OEM X－Y Recorder $\$ 1075$

- Rugged one-piece casting
- Over 40 options

The 7040A and 7041A X-Y recorders are specificaliy designed for dedicated, single-purpose recording applications. The 7040A is a medium-speed unil while the 7041A is a high-speed unit featuring fast acceleration for applications where recording time is critical or incoming data is at a high rate.

Both models use a one-piece aluminum casting mainframe which eliminates the need for critical mechanical adjusuments. They are also equipped with the Autogrip paper holddown system and the quick-change disposable pen.

Additionally. over 40 options give these recorders the ability to be customized for the needed application. Most of the options can be easly and quickly installed or changed in the field. This includes a conerol panel (Option 038) which would provide the basic recorder functions such as zero sel, servo, pen, and charl operation. Other options include a time base, a plug-in X-axis event marker, TTL logic remote control. plus a variety of input ranges.
A functional and quantity discount is available for both units when qualified for the OEM purchase agreement.

7040A \& 7041A Specifications

Inpul ranges: single range from 0.2 to $500 \mathrm{mV} / \mathrm{cm}(0.5 \mathrm{mV} / \mathrm{in}$. 10 I $V /$ in.). specified by option choice.
Type ol Input: floating. 200 V de or peak ac max: internal polarity switch: inputs through rear barrier slip or optional connector.
Input resistance: / M Ω constant.
Common mode rejectlon: $100 \mathrm{~dB} \mathrm{dc}: 80 \mathrm{~dB}$ as line frequency.

Slowing speed

7040A: $50 \mathrm{~cm} / \mathrm{s}(20 \mathrm{in} . / \mathrm{s}) \mathrm{min}$.
7041A: $76 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s}) \mathrm{min}$.

Acceleration (peak)

$7040 \mathrm{~A}: Y$ axis $2540 \mathrm{~cm} / \mathrm{s}^{2}\left(1000 \mathrm{in} . / \mathrm{s}^{2}\right)$: X axis $1270 \mathrm{~cm} / \mathrm{s}^{2}$ (500 in. $/ \mathrm{s}^{\mathrm{P}}$).
7041A: Y axis $7620 \mathrm{~cm} / \mathrm{s}^{2}\left(3000 \mathrm{in} / \mathrm{s}^{2}\right)$; X axis $5080 \mathrm{~cm} / \mathrm{s}^{2}(2000$ in. $/ s^{2}$).
Accuracy: $=0.2 \%$ of full scale.
Sweop: optional. sungle range.
Zero set: extemal control provided by user: fromt panel conirols a vailable as Option 038.
Peper holddown: autogrip electric paper holddown grips ISO A3 or $1 I^{\prime \prime} \times 17^{\prime \prime}$ charts or smaller.
Pen lift: electric pen lift controlled remotely by contact closure: TTL logic level provided by Oplion 039.
S12 $12356 \mathrm{H} \times 483 \mathrm{~W} \times 165 \mathrm{mmD}\left(14^{*} \times 19^{\prime \prime} \times 6^{1 / 2^{*}}\right)$; rack mounting structure integral with unit.
Welght: net, 13.2 kg (29 lb). Shipping, $16.8 \mathrm{~kg}(37 \mathrm{lb})$
Power: 100. 120, 220, 240 V ac $+\mathrm{s}-10$ 品, 47 S so 440 Hz .130 VA .

Options
Input range specify one range option for each axis: must be both English or both metric

x	Y	Hange	Pince	x	Y	Ranre	Prico
001	007	$35 \mathrm{mV} / \mathrm{sm}$,	5100	013	019	$0.2 \mathrm{mV} / \mathrm{om}$	$\$ 100$
002	008	$1 \mathrm{mv} / \mathrm{mm}$.	5100	014	020	$0.5 \mathrm{mV} / \mathrm{cm}$	stoe
003	009	$10 \mathrm{mV} / \mathrm{a}_{\text {a }}$	5100	015	021	$3 \mathrm{~m} / \mathrm{ar}$	5100
004	010	100 mV/In,	151	016	022	$50 \mathrm{mV} / \mathrm{crm}$	\$50
005	011	500 mV / 1 n .	\$50	017	023	$100 \mathrm{mV} / \mathrm{cm}$	\$50
006	012	1 Wlo.	550	018	024	$500 \mathrm{mV} / \mathrm{cm}$	\$50

Note other ranges avalisble on special ordm.
Sweep range specified by option, X axis only: accuracy $\pm 1 \%$ of full scale $=0.1 \% /^{\circ} \mathrm{C}$ max; TTL logic start and resel

X	Sway	Finc?	x	Sweep	Price
025	$1 \mathrm{~N} \mathrm{ml}_{1}$	31:0	030	$0.5 \mathrm{~s} / \mathrm{cm}$	S139
026	$5 \mathrm{~s} / \mathrm{ln}$.	5150	031	$5 \mathrm{~s} / \mathrm{cm}$	SISD
027	10 s/m	\$150	032	$5 \mathrm{~s} / \mathrm{cm}$	3150
028	50 s/in	\$150	033	$10 \mathrm{~s} / \mathrm{cr})^{\text {a }}$	3150
029	$100 \mathrm{~s} / \mathrm{ln}$.	3150	034	$50 \mathrm{~s} / \mathrm{cm}$	\$180

Nole olher sweep isages availabla on special of ter
035: event marker, upper margin of X axis
038: control panel: for line. pen lifi. char. servo standby, zero, and zero check; add 44 mm ($\mathrm{l}^{3 / 4}$) io height
039: TTL logic remote conirol; for pen lifi and servo standby: also event marker if installed
040: rear connector: X, Y inpul signals and retransmining potentiometers. lime base controls. Aulogrip serve standby. pen lif, event marker and Option 039 control lines brought to a single locking connector
041: side trim panels and dust cover (356 mm, ($14^{\prime \prime}$) for standard unit
042: side trim panels and dusi cover (400 mm . $\left[15^{3} / 4^{\prime \prime}\right]$ add $\$ 20$
for unit with Option 038 installed
980: extra manual
add $\$ 100$ add $\$ 140$

17026A Consumable Staner Kit—English
add $\$ 10$

Ordering intormatlan
7040A Medium speed X-Y recorder $\$ 1275$
7041A High speed X-Y recorder

Note: OEM discountis avaitubla da both madels-

RECORDERS \& PRINTERS
 Two-pen, three parameter $\mathrm{X}-\mathrm{Y} / \mathrm{Y}$ recorder Model 7046A

The Model 7046A is a general-purpose 2-pen laboratory X-Y recorder designed to assure high quality recordings without sacrificing ruggedness, reliability and high performance so necessary for a laboratory recorder. The unit has dynamic performance that surpasses most 2-pen reconders by offering Y-axis acceleration exceeding 6350 $\mathrm{cm} / \mathrm{s}^{-2}\left(2500 \mathrm{in} / \mathrm{s}^{2}\right)$. This high acceleration plus very litile overshoot results in the 7046A reproducing a wide range of fast changing input signals.

A front panel polarity switch that switches pen direction, and the response switch which reduces the speed of the unit. are also available. The Autogrip paper holdsown sysem which holds ISO A3. up $10.77 .9 \mathrm{~cm} \times 43.2 \mathrm{~cm}$ ($11 \times 17 \mathrm{in}$.) size paper is also slandard.

7046A Specifications

Performance speciflcations

Input ranges: metric calibration available in 0.25, 0.5, 2.5, 5, 25 $\mathrm{mV} / \mathrm{cm} ; 0.05,0.25 .0 .5 .2 .5,5 \mathrm{~V} / \mathrm{cm}(0.5 .1,5,10.50 \mathrm{mV} / \mathrm{in}$. 0.1 . $0.5, \mathrm{I} .5,10 \mathrm{~V} / \mathrm{in}$. .) Continuous vernier between ranges.
Type of ingut: floaling and guarded, 500 V de or peak ac maximum. Polarity reversal swith located on fron: pancl, guard internally connected. Inputs through front panel binding posts or rear conneclor.
Input reslatance: I megohm constant on all ranges.
Common mode; 110 dB dc and 90 dB al 50 Hz and above (exceed 130 dB dc and 110 dB ac under normal lab environmental conditions) with I k Ω between HI and LO terminals. CMV applied between ground and LO. and altenuator on mosi sensilive range. On other ranges, CMR decreases 20 dB per decade stcp in attenuation.
Slewing speed: Fast Response, $76 \mathrm{~cm} / \mathrm{s}(30 \mathrm{in} . / \mathrm{s}$) minimum: Slow Response, $36 \mathrm{~cm} / \mathrm{s}$ ($15 \mathrm{in} . / \mathrm{s}$) sypical.
Acceleratlon (peak, fasi response only): Y-axis $6350 \mathrm{~cm} / \mathrm{s}^{8}$ (2500 in. $/ \mathrm{s}^{\mathrm{x}}$), X-axis $3800 \mathrm{~cm} / \mathrm{s}^{2}\left(1500 \mathrm{in} . / \mathrm{s}^{2}\right)$.
Accuracy: $\pm 0.2 \%$ of full scale (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coenficient $=0.01 \%$ per ${ }^{\circ} \mathrm{C}$.
Renge accuracy: $=0.2 \%$ of full scale $\pm 0.2 \%$ of deflection (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.01 \%$ per ${ }^{\circ} \mathrm{C}$.

Deadband: 0.1% of full scale.
Overshoot: 1% of full scale (maximum).
Zero set: zero may be placed anywhere on the writing arca or electrically off seale up to onc full scale from zero index.
Environmental (operating): 0 to $55^{\circ} \mathrm{C}$ and $<95 \%$ relative humidity $\left(40^{\circ} \mathrm{C}\right.$).
General specificattons
Wriling mechanlgm; servo actuated ink pens.
Writing area: $25 \mathrm{~cm} \times .38 \mathrm{~cm}\left(10^{n} \times 15^{\prime \prime}\right)$.
Papar holddown: aulogrip electric paper holddown grips ISO A3 or $11 \mathrm{in} . \times 17 \mathrm{in}$. Special paper nol required.
Pon lith: elecuric (remore, via contact closure or TTL level)
Dimenslons: $441 \mathrm{~mm} \mathrm{H} \times 483 \mathrm{mmW} \times 173 \mathrm{mmD}$ ($173 / \mathrm{h}^{\prime \prime} \times 19^{\prime \prime} \times$ $613 / a^{\circ}$): rack mounting structure integral with unit.
Pawer: 115 or 210 volts ac $\pm 10 \%, 4810400 \mathrm{~Hz}, 175$ VA.
Welght: net. $16 \mathrm{~kg}(35 \mathrm{lb})$. Shipping, $21.4 \mathrm{~kg}(47 \mathrm{lb})$.
Options and accessorles Price
007: metric calibration
001: lime base
Sweep rates: Melric calibration is $0.25,0.5,2.5,5,25$, $50 \mathrm{~s} / \mathrm{cm}(0.5,1,5.10,50,100 \mathrm{~s} / \mathrm{in}$. $)$.
Accuracy: 18 al $25^{\circ} \mathrm{C}$ (Temp. Coeff. $=0.1 \% /^{\circ} \mathrm{C}$ max).
General: switchable to X -axis. Sean and reset by from panel conicol, remole by momentary contacl closure to ground or TTL levels. Auromatic resel al full scale. recycle accomplished by contimucus start signal.
002: event marker
Writes in upper margin, aligned with X-axis position of Y pen. approximately 0.12 cm (0.05 in .) excursion completed 50 ms after application of signal. Controlled remotely by contact closure to ground or by TTL levels. Contacı resistance: $4 \mathrm{k} \Omega$ (maximum).
910; exita manual add \$10

17028a Recorder Supplics Stanter Kit/English
17054A Recorder Supplies Starer Kid/Metric

- High dynamic response

7045A

- Performs laboratory measurements

7047A

The Models 7044A, 7045A, and the 7047A are general pupose $X-Y$ recordess specitically designed to offer the needed requirements to perform laboratory measurements. This allows for a wide range of quick-changing signals to be reproduced accurately and dependably. The 7044A is a medium-speed recorder designed for most general-purpose applicalions. The 7045A and 7047A offer higher speed and Y-axis accelcration exceeding $7620 \mathrm{~cm} / \mathrm{s}^{2}(3000$ in. $/ \mathrm{s}^{\mathrm{r}}$).

Other outstanding feanmes found on the recorders include 10 cadibrated de inpul ranges on each axis of the 7044A and 7045A from $0.25 \mathrm{mV} / \mathrm{cm} 105 \mathrm{~V} / \mathrm{cm}(0.5 \mathrm{mV} / \mathrm{in}$. $1020 \mathrm{~V} / \mathrm{in}$.) and 12 calibralcd dc inpul ranges on each axis of the 7047A from $0.02 \mathrm{mV} / \mathrm{cm}$ to $5 \mathrm{~V} / \mathrm{cm}$ ($0.05 \mathrm{mV} / \mathrm{m} .1010 \mathrm{~V} / \mathrm{in}$.) . In between, a $\mathrm{J}-5-10$ sequence is used (except for the $0.02 \mathrm{mV} / \mathrm{cm}$. most scositive range setting of the metric oprion on the 7047 A .) On all ihree, abbitrary fult scale voliage manges may be established with the vemier control in conjunction with the calibrated de ranges.

Additionally. these recorders are equipped with front panel polarity switches which reverse pen direction, eliminaling the need for reversing the inpulleuds. The 704SA and 7047A are provided with a RESPONSE swilch which allows the user to slow the response of the reconder for easier selup. The $7047 \wedge$ preamplifiers for the X and Y axes are contained in two specially designed aluminum enclosures. Thesc contain chopper de amplifiers and have the unique serviceability feature of being removable and operational outside of the mainframe, using the cable extender included in the Accessory Kit.

Also available on all models is the continuous duty, aluminum framed de servo molor: the X-axis of the 7045A and 7047A contain the larger, faster motor. This reduces overhealing and wear if the per is driven offscale for an indefinite ime. The rouble-frec Auco grip electrostatic holddown platen capable of holding ISO A3 and JI in. $\times 17 \mathrm{in}$. size chart paper is included, as well as a disposable pen with four color choices, and plastic coated wirewound balance potentiometer. Latest circuitry design and assembly techniques have also been incorporaled, thereby reducing failure and maintenance lime.

Options include the Time Base (standard on the 7047A) Event Marker and Metric Scaling. TTL Remote Control and Rear Connector are standard on all models.

7044A, 7045A Specifications

Performence speciflcatlons

Input ranges: $0.25,0.5,2.5,4.25 \mathrm{mV} / \mathrm{cm} ; 0.05,0.25,0.5,2.5,5$ V/em (English calioration available in 0.5. 1, 5, 10, $50 \mathrm{mV} / \mathrm{mo} .: 0.1$. 0.5. 1. 5. 10 V fin.). Continuous vemier beween ranges.

Type of input: floating and guarded, 500 V de or peak ac maximum. Polarity reversal swifch located on front pancl, gund intemally connectud. Inputs through front parel 5 -way binding posts or rear connector.
Input resistance: I megohm consiant on all ranges.
Common mode: 110 dB de and 90 dB an 50 Hz and above (excecds 130 dB de and 110 dB ac under oumal lab envirunnenal conditions) with I k Ω between HI and I. O terminals. CMV applicd between cround and LO, and attentatior on mos' sensitive rablge. CMR decreases 20 dB per decade step in attenuation.

Slowing speed

7044A: $50 \mathrm{~cm} / \mathrm{s}$ (20 in, $/$; $)$ mísimum.
7045A: Fiss Response. $76 \mathrm{~cm} / \mathrm{s}$ ($30 \mathrm{in} . / \mathrm{s}$) minimum. Slow Response, $36 \mathrm{~cm} / \mathrm{s}$ ($15 \mathrm{in} . / \mathrm{s}$) iypical
Acceleration (peak)
7044A: Y-axis $2540 \mathrm{~cm} / \mathrm{s}^{2}\left(1000 \mathrm{in} . / \mathrm{s}^{2}\right)$. X-axis $1270 \mathrm{~cm} / \mathrm{s}^{y}(500$ in. $/ s^{2}$).
7045A: (Fust Response only) Y-nxis $7620 \mathrm{~cm} / \mathrm{s}^{2}$ ($3000 \mathrm{in} . / \mathrm{s}^{2}$). $X-a x i ́ s ~ 5080 \mathrm{~cm} / \mathrm{s}^{2}\left(2000 \mathrm{in} . / \mathrm{s}^{2}\right)$.
Accuracy: $\pm 0.2 \%$ of full scalc (includes linearity and deadband) at $35^{\circ} \mathrm{C}$. Temp Coefficient $\pm 0.0\left[\%\right.$ per ${ }^{\circ} \mathrm{C}$.
Range Accuracy: $\pm 0.2 \%$ of full scale $\pm 0.2 \%$ of dellecinon (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefficient -0.01 C . per ${ }^{\circ} \mathrm{C}$.
Deadband; $0.1 \prime \frac{1}{c}$ of full scale.
Overshoot: $7044 \mathrm{~A}-2 \%$ of full scale (maximum). $7045 \mathrm{~A}-1 \%$ of full scale (maximum).
Zero sef: zero may be placed anjwhere on the writing area or eleetrically off scile up 10 one full scale from eeso index.
Environmental (operallng): 0° to $55^{\circ} \mathrm{C}$ and $<95 \%$ relative hutsidily ($40^{\circ} \mathrm{C}$).
General epecificatlons
Writing mechanism: servo actuated ink pen.
Writing erea: $25 \mathrm{~cm} \times 38 \mathrm{~cm}\left(10{ }^{\prime \prime} \because 15 \prime\right.$).
Paper holddawn: anogrip electric paper holddown gip: [SO A3 or 11 in . $x 17 \mathrm{in}$. churns or smaller. Special paper nol required
Pen litt: electric. (Remove via TTL.)
Dimensions: $400 \mathrm{~mm} \mathrm{H}, 483 \mathrm{~mm}$ W, $165 \mathrm{~mm} \mathrm{D}\left(15 \%_{4}^{\prime \prime} \times 19^{\prime \prime} \times\right.$ 61/2"7; rack mounting situciure integral with unit.
Power: 115 or 230 V ac $\pm 10 \%$. 48 to 400 Hz : 7044A. 135 VA : 7045A, I75 VA.
Weight: net. $13.7 \mathrm{~kg}(30 \mathrm{lb})$. Shipping, $19.1 \mathrm{~kg}(42 \mathrm{lb})$.
7044A \& 7D45A Options
006: metric calibmtion
N/
001: time hase
$50.100 \mathrm{~s} / \mathrm{in}$)
Time Base Accuracy: 1.0% al $35^{\circ} \mathrm{C}$
Temp Coefticient $=0.1 \%$ per ${ }^{\circ}$
General: Switchalve to eilher X or Y axis. Start and resel by froml panci control, remole by momenlary contacl closure 10 ground or TTL levels. Automatic resel at full scade, recycle accomplished by continuous siar signal.
002: event marker. writes is upper matgin. aligned
add $\$ 100$ with X-axis position. approximutely 0.13 cm (0.0 in in.) excursion completed 50 ms after application of signal. Controlled remotely by contact closure to ground or by TTL levels.

7047A Specifications

Performance specificalions

Input ranges: $0.02,0.05,0.1,0.5,1,5 \mathrm{mV} / \mathrm{cm}: 0.01,0.05,0.1,0.5$. I. $5 \mathrm{~V} / \mathrm{cm}$ (0.05. 0.1. 0.5,). 5. $10 \mathrm{mV} / \mathrm{in} .: 0.05,0.1 .0 .5,1,5.10$

V/in.). Conimuous vernier berween ranges
Type of input: flouting and guarded (from input only'i. Employs a unique conmon mode driver circunt that eliminates the need for conncting (MV to the recorder if CMV is lens than or exutil 1010 V pk.
Input resistance: I meyohni consaant on all maget.
Accuracy: $+0.2 \%$ of full scale (include's linctarity and deadband) al $25^{\circ} \mathrm{C}$. l"emp Cuciticient $20.016^{\circ} \mathrm{per}{ }^{\circ} \mathrm{C}$.
Pange acouracy: $\pm 11.2 \%$ of full scille $\pm 0.2 \%$ of dellection (includes linearily and deadbandl at $25^{\circ} \mathrm{C}$. Temp Coeflicient -0.01% per ${ }^{\circ} \mathrm{C}$. Deadband: 0.1\% of full sciale.
Common mode relection: 140 dB dc and 130 dB ac with $1 \mathrm{k} \Omega$ imbalance in either the bigh or low terminal (exceeds 150 dB under nomal laboratory conditions.) (MR decreases 20 dB per decade step in attenuation
Normal mode rejection: 30 dB minimuna at line frequcncy with FILTER IN. (50 dB rypicial al 60 Hz and 40 dB rypical al 50 Hz). Slowing speed: $76 \mathrm{~cm} / \mathrm{c}$ ($30 \mathrm{in} / \mathrm{s}$) minimum. $97 \mathrm{~cm} / \mathrm{s}(38 \mathrm{in} . / \mathrm{s})$ typical urder nornial lab conditions.
Accelerallon (peak): Y-axis 7620 ent $/ s^{-1}$ (3000 in. $/ s^{4}$)
X-ixis $5080 \mathrm{~cm} / \mathrm{s}^{-}\left(20100 \mathrm{in} / \mathrm{s}^{2}\right)$
Overshoot; 1% of full scale maximum.
Callbrated zero offset: provides eleven scales of calibrated zero offiset in both axcs. Switchable in steps of one full scale from +110 -10 scales.
Offset accuracy: at $25^{\circ} \mathrm{C}$. $\pm 0.1 \%_{n}$ of full scale times N where N number of seales of offisel.
Temperature coefficient: $=0.004$ Co $^{\circ}$ of finl wale times N per ${ }^{\circ} \mathrm{C}$. Tlme bese: specds of (0.1.0.5, 1, 5. 10. 50) s/im (0.5,), 5. 10. 50. 100 s/in.). Switchalsk into X or Y axis.
Time base accuracy: 1.0% al $25^{\circ} 0^{\circ}$. Temp Coefficient $=0.1 \%$ per ${ }^{\circ} \mathrm{C}$.

General specifications

Writling mechantsm: servo achunted ink pen.
Writing area: $25 \mathrm{~cm} \times 38 \mathrm{~cm}\left(10^{\circ} \times 15^{\prime \prime}\right)$.
Paper holddown: autogity electric paper holddown grips ISO A3 or 11 in. $\times 17$ in.charls or smaller. Special paper not required.
Pen IIf: electiti (remote via TTL level).
Dimengiong: $41 \mathrm{man} \mathrm{H} \times 483 \mathrm{~mm} \mathrm{~W}: 173 \mathrm{mmD}\left(17 \%^{\prime \prime} \times 19^{\prime \prime} \times\right.$ $6^{13 / 4 ., "): ~ l a c k ~ m o u n u i n g ~ s t r u c t i n e ~ i n t e g r a l ~ w i t h ~ u n i t . ~}$
Power: 115 or 230 V ac $\pm 10 \%$. $481066 \mathrm{~Hz}, 180 \mathrm{VA}$ maximum. Welght: net, $18.6 \mathrm{~kg}(41 \mathrm{lb})$. Shipping, $24 \mathrm{~kg}(53 \mathrm{lb})$.
7047A Optlons
Prlce
001: metric calibration
N / C
Ranges aге $0.02,0.05,0.10 .0 .50,1,5 \mathrm{mV} / \mathrm{cm} ; 0.01$, $0.05,0.1,0.5,1.5 \mathrm{~V} / \mathrm{cm}$
002: event marker
Marking area: in margin al same X coordinate as recorder pen
Excurslon: approximately 0.1950 inch
Actuatlon ilme: stroke complete 50 ms after application of sigmal
Ink capaclity: 0.45 ec carmidge, cartridge reloading add $\$ 100$ 1 ype. Writing distance 500 It minimum
Optong and accessorles (all models)
910: exira manual
add $\$ 15$
17026A Recorder Supplies Staner Kif-English
\$49
17027A Recorder Supplies Stanter Kit-metric
Ordering Information
7044A Medium speed X.Y recorder \$1875
7045A High speed X.Y recorder $\$ 2255$
7047A High sensitivity X-Y recorder $\$ 3330$

The 7202A Graphic Plotter brings complete graphic capability 10 the computer terminal with a minimum of programming effort and software overhead. ASCII characters are utilized in a brief and concise formal to represent the high resolution absolute position coordinates. Simple mnemonic commands control the plotting modes-Plotter off, plol tines, of plot points. Only a few program statements are needed to bring full graphic display to the terminal. Scale the data with a simple formula and add a single print statement to cause the four-digit integer X and Y coordinates to be printed on a line and plotted. The result is the final graph.

A 7203A brings high-speed graphic display to the computer termjnal. Serial ASCII characters transmitted by the computer system are independent, single character commands 10 provide increased flexibility and control. Data scaling and conversion into the proper ASCll character representation is easily handled by a program subroutine. Four ASCII characters representing X and Y coordinates are transmitted by the system for each data print. Moves of any length up to the maximum plot dimension can be made at any angle. Plotter control subroutines are available for most Hewiett-Packard timeshare systems (i.e. Option 006 for itP 2000/ACCESS systems) to handle all scaling. binary code conversion and timing considerations. Merely define the range of the data and the speed of the teminal.

Convenient from panel scaling controls of the Ploters permit selection of any plot size or position on any style paper up 1011×17 inches. The paper is held secure by an electrostatic holddown system. Clean, convenient disposable pens are available in four colors.
7202A performance specifications
Plofing eurtace: $12.7 \times 12.7 \mathrm{~cm} 1025.4 \times 38.1 \mathrm{~cm}\left(5^{\prime \prime} \times 5^{\prime \prime} 1010^{\prime \prime} \times\right.$ $15 "$).
Ploting maneuvers: plots lines or points.
Speed: up to 105 vector/min.
Numerical code: ASCII: X and Y represented by four-digil integers (icparated by at least one spuec).
Numerical resolution: 1/10,000 (0.01\%).
Plot accuracy: beller than $0.076 \mathrm{~mm}\left(0.03{ }^{\prime \prime}\right)$.

Dats rate: 110. 150 . or 300 baud, switchable.
Controls: power, chan hold, terminal mute, lineflocal, nen down. gпtiph limis, character/sec.
Indicators power. errer. ples.
Resehablity: 0.18 mm (0.007 in .) maximum.
Data rate: 110, 150. or 300 mud, swichable.
Controls: power, char hold, iermisal mute. lineflocal. pen down. graph limits, character/sec.
Indicators: ElA RS232C or 20 mA current loop, select configuration oplion desired. Other imerface configumtions available. Contacl ficlory.
Move leng(h: 76.2 mm (3") max, with pen dewn: $254 \mathrm{~mm}\left(4^{\circ}\right)$ max. wilh pen up.

Power requirements: $115 / 230 \mathrm{~V}$ ac, 4 s 10400 Hz . 100 V'A.
7203A performance specifications
Plotting suriace: front pancl scalable up to $25.4 \times 39.1 \mathrm{~cm}\left(0^{-1} \times 6\right)^{\prime \prime}$ to $10^{\circ} \times 15^{\prime \prime}$).
Plotting maneuvers; pen or position. Pen and position mancuvers are independent commands.
Spead: up 10450 vectors per minute.
Numerical code: binary; X and Y represented by ASCII character pairs.
Numencal resolulion: $1 / 2500(0.04 \%)$.
Plot accuracy: beller than 0.10 mm ($0.04^{")}$.
Reseltabillty: 0.18 mm (0.007 ") maximum.
Controls: power, chan hold. mute, line/local. pen up. pen down, graph limits, character/sec.
Indicalors: pewer, error, plot.
Data rate: 110 or 300 baud, swilchable.
inlertace: Ela RS232C.
Move length: any length at any angle with appropriate sofiware subroutinc.
Power requlrements: 100.115 .200 . or $230 \mathrm{~V}=10 \%$. 48 to 66 Hz . 100 VA maximum.
7202A and 7203A general specifications
Paper size any size up to $29.9 \times 43.2 \mathrm{~cm}\left(11^{\prime \prime} \times 17^{\prime \prime}\right)$.
Writing method: ink, disposable pens.
Dimenslons: $216 \mathrm{~mm} \mathrm{H} \times 508 \mathrm{mmW} \times 511 \mathrm{~mm} \mathrm{D}\left(8^{1 / 2^{\prime \prime}} \times 20^{\prime \prime} \times\right.$ $201 / s^{\prime \prime}$).
Welght: $18.1 \mathrm{~kg}(40 \mathrm{lb})$: shipping $23.6 \mathrm{~kg}(52 \mathrm{lb})$.

Options	Price
001: ElA RS232 MODEM intcriace	N/C
003: ElA RS232 verminal imerface	N/C
004: ASR33	N/C
908: Extra manual	add \$13.50
For 7203A	
001: ElA RS232 MODH'M incerface	N/C
002: EIA RS232 terminal intefine	N/C
005: Sofnate SUBROI TINE for HP 20006.'.	add \$20
006: Software SLBROUTINE for HP 200\%	add \$20
ACCESS and HP 3000	

Accessories

17026A Recorder Supplies Starter Kil—English
17027A Recorder Supplies Staner Kil-Mciric
$\$ 55$

Ordering information

7202A Graphic Plolter (musl order Opt 001, 003. or 004) \$ $\$ 4100$
7203A Graphic Plolter (muss onder Opt 001 or 002)
$\$ 4100$

RECORDERS \& PRINTERS
 Graphic plotter for computer applications

- High speed, high resolution graphics
- Built-in vector generator
- Absolute or relative coordinafes
- Versatile "handshake" interface
- Accepts binary or BCD codes

The Hewlen-Packard Moxel 7210A Digitai Plonter is an outpu peripheral designed for use with enmputers and computer systems. The exceptional speed, resolution, ond accuracy are availatble at the low cosi normally associated with analog plollers, yet the 7210A does not require the higher systern ovethead of incremental platters.
ll can be added easily to either your computer or tesminal. Aceepting either Binary or BCD codes under full program control, the pen can make up to 20 moves per second at any angle. The internal microprocessor allows lypical operation with less than 25016 -his wonds of computer memory.

Any sheet type graph paper, up to $\left.27.9 \times 43.2 \mathrm{~cm}(1)^{\prime} \times 17{ }^{\prime \prime}\right)$, with or without preprinted grids, may be used. The Autogrip paper holddown system solidly prips the paper. Four colors of ink are avaitable in clean, disposable pens that can be changed quickly and easily.

7210A Speciflcations

Plotting suriace: $25.4 \times 18.1 \mathrm{~cm}\left(10^{\prime \prime} \times 15 "\right)$.
Plotting area: Cront panel scalable up to $25.4 \times 28.1 \mathrm{~cm}\left(0^{\circ} \times 0^{\prime \prime}\right.$ to $10^{\prime \prime} \times 15^{\prime \prime} 1$.
Plotting manauvers: fen or pusifion. Pcn ind position maneuvers are independent commands.
Vector generation: automatic. A command to perform a position mancuver will cause the Plotier to (raverse a straight line path to any upectied point on the platen.
Vector length: limited only by the plolling suriace.
Vector speed: up $1030.5 \mathrm{~cm} / \mathrm{sec} 112 \mathrm{in} . / \mathrm{sec}$ and). The speed is dependent upon the slope of the line. Plotter will process up to 20 vectorvisecond.
Numberlcal code: position data is received in BCD (8421) or Binery.
Plotting modes: absolute coordinates and relative coordinales.
Numerioal resolulion: $1 / 10000$ ($0.01 \% ;$)
Plot accuracy: better than $010 \mathrm{~cm}\left(0.04^{\prime \prime}\right)$ in 38.1 cm (IS").
Reseltabillity: $0.18 \mathrm{~mm}\left(0.007^{\prime \prime}\right) \mathrm{nlil}$.
Writing melhod: mik. dispowible penw. Four colors aviilable.
Paper size: any size up to $27.9 \times 4.2 \mathrm{~cm}\left(11^{\prime \prime} \times 17^{\prime \prime}\right)$.
Power: $100 \mathrm{~V}, ~ \mathrm{IIS} \mathrm{V}, 20 \mathrm{~V}$, of $210 \mathrm{~V} \pm 10 \mathrm{~K}_{i}$ (choice or 4 positions al rear panel), 48 to 66 Hz . $10(0$ wilts muximum
Welght: nci, 18.1 kg (40 lb). Shipping $2,2 \mathrm{~kg}(52 \mathrm{lb})$.

Accessorles supplied
I. Accessary Kil

HP Part Number

1 Pke Disposable Pens. Red (s)
) Pkg Disposable Pens. Blue (5)
I Pkg Disposable Pens. Black (S)
I Slidewire Cleaner
1 Fuse for (for 23 V operalion)
2. Operasing Nanual

07210-90000
3. Interface Manual
4. Mating Connector

I 50-Pin Connector 1251-277
1 Hood
2 Juckscrews
5. Dust Cover

1251-2769
1251-2770
4040-0477
6. Graph Paper. 20 sheets (English) 9270-1004
7. Graph Рaper, 20 shect (Merric) 9270-1024
8. Power Cord 2.3 m (7.5 fi)

8120-1348
Supplies avallable
Disposible Pens (package of 5)

Red

Blue
Green
Black:
Graph Paper (box al 100 sheers) Plot Area
Linear $\quad 25 \mathrm{~cm} \times 38 \mathrm{~cm} \quad 9270-1024$
Lineit $\quad 10 \mathrm{in} \times 15 \mathrm{in}$. 9270-1004

Linear $\quad 18 \mathrm{~cm} \times 25 \mathrm{~cm} 9370-1023$
Lincar
Semi-log
Semi-Log
Semi-Log
Semi-Log
Log-Log
Log-Log
Log-Log
Blank (with scaling poinis)
HP Pan Number

5081-1190
S0S1-IISI
5081. 1192

5081-1141

Accessories avallable
Price
17260 A ploter stand (includes mounling plate) \$110
17261A mounling plute
$\$ 20$
17026A Recordel Supplics Starer Kíl-Fnglixh \$49
17037A Recorter Supplies Siarter Kil-Meiric $\$ 55$
Camying'Iransit case (p/n 9211-1377)
$\$ 226$

Options

001: intcrface to HP 2100 and 21 MX Series Com- add $\$ 860$ puler. ncludes all hardware and sofiware
910: Exim manual.
add $\$ 27$

7210 Digital Plotter
$\$ 3750$
OCM disedunts maniabla

- RS232C/CCITT V. 24 Interface
- Programmable selection of 4 pens
- Arc and circle generation

The HP 7221A is a microprocessor controlled ploter (ISO A3 size) that produces low cosi. multicolor, high quality graphic plots from remole terminal processing facilities. The standard EIA RS232C) CCITT V. 24 asynchronous serial ASCII interface operates at any of eight 5 witch selectable band rates from 75 to 2400 BAUD. Internad arc. circle. dashed lines and character gereration capability combine with 40 high level commands to provide simplified programming. An ll50 byle input data buffer. optionally expandable to 3086 bytes. allows operation al higher speeds. Up 1064 macroinstructions may be defined and stored in the data buffer. Intemal self test and confidence test capability verifies correct plotter and interiace circuilry operation.

HP-Plot/21, a library of high tevel Fontran subroulines available for HP computer systems and major timeshare services, provides all dals formalling and commmications. The user accesses all of the plotter's capabitily through familiar program cill statements.

7221A Specifications

Plotting area: Y-axis $\left.280 \mathrm{~mm}(1)^{\prime \prime}\right), X$-axis $400 \mathrm{~mm}\left(15.75^{\prime \prime}\right)$. Accommodares up to $1 S O$ A3 and $280 \times 432 \mathrm{~mm}\left(1 I^{\prime \prime} \times 17\right.$) chan paper.
Plotling accuracy: $\pm 0.2 \%$ of deflection $\pm 0.2 \mathrm{~mm}$ (0.008^{\prime}).
Repeatablity: for given pen $0.10 \mathrm{~mm}\left(0.004^{\circ} 7\right.$, pen-to-pen 0.20 mm (0.008').

Addressable resolutlon: smallest addressable move 0.25 mm (0.001").

Speed: maximum: 360 mmv ($14 \mathrm{in} / \mathrm{s}$) in each axis. $509 \mathrm{~mm} / \mathrm{s}$ (20 in/s) on 45° angle; programmable: pen speed may be adjusted to any one of 36 sptcds from $10 \mathrm{~mm} / \mathrm{s}(0.4 \mathrm{in} / \mathrm{s}) 10360 \mathrm{~mm} / \mathrm{s}(14 \mathrm{in} / \mathrm{s})$ in 10 $\mathrm{mm} / \mathrm{s}(0.4 \mathrm{in} / \mathrm{s})$ increments under program coalrol.
Vector length: no limil-any length vector within ploticr's mechanical limits will be plolted to within previously mentioned accuracy. Offscale plotting: when offscale data received by plolter, automatically calculates intercept of that vector and currently defined plolting area and proceeds to that point. As additional offscale data received, ploticr moniton location of this data and resume plotting once onscale data received by again colculating new intercept with defined ploting area then plolting from that intercept 10 on-scale data point. Plolling accuracy and repeatability specifications arc preserved.

Character ploflng speed: I chnracters/s typical)y for $2.5 \mathrm{~mm}(0.01$ in.) characlers.
Pen control: semote control by progeam commands; local conirol by front panel switches; capable of up to 20 operations/s. Local consrol provides vector rales of $4.2 \mathrm{~mm} / \mathrm{s}$ (s/ow) and $932 \mathrm{~mm} / \mathrm{s}$ (fast) (0.167 ips and 3.67 ips).
Power requirements: source $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V} .240 \mathrm{~V}-10 \%$
$+5 \%$, swilch sclectable, 240 W maximum
Environmental range: temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; relative humidity 5% 10 95\% (below $40^{\circ} \mathrm{C}$).
Size: $189 \mathrm{H} \times 497 \mathrm{~W} \times 455 \mathrm{~mm} \mathrm{D}\left(7.5^{\prime \prime} \times 19.5^{\prime \prime} \times 18^{\prime \prime}\right)$,
Welght: nei 18.2 kg (40 lb). Shipping 25.4 kg (56 lb).
Interface: slandard RS-232C/CCIITT V. 24 asynchronous serial ASCll with switch selectable baud riles of 75, $110,150,200,300$. 600,1200 , or 2400 baud.
Accessories supplied
HP Part Number

1. Accessory kiı

09872-60070
4 Pkgs Disposable Pens
(4-color pack, one of each red, bluc. green. black)
5060-6811)
I Digitizing Sight
09872-60027
2. Operating and Programming Manual 07221-90001
3. Dusi Cover
9222.0564
4. Power Cord (appropriate cord supplied)
5. Male-lo-Male Interface Cable RS-232C/CCJTT V. 24
$07221-60157$
6. Giraph Paper. Siandard Grid. English, 10 Sheets

9270-1004
7. Citaph Paper, Standard Grid. Merric 10 Sheets
9270. 1024

Supplies avallable

Disposable Pens (package of S)		
Red		$5060-6784$
Blue		506006785
Green		5060-6786
Black		5060-6787
4 color Pack	of red, blue, green black	$5060-6810$
Graph Paper (box of 10 sheels)		
Linear	$2.5 \mathrm{~cm} \times 38 \mathrm{~cm}$	9270-1024
	$10 \mathrm{in} \times 15 \mathrm{in}$.	9270-1004
	$18 \mathrm{~cm} \times 25 \mathrm{~cm}$	92701023
	$7 \mathrm{in} \times 10 \mathrm{in}$.	9970-1006
Semi-Log	00 in. $\times 2$ cycle	9280-0159
	10 in . 3 cycle	92800160
	2 cycle $\times 15 \mathrm{in}$.	9280-0169
	3 cycle $\times 15 \mathrm{in}$.	9280-0168
$\operatorname{Lag}-\log$	2 cycle $\times 3$ cjele	9280-0167
	3 cycle $\times 2$ cyele	9280-0165
	3 cycle $\times 4$ cycle	9180-0171
Blank	$10 \mathrm{in} . \times 15 \mathrm{in}$.	9280-0180
Smith Char	7.25 in. Dameter	$9280-0137$
(box of 50)	7.15 in. Diamelar	9280-0147
Expanded		

Manuals
Operaling and Service Manual
07221-90000
HP-PLO'r/2) Soflurare Manual
0722)-90002

Sofiware available: HP-PLOT/2I GRAPHIC PACKAGE consists of aser's mamual. loaxding instructions and set of 86 FORTRAN subroutines (in source form) on 9 -rack magnetic lape.

Price
72021A Graphics Package
$\$ 50$
Specity Option:
001: HP 3000 Series II (800 bpi. ASCI)
N/C
002: H.P 3000 Series II (1600 bpi, ASCJI)
N/C
003: GE Mark IIl Tynnesharc (1600 bpı. EBCDIC)
N / C
004: Tymeshare X (DEC PDP-10, 800 bpi. ASCII)
N/C

Options

001 : Additional 2048 bytes of inpul
$\$ 225$
7221A Graphic Plotter
$\$ 4600$

- Programmable selection of 4 pens
- HP-IB interface
- Error free offscale data handling
- 38 executable commands

The Hewlett-Packard Model 9872A is a mieroprocessor-based HP-IB ploter that produces bigh quality. multicolor graphic plots on any size chart up to $280 \mathrm{~mm} \times 432 \mathrm{~mm}$ (ISO A3). The 9872A offers exceptional line and character quality with addressable moves as small as 0.025 mm (0.001 in .). Thiny-eight different instructions gre built in to equip the Plotler with capabilities, such as point digitizing: labeling, character sizing, and window ploting. The 9872A. interfaced through the Hewlett-Packard Interface Bus (conforms to IEEE 488-1975). conoects to any HP-IB compatible calculator. computer, or other convroller.
This Plotter is designed to be useful in statistics, medicine, numerical control, surveying, and engineering design. Whether tubulated, measured, or computed. the 9872A quickly prepares multicolor plots of good line qualiry and high resolution.

9872A Specifications

Ploting area: Y-nxis 280 mm (11^{17}), X-axis 400 mm ($15.75^{\prime \prime}$) accomrodates up to ISO A3 and $280 \mathrm{~mm} \times 432 \mathrm{~mm}\left(1 I^{\prime \prime} \times 1^{\prime \prime}\right)$ char рарег.
Plotting accuracy: $\pm 0.2 \%$ of deflection $=0.2 \mathrm{~mm}\left(0.008^{\prime \prime}\right)$.
Repeatablily: for given pen 0.10 . (0.004 m). pen-to-pen 0.20 mm (0.008 ").

Addressable resolution: smallest addressable move 0.025 mm (0.001 ").
Speed: maximum: $360 \mathrm{~mm} / \mathrm{s}$ ($14 \mathrm{in} / \mathrm{s}$) in each axis, $509 \mathrm{~mm} / \mathrm{s}$ (20 in / s) on 45° angle; programmable: pen speed may be adjusted to any one of 36 speeds from $10 \mathrm{~mm} / \mathrm{s}(0.4 \mathrm{in} / \mathrm{s}) 10360 \mathrm{~mm} / \mathrm{s}(14 \mathrm{in} / \mathrm{s})$ in 10 $\mathrm{mm} / \mathrm{s}(0.4 \mathrm{in} . / \mathrm{s})$ increments under program control.
Vector length: no limit- any length vector within plotter's mechanical limits will be plonted to within previously mentioned sссигасу.
Offscale plotting: when offscale data received by plotter, automaticaly calculates mechanical limit intercept of that vector and proceeds to that point. As additional offseale data received, ploter monitors location of this data and resumes plotting, once on-seale data received, by again calculating new mechanical limit intercept and ploting from that limit to on-scale data point. Plotting accuracy and repearability specilications are presorved.

Characier plotiling speed: 3 characters/s sypically for $2.5 \mathrm{~mm}(0.01$ in.) characters.
Pen control: local control by front panel switches or remote control by desk iop compuler program commands: capable of >20 operations/s.
Power requirements: source $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}-10 \%$ $+5 \%$, switch sclectable. 240 W max.
Environmental range: temperacure $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$; rejative humidity 5% to 95% (below $40^{\circ} \mathrm{C}$).
Slze: $189 \mathrm{H} \times 497 \mathrm{~W} \times 455 \mathrm{~mm} \mathrm{D}\left(7.5^{\prime \prime} \times 19.5^{\prime \prime} \times 18^{\prime \prime}\right)$.
Welght: net $18.2 \mathrm{~kg}(40 \mathrm{lb}$); shipping 25.4 kg (56 lb).
Accessorles supplled HP Part Number

1. Accessory Kit

09872-60070
4 Pkgs Disposable Pens
(4-color pack, one of each, red, blue. green black) $5060-6810$
1 Digitizing Sight
$09872-60027$
2. Operating and Service Manual 09872-90002
3. Dust Cover

9222-0564
4. Power Cord (appropriate cord supplied)
5. Graph Paper, Slandard Grid, English. 10 Sheets
$9270-1004$
6. Graph Paper, Standard Grid, Metric. 10 Shects

9270-1024
Supplies available

Disposable Pens (package of 5)	
Red	$5000-6784$
Blue	$5060-6785$
Green	$5060-6786$
Black	$5060-6787$

Graph Paper (box of 100 sheets)

Lincar	$25 \mathrm{~cm} \times 38 \mathrm{~cm}$	9270-1024
	$10 \mathrm{in} \times 15 \mathrm{in}$.	9270-1004
	$18 \mathrm{~cm} \times 25 \mathrm{~cm}$	9270-1023
	$7 \mathrm{in} . \times 10 \mathrm{in}$.	9270-1006
Semi-Log	$10 \mathrm{in} . \times 2$ cycle	9280-0159
	10 in , $\times 3$ cycle	9280-0160
	2 cycle $\times 15$ in.	9280-0169
	3 cycle $\times 15$ in.	9280-0168
Log-Log	2 cycle $\times 3$ cycle	9280-0167
	$3 \mathrm{cycle} \times 2$ eycle	9280-0165
	3 cycle $\times 4$ cycle	9280-0171
Blank	10 in . $\times 15 \mathrm{in}$.	9280-0180
Cartyiag Case		1340-0483
HP-1B card	th 9825A and 9831A	98034A

Cables: If using multiple HP-IB instuments order one of the following:
10631 A HP-IB Cable $\quad 1 \mathrm{~m}(3.23 \mathrm{ft})$
10631 H HP-IB Cable $\quad 2 \mathrm{~m}(6.56 \mathrm{fi})$
1063 IC HP-LB Cable $\quad 4 \mathrm{~m}$ (13.12 (t)
10631 D HP-IB Cable 0.5 (1.64 fe$)$
Manual
Interface and Progmaming Manual 09872-90003
ROMS available
9825A ROMS: 98215A (for 9872A) Plotter General I/O ROM 98216A (for 9872A) Plotter General I/O-Extended 1/O ROM
9831A ROM: 98223B Matrix-Ploter ROM
Options Price

015: for use with 9815A (includes injerface cable with $\$ 400$
ROM)
025: for we with 9825A (98034A HP-IB Card not NC supplied)
031: for use with 9831A (9831A HP-1B Card not NC supplied)

- Multi-range-Compact

680 M

The Hewlell-Packard Model 68012 cm (5 in .) strip chan recorders provide high accuracy and fast response for a wide range of performance for general or specialized use. The 680 is equipped with multirange spans, mulcispeed chant transpor, foll range zero sel, and electric pen lift. Model 680 is useful as a monitor for insoumentation with de outputs and for digital devices usilizing digital to analog converters.

Features include modular consinction with all-transistor circuitry, synehronous molor char drive, and ful-view tilting char magazine.

680 Specifications

Performance specifications

Spans: ten calibrated spans: Metric - $6,12,60,120,600 \mathrm{mV}: 1.2,6$, 12.60. 120 V (English- $5,10,50,100,500 \mathrm{mV} ; 1.5,10,50,100 \mathrm{~V}$).

Type of Input: input floating with respect to ground.
Maximum de common mode voltage: 500 V .
Input resistance: $200 \mathrm{k} \Omega / \mathrm{V}$ ($166 \mathrm{k} \Omega / \mathrm{V}$, metric models) full scalc. through 10 V span: $2 \mathrm{~m} \Omega$ on all others. Constant $100 \mathrm{k} \Omega$ inpul resistance on all spans. Option H 02 .
Common mode rejectlon: dc 100 dB on mosi sensitive range. Decreases 20 dB per decade step in attenuation.
Accuracy: $\pm 0.2 \%$ of full scalc.
Response fime: maximum. 0.5 s full scale.
fesettablify: 0.18 of full scale.
Chart speed: synchronous molor driver: Metric-2.5. 5. 10. 20 $\mathrm{cm} / \mathrm{min}$: 2.5. 5. $10.30 \mathrm{~cm} / \mathrm{hr}$ (English-1. 2.4. $8 \mathrm{in} . / \mathrm{min} ; 1.2 .4,8$ in. /hr). Option 008 . gear ratio $16 / 1$ instead of $60 / 1$ speeds- $1 / 1 \mathrm{~s}, 1 / 4$, $1 / 4,1 / 4.1,2,4,8 \mathrm{in} . / \mathrm{min}$.
Zero set: adjustäble over full span.
General specifications
Witiling méchanizion: ink.
Pen lift: electric, controlled by local switch or remote contact closure.
Power: $115 / 230$ V. 60 Hz .22 VA .

- High accuracy. fast response

680

Welght: net. 5 kg (11 lb); shipping 7.6 kg (17 lb).
Dimenslons: $165 \mathrm{H} \times 197 \mathrm{~W} \times 219 \mathrm{mmD}\left(6^{1} / \mathrm{s}^{\prime \prime} \times 7 \% / \mathrm{s}^{\prime \prime} \times 8 \% \mathrm{~s}^{\prime \prime}\right)$.

Accessory kit supplled with each instrument-

 Ink Writing:1. Stidewire, cleaner, slidewire lubricant, remote pen lift connector. spare pen; pen cleaning wire. syringe. four carridges each of red ink and blye ink.
2. One roll of graph paper.
3. Power Cond 2.1 m (7 (t).
4. Instruction Manual.
5. Your Strip Chart Recorder-a brief manual.

Options and accessories
Price
001: with installed $5 \mathrm{k} \Omega .0 .1 \%$ linearity rerransmitting potentiometer

002: with ink event marker installed

003: with installed high-low limit switcles
008: with 16/I instead of $60 / 1$ speed reducer
009: with remote charl drive switch
010: For 30 Hz operation
014: אlass door with lock
018: disposable pen (ips
910: extra manuns
H01: 1 mV span added ($\mathrm{H} 01-680$)
1.2 mV span added ($\mathrm{H} 01-680 \mathrm{M}$)

H02: $100 \mathrm{k} \Omega$ inpul resistance, all spans
add $\$ 100$
Nole: oplions H01 and H02 not compauble.

Recorder supplies starter kits

17046A Eneliish \$33
17047A Meltic $\$ 38$
Ordering Informatlon
680M Strip chart recorder (metric)
$\$ 1250$
680 Sirip chatt recorder (English) $\$ 1250$
ORM discounts avaliable

- Modular design
- Low silhouette

The Hewlet1-Packard Models 7123A and 7143A Strip Charr Recorders are designed specifically for dedicated recording applications. High reliablity, excellent performance, phes a large assontment of options allow custom tailoring to tach application. These $31 /$-inch high recurders conserve rack space without sacrificing chart capabilities.

7123A and 7143A Specifications

Performance specifications

Input ranges: single span, I mV thru 100 V (specified by oplion). Type of input: single ended. floating.
Input restatance: I Mn constant on all spans.
Normal mode relection (at line trequency): $>6 \mathrm{~dB}$ ($>66 \mathrm{~dB}$ w, hh optional fitter).
Common mode rejection: $>100 \mathrm{~dB}$ ul $\mathrm{dc}:>60 \mathrm{~dB}$ at linc frequency.
Response time: < $1 / 4 \mathrm{si}$ (-1/es for spans below 1 V) with less than 10 $k \Omega$ source impedance.
Overshoot: < 1% of full scade.
Accuracy (including llnearity and deadband): 7123 $=0.0 .23 \%$ or full scale a1 $25^{\circ} \mathrm{C}$. Temp Coefl $0.01 \% /{ }^{\circ} \mathrm{C}$; $7143 \mathrm{~A}=0.4 \%$ of full scale at $25^{\circ} \mathrm{C}$. Temp Coeff $0.01 \% 1^{\circ} \mathrm{C}$.
Deadband: $7123-0.1 \%$ of full scale: 기 $43 \mathrm{~A}-0.2 \%$ of full scale.
Zero drlt: : $< \pm 0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}=0.03$ 㐌 full scale ${ }^{\circ} \mathrm{C}$ for $7143 \mathrm{~A}:=0.015 \%$ full scalc/ ${ }^{\circ} \mathrm{C}$ for 7123 A
References atablility: $=0.002 \% / /^{\circ} \mathrm{C}$.
Chart speods: sped determined by option choice.
Chart apeed accuracy: synchronous with line frequency.
Zero set: lefi hand. adjustable ± 1 full scate (right hand optional).
Environmental (operating): 0° to $55^{\circ} \mathrm{C}$: 95% relative humidity
$\left(40^{\circ} \mathrm{C}\right.$).
General specifications
Writing mechanism: disposable ink pen.
Grid width: 7123A - 25 cm (10 in .): 7143A - 12 cm (5 in.).
Char length: 28.5 mecres (95 f).
Pen IHt: manual (remore optional on 7123A).
Size: 7123-81 H $\times 432 \mathrm{~W} \times 495 \mathrm{mmD}\left(3^{\left.1 / 2^{\prime \prime} \times 17^{\prime \prime} \times 191 / 2^{4}\right): 7143}\right.$ $-81 \mathrm{H} \times 216 \mathrm{~W} \times 495 \mathrm{mmD}\left(3^{1 / 2^{4}} \times 8^{1 / 2^{\prime \prime}} \times 191 \mathrm{~m}^{4}\right)$
Power: $115 / 230 \mathrm{~V} \pm 10 \%$. Option $060-60 \mathrm{~Hz}, 60 \mathrm{VA}$: Oplion 050 - $50 \mathrm{~Hz}, 60 \mathrm{Va}$.

Weight: 7123A - net, 19 kg (42 lb), Shipping. 23 kg (51 lb). 7143A - nel. 11.3 kg (25 lb). Shipping. 15 kg (33 lb).

Opilons
Span: Must spectiy ode. Front scole detemined by Metric or English chart speed.

7123 A .7143 A	Span	Price	7123 A .7143 A	Spnn	Price
0011	1 mV	$\$ 225$	008	1 V	$\$ 50$
002	5 mV	$\$ 225$	009	5 V	$\$ 50$
0013	10 mV	$\$ 150$	010	10 V	$\$ 50$
004	50 mV	$\$ 150$	011	50 V	$\$ 50$
005	100 mV	$\$ 150$	012	100 V	$\$ 50$
006	500 mV	$\$ 150$			

Chart speods: Must spectify one basic speed or one basic char speed and one reducer or onc multiple speed.

016	$6 \mathrm{in} / / \mathrm{min}$	$\$ 25$	022	$15 \mathrm{~cm} / \mathrm{min}$	$\$ 25$
017	$4 \mathrm{in} / \mathrm{min}$	$\$ 25$	023	$10 \mathrm{~cm} / \mathrm{min}$	$\$ 25$
018	$1 \mathrm{in} / / \mathrm{min}$	$\$ 25$	024	$5 \mathrm{~cm} / \mathrm{min}$	$\$ 25$
019	$1 / 2 \mathrm{in} / \mathrm{min}$	$\$ 25$	025	$3 \mathrm{~cm} / \mathrm{min}$	$\$ 25$
020	$1 / 4 \mathrm{in} / \mathrm{min}$	$\$ 25$	026	$15 \mathrm{~cm} / \mathrm{hr}$	$\$ 25$
021	$1 \mathrm{in} . / \mathrm{hr}$	$\$ 25$	027	$3 \mathrm{~cm} / \mathrm{hr}$	$\$ 25$

Varlable speed optlons: dual speed via speed reducer (not compalible with Options 045. 048. 092).
028: 60:) Speed reducer $\$ 50$
029: 10:1 Speed reducer ${ }^{*}$ $\$ 50$
030: 4:I Speed reducer" $\$ 50$
044: 2:1 Speed reducer. $\$ 50$
rine slowest speed must nut be less than $2.54 \mathrm{~cm}\{1 \mathrm{in} . / \mathrm{mm}$.
Options requiring power supply Price
041: Option power supply $\$ 75$
031: Remore speed change $\$ 50$
032: Remote char on-off (not compalible with Opt 045 8048) $\$ 50$
03s: Remute pell lift (7123A Only) $\$ 75$
040: Limil switches $\$ 225$
034: Event nlarker (righ hand) ink $\$ 75$
Multiple speeds (7123A only)
045: 4 speeds: $1 / 4,1 / 2,1,2$ in. $/ \mathrm{min}$ plus extemal input $\$ 225$
$048: 4$ speeds: $0.5,1,2.5,5 \mathrm{~cm} / \mathrm{min}$ plus external inpui $\$ 225$
Other options and accessories
039: Retransmitting potentiometer ($5 \mathrm{k} \Omega,=0.5 \%$ linearicy. 10 V de max). $\$ 75$
007: Inpul filter. 1 mV thru 5 mV spans $\$ 100$
013: Input filter. 10 mV the 100 V apans $\$ 50$
014: RH Zero hard right (seale. 10 lu 0) N/C
015: RH Zero sof (sede. $1010-0.5 .7123$ only) N/C
043: Rack slides (7123 only)$\$ 100$
035: Chart integralor (7123 only) $\$ 850$
Analytical option combinations. (7123A only). The fol-lowing three options are for anslyuieal applicationssuch us chromalography and include I m'vispan. inputfiller for added line frequency rejection (60 dB). righthand ecm. mini-gray conirol panets, and chan speedsas indicaled.
090: $1 / 2$ and $1 / 4 \mathrm{in}$ / $/$ min \$425
091: 1 and $1 / 2 \mathrm{in}$./min \$425
092: $1 / 4.1$, 3 . 1,2 in imin plus extertal inpus (not com- parible with Options 028, 029. 030.031, 032.044) \$635
908: Rack mount ki1 (7123 only) $\$ 15$
910: Extra manual $\$ 15$
Ordering informatlon
7123A Strip Chart Recorder (25 cm or 10 in .) \$1150

- One and two pen mainframes
- Seven plug-in modules

71008

7101日

The Hewlett-Packard Models 7100B and 7101B Strip Chart Recorders are basic recorder frames containing all the mechanical and electrical elements for strip chart recording. A wide line of interchangeable plug-ins complete their recording ability. Model 7100 B has two independent pens and requires two input modules: Model 7101 B is a single pen recorder and requires one inpui module.

7100 Serles specifications

Performance speciflcations

Response time: $<0.5 \mathrm{~s}$ ($50 \mathrm{~Hz},<0.6 \mathrm{~s}$).
LInearity (terminal based): $=0.1 \%$ full scale.
Resettabillty: $\pm 0.1 \%$ full scale.
Chan Speeds
7100BM/7101BM: 2.5.5. $15,30 \mathrm{~cm} / \mathrm{h} ; 1.25 .2 .5 .5,15.30 \mathrm{~cm} / \mathrm{min}$;
$1.25 .2 .5 .5 \mathrm{~cm} / \mathrm{s}$.
71008/7101B: I. 2, in./h; 0.1, 0.2, 0.5, 1, $2 \mathrm{in} . / \mathrm{min}: ~ 0.1 .0 .2 .0 .5$.
I. ? in./s.

Chart speed accuracy: synchronous with line frequency.
General spectilcations
Wrillng system: servo acluated ink pea.
Grid width: 25 cm or 10 in .
Charl length: 36 m or 120 ft .
Pen lift: manual (remole optional).
Power $115 / 230 \mathrm{~V} \pm 10 \%$. 60 Hz (50 Hz optional)
7100B: 65 VA: 7101B: 42 VA.

Welght
71008: net, $11.8 \mathrm{~kg}(26 \mathrm{lb})$. Shipping, $18.2 \mathrm{~kg}(40 \mathrm{lb})$.
71018: net, 10.9 kg (24 lb). Shipping, 17.3 kg (38 lb).
Dlmenslons
7100B/7101B serles (cabinet): $304 \mathrm{~mm} \mathrm{H}, 445 \mathrm{~mm} \mathrm{W}$. D ($12^{\prime \prime} \times 171_{3}{ }^{\prime \prime} \times 81 / 4^{\prime \prime}$).
$7100 \mathrm{~B} / 7101 \mathrm{~B}$ (raok): $222 \mathrm{~mm} \mathrm{H} 483 \mathrm{~mm} \mathrm{~W},. 210 \mathrm{~mm} \mathrm{D}\left(8 \mathrm{~m} / \mathrm{mal}^{\prime \prime} \times\right.$ $19^{\circ} \times 8 \% \%^{\prime \prime}$.

17500A/17501A Speciflcatlons
 Voltage spans

17500 A: 5, 10. $50,100,500 \mathrm{mV}: 1,5,10.50 .100 \mathrm{~V}$ full scale.
17501A: $1,2.5,10,20.50 .100 .200 \mathrm{mV}, 0.5,1,2,5,10,20,50$. 100 V full stale.
Accuracy: $\pm 0.2 \%$ of full seale.
Input resletence: I megohm al null on all fixed calibraled and variable spans except $100 \mathrm{k} \Omega$ in the viariable mode on the four most sensitive spans on the 17500A only.
Interierence rejection: de common mode: 120 dB on the four most sensitive spans of the 17500A and the three most sensitive of the 17501A. Line frequency, 100 dB on the four most sensitive spans of 17500A and the three most sensitive of 17501A.
Zero-sot: adj. full scale. plus one full scale of suppression. 5 scales of zero suppression available on the 17501 A .
Maximum source Impedance: up to $10 \mathrm{k} \Omega$ source impedance will not alter the recorder's performance on the four most sensitive spans of the 17500A and the six most sensitive of the 17501A. No source impedance restrictions on spans above 100 mV full scale.

Reference stablity: $0.005 \% /^{\circ} \mathrm{C}$.
Welght: ret, 0.9 kg (2 lb). Shipping. 2.2 kg (S lb).
17502A Speclifications
Voltage spans: siogle span to match cold-junction thermocouples of rypes J. K, R.S. and T.
Acouracy: $\pm 0.5 \%$ or $=1^{\circ} \mathrm{C}$. (whichever is greater): refer to NBS CIR 561, dated 1955.
Input resistance: potentiometric.
Interference rejectlon: dc comanon mode, 120 dB ; line frequency, 100 dB .
Weight: net, 1.8 kg (4 lb). Shipping, 3.2 kg (7 lb).

17503A Speclfications

Voltage span: 1 mV .
Type of input: floating (500 V de max) rese inpul only.
Input restatance: poreniometric.
Maximum allowable source resiatance: $5 \mathrm{k} \Omega$.
Normal mode rejection: $>60 \mathrm{~dB}$ at 60 Hz .
Common mode releollon: $120 \mathrm{~dB}(\mathrm{dc})$ and $\mathrm{I} 90 \mathrm{~dB}(60 \mathrm{~Hz})$.
Acouracy: $\pm 0.2 \%$ full seale.
Peference stabillty $0.005 \% /{ }^{\circ} \mathrm{C}$.
Zero sat: ± 1 seale.
Weight: net $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $2.2 \mathrm{~kg}(5 \mathrm{lb})$.
17504A Speciflcations
Voltage apans: 5 mV thru 100 V . determined by range cand, no vémier.
Type of Input: floating (500 V dc max) rear input only.
Input restalance: I MS at null on all spans.
Maximum allowable source resistance: $10 \mathrm{k} \Omega$.
Normal mode rejection: >60 dB at 60 Hz .
Common mode rejection: $120 \mathrm{~dB}(\mathrm{dc})$ and $90 \mathrm{~dB}(60 \mathrm{~Hz})$ four most sensitive range cards.
Accuracy: $\pm 0.2 \%$ full scale.
Reference stablity: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Zero sat: ± 1 scale. screwdriver adjust.
Welght: net, 0.9 kg (2 lb). Shipping. 2.2 kg (5 lb).

17505A/17506A Specificatlons

Voltage spans

17505A: ,1, 2. .5. 1, 2, 5.10, 20, 50, 100, 200, $500 \mathrm{mV}: 1,2,5,10$. 20. 50.100 V full scalc.

17506A: any one of the above spans (specify).
Accuracy: $\leq 0.25 \%$ of full scale.
Input reglstance: 1 M Ω at null.
Interference rejection: dc CMR: 120 dB on most sensitive span. Line frequency CMR: 100 dB on mosl sensitive span. Line frequency normal mode: 17505A: switchable, 60 dB or 100 dB . 17506 A : 100 dB .
Zero set: +2, $-1,5$ seales. Optional calibrated offset of +1 to -10 scales in one scale steps on 17505A.
Zera slablity: $\pm 1 \mu V$ after one hour.
Maximum source impedance: $10 \mathrm{k} \Omega$ on nine most sensitive spans: no source impedance restrictions on spans above 100 mV full scale. Reierence stabllity: $0.005 \% /{ }^{\circ} \mathrm{C}$.
Walght: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, $2.2 \mathrm{~kg}(5 \mathrm{lb})$.

7100 Series optlons

Optlon daseriptions		$\begin{aligned} & 11008 \\ & 11018 \end{aligned}$	Price
Roteansmeting 5 kil Potentlometor	Channel 1 Chunnel 2	$\begin{aligned} & 004 \\ & 016 \end{aligned}$	$\begin{array}{r} \$ 75 \\ \$ 75 \\ \hline \end{array}$
Migh-Lom Limil sultches (Lach IIfll SPDT with 0.5A, 30 V de contaers)	Crannel I Chisnael? 8oth Channels	$\begin{aligned} & 005 \\ & 017 \\ & 018 \end{aligned}$	$\$ 75$ $\$ 75$ $\$ 150$
Event Maike	Leth sloter mik goth gides ink	812	$\begin{array}{r} \$ 50 \\ \$ 100 \end{array}$
Remote Coniod	Pon Lit Chorl ORLOF	$\begin{aligned} & 006 \\ & 007 \\ & \hline \end{aligned}$	$\begin{array}{r} 575 \\ 54 i \mathbf{j} \end{array}$
Rlahl Hand Zero 30 Hz Opertion	Hard iseale, 10 to 0) Son (scale. $1010-0.5)^{2.3}$	$\begin{aligned} & 020 \\ & 025 \\ & 010 \end{aligned}$	N/6 N / C $N / 6$
Loeking Glass Door		011	\$175
Integator (integrates Ghannel 211 2 pen unil)s.		015	51050
Dispasable Pen Mos		024	H/L
Min Gray Comiol Panol		029	H/C
Rach moumt		908	: 20
Gris manusi		910	\$ 10

I. Not compylible whit event marker fight hand), relansmitiling oftentiometer (Channel in, or metric ealiteration.
Requires special Hewlorr-Packard chart oaper.
Not compatible wilh metric modeto

Plug-In options
 1)500A/17501A/17502A

Pilce
001: 5 scale zero suppression (17501A) add $\$ 55$
002: calitrated for use with Integrator (8 in. span) N/C ($17500 \mathrm{~A} / 17501 \mathrm{~A}$)
029: mint gray control panel N/C
910: extra manual add $\$ 5$
17503A
001 detector Selector Switch \$25
002: $50 \mathrm{~Hz} \quad \mathrm{~N} / \mathrm{C}$
003: calibrated for use with Integrator (8 in. span) N/C
029: mistl gray coutrol panel N/C
810: extra maniual add $\$ 5$
17504A
001: 50 Hz
N / C
002: calibrated for use with Integrator (8 in. spaa) N/C
010-019: range cards (specify opl) N/C
17505A
001: +1 10 - 10 scates of calibrated offiset in one add $\$ 115$
stale steps. Accuracy $=0.25 \%$ per step
002: calibrated for use with integrator (8 in. span) N/C
003: 50 Hz
N/C
029: mint gray control panel N/C
910: exim manual add $\$ 5$
17506A
002: calibrated for use wibl Integrator (8 io. span) N/C
003: $50 \mathrm{~Hz} \quad \mathrm{~N} / \mathrm{C}$
005-023: spans (specify one) N/C
029: mint gray control panel N/C
910: extra manual add $\$ 5$
Recorder Supplles starter klts
17029A-English
$\$ 43$
17030A-Meiric
$\$ 46$
Ordering information
Single Channel
71018, 71018M Strip chart recorder \$1450
Dual Channel
7100B, 7100BM Strip chan recorder $\$ 2000$
Plug-Ins
17500A Multiple span plug-in $\$ 425$
1750 LA Multiple span plug-in $\$ 500$
17502A Temperature plug-in $\$ 525$
17503A Single span plug-in \$425
17504A Single span plug-in $\$ 400$
17505A High sensitivity plug-in
$\$ 550$
17506A (specify voltage span)

7130A

The Model 7130A is a 10 -inch, wo-pen recorder: the 7131A is a 10 -inch. one-pen recorder. Spans and chart speeds are selected by options.

7130A and 7131A Speclfications

Performance speciflcations

Input ranges: single span, I mV thnu 100 V (specified option).
Type of Input: single ended. floaling.
Maximum allowable source resistance Ris): $10 \mathrm{k} \Omega$.
Normal mode relection (at line fíequency): $>40 \mathrm{~dB}$.
Common mode rejectlon: $>120 \mathrm{~dB}$ at de $\&>100 \mathrm{~dB}$ at líne frequency.
Response time: < $1 / 2$ s.
Overshoot: <2\% of full scale.
Accuracy (including Inearity and deadband): $\pm 0.2 \%$ of full scale as $2^{\circ} \mathrm{C}$.
Deadband: $\pm 0.1 \%$ of full scaje.
Chart speeds: speed deternined by option choice.
Chart speed accuracy: $\pm 0.08 \%$ plus line frequency accuracy.
Zero set: left hand. adjustable \pm ifull scale (right hand optional).
Environmental (operation): $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C} .95 \%$ RH ($40^{\circ} \mathrm{C}$).

General specifications

Writing mechanlsm: disposable ink pens (ihermal writing option). Grld width: 25 cm or 10 in .
Chart length: 27 melres or 90 ff .
Pen Ift: manual (electric or independent optional).
Dimenslons: $178 \mathrm{~mm} \mathrm{H} .432 \mathrm{~mm} \mathrm{~W} .340 \mathrm{mmD}\left(7^{\prime \prime} \times 17^{\prime \prime} \times 13^{\left.3 / h^{\prime \prime}\right)}\right.$,
Power: 7130A. 7131A: $115 / 230 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}, 120 \mathrm{VA}$. $7130 \mathrm{~B}, 7131 \mathrm{~B}: 115 / 230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz} .120 \mathrm{VA}$.
Welght: net, $12.3 \mathrm{~kg}(27 \mathrm{lb})$. Shipping. 17.4 kg (38 lb).
Accessory kits: iwo-channel (7130A), 07130-60055: one-channel (7131A). 07131-60109; thermal writing (7130A/7131A), 07130-60068. Span: must specify one for each channel: spans may be differens. The front scale is determined by choice of English or merric chant speed. The 500 series options are for the lower channel of the 7130 A only.

Option					Option		
	Upr	Lwr			Lpr	Lwr	
Span	Chnl	Chnl	Price	Span	Chnl	Chnl	Price
1 mV	001	501	$\$ 200$	1 V	008	508	$\$ 50$
5 mV	002	502	200	$5 V$	009	509	50
10 mV	003	503	150	10 V	010	510	50
50 mV	004	504	150	50 V	011	511	50
100 mV	005	505	150	100 V	012	512	50
500 mV	006	506	150				

Chart apeeds: must specify one basic speed.

Speed	Optlon	Price	Speed	Optlon	Prlce
$6 \mathrm{in} . / \mathrm{min}$	016	$\$ 25$	$15 \mathrm{~cm} / \mathrm{min}$	022	$\$ 25$
$4 \mathrm{in} / \mathrm{min}$	017	25	$10 \mathrm{~cm} / \mathrm{min}$	025	25
$1 \mathrm{in} . / \min$	018	25	$5 \mathrm{~cm} / \mathrm{min}$	024	25
$1 / 2 \mathrm{in} . / \mathrm{min}$	019	25	$1 \mathrm{~cm} / \mathrm{min}$	025	25
$1 / 4 \mathrm{in} . / \mathrm{min}$	020	25	$15 \mathrm{~cm} / \mathrm{hr}$	026	25
$\mathrm{I} \mathrm{in} . / \mathrm{hr}$	021	25	$3 \mathrm{~cm} / \mathrm{hr}$	027	25

- The slowest : peed resulting Inom the addalon of a speed induces must nol be lexs than $2 \mathrm{ka} \mathrm{cm} / \mathrm{hs}$ II is shr).

Multiple speeds	Option	Price
4 speed: $1 / 1 / 1 / 2,1,2$, in. $/$ min plus extern input	046	\$170
4 speed: $0.625,1.25,2.5 .5 \mathrm{~cm} / \mathrm{min}$ plus external input	049	\$170
Optlons requilng option power supply Oplion Power Supply	041	\$75
8 chrt spds: $1,2,4,6 \mathrm{in} . / \mathrm{min}$ \& $\mathrm{hr}+\mathrm{ext}$ inpt	045	\$200
8 chrr spds: $2.5,5.10 .15 \mathrm{~cm} / \mathrm{min}$ \& $\mathrm{hr}+$ ext inpl	048	\$200
Remole Speed Change ${ }^{\text {a }}$	032	\$50
Remose Chart On-Orf*	033	550
Remote Pen Lifin	036	\$50
Righ Hand Event Marker ${ }^{\text {² }}$ (not compatible with option 054)	037	\$75
Right Hand Event Marker Therma** (must order option 054)	038	\$150
Lefl Hand Event Marker*	537	\$75

- Actustes by contact closure 10 gound of ITL revels. Closed clicult cuirem 1.5 mí (maximum), open eireuil voltage + 1.5 V minimum)

Other Optlons

Upr Ghai Lwr Ghni
Retransmitting Potentiomelers

040	540	$\$ 75$
044	544	$\$ 150$
007	507	$\$ 100$
	014	$\mathrm{~N} / \mathrm{C}$
	015	$\mathrm{~N} / \mathrm{C}$
	034	$\mathrm{~N} / \mathrm{C}$
	042	$\$ 75$
	053	$\$ 100$
	054	$\$ 275$
	054	$\$ 200$
	056	$\$ 50$
	050,060	$\mathrm{~N} / \mathrm{C}$
	908	$\$ 15$
	910	$\$ 10$

Limil Switches*
Inpul Filter (1.500 mV)
Right Hand Zero Hasd. Scale 10 to 0
Right Hand Zero Soll. Scale 10 to -0.5
Independent Mech. Pen Lif1 (7i30 only)

Rack Slides

Capillary Ink Pen \& Cartridge
Thermal Wriling: Model 7130A**
Mode! 7131A**
$\begin{array}{cc}050.060 & \mathrm{~N} / \mathrm{C} \\ 908 & \$ 15\end{array}$
Rear Control Connector
$910 \quad \$ 10$
Rack Mounting Brackels
Exirul Manual
-Conidal taling 1 a al 1 SV, 0.5 a al 250 V mon-fiduclive.

- Recanmended rar pen speeds belaw 5 inches per second.

Analytical option combinations: the following options are for analyical applications such as chromairography and include 1 mV span each channel, righe hand soft zero, froni panel detector swilch on the 7I3IA. and two chart speeds as indicated.

	Option	7130	7131
2 specds: (1/3, and $1 / 4 \mathrm{in} . / \mathrm{min}$)	090	\$525	\$360
2 speeds: (1 and $1 / 4$ in./min)	091	\$52.	\$3601
4 specds: (2, 1, 1/3, 1/4 in./min)	092	\$670	\$45si
Recorder supplles starter kits			
17036A Recorder Supplies Starter Kil-English			\$51
17037A Recorder Supplies Stamer Kit-Metric			\$51
17038A Recorder Supplies Starter Kit-English. Thermal			\$47
17039A Recorder Supplies Slaner Kil-Metric-Thermal			\$47
17040A. Recorder Starter Kit-English-R.H, soft zero			\$51

Ordering information
7130A OEM Tivo-Pen Recorder
$\$ 1800$
7131A OEM One-Pen Recorder
$\$ 1450$

RECORDERS \& PRINTERS
 Laboratory 10 -inch strip chart recorder
 Models 7132A \& 7133A

- Multi-range attenuators

7132A-Opi 054
The Hewlett-Packard Models 7132A two-pen and 7I33A one-pen Strip Chart Recorders are laboratory insinments equipped wish standard features that qualify them to accommodate your laboratory or scientuic application needs.

The 7I32A and 7133A are equipped with multi-range attenuators providing eleven inpul ranges from 1 mV to 100 V full seale in a $1-5.10$ sequence. Both models have eight chant speeds of 2.5, 5. 10. $15 \mathrm{~cm} /$ minute and $2.5 .5 .10,15 \mathrm{~cm} /$ hour ($1.2,4.6$ inches per minute and 1. 2. 4. 6 inches per hour). Disposable ink pens are sfandard. These puns provide a clear, continuous trace, and are easily replaced.

Modular construction facilitates easy removal of the servo module for inspection and maintenance of the drive system, slidewire, or pen lift. The elimination of slip clutches in the servo module contributes to quiet, relizhle uperation. In atdition, should the pen go off scale. the amplifier gitin is automatically reduced, preventing noise or damage to the equipmenl. A stepper motor chan drive eliminates mechanical shifting of gears.

The char magazine may be adjusted to any of three angles to provide a comforable writing surface. Chan paper may be automatically rolled up or fed out of the recorder. A convenient fronl panel indicator less you know when the paper supply is low.

In addition to multi-range capability, the Models 7132A and 7133A offer as standard features: Eighi Cham Speeds. Disposable Pens, Remote Pen Lift, and Remole Chan On/Orf.

Oprions include: Meeric CalibraLion. Right Hand Zero (Hard). Right Hand Markcr. $S 0$ or 60 Hz Operation, and thermal wriling.

7132A and 7133 A Specifications

Performance speclfications
input ranges: eleven ranges from ImV to 100 V fuil scale in $1-5-10$ sequence with overiapping vemier.
Type of Input: single ended. floating.
Input resistance: I megohm on all ranges.
Maximum source resistance: $10 \mathrm{k} \Omega$ (10 within rated response).
Normal mode rejection (at line frequency): greater than 40 dB . Common mode repaction: greater than 120 dB de and 100 dB ac. Accuracy: $=0.2 \%$ of full scale (includes linearily and deadband) at $25^{\circ} \mathrm{C}$. Temp coeflicient $\pm 0.01 \%$ per ${ }^{\circ} \mathrm{C}$.
Aange accuracy: $\pm 0.2 \%$ of ful scrle $=0.2 \%$ of deflecion (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Tcmp Cocfficient $=0.01 \%$ por ${ }^{\circ} \mathrm{C}$.
Deadband: 0.1% of full scale.
Response time: less than 0.5 second
Overshool: less than 2% of full scale.
Chart speeds: $2.5 .5 .10 .15 \mathrm{~cm} / \mathrm{min}$. and 2.5. 5. $10.15 \mathrm{~cm} /$ hour (1 , 2, 4, 6 inches/minule, and 1, 2, 4, 6 inclees/hour).
Chart speed accuracy: $=0.08 \%$ plus line frequency accuracy.
Zero set: provides three full seales of offser.
Environmental (operating): 0 to $55^{\circ} \mathrm{C}$, less than 95% relative humidity ($40^{\circ} \mathrm{C}$).
General speciflcations
Writing mechanlsm: disposable ink pens (hemal writing optional).

- Disposable pens

7133A-Op1 054

Grid width: 25 cm (10 inches).
Ghart length: 30 metres (100 ft).
Pen lift: solenoid operated with remole capabilities.
Power: $115 / 230 \mathrm{~V}=10 \%$, 50 or $60 \mathrm{~Hz}, 120 \mathrm{VA}$.
Dimensions: $178 \mathrm{mmH} .432 \mathrm{mmW} .340 \mathrm{~mm} \mathrm{D}\left(7^{17} \times 17^{\prime \prime} \times 13 \% / \mathrm{m}^{\prime \prime}\right)$.
Welght: net, 12.3 kg (27 lb). Shipping. 17.4 kg (38 lb).
Supplies furnished with each Instrument:

1. Accessory kit:

Disposable Pens-Blue (Package of 3)
Disposable Pcos-Red (Package of 3)
Plastic Kit Box
Slidewire C' |caner
Fexible Tubing, 0.032 1D, 0.4 ft
Pen Cleaning Asserably
Syringe for Pen Cleaning
2. Operating and Scrvice Manual
3. One roll of Chan Paper

Char Paper. English
Charl Paper, Metric
Chan Paper. Thermal-English
Chan Paper, Thermal-Metric
4. Power Cord (2.1 meters or 7 f)
5. Ink Cartridge. Black k(for Event Marker)
6. Your Sirip Char Recorder-a brief manual

Options \& accessorles
 Price

N/C
ides chart speeds of 15
5,10 , and 15 cm per minute. and $2.5 .5,10$. and 15 cm per hour
014: Righl Hand Zero (Hzrd). Positive volage inpul N/C causes pen io deflect from right 10 lefi
D37: Righy Hand Event Marker (nol compalible with add $\$ 75$ Opt 0S4)
038: Themal Event Marker (Opt 0S4 required) add \$150
537: 7132A OnJy. Lef Hand Event Marker (Nol add $\$ 75$
Avaslable with Themal Wriling, Option 054)
050: 50 Hz Line Power
N/C
060: 60 Hz Line Power
N/C
054: Thermal Writing, Model 7132A (recommended add \$275
for pen specd below S"/s)
054: Themal Wribing. Model 7133A (recommended add $\$ 200$
for pen speed below $5 \% / \mathrm{s}$)
908: Rack mounl brackels add \$15
910: Exirimunad add $\$ 10$
Recorder supplies starter klts
17036 English
17037A Melric \$51
17038A English-Thermal \$47
57039A Melric-Themal \$47
Ordering Informatlon
7132A Laboratory Two-Pen Reconder $\$ 2250$
7133A Laboratory One-Pen Recorder \$1675

- 12 centimeter chart width
- Operates at $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.

The Hewlett-Packard 7155 B is a 12 cm porrable strip chan recorder designed especially for field applications while maintaining laboratory specifications. It is a rugged, light-weight instrument weighing under 30 pounds with the rechargeable battery installed. The stondand unit operates on extemal de or ac from 48 to 440 Hz . The oplional intemal battery, which operates for nioe hours on a single charge, may be selected. The insirument operales within HP Class A temperature range $\left(-28^{\circ} \mathrm{C}\right.$ to $\left.+65^{\circ} \mathrm{C}\right)$; a first in the strip chan recording field.

This enit is provided with 16 calibrated spaos, seven chart speeds. and a totally-electronic rmosmission that eliminates the need for mechanically shifting the gears. Additional standard items include the disposable pen, front plexiglass cover, three chart magazine tilt angles, and easy access to PC baards for serviceability. A sealed jelled electrolyte baltery is optionally available.

7155B Specifications

Performance speciflcatlons

Jnput ranges: $0.1 \mathrm{mV} / \mathrm{cm}$ thru $10 \mathrm{~V} / \mathrm{cm}$ in a $1,2.5$ sequence with overlapping verrier (12 cm full scale).
Type of Input: single ended, floating.
Input resistance:) megoho.
Maximum allowable source reslstance: $5 \mathrm{k} \Omega$ for rated response. Common mode rejection: 100 dB de and 80 dB ac .
Full scale responge tlme: 0.6 sec to within rated accuracy.

Overshoot: 1% of full scale maximum.

Accuracy: $=0.4 \%$ of full scalc (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Coefticient $\pm 0.01 \%$ per ${ }^{\circ} \mathrm{C}$.
Range accuracy: $\pm 0.4 \%$ of full scale $\pm 0.2 \%$ of defleccion (includes linearity and deadband) at $25^{\circ} \mathrm{C}$. Temp Cocficient $=0.01 \% /^{\circ} \mathrm{C}$.
Chart speeds; $30,10,5,2.5 .1$ minute/cm; 30 and $10 \mathrm{sec} / \mathrm{cm}$.
Chart speed accuracy: $\pm 1 \%$.
Environmental (operating): $-28^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}<95 \%$ relative humidity $\left(40^{\circ} \mathrm{C}\right)$.
General speciflcatlons
Writing machanism; disposable ink pens.
Grld width: 12 cm .

Chart length: 21 melres (70 ft).
Pen lift: mechanical.
Welght: net $14 \mathrm{~kg}(30 \mathrm{lb})$ with battery option installed.
Dimenglons:
Power: external ac (48 to 440 Hz .85 V 10130 V or 172 V 10260 V). External de (10.5 to 36 V .0 .5 amp typical 0.9 amp maximum independent of voliage).
Supplies furnished
Your Sirip Cliari Recorder:-a brief maniual
Operating and service manual
Char paper. 21.3 m (70 ft)
Power cord. 2.3 m (7.5 f1)
Accessory kit includes:
DC connector
slidewire cleaner
3 red disposable pens
3 red event marker pens (if ordered)
Options Price

005: right hand zero
(Positive voltage input causes pen to defleal from right 10 ieft).
006: event marker
Contact closure on rear panel causes approximalely $0.06 \mathrm{~cm}(0.025 \mathrm{inch})$ deflection of event pen. Marking occurs along left hand edge of paper.
008: intemal battery
The jelled electrolyte battery operaies nine hours on a single charge (at $2 s^{\circ} \mathrm{C}$). Recharging is from extemal AC only and requires approximately 14 hours to full charge. Instrument may be operated while changung. 910: exira manual

Recorder Supplles Starter KIt
17051a Recorder Supplies Siarter Kit

RECORDERS \& PRINTERS
 Two and four-channel oscillographic recorders

Models 7402A, 7404A, \& 17400A series preamps

The Hewlelf-Packard Models 7402A and 7404A are rectilinear, low pressure ink writing oscillographic recorders, which. when used with interchangeabic 17400A Series Preamplifers, measure and record one to four input signals against time. The 7402A Recorder is portable and reconds on either two 50 mm channels or a single 1100 mm chamel. The 7404A is a four channel recorder. but will also record on two 80 mm channels.

Clear traces that dry immediately on contact with the paper are produced by the pressurized ink system or these units. The pen is constructed with stainless steel with a cough carbide tip. Pens can last the life of the instrument. Four char speeds are provided on the 7402 A , while 12 are avaitable on the 7404 A. Remote conlrol of the chart speed is cither by contact closure or TTL.

The 7402A may be equipped with a Left Hand Event Masker (Oplion (O)1), Righe Hand Event Marker/Timer (Option 008), or Lefl and Right Hand Event Marker/Timer (Option 003). It may be actuated by a froni panel pushbutton labeled MARK or by remote contact closure or TTL through the rear teminal strip. On Option 001. a I SEC toggle switch provides one second timing sequences; Option 008 provides marks in second or minute sequences. The 7404 A records event marks in Channel I (Left Edge) and pruvides automatic mark-per-second or mark-per-minute sequences when the
from panel sec-mark-min toggle switch is set 10 SEC or MIN posilion. A mark may be recorded when the MARKER/TIMER pushbutuon is pressed. Addilionally, it can be actualed by a remote marker command through a rear panel connector or by remole conlact closire or 'TTL. Evenl markers for channels 2, 3, and 4 are available as Options 013,014, and 015, respectively.
Oscillographic recorders with plug-ins can be used to measure parameters such as voltage, pressure, flow, force. displacement, and lemperalure with respect to lime. These recorders can be used in applications such as line production. Iroubleshooting, or physical measurements.

17400A High galn

This plug-in is equipped to handle all nomally encountered de signal sources. A uniquc cror indicator is included to signal overdriven inputs. It provides $1 \mu \mathrm{~V} / \mathrm{div}$ sensitivity, I megohm input resistance, guarded and floated inpuls, and calibrated zero suppression.

17401A Medium gain

Stable and solid. this de-coupled preamplifier provides the basic signal conditioning required to cover the majority of applicalions. The optional calibrated zero suppression supporis $1 \mathrm{mV} / \mathrm{div}$ maximum sensifivity balance-lo-ground inputs.
17402A Low galn
As an economical unit. no compromises are made in busic performance. The single-ended input is available through a conventional rear connector as well as convenient front panel binding posts. Eight calibrated ranges are provided from $20 \mathrm{mV} / \mathrm{div}$ to $5 \mathrm{~V} / \mathrm{div}$.

17403A AC Carrler

The $\int 7403 \mathrm{~A}$ supplies excitntion of $\$ \mathrm{Y}$ al 2.4 kHz to the passive transducer and reccives the returning transoucer outpul. The 17403A operates with 「ull or half-bridge transducens including transformer, somin gage, and potentiometer types. Froni pancl selection of nine different input sensitivily ranges from $0.1 \mathrm{mV} / \mathrm{V} / \mathrm{full}$ scale is provided. When used, a $2.4 \mathrm{kH}<$ Carrier Frequency Oscillator must be ordered for the maintrame.
17404A DC Brldge
This plug-in supplies de excitation volage to the transoucer and receives the recuming transducer oulpur. Front panel selection of seven inpul sensitivity ranges from $0.1 \mathrm{mV} / \mathrm{div} 1010 \mathrm{mV} / \mathrm{div}$ are provided.

[^20]

Chart descripilon: 50 mm wide channels with 50 div full scale. Time lines every 1 mm . Char length 8 sm (275 ft).
Chart speeds: 1, 5. $25.125 \mathrm{~mm} / \mathrm{s}$ controlled by front panel, rear panel TTL or contacl closure.
Chart speed accuracy (at $25^{\circ} \mathrm{C}$): $上 0.5 \%$ plus power line frequency variation. Temp coeff $0.01 \% 1^{\circ} \mathrm{C}$.
Chart weave: $=0.25 \mathrm{~mm}$ maximum.
Zero: adjustable to ± 30 div cither side of grid center.
Writlng system: blue-black ink with rectilinear presentation; 55 cc with replaceable throw-awiry cirtridge.
Environmental (operating): $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$ and up to 95% relative humidity from $25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ for mm / s speeds (80% relative humidity for mrn/min.)
Power: II0/120/220/240 V ac $+5 \%-10 \%$.
Woight: ncl. 18.2 kg (40 lb) with 217400 A 's paper. Shipping. 26.9 kg (59 lb).
Size: $284 \mathrm{H} \times 253 \mathrm{~W} \times 384 \mathrm{~mm} D\left(11^{1 / 4^{N}} \times 9^{1 / m^{\prime \prime}} \times 151 / \mathrm{m}^{\prime \prime}\right)$.
7404A General speclflcations
Number of channels: four analog channels. Lefi hand event marker/imer.
Chart descriptlon: 40 mm wide channels with 50 div full scale. Time lines every 1 mm . Char lengits 84 m (275 fi),
Chart speeds: $5.10 .25,50,100.200 \mathrm{~mm} / \mathrm{s}$ and $\mathrm{mm} / \mathrm{min}$ conirolled by fronl panel. scar panel TTL or contacl closurc.
Chart speed accuracy (at $25^{\circ} \mathrm{C}$): same as 7402 A .
Chan weave: same as 7402A.
Zero: sume as 7402A.
Writing system: same as 7402A.

Environmental (operating): same as 7402A.
Power: $100 / 115 / 200 / 230 \mathrm{Vac}=10$ 慂 $60 \mathrm{~Hz}, 300 \mathrm{VA}$.
Welght: nel. 31.4 kg (69 lb). Shipping, 43.2 kg (95 lb).

17400A with 7402A and 7404A
Input ranges: 1, 2, 5. 10, 20, 50, 100, 200, $500 \mu \mathrm{~V} / \mathrm{div}: 1,2,5,10$, 20, 50. 100. 200, $500 \mathrm{mV} / \mathrm{div}: 1,2,5 \mathrm{~V} / \mathrm{div}$. Continuous vemier belween ranges.
Type of Input: differential, floated and guarded. Inputs thro rear connector.
Maximum allowable Input (continuous): 500 V de on $10 \mathrm{mV} / \mathrm{div}$ range and above: ohter ranges 120 V dc or 120 V ac rms.
inpul reslgiance:) Megolim (min.)
Common mode rejeclion: I 50 dB de and 140 dB al line $\mathrm{f}_{\mathrm{req}} \mathrm{ducncy}$ with $1 \mathrm{k} \Omega$ source imbalance. 90 dB de and 80 dB al 60 Hz on 10 mV/div range and above.
Maximum allowable common mode voltage: $\pm 200 \mathrm{~V}$ dc max voliage.
Frequency response: for 10 divisions deflection - 1 dB al 110 Hz on $10 \mu \mathrm{~V} / \mathrm{div}$ range and above.
Rise the (typlcal, 101090% al tull scale deflectlon): 7.5 ms . Overshoot: less than 2% of full scale.
Accuracy (on callbrated range, at $25^{\circ} \mathrm{C}$, Includes linearity): $\pm 1 \%$ of full scale. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to inter change unit without recalibration.
Range acguracy (at $25^{\circ} \mathrm{C}$, Inciudes Inearity): $\pm 1 \%$ of full scale $\pm 0.2 \%$ of reading. Temp Coeff $0.06 \% /^{\circ} \mathrm{C}$. Allows for abilicy 10 inrerchange unit without recalibralion.
Zero suppression: $1,10,100 \mathrm{~V}$ on $10 \mathrm{mV} / \mathrm{div}$ range and above: other ranges 1.10 .100 mV . Continuous calibrated vemier between suppression steps.
Zero suppresslon accuracy: $\pm 0.5 \%$ of suppression $\pm 0.5 \%$ of ful scale. $\pm 0.02 \% /{ }^{\circ} \mathrm{C}$.

17401A with 7402A and 7404A

Input ranges: I, 2, 5. 10, 20, 50, 100. 200, $500 \mathrm{mV} / \mathrm{div}: 1.2 .5$ V/div. Conlinuous vemicr belween ranges.
Type of Inpul: balanced to ground. Inputs thru rear connector.
Maximum allowable input (contlnuous): 230 V mis on 500 mV/div range and above: other ranges 120 V rms.
Input resistence: I Megohm (min).
Common mode rejection: greater than 50 dB de to line frequency with 100 ohm source imbalance.
Maximum allowable common mode voltage: 250 V de or peak ac on $500 \mathrm{mV} /$ div and abrove: other ranges 15 V dc or peak ac.
Frequency sesponge: 7402 A - For 10 div deflection -3 dB at 140 $\mathrm{Hz}: 7404 \mathrm{~A}$ - For 10 div defection - 3 dB at 150 Hz .
Rise time (typleal, 10 to 90% of full acale deflection): 7 ms .
Overshoot: less than 2% of full scalc.
Accuracy (on callbrated range, at $25^{\circ} \mathrm{C}$, Includes Iinearlty): $\pm 1 \%$ of full scale. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to interchange unit without recalibration.
Range accuracy (at $25^{\circ} \mathrm{C}$, Includes Ilnearlty): $\pm 1 \%$ of full scale $\pm 0.2 \%$ of reading. Temp Coeff $0.06 \% / /^{\circ} \mathrm{C}$. Allows for abilsty 10 in terchange unit without recalibration.
Zero suppression: (optional) 0.2, 2. 20 V, Conlinuous calibrated vernier between suppression steps.
Zero suppression accuracy: $=0.5 \%$ of suppression $\pm 0.5 \%$ of full scale. $=0.02 \% /{ }^{\circ} \mathrm{C}$.

17402 A with 7402A and 7404A

Input ranges: 20. $50.100,200,500 \mathrm{mV} / \mathrm{div}: \mathrm{I}, 2,5 \mathrm{~V} / \mathrm{div}$. Coninuous vemier between ranges.
Type of Input: single ended. Inputs then front or rear connector. Maximum allowable input (continuous): 230 V rms on 200 mV/div range and above; other ranges $120 \mathrm{~V} \pi m s$.
Input resistance: I Megohm (min).
Frequency response: 7402 A - For 10 div deflection - 3 dB al 140 $\mathrm{Hz}: 7404 \lambda$ - For 10 div deflection -3 dB at 150 Hz .
Rise time (typleal, 10 to 90% of full scale deflection): 7 ms . Overshoot: less than 2% of full scale.
Accuracy (on callbrated range, at $25^{\circ} \mathrm{C}$, includes Inearlty): $=1 \%$ of full scale. $]^{-1} \mathrm{mp} \mathrm{Coef} 7^{\circ} 0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to interchange unit without recalibralion.

Range accuracy (at $25^{\circ} \mathrm{C}$, Includes linearlity): $\pm 1 \%$ of full scate $\pm 0.2 \%$ of reading. Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$. Allows for ability to in. terchange unit without recalibration.

17403A with 7402A and 7404A

Input ranges: 0.1. $0.2,0.5,1.2,5.10 .20 .50 \mathrm{mV} / \mathrm{V}$ full seale, Conlinuous vermier berween ruges. Also provides division of above sensilivities by 100 .
Type of Inpuf; differentigl, Roaling.
Maximum allowable input (continuous): 50 V ms al 2.4 kHz .
Input reslstance: 100 k at 2.4 kHz .
Common mode rejection; 120 dB de to line frequency with | $k \Omega$ source imbalance.
Maximum allowable common mode voltage: $=\mathbf{3 0 0} \mathrm{V}$ dc or peak ac.
Frequency response: 7402A-For 10 div deflection - 3 dB at 140 Hz: 7404 A - For 10 div dellection - 3 dB al 150 Hz . For Preamp only-output available on rear of recorder. Fitter switch to $50-3$ dB at 50 Hz ; rolloff $40 \mathrm{~dB} /$ decade. Filler switch $10200-3 \mathrm{~dB}$ at 300 Hz ; rollof $40 \mathrm{~dB} / \mathrm{decade}$. Filter switch 10 AVG—Time constanl 1.0 $s \pm 10 \%$ dc to 0.16 Hz : rolloff $20 \mathrm{~dB} /$ docade.
Rige Ilme (typical, 10 to 90% of full scale deflectlon): preamp filter switch to 50 or $200: 7.5 \mathrm{~ms}$. Preamp filter switch to AVG: Is. Overshoot: less than 2% of full scale.
Accuracy (on callbrated range, al $25^{\circ} \mathrm{C}$, inciudes IInearliy) $\pm 0.6 \%$ of full scale at $25^{\circ} \mathrm{C}$. Temp Cocff $0.06 \% /{ }^{\circ} \mathrm{C}$.
Range accuracy (al $25^{\circ} \mathrm{C}$. Includes IInearlty): $=0.6 \%$ of full scule $\approx 0.2 \%$ of reading. Temp coeff $0.06 \% 1^{\circ} \mathrm{C}$.
Zero suppression: ten tum control from 0 to 100% of full scale.
Zero suppression accuracy: 0.5% of selfing $\pm 0.5 \%$ of full scale. Drlft (zero Ilne referenced to input): $\pm 0.2 \mu \mathrm{~V} / \mathrm{V} /$ week (includes excilation drift).
Source resistance: compensated by front panel adjusiment.
Balance controls: R Balance $\pm 5 \mathrm{mV} / \mathrm{V}$ Temp Cocif $\pm 1.8 \mu \mathrm{~V} / \mathrm{V} /$ ${ }^{\circ} \mathrm{C}$.
Quadrature relactlon: 40 dB al 2.4 kHz . Quadrature lolerance: 2: 1. Transducer excitation: full Bridge- 5.0 V ims $\pm 5 \% 2.4 \mathrm{kHz}=5 \%$. Half Bridge-One hatf full bridge excilation.
Excltation load reslstance: 100 ohms min. (Unlimited output shon circuit duration.)
17404A with 7402A and 7404A
Input ranges: $0.1,0.2,0.5,1,2,5,10 \mathrm{mV} / \mathrm{div}$ with overlapping vemier beiween ranges.
Type of tnput: differential. floating and guarded.
Maximum allowable input (continuous): 17 V dc or peak ac. Input reslstance: 100 k (min).
Common mode relection: $100 \mathrm{~dB} d c$ and $B 0 \mathrm{~dB}$ al line frequency with $1 k$ source imbalance.
Maximum allowable common mode voltage: $=165 \mathrm{~V}$ de or peak ac.
Frequency response: 7402A-For 10 div deflection - 3 dB al 140 Hz 7404^—For 10 div deflection - 3 dB al 150 Hz . Amplifier only (ousput available on rear of reconder). -3 dB at 3 kHz .
Alse time (typleal, 101090% of full scale deflection): 7 ms .
Overshoot: less than 2% of full scale.
Accuracy (on callbrated range, at $25^{\circ} \mathrm{C}$, Includes tinearlty): $=1.0 \%$ of full scale at $25^{\circ} \mathrm{C}$ (excludes excitation supply emors). Temp Coeff. $0.06 \% 1^{\circ} \mathrm{C}$.
Range accuracy (at $25^{\circ} \mathrm{C}$, Includes IInaarlty): $\pm 1.0 \%$ of sull scale at $25^{\circ} \mathrm{C}$ (excludes excitation supply errors). Temp Coeff $0.06 \% /{ }^{\circ} \mathrm{C}$.
Drift (zero line referenced to input): $\pm 0.2 \% ~ a \mathrm{~V} / \mathrm{V} /$ week (incluades excitation drift).
Source resistance: I $k \Omega$ max.
Balance controls: unloaded bridge completion board. Fronl panel badance and cal controls (balance up to 5 V).
Transducer excilatlon: 5 V dc $\pm 1.0 \%$.
Excltation load resistance: 50 ohms min. (Unlimited outpul shon circuil duration.)

Accessorles supplled

Descriptlon

I. Model 7402A Operaling and Service Manual Model 7404A Operating and Service Manual
2. Charr Paper (One 275 fi ($\$ 4 \mathrm{~m}$) roll) -7402A

HP Part
Number
07402-90005
0740490000 9280-9258

Two, four and eight-channei oscilifographic recorders
Models 7702B, 7414A, 7418A \& 8800 serles slgnal conditioners

- Versatile configurations
- Thermal writing

7414 A

7418A

The Hewlett-Packard Models 7702B 2-channel. 7414A 4-channel. and 7418A 6 and 8 -channel Oscillographic Recorders provide permanent reproducible records of mulischannel, real-time, low firequency data. They can be contained in á single benchtop package. as mobite cart, or in an upright cabinel. The unil selected, depending upon channel needs. represents a unique combination of reliability. high performance, and flexibility. A complement of the 8800 Series Plug-In Signal Conditioners resulis in a system eapable of meeting many measurements requirements

Themal writing lips in Models 7414A and 7418A. featuring long stylus life and recilinear presentations, are provided. A 500 -sheet. Z-fold chant paper pack load, easily, allows for convenient data review, and storage capability. Two event markers are supplied. One is activated by either a onc-second or one-minute front panel timer button. the other by the event button. Boih markers can be activated remolely.

7702B, 7414A, 7418A, 8800 Serles plug-in specificatlons
 7702日 General speciflcatlons

Chart speeds: $1,5,20$, and $100 \mathrm{~mm} / \mathrm{scc}$: plus cigh oplional.
Markers: event-righl side marker standard, center marker optional.
Chart paper: two 50 mm wide chamels each with 50 div: time lines every I mon: roll lype Permapaper ${ }^{\text {ris }}$.
Paper loading and takeup: front panel loading and paper take-up.
Power: $115 / 230 \mathrm{~V}$ ac $\pm 10 \% .60 \mathrm{~Hz}, 230 \mathrm{VA}$ (including plug-ins). 50 Hz optional
Dimenslans: 221.5 $\mathrm{H} \times 482.6 \mathrm{~W} \times 438.2 \mathrm{~mm} \mathrm{D}\left(81 / \mathrm{s}^{\prime \prime} \times 19^{1 \times} \times\right.$ $17 \%,^{\prime \prime}$) for standard rack. For Pomable Case: $235 \mathrm{~mm} \mathrm{H} \times 498 \mathrm{~mm} W$ $\left.\times 546 \mathrm{~mm} \mathrm{D}(9)^{\prime \prime} \times 19.6^{\prime \prime} \times 21.5^{N}\right)$. ケror Mobile Cart: $997 \mathrm{~mm} \mathrm{H} \times$ $680 \mathrm{~mm} \mathrm{~W} \times 521 \mathrm{mmD}\left(39 \%^{\prime \prime} \times 26^{4} \% \times 20.5^{\mathrm{m}}\right)$.
Welght: 27.2 kg (60 lb) Cor rack mount; 40.4 kg (89 lb) in Portable Case: $59 \mathrm{~kg}(130 \mathrm{lb})$ in Mobile Cart.
7414A General speclflcations
Chart speeds: $0.25,0.5,1.0,2.5,10,25,50,100 \mathrm{~mm} / \mathrm{s}$. Speed regulation $=1 \%$. Paper weave less than 0.5 am. Speed selected via front panel pushbutions.
LImIting: electrical limiting keeps stylus within a range of 1.5 mm beyond edge of channel.
Markers: evenc-lucial or remote control (monopolar), located on right side. benween channels 3 and 4 . Timed-1 min or 1 sec interval (monopolar), localed on len side, belween channels I and 2.
Chart paper: Tour 40 mor wide channels each with 50 div: lime lines every I mm; heat sensilivity Z-fold Ptmapapers with green grid lines available in packs of 500 sheets. ench $30 \mathrm{~cm}\left(12^{*}\right)$.
Paper loading: no threading required.
Remote operation: rear panel connector provides for chan drive and event marker.
Power: $115 / 230 \mathrm{~V}$ ac $\pm 10 \%, 60 \mathrm{~Hz} .350 \mathrm{VA}$ (includes plug-ins) 50 Hz optional.
Slze: $266.7 \mathrm{H} \times 482.6 \mathrm{~W} \times 577.9 \mathrm{~mm} \mathrm{D}\left(10^{1 / 2^{\prime \prime}} \times 19^{\prime \prime} \times 22^{8 / ،^{\prime}}\right)$. Projection: $76.2 \mathrm{~mm}\left(3^{\prime \prime}\right)$ from rack front.
Welght: net. 50.5 kg (112 lb . Shipping. 59.5 kg (132 lb).

744gA General speclifcatlons

Chan speods: 0.5. 1, 2.5.5. 10, 25. 50, 100. $200 \mathrm{~mm} / \mathrm{sec}$. Speed regulation $\pm 1 \%$. Paper weave less than 0.5 mm . Speed selected via front panel pushbuttons.
Remote operaflon: rear pancl connector provides for chart drive and cuent masker, oplional extra markers. Remote connector supplies - 20 V .
Power: II $5 / 230 \mathrm{~V}$ uc $=10 \%, 60 \mathrm{~Hz}$. Recorder only 575 VA : system plug-mis 695 VA .
 Projeclion: 76.2 mm (3^{\prime}) from Front of rack.
Weight: 50 kg (110 lb) including driver amplifiers.

8801A

8802A

8801A with 7702日，7414A and 7418A
Input ranges： $5,10.20,50.100 .200 .500,1000 \mathrm{mV} / \mathrm{div}$ ；accuracy $\pm 1 \%$ 。
Max callbrated sensilivity and max fs input： $5 \mathrm{mV} / \mathrm{div}$（gain 20） 250 V.
Input clicult \＆Input frequency range：resist． $500 \mathrm{k} \Omega \pm 1 \%$ each side bal 10 gnd；parallel with approx． 100 pF ．
Rles time（ $10 \mathrm{dtv}, 10-90 \%$ 4\％overshoot）： 5 ms ．
Callbration（reforred to input）： 100 mV ．$=1 \%$ ，intemal．
Output frequency response（ -0.5 dB at 50 div）： 50 Hz ．
Zero suppression：± 10 and $\pm 100 \vee V$ for single－ended or diff． signals．10－T pot sets precise values of zero suppression volenges： $\pm 50 \mathrm{~V}$ max suppress on $5.10,20 \mathrm{mV} / \mathrm{div}$ ranges；max error of suppression $\pm 0.5 \%$ of suppression range，and 1% of indicated sup． pression．
Output nolse，max（fess trace width）： 0.2 div．p－p．
Zero drift， 20° to $40^{\circ} \mathrm{C}$ ， 103 to 127 V （leas trace width）：temp－ $1.25 \mathrm{div} / 10^{\circ} \mathrm{C}, 0.5$ div／hr．constant ambient，Line voltage－ 0.15 div ． Common mode rejection and tolerance： 48 dB min，de to 150 Hz ： $\pm 50 \vee$ max on other ranges for＜I \％change in differential sersitiv－ ity．
Ouiput Inearity（less trace widthl）： 0.25 div，ater calibration for zero error to center scale +20 div．

6802A wilts 77028，7414A and 7418A

Input ranges： $1,2,5,10,20,50,100,200,500,1000 \mathrm{mV} / \mathrm{div}$ ：accu－ racy $\pm 1 \%$ ．
Maximum callbrated sensitivity and max ls Input： 1 rov／div （gain L00） 50 V ．
Inpul clrcult and Input frequency pange：resist $180 \mathrm{k} \Omega \pm 1 \%$ ．each side bal to gnd，parallel with approx 100 pF ．
Rlge time（ 10 div， $10-90 \%, 4 \%$ overshoot）： 5 ms ．
Callbrallon（referred to input）： $20 \mathrm{onV} . \pm 1 \%$ ，interaal．
Output frequency response（ -0.5 dB at 50 div ）： 50 Hz ．
Zero suppression：$\pm 2 \mathrm{~V}$ and 20 V for single－ended or differential signals： $10-\mathrm{T}$ pot sets precise values of zero suppression voltages： ± 12.5 max suppression on $1,2,5 \mathrm{mV} /$ div ranges：max error of suppression $\pm 0.5 \%$ of suppression range and 1% of indicated sup－ pression．
Output nolse，max（less irace wldth）： 0.2 div，p－p．
Zero drift، 20° to $40^{\circ} \mathrm{C}, 103$ to 127 V （less trace width）：same as 8801 A．
Common mode rejection and Iolerance： 48 dB min，dc 1060 Hz ． $1000 \mathrm{mV} /$ div range； 48 dB min ．de to 150 Hz other ranges $=12.5 \mathrm{~V}$ on $1.2 .5 \mathrm{mV} / \mathrm{div}$ ranges：$=125 \mathrm{~V}$ on $10.20 .50 \mathrm{mV} / \mathrm{div}$ ranges：$\pm \$ 00$ V max other ranges for loss than 1% change in differentiad sensitiv－ ity．
Output linearity（less trace widih）：same as 8801A．
8803A with 7702日，7414A and 7418A
Inpul ranges： $1,2,5,10,20,50,100,200,500,1000,2000,5000$ $\mu \mathrm{V} / \mathrm{div}$ ： $10,20,100,200.500,1000,2000.5000 \mathrm{~m}, \mathrm{~V} / \mathrm{div}$ ：accuracy $\pm 1 \%$ on $5000 \mu \mathrm{~V} / \mathrm{div}$ to $20 \mu \mathrm{~V} /$ div ranges，$\pm 2 \%$ on $10 \mathrm{uV} / \mathrm{div}$ to f $\mu \mathrm{V} / \mathrm{div}$ ；accuracy of $\times 1000$ attcouator $=1 \%$ ．
Maximum callbrated sensitivity and max is Input： $\mathrm{I} \mu \mathrm{V} / \mathrm{div}$（gain $100,000) 250 \mathrm{~V}$ ．
Input circuli and Input frequency range：I $M \Omega$ min on $\mu \mathrm{V}$ sange．

independenı of gain： 5 Mn on mV range：floating and guarded．
Rlse time（ 10 div， $10-80 \%, 4 \%$ overshoot）： 5 ms． 6% overshoot． Callbration（referred to input）； $200 \mu \mathrm{~V} \pm 1 \%$ internal on $\mu \mathrm{V} / \mathrm{div}$ range； $200 \mathrm{mV} \pm \%$ intemal on mV／div range．
Output frequency response（ -0.5 dB at 50 div ）： 50 Hz ．
Zero auppreselon：$\mu \mathrm{V}$ rages $\pm 1, \pm 10 .=100 \mathrm{mV}$ ：x Z V ranger ≈ 1 ． $\pm 10, \pm 100 \mathrm{~V}, 10 \mathrm{~T}$ pot sels precise values of zero suppression volt－ ages；accuracy $\pm 1 \%$ suppression range．
Output nolse，max（less trace width）： 1.5 mmp p－p at $1 \mu \mathrm{~V} / \mathrm{div} ; 0.1$ div，p－p min gain．
Zero dritt， 20% to 40% ， 103 to 127 V（less trace width）：temp－ $\mu \mathrm{V}$ range $1 \Omega \mathrm{~V} / 10^{\circ} \mathrm{C}$ referred 10 input．± 0.26 div $/ 10^{\circ} \mathrm{C}$ for 0 output $\&=0.65 \mathrm{div} / 10^{\circ} \mathrm{C}$ for is oulpul．mV range， $1 \mathrm{mV} / 10^{\circ} \mathrm{C}$ referred to input，$\pm 0.26 \mathrm{div} / 10^{\circ} \mathrm{C}$ for 0 output．Line voltage $0-0.07$ div；ts 0.35 div．
Common mode relection and tolerance：$\mu \mathrm{V}$ range，max source unbal of $1 \mathrm{k} \Omega$ ： 160 dB min al dc． 120 dB min at 60 Hz ；mV range， max source unbal of $500 \mathrm{k} \Omega$ ； 100 dB min at $\mathrm{dc}, 60 \mathrm{~dB}$ min at 60 Hz dc． 300 V pk； $60 \mathrm{HE} .1 \mu \mathrm{~V} / \mathrm{div}, 10 \mathrm{~V}$ mas； $2 \mu \mathrm{~V} / \mathrm{div}, 20 \mathrm{~V}$ rms： $5 \mu \mathrm{~V} / \mathrm{div}, \mathrm{SO} \mathrm{V}$ ms ； $10 \mu \mathrm{~V} / \mathrm{div}$ and $10 \mathrm{mV} / \mathrm{div}$ ． $100 \mathrm{~V} \mathrm{mms} ; 20 \mu \mathrm{~V}$ to $5000 \mu \mathrm{~V} / \mathrm{div}$ and 20 mV to $5000 \mathrm{mV} / \mathrm{div}, 200 \mathrm{~V}$ noms．
Output linearity（less trace widh）： 1 mV range 0.35 div．others 0.25 div after calibrating for zero emor al center scule and +20 div．

日805A／B with 7702日，7414A and 7418A
Input ranges：XI，2，5，10．20，50，100，200；accuracy $=2 \%$ ．
Maximum callbiated sensluvity and max ta Inpul： $10 \mu \mathrm{~V}$ rms／div （gain $10,000 \mathrm{mms}$ ac 10 dc ）： 100 mV rms．
Input elrcult and input trequency range：input impedance－ 8805A approx $10 \mathrm{k} \Omega$ ：8805B $1 \mathrm{Mn} \pm 10 \%$ ；single－ended．Min foad resistance across excitation 100Ω ．Max impedance in series with input（transducer output impedance） $5 \mathrm{k} \Omega$ ．Excitation－floating source 5 V rms nominal at $2400 \mathrm{~Hz}=2 \%$ ．Intemal full bridge－half bridge swith grounds C．T．of excication for use with half bridge Iransducer．
Rise ilme（ $10 \mathrm{dlv}, 10-80 \%, 4 \%$ overshoot）： 5.6 ns．
Callbratlon（referred to input）： $2 \% \pm 0.02 \%$ of transducer fs out－ put．Adjust by Cal Faclor control；accuracy $\pm 55 \mu \mathrm{~V} / \mathrm{V}$ oul of 10 mV／V． 8805 B switchable Cal voltage to 2% ． 10% ． 50% or 100% $\pm 1 \%$ of fis．
Output frequenoy response（ -0.6 dB al 50 dly ）： 50 Hz ．
Zero suppression： $0-10 n \%$ of transducer full hasd load rating， for transducers having Cal Factor up $1010 \mathrm{mV} / \mathrm{V}$ al full load． $10-\mathrm{T}$ pot with calibration dial：accuracy－I diat div $=0.5 \%$ of suppress range．Zero Supp Polarity switch．Separate R Bal control allows bucking of inplase unbal $10 \pm 3 \mathrm{mV} / \mathrm{V}$ regardless of $C a l F$ factor，
Output nolse，max（less trace widih）：approx． 0.2 div，pup．
Zero drift， 20% to 40\％， 103 to 127 V （less trace width）：temp－ $0.45 \mathrm{div} / 10^{\circ} \mathrm{C}$ ：Line voltage－ 0.25 div ．
Common mode rejectlon and lolerance：quadrature rejcction and colerance：$>40 \mathrm{~dB}$ ．Tolerance error：$< \pm 2 \% / 6$ is when quadrature voltage equal to twice in－phase signal required for center to edge deflection on char．C Balance control permits bucking of trans． ducer＇s quad unbalanoe of up $10 \pm 5 \mathrm{mV} / \mathrm{V}$ ．
Output linesrity（less trace width）： 0.4 div after calibrating for zero error at center scale and +20 div．

88068

8807A

8806B wilh 7702日, 7414A and 7418A
Input ranges: sig inpul-0.5, 1, 2.5, 10. 20. $50.100 .200 .500 \mathrm{mV} /$ div: $\pm 1 \%$. 50 Hz to $10 \mathrm{kHz}:=2 \%, 10 \mathrm{kHz}$ to $20 \mathrm{kHz}:=3 \%, 20 \mathrm{kHz}$ 1040 kHz . Reference voltage- 3 to 20 V rms, 30 to 133 V mis. Maximum calibraled aensitivity and max is input: 0.5 mV rms/ div (gion 200 rms ac to dc) 25 V rms.
Input clecult and lmput trequency pange: signal input:irunsformer isolated. floating poini and guarded: resistance approx I M Ω. Reference input: diftereatial, transfomer coupled: resistance approx $500 \mathrm{k} \Omega$ each side to ground, may be used single ended. 50 Hz to 40 kHz in 6 bauds with variable frequency plug-in: $60 \mathrm{~Hz}, 400 \mathrm{~Hz}$ and 5 kHz fixed frequency phase shifter plug-in: special order phase shifter plug-ins 50 Hz to 40 kHz .
Rise time ($10 \mathrm{dlv}, 10-90 \%, 4 \%$ overghoot): 5 ms (5 kHz ren.
Galluratlon (refarred to input): I V ms internal at calrier refer. ence frequency: $=1 \% 50 \mathrm{~Hz} 1010 \mathrm{kHz}$: $\pm 2 \% 10 \mathrm{kHz}$ to 20 kHz : $=3 \% 20 \mathrm{kHz}$ to 40 kHz .
Zero suppresslon: none. Phase shifter plug-ins alluw control of reference phase over 360°. Fixed frequency: 0° to sor dial: 2° graduations: any of 4 quadrants by panel switches; dial accuracy within $\pm 3^{\circ}$. Variable frequency: adjust thru 360°.
Output nolse, max (less trace width): $7 \mu \mathrm{~V} \times$ sq rool of frequency response. referred to input.
Zero drift, 20° to $40^{\circ} \mathrm{C}$, 103 to 127 V (less trace width): (emp: 0.5 div $/ 10^{\circ} \mathrm{C}$: Line vollage: 0.25 div.
Common mode relectlon and tolerance: CM: $>\$ 0 \mathrm{~dB}$ up to 10 kHz 500 V ms, max. Quadrature tolerance: equal to amplitude of a fs, in-phase signal.
Output llnearity (less trace whdth): 0.4 div after catibratug for zero error al center scale and +20 div.
8807A with 7702日, 7414A and 7418A
Input ranges: $0.02,0.05,0.1,0.2,0.5,1,2,5,10 \mathrm{Vrms} / \mathrm{div}, \pm 2 \%$ (midbund), Scale expansion: XI, 2.5, $10,20 .=2 \%$.
Maximum callbrated sensilivity and max is Ingut: I $\mathrm{mV} \mathrm{rms} / \mathrm{div}$ (gain 100 ms ác to dc). $30 \mathrm{mV} \mathrm{rms} /$ div wîh X) scale expansion 900 \checkmark rins.
Input clroult and inpul Irequency range: approx I Mn resistive in parallel with 10 pF and stray cable capacitance: floating and guarded. Standard model: 330 Hz to $100 \mathrm{kHz} ; \mathrm{Opl} 001: 50 \mathrm{~Hz}$ to 100 kHz.
Rise tlme (10 div, $10-90 \%$, 4% overshoot): 11.2 ms . Opt 001 : 70 ms, approx 10% overshool.
Callbration (referred to input): 1 V internal $\pm 1 \%$; approx 500 Hz . Output frequency response (-0.5 dB at 50 dlv): 54 Hz (3 dB al 10 div). Opt $001-9 \mathrm{~Hz}$.

Zero suppression: up 10100% of fs on any range can be suppressed: 10-T pot with calibrating dial. Scale expansion: 5. 10. 20. or 50% of is can be expanded to cover full chart.
Output nolse, mex (less trace width): baiciline offsel/noise: $\mathbf{2} \mathbf{m V}$ rms refermed to inpul +0.025 div \times scalc expansion
Zero drift, 20° to $40^{\circ} \mathrm{C}, 103$ to 127 V (less trace width): temp 0.03 div $10^{\circ} \mathrm{C} \times$ scale expansion +0.35 div/ $10^{\circ} \mathrm{C}$: at constant ambient $0.005 \mathrm{div} / \mathrm{hr} \times$ scalc expansion. Line vollage 0.005 div \times scale expansion +0.1 div.
Common mode rejection and iolerance: 60 dB min al 60 Hz .40 dB min at 400 Hz with up to 10 k source unbalance; $\pm 500 \mathrm{~V} \mathrm{pk}$.

Output linearity (less trace width): $0.55 \mathrm{div}+0.05$ div \times scalc expansion, 330 Hz co 5 kHz : Opt col: 60 Hz to 5 kHz . after calibration for zero error at lower and upper ends of printed coordinates.
8808A with 77028, 7414A and 7418A
Input ranges: 50 dB span: botton scale $-80,-70,-60,-50 .-40$. $-20 .-10$. and 0 dB below IV (i.c., $100 \mu \mathrm{~V}, 320 \mu \mathrm{~V}$. I. 3.2, $10,32$. 100. 320 mV and $\mathrm{V} V$. 100 dB span: bottom scale $-80,-70 .-60$. and -50 JB below 1 V .
Maximum calibrated sensitivity and max is input: $100 \mu \mathrm{~V}$ rms sine wave corresponds to botiom scale output. -80 dB below 1 V 320 V rms.
Input circult and Input frequency range: single ended, rcsistance I $\mathrm{M} \Omega \mathrm{min} .5 \mathrm{~Hz}$ to 100 kHz for $<33 \mathrm{~B}$ down from the midband level on "Slow" response range: 500 Hz to 100 kHz on "Fast" response range.
Rise time ($10 \mathrm{dlv}, 10-90 \%, 4 \%$ overghoot): fasl; $20.5 \mathrm{~ms}(875 \mathrm{~dB} / \mathrm{s}$) Slow: 2 s ($9 \mathrm{~dB} / \mathrm{s}$).
Callbration (reterred to Ingut): intemal from oscillator at approx $500 \mathrm{~Hz} .-80$. -30 . and $+20 \mathrm{dBV}=\mathrm{dB}$ ref. 10$) \mathrm{V}(100 \mu \mathrm{~V} .32 \mathrm{mV}$ and 10 V) $-80+20 \mathrm{dBV}$ intemally adjustable: -30 dBV accuracy $=025 \mathrm{~dB}$ (at 115 V line at $25^{\circ} \mathrm{C}$).
Outpul nolse, max (less irace wldh): SD dB range: 0.8 div, p-p. 100 dB range: $0.4 \mathrm{div}, \mathrm{p}-\mathrm{p}$ (max noise at bottom of recording charl), Output linearity (less trace width): depanure from log characteristies 50 dB : 1.25 div .100 dB : I div, after calibrating for zero error at lower and upper ends of printed coondinales.
8809A wlth 7702B, 7414A and 7418A
Input rangas: continuously adjustable from 20 to $50 \mathrm{mV} / \mathrm{div}$.
Maximum callbrated sensitivity and max is input: $30 \mathrm{mV} / \mathrm{div}$ (gain 3.33). $010+2.5 \mathrm{~V}$ or $010-2.5 \mathrm{~V}$.
Input circult and input trequency range: switch selected: 1500Ω $=2 \%$ or $100 \mathrm{k} \Omega \mathrm{min}$. incremental; single ended.
Flse time ($10 \mathrm{dlv}, 10-90 \%, 4 \%$ overshoot): 5 ms .
Callbration (reterred to Input): $600 \mathrm{mV} \pm 2 \%$. internal.
Output Irequency reaponse (-0.5 dB at $50 \mathrm{~d}(\mathrm{v}): 50 \mathrm{~Hz}$.
Output noise, max (less trace width): 0.1 div . p-p.
Zero drift, $20^{\circ} 1040^{\circ} \mathrm{C}$, 103 to 127 V (less trace wldth): temp: 0.4 div $/ 10^{\circ} \mathrm{C}$ al 30 mV sensitivily. Line valtage: 0.3 div.
Common mode rejection and Iolerance: 50,000: I at dc.
Output linearity (leas trace widith): 0.4 div after calibrating for zero error at center scale and +20 div.
8820A with 7418a
Sensitivity: 0.05 V/div (Amplifier Gain 2).
Maximum is input: 250 V (edge to edge).
Inpul ranges (attenuation): $0.05,0.1,0.2,0.5,1,2,5 \mathrm{~V} / \mathrm{div}$. Atteruator accuracy $\pm 2 \%$.
Input clreult: single ended, $1 \mathrm{M} \Omega$ mio.
Frequency response: dc to $<0.5 \mathrm{~dB}$ down al 50 Hz ($50 \mathrm{div} \mathrm{p}-\mathrm{p}$): de $t 0<3 \mathrm{~dB}$ down at 100 Hz (10 div p-p).
Rlse time ($10 \mathrm{div}, 10-90 \%$, 4% overshoot): $<6 \mathrm{~ms}$.
Output linearity (less trace width): linear within ± 0.25 div after selting mechanical zero of siylus to within ± 1 div of chan center and calibrating for zero error al center scale and ≤ 20 div.
Drift, $20^{\circ}-40^{\circ}, 115 \mathrm{~V} \pm 10 \%, 60 \mathrm{~Hz}$ (less trace width): temp: $<0.5 \% / 10^{\circ} \mathrm{C}$: Lime voltage: $<=0.2 \mathrm{div}$.
Callbration: I $V \pm 19 \%$ calibration voltage in each channel, plus I common IV $\pm 1 \%$ calibration voltage for all channels.
Temp raling: operaling: $0^{\circ} \mathrm{C}$ so $+55^{\circ} \mathrm{C}$: storage: $-40^{\circ} \mathrm{C} 1075^{\circ} \mathrm{C}$.
8821A with 7418A
Sensitlyity: $0.001 \mathrm{~V} / \mathrm{div}$ (Amplifier Gain 100).
Maximum is input: 250 V (edge to edge).
Inpul rangea (attenuation): $0.001,0.002,0.005 .0 .010 .0 .020$. $0.050 .0 .1,0.2,0.5,1,2,5 \mathrm{~V} / \mathrm{div}$. Attenuator accuracy (de) $1 / 2 \%$ on 0.001 to $0.050 \mathrm{~V} / \mathrm{div}$ ranges: 1% on 0.1 to $5 \mathrm{~V} /$ div ranges.
input circult: balanced, floaLing and guarded. $9 \mathrm{M} \Omega$ constant for all gam settings (0.001 to $0.050 \mathrm{~V} / \mathrm{div}$): $4.5 \mathrm{M} \Omega$ eacb side to ground (0.1 10 $5 \mathrm{~V} / \mathrm{div}$).
Common mode relection: 100 dB al $60 \mathrm{~Hz}, 0.00 \mathrm{I}$ V/div sensitivily. $1 \mathrm{k} \Omega$ source unbalance decreases to 66 dB al $0.05 \mathrm{~V} / \mathrm{div}, 66 \mathrm{~dB}$ at 60 Hz .0 .01 10 $\mathrm{S} \mathrm{V} /$ div sensitivity, $1 \mathrm{k} \Omega$ source unbalance.
Common mode tolerance: $\pm 20 \mathrm{~V}$ oo $0.001100 .05 \mathrm{~V} / \mathrm{div}$ ranges (6 most sensitive): $\pm 250 \mathrm{~V}$ on 0.1 to $5 \mathrm{~V} /$ div ranges (6 least sensitive). Frequency rasponse: dc $10<0.5 \mathrm{~dB}$ down at 50 Hz ($50 \mathrm{div}, \mathrm{p}-\mathrm{p}$). de to $<3 \mathrm{~dB}$ down at 100 Hz ($10 \mathrm{div} \mathrm{p}-\mathrm{p}$).

Rlse time ($10 \mathrm{div}, \mathbf{1 0 - 9 0 \%}$, $\mathbf{4 \%}$ overshool): $<6 \mathrm{~ms}$.
Output ilnearity (legs trace whith): same as 8820A.
Drift, 20° to $40^{\circ} \mathrm{C} .115 \mathrm{~V}=10 \%, 60 \mathrm{~Hz}$ (less trace width): same as 8820A.
Callbration: $+0.02 \mathrm{~V} \pm 1 \%$ on 6 most sensitive ranges. Simulates
$+2 \mathrm{~V} \pm 2 \%$ at input on 6 least sensitive ranges.
Tomperature rating: same à 8820 A .

7702B Options

002: Portable Case and Cover
003: One-Channel Decrease
005: Mobile Car (1062A)
000: 50 1tz Operation
000: Speeds $2.5,5,25$, and $50 \mathrm{~mm} / \mathrm{sec}(50 \mathrm{~Hz})$
010: Speeds 2.5. 5. 25 , and $50 \mathrm{~mm} / \mathrm{sec}(60 \mathrm{~Hz}$ only)
011: $60: 1$ Speed Reduction (60 Hz)
012: 60:1 Speed Reduction (50 Hz)
015: Exira Event Maxixer installed between channels
018: 60 Hz Speed Kil 2:I Reduclion. Speeds of 0.5 .
2.5. $10.50 \mathrm{~mm} / \mathrm{sec}$. (Nol compatible with Opt 010. $011)$
019: 50 Hz Speed Kil $2: 1$ Reduction. Speeds of 0.5 . 2.5, 10 , and $50 \mathrm{~mm} / \mathrm{sec}$. (Not compatible with Opt 009 and 012)
Note Oplion 008 reauler when ardeling Doplan 008, 012 . or als.
7414A Options
001: Rack mount (include slides, mounling hardware: delete case)
008: 50 Hz operation
012: 1 channel decrease: extreme RH channel delcted. blank panel instal; not compatible with Opt 015
015: Extra Event Marker, installed between channel 2 and 3; not compatible with OpI 012
025: 50 Hz speed reduction, 60:1 (Opl 008 required)
028: 60 Hz weed reduction, $60: 1$
054: Installed in mobile cart. Includes paper takeup drawer
7418A Options
001: 6 channel Ho1-Tip Therm Recorder only* (includes takeup (ray) (FFor plug-í preamps, OpI 030 Power Supply required; for Bank Amps. seleci I of options 031-034)
002: Rack mount kit
003: Bench top configuration
004: 62-in. Cabinet (includes 7 -in. drawer)
005: 42-in. Cabinet (includes 7 -in. drawer)
008: 28 -in. Portable can (includes Opt 002)
008: 50 Hz operation
009: 230 V ac operation
014: Extra Event Marker between Chanoels 4 \& 5
015: Exira Event Marker berween Channels 5 \& 6
025: $50 . \mathrm{Hz}$ speed reduction 60:1 (Opl 008 required)
026: 60 Hz speed reduction 60:1
030: 8848A plus-in preamp power supply (required for operation of 8800 Preamps)
031: 8820A 8-channe) bank amp (nor compalible with Opt 001) when ordering separately. order 8830A for 6 channels, see Opl 033
032: 882l.A 8 -channel bank amp (not compatible with

Prlce
add $\$ 225$
less $\$ 55$
add $\$ 350$
add $\$ 55$ add $\$ 90$

N/C
add $\$ 205$
add $\$ 205$
add $\$ 90$
add $\$ 190$
add $\$ 190$

N/C
N/C
less $\$ 225$
add $\$ 40$
add \$320
add $\$ 320$
add $\$ 575$
less $\$ 620$
add $\$ 205$
add $\$ 260$
add \$1350 add \$1350 add $\$ 950$

N/C
N / C
add $\$ 90$
add $\$ 90$
add $\$ 310$ add $\$ 310$
add $\$ 1170$
add $\$ 1650$

Opt 00$\}$) when ordering separately, order 8821 A for 6 channels, see Opt 034
add $\$ 2780$
033: 8820A G-channel bank anp (not compatible with 7418A 8-channel) when ondering separately, order 8820A Opl 002
034: 8821A 6-channel bank amp (nor compatible with 7418A 8-channel) when ordering separalely. order 8821A Opt 002
8801A, 8802A, \& 9809A Options
001: Bench rop unit with power supply \& portable case
6803A Optlons
001: Bench iop unit with power supply \& portable case
add $\$ 555$
9805A Opllons
001: Bench top unit with power supply \& porable cuse
002: Harmonic filter kit (required when 267. 268. 270. or 1280B/C transducers are used)

8805日 Options

001: Bench top unit with power supply and porrable case
002: Jelete Harmonic Filer
80068 Opilons
001: Bench lop unit with power supply \& ponable case
add $\$ 490$
002: Variable frequency phase shifter plug-in. 50 Hz . to 40 kHz
003: calibrated phase shifter plug-in. 60 Hz add $\$ 205$
004: calibrated phase shifter plug-in. 400 Hz add $\$ 165$
005: calibraled phase shifter plug-in. 5 kHz add $\$ 165$
日807A Optlons
001: 50 Hz to 100 kHz sigital filter N/C
002: De plug-im
003: Bench top unit with power supply \& portable case
add $\$ 460$
9808A Optlons
001: Bench top unil with power supply \& porsable case
add $\$ 460$
6820A Optlons
002: 2-channel reductions
N / C
8821A Optlons
002: 6 cbannel bank amp
less $\$ 205$
Orderling Information
7702B 2-channel oseillographic reconder $\$ 2990$
7414A 4-Chaonel oscillographic recorder $\$ 5300$
7418A 6108 -channel oscillographic recorder $\$ 7000$
880 La Low gain preamplifier
8802A Medium gain preamplifier
$\$ 430$
$-\quad \$ 430$
8005a hoh gain preamplifier
5865
8805B Carrier preamplifier with Harmonic Filker $\quad \$ 825$
88068 Phase sense demodulator preamplifier $\quad \$ 790$
8807 A Ac/de converter preamplifier $\$ 945$
8808A Logarithmic preamplifier $\$ 890$
8809A Signal coupler preamplifier $\$ 160$
8820A Low gain bank amplifier
882LA Mcdium gain bank amplificr
$\$ 2100$
$\$ 3100$

- $1 / 4$-inch magnetic tape benefis
- Selectable FM/Direct electronics

The instrumenation tape recorders, the 3964A. 4-channel and 3968 A. 8 -channel, uilizing a $1 /$-inch format, are designed to meet the demands of the individual and OEM users. Versatility, ponability. and dumbility are bree imponant characteristics of these recorders. Excellent performance is assured in the laboratory, field. or medical environment.

These reasonably priced units are equipped with many standard features usually only found on more expensive reconders.
The 13064A Tape Degausser erases previous magnelic recordings from an entire reel of tape. Cleanly carasted tape is an indispensible factor for oblaining optimum performance.

3964A/3968A standard fealures

"E-to-E" mode for FM recordling: input signal is automalically transferred to the output when in fast forward, rewind, or stop. Simplifies recurder sclup and ealibration.
Tape/Tach servo: in the reproduce mode the captsan serio can be concrolled either by the intemal lach frequency or for maximum time base accuracy from a pre-reconded signal on one of the data channels.
Equalization: direct electronics can be optimized for a wide variety of tapes.
Remote control: mulu-pin connector located at rear of insirument provides remote control and state (TTL or contact closure) for all tape speeds and operational modes.
AC/DC callbrator: provides intemal $A C / D C$ voltage source for seting up inpul and output levels for each of the data cbannels. Voltage levels and channel monitoring selected with pushbuton ease.
Flutter compensatlon: available with the flip of a swith. Flutter modulation introduced during the record mode is eliminated providing an improvement in FM hignid-to-noise ratio by up 1012 dB . Volce capabllity: recorded data can be voice annotated on Channel 4 of 3964A or Channel 8 of 3969A with press-to-talk microphone. Unipolar operation for FM recording; when a signal has a positive only or negative only deviation, the FM inpui reference level can be offsel to plus or minus full deviacion to permit full utilization of the channel's dynamic range.

- Eight channels or four channels
- Laboratory, field, medical applications

Re-recordling (dubbling): FM dala cards can be se1 up for dubbing, allowing duplicate recordings to be made with minimum degradation to signalto-noise.

3964A and 3968A specifications

Transport specifications
Tape wldth: $1 / 4$ inch (6.3 mm).
Reel slze: standard 7 -inch (177.8 mm) plassic recl: tolally enclosed by reel cover.
Heads: 3964A-one four-1rack record and one four-lrack reproduce using in-lioc track condiguralion. 3968 A - one eight-track record and one cight-1rack reproduce. Interinced odd-cven Irack configuralion.
Tape speeds: ${ }^{15} / \frac{1}{3}, 1 \% / 15,1 / 8,3 \%$, $71 / 4$ and 15 ips.
Capstan drive: DC motor with phaselock servo.
Tape speed accuracy: $\pm 0.2 \%$ (tach servo).
Tlme base error (tape servo)

rapo speors	15	71/2	3\%/4	1\%	13/10	${ }^{1 \times 2}$
Jit (m\|erosuc)	$=1$	± 5	-7. 5	$=15$	-25	-50

Flutter

$\begin{gathered} \text { Tapa Spead } \\ \text { (bpt) } \end{gathered}$	$\begin{gathered} \text { Pass gand } \\ \text { IHD } \end{gathered}$	$\begin{gathered} \text { Tulmer } \\ \langle \% \mathrm{p}, \mathrm{p}\| \end{gathered}$	Tapt Speted (101)	$\begin{gathered} \text { Pass 日ins } \\ \left(\mathrm{Hr}^{\prime}\right) \end{gathered}$	$\begin{aligned} & \text { flutter } \\ & (\%\{-p-0) \end{aligned}$
$\begin{aligned} & 15 \\ & 15 \\ & 1 \% \\ & 3 \% \end{aligned}$	$\begin{aligned} & 0.2-25000 \\ & 0.2-1250 \\ & 0.2-625 \end{aligned}$	$\begin{aligned} & 0.35 \\ & 0.35 \\ & 0.40 \end{aligned}$		$\begin{aligned} & 02-312 \\ & 0.2-156 \\ & 0.2-78 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.70 \\ & 1.50 \\ & \hline \end{aligned}$

Tape motlon controls: forward, reverse record: forward, reverse play: fast forward: fast rewind: stop: pushbution selectable.
Start and stop times (typlcal)

Tape spoeds	15	11/3	$3{ }^{3} /$	1\%	18,46	${ }^{2} 813$
stim (sec)	3	1.50	0.90	0.50	0.50	0.50
Stop (sec)	0.30	030	0.30	0.30	0.30	0.30

Rewind time (typleal): 1800 f00t (549 m) neel in 100 seconds: 2300 fool (701 m) reek in 145 seconds.
Braklng: fail-safe mechanical differential brukes.
End-of-tape sensing: tape drive stops automatically at the end of tape.
Reel revolullon counter; 4-digit revolution counter with pushbutton reset.

FM record/reproduce speciflcations (using 3M-8日8 Tape or equivalent)

$\begin{aligned} & \text { typer } \\ & \text { speed } \end{aligned}$	Gartior Conolor Frequancy	$\underset{\substack{\text { Pacsiandad } \\ \text { (the }}}{ }$		
			388A	396at
			48 48 48 46 40 40 40	46 46 46 46 44 40 40

1. Freguency response over passband is 21.0 d relerenced to 10% of upper bandege frequency. 2. Signal measured with carrier deviation $\pm 40 \%$ of upper passband mithoul liulter compensation. Output fitters of reproduce amplifiers selected tor consiant amplitude response. May also be selectád for linear phase (Iraǐient) responso.

Flutter compensation: can improve signal-to-roise by up to4d8 under static condilions and as much as 12 dB under conditions of vibration. Selectod by rear panel switch.
Distortion: total harmonic distortion $<1.2 \% @ 15101 \%$ ips. $<2 \%$ (0) ${ }^{13} / 10100^{15 / 83 ~ i p s . ~}$

Unearlty: $\pm 0.3 \%$ of peak-\{0-peak output for best straight line through zero at $\pm 40 \%$ devjation.
DC Drift: $=0.1 \leqslant$ (max) of full scalc outpul per ${ }^{\circ} \mathrm{C}$.
Input level: I V to 30 V (peak-io-peak); contiduousiy adjustable. Input impedance: $100 \mathrm{k} \Omega$ nominal, shuoled by $<100 \mathrm{pF}$ singleended.
Output leval: 1 to 5 V (peak-to-peak): continuously adjustable. Output Impedance: 50 ohms nominal, single-ended.
Non-bias recording: available by internal jumper selection.
Direct recordireproduce speciflcations (uging 3M-888 Tape or equlvalent)

$\begin{aligned} & \text { 1spe Spend } \\ & (\mathrm{DDs}) \end{aligned}$	Paxiband (a3 dB)'		S/M Ratio (18) ${ }^{\text {a }}$	
	3964A	39684	39644	3958A
	$\begin{array}{r} 70-64,000 \mathrm{~Hz} \\ 50-32,000 \mathrm{~Hz} \\ 50-16,000 \mathrm{~Hz} \\ 50-8,000 \mathrm{~Hz} \\ 50-4,000 \mathrm{~Hz} \\ \hline \end{array}$	$\begin{array}{r} 500-64,000 \mathrm{HI} \\ 250-32,000 \mathrm{HI} \\ 100-16,000 \mathrm{HI} \\ 100-8,000 \mathrm{HI} \\ 100-8.000 \mathrm{~Hz} \end{array}$	38 38 38 38 31	$\begin{aligned} & 36 \\ & 36 \\ & 36 \\ & 36 \\ & 35 \\ & \hline \end{aligned}$

I. Reference to 10% of upper baridege.
2. ㅇeferenced to a 500 Hy she ware with a maximum of 1% und hanmonic distortion whon reproduced at $3^{3} / 4 \mathrm{ips}$.

Input level; I V to $30 \mathrm{~V}(\mathrm{p}-\mathrm{p})$; continuously adjustable.
Input Impedence: $100 \mathrm{k} \Omega$ nominal, single-ended.
Output level: 0.5 to 5 V (p-p); continuously adjustable.
Output Impedance: 50 ohms nominal, single-ended.
Slgnal monltoring
Meter modes: peak AC or DC (selected by (ront panel switch).
Meter accuracy (peak AC mode): better than $\pm 1 / 4 \mathrm{~dB}$ for signals with duly cycle of 20% or greater.
Salector: íront panel pushbuttons select metered channels.

Callbrator

Signal source: pushbutton selectable internal or extemal signal source.
Internal signal source: peak $A C$ and $=D C$ levels of 0, 1.0. 1.414. 2.5. 5.0, and 10.0 volis.

Level of accuracy: $=2 \%$ of selected voltage.
$A C$ frequency: $500 \mathrm{~Hz} \pm 5 \%<0.25 \%$ second or third hamonic distorion.

Valce annotation

Modes of operation: data only, voice only, or data intemupted by voice.
Mlcrophone: dynamic, hand-held, with press to talk switeh.
Aecord lovel: automatic leveling.
Monltoring: built-in speaker, headphone jack.
General specificatlons
Size: $3964 \mathrm{~A}-400 \mathrm{mmH} \times 427 \mathrm{mmW} \times 256 \mathrm{~mm} \mathrm{D}\left(15.7^{\prime \prime} \times 16.8^{\prime \prime} \times\right.$ $10.1^{\prime \prime}$) $3968 \mathrm{~A}-445 \mathrm{~mm} \mathrm{H} \times 427 \mathrm{~mm}$ W $256 \mathrm{~mm} \mathrm{D}\left(17.5^{n} \times 16.8^{\prime \prime} \times\right.$ 10.1").

Welght: without inverter: $3964 \mathrm{~A}-29.5 \mathrm{~kg}$ (65 lb). $3958 \mathrm{~A}-31.3 \mathrm{~kg}$ (69 lb). With inverter (Opt 02I); $39648-25.0 \mathrm{~kg}(55 \mathrm{lb}): 3968 \mathrm{~A}-26.8$ kg (59 lb).

Powar requirements: $100,120,220$, or $240 \mathrm{~V},+5 \%,-10 \%, 48-66$ Hz. 110 W average.
Temperafure: storage, $-40^{\circ} \mathrm{C}$ 10 $75^{\circ} \mathrm{C}$: operating. $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$: tape limit, $10^{\circ} \mathrm{C}$ 10 $40^{\circ} \mathrm{C}$.
Altifude: storage. is 240 m (50.000 ft .): operating, 4500 m (15.000 ft.).
Humidity: the system, excluding tape limitations, will operate from 10% to $95 \% \mathrm{RH}$ ($25^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$), non-condensing.
Shock: 30 g maximum (1 l ms) non-operaling.
Mounting: supplied with rack mounting kíl for standard 19-inch equipment racks.

13064A Tape Degausser Specifications

Tepe slze: $1 / 4$-inch (6.33 mm) tape on reels up to $101 / \mathrm{z}$ inch (266 mm) in diameter.
Erasure: 60 dB minimum.
Duty cycle: one minute $O N$-lhree minules OFF.
Slze: $67 \mathrm{H} \times 133 \mathrm{~W} \times 17 \mathrm{~lm} \mathrm{~m}\left(2.6^{\prime \prime} \times 5.25^{\prime \prime} \times 6.75^{\prime \prime}\right)$.
Welght: approximately 4.3 kg ($91 / 2 \mathrm{lb}$).
Power requiremente: 115 V ac $\pm 10 \%$, $50-60 \mathrm{~Hz}$ (Opl 001). 210 V $a c \pm 10 \%, 50-60 \mathrm{~Hz}$ (OpI 002).
Optlong 3964A/3968A
Price
001: FM Record/Reproduce. Ptovides one FM data add $\$ 350$
card. Specify number of FM channels required when ordering.
002: Direct Record/Reproduce. Provides one Direct data card. Specify number of Direct channels required when orderiog.
003: rear Inpui/Output Connectors. A rear panel with BNC ioput and output connectors for each channel and in parallel with front cover panel connectors.
004: Locking Krobs. Factory installed, screwdriver adjustable locking knobs ensure input level selting on a given channel(s) is nol accidentady changed (four on 3964 A , eigh on 3968A).
005: metric speed designations. Provides metric speed designations of $38.10,19.05,9.52,4.75,2.38$ and 1.19 cm / s on front panel speed selector pushbuilons.
007: HP-IB Remote Conirol. HP-LE conipatible remote control of all tape speeds and operational modes. 009 UL lisied UL standard No. 544 Sajely simindard for Medical and Dental equipment) includes white painı.
010 : UL listed (UL STd. No. 544 Safety Standard for
Medical and Dental Equipment), standard colors.
021: DC-AC Inverter. operates from 12 and 28 VDC in addition 10 standard $A C$ voltages
024: loop adapter. Simplifies data amalysis application requiring continual replay of significant data. A lape loop from 5 to 30 foes can be accommodated by this option.
025 and 027: rack mounting/rack slides. Rack sljdes. which provide 90° instrumentation rotation.

Opt 026. Rack Slides for $19^{\prime \prime}$ racks
Opt 027. Rack Slides for HP cabinets
041: IR1G servo reference frequency. Changes standard servo reference from 27 kHz to 25 kHz al 15 ips. 070: overlap. With two 3964A or 3968 A unils. option provides automatic playfrecord commands for second recorder when first unit electronically senses lape is low.
910: exira manual
Tranalt case: moisture and dusiproof; vibration and shock proof.

3964A part no. $13107 \mathrm{~A} \quad \$ 250$
3968A parino. 13106A $\$ 250$
Ordering information
3964A 4-channel Instrumentaion Tape Reconder $\$ 4900$ Mainframe
3968A 8-channel Jnstrumentation Tape Recorder $\$ 6400$ Mainframe
13064A Tape Degausser (specify Opi 001 or 002)'

- 115 V ac ar 230 V ac operalion, resperilvely
add $\$ 30$
add \$110
add $\$ 135$
add $\$ 150$
add $\$ 200$
add $\$ 315$
add $\$ 65$
add $\$ 35$

N/C
add $\$ 350$
$\$ 250$
add $\$ 200$
$\$ 650$
add $\$ 475$

256

- Silent operation
- Optional scanner and clock
- Alphanumerie

General
The 5150A Themmal Printer is a versatile instrumentation printer designed to accept and record up to 20 columns of data from most HP digital insmuments. Because it uses a thermal printing technique, it is extraordinarly quiet while in operation. Two inpul interfaces are available (one must be specified with the order) to allow data input from the HP Interface Bus (use Option 001) or from BCD-coded sources (use Option 002). Other options which add to the fiexibility of this printer are the Option 003 Seanner, which can sequentially address and interrogate up to 13 instruments on the HP-IB, and the Option 004 Clock, which can be used with either the HP-IB or BCD Interiaces.

Opt 007 HP-I日 interlace

With Option 001 installed, the printer can accept up 1020 ASCII characters per line via the HP-1B. Input are interpreted iccording to the 64 member upper-case ASCII characler set. With this interiace. the printer can also serve as an "addressable listener" in a controller-based HP-IB system

Opt 002 BCD Interrace

With Option 002 installed. the printer wall accept 10 columns of TTL-Ievel BCD data, Two Options 002s may be installed for $20-$ column print-out from one or two sources. The standard 16 -member cbaracter set consiss or 0 through 9. + . . V, A, R, and [blank]. Special charucters sels which draw from the 64 -characler upper-casc ASCII set may also be specified.
Opt 003 scanner
With boih Oplions 001 and 003 instilled. the printer can log dala from up to 13 insurvments on the HP-IB. Operation is asynchronous; that is, the printer will address the lowest address instivment. wail for data. print. then go to the next instrument.

Opl 004 clock

Used with either the HP-IB Interface or BCD Interface, Ilsis option gives the printer two additional capabilities: it can conirol the elapsed time between successive data pribtouts, and it can print the time of day immediately following cach data printout. When used with the Option 003 Scanner. the clock controls the elapsed time between the initiation of successive scans.

Speciflcations

Character pilnt: 5×7 dol matrix.
Printing rate: 3 lincs per second.
LIne spacing: approximately 6 lines per inch (2.5 lines per cm).
Paper advance mechanism: direct drive, slepping motor.
Paper: thermal sensitive. in rolls or fan-folded cone roll supplied). Operating environment: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ 1cmperature: 95% relative humidity (85% RH with fan-folded paper).
Power: 10x. 120,220 . or 240 valts, 48 to $440 \mathrm{~Hz}(50$ or 60 Hz only for Ope 004). 100 VA .
Dimenslons: half-rack module. $178 \mathrm{mmH} \times 216 \mathrm{~mm} \mathrm{~W} \times 356 \mathrm{~mm}$ D ($\left.7^{\prime \prime} \times 81 / 8^{\prime \prime} \times 14^{\prime \prime}\right)^{\prime \prime}$).
Welght: approx. 7 kg (16 B) ($5150 \mathrm{~A}+1$ option).
HP-IB interface (Opt 001)
Columns: 20.
Printed character set: 64 ASCII charuclers (columns 2. 3. 4, and 5 of ANSI X3.4-1968, except " \uparrow " in column 5. row 14).
Input Logle Levels: TTL (low <0.4V. High $>2.5 \mathrm{~V}$).
Data tormat: byte-serial with storage, compatible with HP.IB.
Inhlblt (output): holds NRFD line of HP Interiace Bus low follow. ing receipt of cither CR or LF (sclectable) until print is completed. This interval is approx. 250 ms minimum. or the duration of Option 004 (lock data print miterval with clock in Hold mode.
BCD Interface (Opl OD2)
Columns: 10 (20 columens with Ivo Options 002s installed).
Character set: 0 hrough 9. +. -. V, A. R, and (blank).
Input Logic Levels: TTL (low $<0.4 \mathrm{~V}$. High $\geq 2.5 \mathrm{~V}$).
Data format: parallel BCD (8421): switch selects \div or -1rue logic.
Pilnt command: pos. or neg, Trl $\operatorname{transition:~} 2 \mathrm{kI}$ input impedance.
Inhlblt (output): + or - same levels as above: remains at true level until print is completed (approx. 250 ms minimum) or during Optor 004 Clock data print interval with clock in Hold mode.
Scanner (Opt 003)
Instruments scanned: 1 to 13.
Cycle time of sean: limited by the slowest of (a) response of instmments scanned. (b) 3 samples per second. or (c) Data Print Interval setting on Option 004 Clock.
Compatiblity: H.P Interiace Bus (utilizes ASCII code).
Identifier: habels data line of each instrument with letters A-M.
Protect (ealure: bypasses non-responding insirument after 3 sec .
Clock (Opt 004)
Data print interval; sclectabic by front panel swatches: minimum, 1
 interval will be that of input device if it is slower than the selected inlerval.
Time print Interval: selectable by front panel switch, same intervals as above (intervals shorter than daza interval prevented).
Time print format: selectiable by front panel swith: Disabled, same as data. or sepmate line from data.
Dlsplay: sid-digit, seven-segment LED display of hours, minutes. seconds (00:00:00 to 23:59:59): scttable via front panel switches.
Time base: line frequency (50 or 60 Hz . selectable by jumper).
Operating supplies/accessorles

Price

S62A.16C General purpose BCD Interiace Cable $\$ 85$
$9281-0401$ Roll of paper. 76 melres (box of six) $\quad \$ 2.20$
05 IS0.60002 HP-18 Interface Kil
$\$ 220$
$05150-60005 \mathrm{BCD}$ Interface Kil $\$ 135$
05150-60008 SLänner Kit
\$275
10533A BCD Inerface Cable for 5300A \$225
1063:A Inlerface Bus Cable. I merre
10631B Interface Bus Cable. 2 metres $\$ 65$
1063IC Inteface Bus Cable. 4 meires

Options

001: HP-IB Interface	add $\$ 250$
002: RCD Interiace	add $\$ 125$
003: Scanner	add $\$ 250$
004: Clock	add $\$ 350$
005: BCD Interiace Cable (562A-16C)	add $\$ 85$
910: Exira manual	add $\$ 15$

10 -column BCD digital printer

- 10 lines/sec.
- 10 columns of data
- 4 -line $=8421 \mathrm{BCD}$

5055A

Description

General

The Hewletr-Packard Model 505SA Digiral Recorder provides a high-performance economical method of making permanent records of digitad data. It prinis up 1010 columns of data from 4 line $B C D$ data sources al rales up to 10 lines $/ \mathrm{sec}$. Printing is asynchronous: i.c. the priat cycle starts the instart the extemal print command is reccived and requires only 100 ms under any condition. The eigh1 inch cabinet width allows for either bench use or side-by-side rack mounting. using the HP Adapler Frame. 5060-0797. The codes offered are ± 8421, selectable by a rear panel switch. Each column has an individual prini wheel with 16 characters- 10 numeric and 6 non-mumeric. Special wheels can be ordered at minimal cose. The 5055 A is supplied complete for 10 columns of printed data and accepts TTL compacible integrated circuit logic levels. Leading zeros are suppressed when the printer is used with HP insinments which have blanking.

Aellabllity

Reliability is enhanced by design simplicity; i.e. there are an unusually small number of moving parts in the printer. The printer mechanism, manufactured by Hewletl-Packard, is a modified version of a mechanism whose reliability and serviceability has been demonstrated in other H.P printers for maty years.

Ink or pressure sensitive printing

The 5055A prints in ink on regular paper or on pressure sensitive paper. For ink printing, the mechanism includes a continuously rolating ink roller-inherently more reliable than a start-stop ribbon mechanism. Paper loading is easy from the front, and when the paper rums oul an alarm lamp lights and recording stops automatically. An outpul signal is provided for inhibiting the data source.

Versalle

Each column has an individual prinl wheel which can be changed independently of the other 9 wheels if a different character sel is desired. This can apply to as many columns as desired. Special print wheels can be factory installed or may be field installed at a later date. Both can be done at a nominal cost.

\author{

- TTL Logic Levels
 - ink or pressure sensitive printing
}

Specifications

Printing

Accuracy: identical to inpul device used.
Print cycle time; 100 ms .
Printing rate: 10 lines/sec maximurn, asynchronous.
LIne spacing: fixed, 4 to 5 lines per inch.
Printing; ink roller or pressure sensitive paper. Pressure sensitive paper is recommended for operation under extreme temperalure.
Print wheels: 16 positions. numerals 0 to $9 .+,-, V, A, \Omega .{ }^{*}$: special whecls available.
Column capacity: supplied complete for IO-column operation.
Electrical
Data Input: parallel entry, $B C D=842$) (selected by rear panel switch).
Blanking: Hewletr-Packard counters wieh blanking will give insignificanl zero suppression when blanked digits output is (IIII). May be defcared with rear panel swirch.
Logic levels: high state $\geqslant+2.4 \mathrm{~V}$. 45 V maximum (open input line resules in high state): low state $\leqslant+0.4 \mathrm{~V}$ (1.6 mA max., Iow). 0 V minimum.
Print command; line)-low to high transition causes print (nominal Ik Ω inpul impedance). line 2 -high 10 low trasition causes prinl (nominal 400Ω inpen impedance). Voligge levels are same as logic levels above, and a minimum pulse width of $0.5 \mu \mathrm{~s}$ is required.
Inhlblt voltege: $(+)$ inhibit $=$ transition from $(\geqslant 0 . \leq 0.4 \mathrm{~V})$ to $(\geq 2.4$ $\mathrm{V}, \leqslant 5.0 \mathrm{~V}$) upon receipt of print command. Remains at high state uncil paper advance occurs, approximately $85 \mathrm{~ms}(<\mathrm{mA}$ io low scate $).(-\rangle$ inhibit $=$ inverse of $(+)$ inhibit.

General

Operating temperature: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$ with pressure sensitive paper. $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Input connector: amphenol 57-40500-375, HP Part No. 125I-0087. 50 -pin female. Mating input cable connector: amphenol type 57 -30500-375. HP Part No. 1251-0086, 50-pin made.
Front panel controls: power swith, power on indicator light. manual print pushbstion, manual paper auvance pushbutton. out-of-paper light, standby/operate switch. (Paper loaded from front.)
Power: II5 or $230 \mathrm{~V} \pm 10 \%, 60$ or 50 Hz (two-speed motor pulley incorporated). approx. 25 W idle. 55 W al 10 lines $/ \mathrm{sec}$.
Dlmenslons: cabinet: $154 \mathrm{~mm} \mathrm{H} \times 203 \mathrm{~mm} \mathrm{~W} \times 406 \mathrm{~mm} \mathrm{D}\left(6^{3 / 33^{\prime \prime}} \times\right.$ $8^{\prime \prime} \times 16^{7}$.
Welght: net. 10 kg approx. ($181 / 4 \mathrm{lb}$). Shipping, 8.9 kg (22 lb).
Operating supplies/accessories Price
9260-0071 lnk roller (black) $\$ 16.50$
$9281-0386$ Slandard paper ($250^{\prime} \mathrm{pad}$) $\$ 2.50$
$9281-0387$ Pressure sensilive paper (305^{\prime} pad) $\$ 4.50$
5060-0797 Rack adapter frame
\$55
10533A Interface Cable for 5300A
$\$ 225$
Options
001: 50 Hz line operation
N/C
002: 562A-16C inpul cable interconnects with 3450B. add $\$ 85$
1480C/D. $5326 \mathrm{~A} / \mathrm{B} / \mathrm{C}$, and 8443 A
5055A DIgltal fecorder
Supplied with Ink roller (9260-007I). one pad standard paper (9281-0386) and one pad pressure seasitive paper (9281-0387). Each pad provides two loadings of recorder

- 20 lines/sec.
- Up to 18 columns of data
- 4-line $\pm 8421 .+4221 \mathrm{BCD}$

5050B

Description

Compatible

This recorder is compatible with a wide range of Hewlen-Packard solid state and integrated ctreuit insiruments and a wide variety of other equipment. It prints up to 18 columns of 4 line BCD data from one or two sources up to 20 lines/sec.

Versatile

The user can casily change code to $+8421,-8421$, or +4221 by an inexpensive substintable code disc, and can change print wheels to have a different code and/or character set in each column. Character suppression allows suppressing a character in each column.

Storage

An optional data storage fealure is available at extra cost to reduce the time required to transfer data to the recorder. This means that the data source is inhibited for only about 0.1 ms out of a print cycle of 50 ms dwation. compared to being inhibited during the complete print cycte withoul storage.

Specifications

Printing

Accuracy: identical to inpul device used.
Print cycle tlme: 50 ms .
Printing rate: 20 lines/sec, max (asynchronous).
LIne spacing: adjustable, 3.5 to 4.5 lines/inch.
Printing: ink roller or pressure sensilive paper. Pressure sensitive paper is recommended for operation under extreme temperatures. Print wheels: 16 positions, numerals 0 through 9. - . +. Z. V. Ω. *: special wheels available at minimal cost.

Electrical

Input requirements withouk dala storage: parallel entry, BCD $\{=8421 .+4221$), "1" state musi differ from " 0 " state by $>-4.5 \mathrm{~V}$ bui $<75 \mathrm{~V}$.
Input requirements with data storage: parallel entry, 8CD. "I" slate must dilfer from " 0 " state by $>1.3 \mathrm{~V}$ but $<35 \mathrm{~V}$. Input drive $\geq 100 \mu \mathrm{~A}$. Data must be on lines when print command occurs and remain until release of holdoff ($85_{\mu s} 5$ afer print command).
Transfer time: 50 ms withoul storage, 0.1 ms with storage.

- Storage option
- Ink or pressure sensitlve printing

General

Operating temperalure: $-20^{\circ} \mathrm{C}$ to $4.55^{\circ} \mathrm{C}$ with pressure scasitive paper, $+10^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$ with ink roller.
Power; 115 or $230 \mathrm{~V} \pm 10 \% .50$ to 60 Hz , about 100 W idle, 190 W at 20 lines $/ \mathrm{sec}$. 50 Hz model with 20 prots/second also available.
Dimenslons: cabines: $226 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \mathrm{~W} \times 467 \mathrm{mmD}\left(8^{1 / 2^{\prime \prime} \times}\right.$ $16^{3} / s^{\prime \prime} \times 18 \mathrm{~s} / \mathrm{s}^{\prime \prime}$).
Weight: net, 18 kg (40 lb). Shipping. $24 \mathrm{~kg}(53 \mathrm{lb}$).

Opt 055 clock for 5050 B printer

General: the Option 005 Clock provides a compact, convenient and versatile method for recording time-with 0.1 second resolutionalong with other data measurements being recorded by the 5050B Printer. In addition Option 0S5 serves as an automatic measuringrecording system programmer by allowing printing at preselected lime intervals.
High regolution: easy to read display tubes indicate lime to 23 hours, 59 minutes, 59 seconds. In the primtout there is á seventh digit available for indicating tenths of a second.

Speciflcations

Time base: selectable to be $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$ or exiernal. Exiernal requires 10 pps negarive pulse.

Print Interval

Internal: selectable to be $1 \mathrm{~s}, 10 \mathrm{~s}, \mathrm{I}$ mid., 10 min.. or I hour between prints.
External: rates up to 20 prinis per second.
Time of measurement aceuracy: ume recorded may be $0.1 s$ less than correct isme \pm line accuracy.
Visual Indication: 6 in-line digital display eubes indicate to 23 hours, 59 minutes. 59 seconds.
Prlated output: seven digits indicate to 23 hours, 59 min . 59.9 s .
BCD output code: +8421 or -8421 selectable. Output adapiable to oiher recorder codes.
Print lormat: time pristable in any recorder column.
Clock set: 4 switches electonically sel clack to desired initial time,
Power: IIS V or $230 \mathrm{~V}=10 \%$. 50 Hz or 60 Hz .
Wolght: net. 1.4 kg (3 lb).
Operating supplies Price:
$\begin{array}{ll}9281-0386 \text { Standard paper (1 pad) } & \$ 2.50 \\ 9281-0387 \text { Pressure sensive paper (I pad) } & \$ 4.50\end{array}$

Opilons

001: 8421 " 1 " state positive code dise N/C
002: 8421 "1" slate negative code disc N/C
003: $4221^{\prime \prime} 1$ " state positive code dise N/C
All three code dices are supplied with each 5050B at no chagge. However, one of the above oplions must be specificd so the 5050B can be delivered with the desired disc instadlod.
010: 50 Hz operation add $\$ 25$
015: Molor Control
add \$125
020: Column Boards (one required, in addition to add $\$ 185$ ea,
basic instrument, for each two columns to be operited)
032: Inpur cable, one per data source
add $\$ 85$ ea.
050: Siorage for 20 columns
\$575
051: Storage for 10 columns
add $\$ 300$
055: Clock (faciory insialled)
(Price of kil for field insiallation avadable on request.)
061: Package for 5360 A
add $\$ 2250$
908: Rack Flange kit
add $\$ 3 S_{1}$
910: Exira manual
5050日 DIgital Recorder
$\$ 3150$

Introduction

The digital electronic frequency counter has come a long way since the first versions appeared over iwo decades ago. Once the luxury of large meterology labs and some crystal manufacturers, the Frequency counter is now common-place in laboratories, on production lines, as a service tool and in automatic instrumentation systems. Moreover. counters have become increasingly more versatile and more powerful in the measurements they perform. thereby finding much wider applications. When Hewlet1-Packand introduced the 524 A in 1952 it was considered a milestone: the counter could measure frequencies up to 10 MHz , or the lime between two electrical events to a resolution of 100 ns . Twenty-five years later. HP's product lines fealures counters that can measure the frequency of a 40 mV signal al 23 GHz completely automatically. or can resolve time to 20 ps . the same time it takes light to travel about 5 mm .

Baslc counter measurements

The basic measurements which counters are cable of performing are described in this section.

Fraquency

This [undamental measurcment is performed by totalizing the number of inpul cyeles or events for a precisely known period of time. The total count that results is pro portional to the unknown frequency, and logic circuils intermal to the counter position the decimal point such that the display directly indicates the input frequency. The
time reference is usually derived from a precision quartz oscillutor intemal to the counter.

Using this basic technique allows measurements to 500 MHz to be made. Scyeral meithods are available, however. to extend this irequency range 1023 GHz and more. These are described in more delail below.

Period

This inverse of frequcocy, this capability is sometimes offered 10 provide the user with high resolution. low frequency measurements. In digital systems a period measurement represents the average bit to bit lime of the input signal.

Totalize

The measurement is similar to frequency except that the user now controls the time over which the measurement takes place. With digiral systems becoming more prevalent, this fundamental measurement assumes considerable imporance. The HP 5345A, with is ability to totalize at a 500 megabit rate. represents the state of the art at this time.
Ratlo
The ratio between two input frequencies is a measurement that is also uffered by some counters. The major applicalion for ratio is measuremont of harmonically related signals.

Scaling

Some counters offer the capability of providing a digital oulpul signal whose fricquency is a scaled or divided version of the iaput frequency.

Time Interval

The measurement of the time between two events or the time between two points on a common evert, commonly referred to as time interval, is of major importance and is used in a wide variety of applicalions.
The $\pm 20 \mathrm{pS}$ single shot resolution of the 5370A represents today's slate of the art. This unil utilizes a new concept of phase locked vemier interpolation which eliminates quantization errors. HP also pioneered the concept of time interval averaging, whereby for repetitive inputs substantial improvement in resolution over the single shol measurement can be obtained.

Time interval averaging is oficred in four HP counters (5370A: $5345 \mathrm{~A}: 5328 \mathrm{~A}$ and 5308 A). Also available for precision time interval racasurements is the 5363A Time Interval Probes box usable with any time interval counter. The 5363A has a ± 10 voli dynamic range as well as a buill in calibalion feature and digitaly set trigger voliages to eliminate the major uncertaintics associated with ${ }^{7}$ II measurements. The S363A is fulty programmable via the HP Interface Bus for systems applications.

All manner of time interval measurements are discussed in detail in Application Note AN 191 'Time Interval Mensurement With an Electronic Counter" available on request from any Hewlett-Packard sales office.

Appllcation Note 172: The Fundamentals of Electronls Frequency Counters
This forly-four page application note describes in dexail the measurements menLioned above. In addition, the key considerations in making frequency and lime measurements, plus the major characteristics required of a counter for certain applicutions are also described. For those readers who require more than the bricf resume above, this application note is available on request al any Hewlett-Packard sales office.
The contents of AN 172 are as follows: Introduction
Fundamentals of Electronic Counters
More About the Basic Frequency Counters
Input Considerations
Oseillator Characteristics
Sources of Measurement Ertor
Prescaling-Increasing the Frequency Response
Normalizing and Preset Counlers
Period Measurng Frequency Counters
Time Interval
Input Considerations
Trigger Level
Measurement Accuracy
Inercasing Acciracy and Resolution
Microwave Frequency Measurements
Heterodyne Conversion
Transfer Oscillator
Some Examples or Component Technolegy
The major types of electronic counters
While counters can potentially offer all the measurements capabilities described above, they essentially fall into four classes: frequency counters: univensal counters; microwave counters and reciprocal counters. These are described below.

Frequency counters

These counters offer the basic capability of frequency measurement and in addition sometimes provide some or all of the other measurements described above except time interval. HP has a wide range of counters that fall into this class including: a) the 5380 low cost bench series, a family of three counters fealuring $80 \mathrm{MHz}-7$ digit. 225 $\mathrm{MHz}-8$ digit and $520 \mathrm{MHz}-9$ digit instruments; b) the 5300 portable, battery operated snap-on series with the 5303 B snapon covering 525 MHz and the 5305 B 1300 MHz connter.

Table 1. Frequency counters summary

Matel Na	Froguency Aange	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Olyis } \end{gathered}$	$\begin{aligned} & \text { Mase } \\ & \text { Base } \end{aligned}$	Other functions-
5300A/530]A	10 MHz	5	$3>10^{-7}$	\dagger
53814	80 MHz	7	3×10^{-3}	
538.2A	225 MHz	θ	$3 \times 10^{\prime}$	
538.3A	520 MHz	9	$3 \times 20^{-}$	
5300B/53038	525 N.K:	8	3×10^{-3}	
53008/53058	$1300 \mathrm{MH} / 2$	8	3×10^{-1}	
S3414: Opt. 003	1500 MHz	10	1×10^{-3}	
53414	$\triangle 500 \mathrm{MHz}$	10	1×10^{-7}	
5340A	18000 MH	B	3×10^{-7}	
53424	18000 MHz	11	1×10^{-3}	A. 50. 20

[^21]Table 2. Unlversal counter summary

$\begin{aligned} & \text { ModsI } \\ & \text { Na. } \end{aligned}$	$\begin{gathered} \text { Treguenty } \\ \text { Range } \\ \hline \end{gathered}$	Time Imerral Rasolution		$\begin{aligned} & \text { Mms } \\ & \text { Base } \end{aligned}$	$\begin{gathered} \text { Oiner } \\ \text { Functions. } \end{gathered}$
		Single Shol	Averspina		
S300N5304A	10 MHO	100 ns	-	3×10^{-1} dea Menta	P. MPa, I. R
$53000 / 53024$	50 MH	100 ns	-	3×10^{-7} per Manth	MPA, I, R
53002/5308A	75 MHz	100 ms	10ips	3×10^{-7} per Month	P. MPA, I, R
53288	100 MHz	100 ns as 10 as	i 1 Ds	3×10^{-7} pee Morth	P. MPA, I, R, I, V^{-}
53354	500 mHz	2 ns	2 -s	5×10^{-7} per Day	P. MPA, I. R
53284001030	512 MH	100 חs dr 10 ns	10 ps	3 - 10-1 dee Manth	P. MPA. I. R. E. V--
592EA 081 031	1300 MkS	100 ns c : 10 ns	10 ¢5	3: 10 ' वet Montm	P. MPA, I, R_{1} E. V .-
5370.	100 MHz	$=20 \mathrm{ps}$	1 ps	1×10^{-1} Per Manth	P. MPA, II, II AVE, ¢

- 5ee legend opposlte page
-Optlenal Iunctlon

Universal counters

These instruments provide time interval capability in addition to the olher measurements provided by the frequency counter. The 5302A snap-on is a perfect example of such an instrument featuring 50 MHz frequency, 100 ns time interval plus period. ratio and tolalize. Another member of the same family. the 5308A is ideally suited as a general purpose bench instriment, for in addition to the 5302A capubilities the 5308 A offers tíme interval averaging, tolalizing (with electronic stan. and slop) and frequency to 75 MHz . The 5304 A snap-on especially oriented towards time interval featuring adjustable holdoff. The 5328A (100 MHz) and 5328 A OpI 031 (1300 MHz) are high performance rach mount instruments programmable (Opt 011) via the HP Interface Bus. Time interval averaging gives resolution to 10 ps on repctitive signals and Opt 040 also has 10 ns one shot resolution. Finally. the 5345 A offers a 500 MHz bandwidth, with totalizing. ralio and period capability to this speed (50 ps). plus 2 ns single shot time interval and 2 ps lime interval averaging! This exiremely powerful insirument feaures plug-in fexibility (see page 238). and a reciprocal frequency measurement mode (see below).

Mlcrowave counters

These instruments provide high accuracy frequency measurements jnio the microwave spectrum. The 5342A harmonic heterodyne microwave counter automatically measures frequencies to 18 GHz under microprocessor control, I Hz in 1 second, and features resolution and wideband FM iolerance. The keyboard controls allow the user to program his own frequency offsers. The amplitude option will simultanecusly display input frequency and input level for readily monitoring microwave devices and equipment. The 5340 A automatic transfer ascillator counter can measure frequency from 10 Hz to 18 GHz via a single input at -35 dBm sensitivity! The 5341A automatic heterodyne counter provides coverage to 4.5 GHz using the switchable filter technique for super fast acquishlion times. The 5354 A is a 4 GHz heterodyne conventer that plugs into the 5345A mainframe and provides extremely high resolulion aulomatic measurements for CW and pulsed KF down to pulse width of 20 ns . Application Note 173 discusses automatic pulsed RF measurements in detail. Application Note 190 discusses making frequency mcasurements to 40 GHz with counter accuracy using a 4 GHz Microwave Counter together with readily a vailable microwave genemators and mixers.

Tabie 3. Microwave counter summary

Hadel Na	$\begin{gathered} \text { Frequancy } \\ \text { Aangt } \end{gathered}$	Techaique	$\begin{aligned} & \text { Mrie } \\ & \text { Base } \end{aligned}$	Sensidivily	Number of Digls
5354 ${ }^{-}$	$1 \mathrm{CH}_{2}$	Auto Heterodyne	$5 \times 10^{-3} \mathrm{Jay}$	$-10 \mathrm{dBm}$	11
53018	4.5 GHI	Auto Meterodyne	1×10^{-7} Manth	-2018m	10
5254C/5255A/5236A"	10.18 GML	Monual Heterodyng	$3 \times 10^{-3010 y}$	-13 6 ¢m	8
5257A ${ }^{-}$	18 6H2	Manual İanstar Osc	$3 \times 10^{-1 / 0.0 y}$	-768m	8
3340k	24 CH 2	Auto Transfe: Ose	3×10^{-5} Month	$-35 \mathrm{dBm}$	8
5242A	$18 \mathrm{GH} / 2$	Auto Harm Hetrodyne	$1 \times 10^{-7 / M o n i h}$	-25 dBm	11

[^22]
Aeclprocal counters

A special class of frequency counters. referred 10 as reciprocal counters. are also available from Hewleti-Packard. The distinction between these and conventional counters is that the later provides I Hz resolution in one second, whereas the resolution of the reciprocal counter is proportional to the frequency of the inlemal counted clock. The rour instruments available are summarized in Table 4 below. Nole thai boik the S360A and S345A are plug-in instrumenis and hence the high mainframe resolving power offered by both apply 10 any of the compatible plug-ins. These two insinuments ilso have pulsed RF measurement capability via an extemal gate mode. In addilion the 5345 A includes a unique frequency averaging mode that allows high resolution measurements on repelitive pulses even if pulsc width is 50 nsecs. The 5370A exiends the reciprocal technique by means of phase locked vermier interpolation to give the ulimate in resolution. Frequency measurements to beiter than 10 digits may be made in I sec.

HP Interface bus

The more recently inlroduced counters (and other HP digital instnments) have a digital input/output structure which is compatible with the interlace bus which is Hewlelt-Packard's implementalion of the IEEE Digital Interface Standard 488-1975. HP Desklop Calculators in the 9820/21, A/ 30A Serien and Minicomputers in the HP $\underline{2} 100 / 21 \mathrm{MX}$ Series are alno comparible with the inlerface bus, making il possible to expand the capabilities of the individual in-
strimenis even into areas of real fime dala reduction and control. Intertiang is available for interconnecting up to 1.4 campatible devices on one $1 / 0$ slot. The HP 59110A Compurer laterface serves for minicompulen and the HP 59405A HP-1B Calculator Interface interconnects up 1014 devices using one 1/O slol and one ROM. At this time, compatible insinuments are the 5345λ. 5340 A . 5341 A . 5328人. and 5312A (for 5300B system). Accesnories in the 59300 A Series and the 5150 A Themal Printer are also compatíble.

Table 4. Reciprocal trequency counters

Model	frequency Range	Hebmurement Resolution	Number of Dlplts	$\begin{aligned} & \text { Tme } \\ & \text { Base } \end{aligned}$	Sessilivily
5300N/33074	2 MHz	3-10.	6	3×10^{7} pee Monlh	10 mV tms
5323A	$20 \mathrm{MHF}_{i}$	$1=10 \%$	7	$3 \times 10^{-7} \mathrm{per}$ Month	100 mv rms
5360N5365\%	$120 \mathrm{MH2}$; < 100^{-11}	12	5×10^{-10} Der Day	20 mV ims
5345A	500 MH	2×10	11	5×10^{10} pet Day	20 mV ms
53704	100 MH	1×10^{-10}	16	3×20^{-7} per Montio	20 mV ms

Table 5. Counter selection gulde

Classification	Description	Traquency	runclans:	Tine Base	Price	Pagt
$\begin{aligned} & 538 L A_{1} 5382 A \\ & 85383 A \\ & \text { Low Cost } \end{aligned}$	Trud-lunat MP quelity and rchishliry at now low prices.	To 520 MHz	F		$\begin{aligned} & \text { Frum } \\ & \mathbf{S 2 9 5} \end{aligned}$	287
3300 series Economic Portable	Select from \& plug-ans It meet present needs. Move up ini fluthens or liequency range when needed. Battery pacti, II io A convertes anis ip interface bus output module tetend uersatility.	To 1300 MHz	I, P,MPA, II, II AVG, T, H_{1} Y, 1	$\begin{aligned} & 3 \times 10^{-1} / \mathrm{Mo} \\ & 0 p \mathrm{tinnal} \\ & \mathrm{I} \times 10^{-1} / \mathrm{Mo} . \end{aligned}$	$\begin{aligned} & \text { From } \\ & \$ 585 \end{aligned}$	278
5328A Universal Counter	A new high performance universal counter with sub nanosecond time interval averaging capisbility that can include thigh frequency measterement, DVW or HP Interface Bus chlinas.	10 1300 MHz	$\begin{gathered} \text { IFBPAII } \\ \text { II AVG, } I_{i} R . \\ Y, E \end{gathered}$	$\begin{gathered} 5 \times 10^{\circ} / \mathrm{Ma} \\ \text { Uplionial } \\ 1.5 \times 10^{-} \times / \mathrm{Ma}_{1} \end{gathered}$	$\begin{aligned} & \text { Frow } \\ & \$ 1300 \end{aligned}$	270
5245 Series Eeneral Putpase Plug-in Counters	Two msintinners and 9 plug-ins provite unmatched versatility flur ms illouide ud to lis CH2 'requency, 10 niser lime intervat and voliage capatilitles.	$1015 \mathrm{GH2}$	$\begin{gathered} \text { I, P, MPA, T। } \\ \text { T.R.V. } \end{gathered}$	$\begin{aligned} & 91 \times 10^{9 / M 4 .} \\ & \left.1<3 \times 10^{-8 / 0} / 2 y\right) \end{aligned}$	$\begin{aligned} & \text { From } \\ & \$ 4675 \end{aligned}$	286
5345 Series High Pertormance Plugin Counters	A new series of high pertormance mainframe and plug-ins. prowding 500 MHz direct count, 2 nses time interval, and 4 GHz automatic pulsed RF measerements.	Is 18 CHz			$\begin{gathered} \text { From } \\ \$ 4400 \end{gathered}$	262
$\begin{aligned} & 5340,5341,5342 \mathrm{~A} \\ & \text { Automatic } \\ & \text { Counters } \end{aligned}$	Broad band, Aigh sentit vily, microwaye Ireguency mea. surements $10 \mathrm{hz}-7.5$ Ghti $10 \mathrm{hi}-4.5 \mathrm{Gieq}$ and $10 \mathrm{~Hz}-$ 23 GHz	To 23 GHz	F		Fram 30500	288
5370A	Highest resolution frequency measurements and lime interval measurements to $=20 \mathrm{ps}$ reṣolution	100 MK	16	$3 \times 10^{-1 / m m}$	\$5500	277
5360 Compuling Systems	Accisate frequency measurements available plus inme inferval measurements to 100 psecs.	T0 180 OHy	I.P.MPF,II	$\begin{aligned} & 1.5 \times 10 \times 10_{0} \\ & 15.5 \times 10108=y\} \end{aligned}$	$\begin{aligned} & 750 \mathrm{~m} \\ & 53000 \end{aligned}$	287
Legend for Functio $=$ Frequency P $=$ Feriod MPA $=$ Multopre. P II $=$ Ime Inte			$\begin{aligned} & \text { y } \\ & \text { Fo } \\ & \text { AO } \end{aligned}$	Voliage Electroniantily Contan Frequency Otisets Amplitude Offects		

500 MHz plug-in counter

The 5345A Electronic Counter represents the mosi advanced general purpose instrument in the Hewlet1-Packard Counter Product line. Utilizing state of the art monolithic bipolar integrated circuit technology especially designed and manutactured at HewlettPackard. this instnament provides unsurpassed power, versatility and flexibility in frequency and time measurements.

Major malnirame features

Frequency: direct from Dc to 500 MHz -Reciprocal technique provides high measurement resolution.
Time Interval; resolution of 2 ns single shol.
Avaraging: new modulated clock lechnique gives true averages under all condilions. T.I. resolution extended to 2 ps. Frequency averaging improves R.F pulse measurements similarly.
Totalize: 10500 megabil rate on both A and B inputs. $A \pm B$ functions also available.
Ratlo: from DC 10500 MHz on both inpuls.
Fully programmable: provides great nexibility when used with calculators and computers.
Plug-in versallity: (wo piug-ins presently available (see page 268) with an on-going R\&D program co extend this number. In addilion the 10590 A plug-in adapter allows mow existing $5 \boldsymbol{2} \mathbf{5}$ plug-ins to be used.

Slgnal Input clrcults

Signal conditioning: fully optimized front end includes sivichable

Figure 1. Input Switches
50贝/I M Ω input impedances, $D C / \wedge C$ coupling, and slope selection that assures eriggering on any waveform.
Sensltulty, dynamle range: highly sensitive wideband amplifiers

Figure 2. Typical Amplifier Sensilivity

- 500 MHz Direct Counting
- 20 mV Sensitivity DC to 500 MHz
- 2 ns Single Shot T.I. Resolution
- Averaging to 2 ps resolution
- Pulsed RF and Microwave Measurements
- Programmable for systems applications via HP-IB
avsure measurements on even the lowest level sinusoidal and digital signals. The inpuls also feature an extremely wide lincar dynamic range of -2 to +0.5 V do that greatly increases measurement ver. satility, especially on digital input signals.
Frequency measurements
Reclprocal capablity: one of the advantages of measuring period

Figure 3. Measurement Resolution
and consputing the frequency is that measuremint resolution is independent of inpui frequency and at the maximum to which the instrmment is capable of resolving. Thus for example, a : MHz input can be resolved to $2 \times 10^{-\theta}(=0.002 \mathrm{~Hz})$ in one second, whereas the convertional counter provides I Hz resolution, some 500 times less.

Measurement spaed

mode el Oparaion	geadines per Sooond
Normat Operation [Mas sample raie)	10
Eternally amed	509
Exemally gated	500
Computer Jump	9.000

The extremely high resolution oblained in one second can be Iraded for measurement speed. For example a 100μ s gate time provides a resolution of 2×10^{-b} yel the measurement can now be made 5000 limes a second, thus making the 5345^ an invaluable tool in high speed data acquistion systems.
Ext gated capabillty: via the rear panel gate control input: this capability atlows the operator to determine at what point is real time and for how lang the measurement is to be made. This capability essentially replaces the front panel "sample rate" and "gate time" conirols.

Figure 4. External Gate Control

The major application is in the measurement of puised RF signals. Frequsncy averaging: the minimum pulse width for which the inpul frequency can be measured is 20 ns . The single shol measura ment resolution is 2×10^{-8} divided by the GATE TIME. This resolution can be improved up to 1003 times by a unique mode of operation known as frequency averaging that is built into the mainframe. The only requirement for this mode is that the signal is repetitive.

Figure 5. Frequency Averaging to Increase Resolution
In addition to gready enhanciug narrow pulse measurement capability, the frequency averaging mode also allows higher resolution on pulse profile measurements.

Time Interval

Precision messurement: the single shot time interval measurement resolution of the 5345A is 2 ns . which is the time it takes lighe to travel approximately 2 ft - the 5345A is an extremely high resolving time measuring device.
Trigger level: quantiutive high speed time interval measurements are provided by the 5345 A since the user can simply determine where trigeering occurs even on complex waveforms. The method of delermination involves measuring the DC levels at which triggering occurs. These DC levels are available at rear panel BNC's.

The ability to determine trigger level, together with high sensitivity and wide dynamic range of the inputs gready enchances the versatikity and power of the 5345A in time interval measurements.

Figure 6. Using EXT GATE to Measure Tm

Ext gate capabllity; external galing adds even more versatility 10 the fine interval neasurements of the 5345 A , as measurements sucb as thal shown in figure (6) indicate.
Tme Interval averaging; for repetitive inpurs a successive number of measurements may be automatically averaged by the 5345 A . obtaining up 101000 times improvement in resolution (2 ps). This av. eraging mode may be used irrespactive of whether the instrument is in the conventional or ext. gate mode of operation.

Totalize

High speod: the 5345A has the ability to totalize to a 500 megabir
rate through either or bolk A and B inputs. Coupled with the high sensitivity and full sigoal conditioning of both channels, this capabiity enables measurements to be made on mosi modern digital systems.

Figure 7. Selecting a Portion of a Pulse Train

Ext. gate capability: using the external gated mode allows the user to seleet only the desired portion of the input pulse train for measurcment.
$A=B$ Modes
The A-B mode is used for companison tests belween high speed reference and lesi signals applied to the two mainframe inputs.

Figure 8. Comparison Measurements

Any difference betwoen the total number of eveats accumulated in each channel is indicated by the 5345A display after the measurement is completed.

The primary application for the $\mathrm{A}+\mathrm{B}$ mode is in the measurement of NRZ signals. By setting the " A " irigger slope $10^{\circ} "+$ " and the B slope to " - " allows all iraositions and heoce bits of the NRZ signal to be counted. Thus 1 gigabit NRZ waveforms can be measured.

This mode of operalion does not introduce any limitalionsmaximum input rate is 500 megabits on either channel and extemal gating may be used.

Rallo

This measurement represents the ratio of the number of events occuring through channel B divided by the aumber occuring through channel A. The major features ane: a) that the measuremert or comparison (sinular to the A \pm B totalize modes); and, b) the frequency or bit rate of either channel can vary from $D C$ to 500 MHz . These fealynes allow this measurement to be extremely useful in digital systems and synthesizer check out.

Digltal //O

Option 011 provides complete digital input-output capability (excepl slope and level control) to the 5345A. Digital outpus is a bit parallel, bste serial ASCII coded formal and the L/O structure conforms to the Hewlett-Packard Interface Bus (HP-1B) standard. This option is particularly recommended for a bench top calcuiator controlled environmen.

Oprions 012 is similar to Option 011 , but includes progrararable control of slope and level. Opion 012 is recommended for a computer conirolled environment.

The model 59310 A Interlace Kit provides a complete operational package for use with the HP 2100 Series Computers. Similarly, other interface kits allow the user to Interface the 5345A Option 011 or 012 and other HP-IB compatible devices to the 9820,9825 and 9830 Series HP Calculalors.

5345A Condensed speclfications

Frequency/period measurements

Aange: 0.00005 Hz to 500 MHz .
Accuracy: $\frac{-2 \times 10^{-8}}{\text { gate lime }}=$ Irigger error $=$ time base error.
Gate time: 1000 scconds to 100 namoseconds in decade steps: <50 ns in MIN position.
Time interval/time interval average
Range; 10 nsec to 20.000 sec .
MInimum dead lime: 10 nsec.
Trigger pulse width: I nsec nimimum widb input at minimum vollage input.
Accuracy
Tlme Interval: \pm trigger error** $=2 \mathrm{~ns} \pm$ (ime base emor
Time Interval averagling:
$=\frac{\text { trigger error } 1 / 81 / 8 \pm 2 \mathrm{dsec}}{\sqrt{\text { intervals averaged }}} \pm 0.7 \mathrm{nsec} \pm$ time base accuracy
not affected by harmonics of clock frequency.

Regolution:

Time Interval: 2 nsec.
Time intenal average:
$\pm \frac{2 \text { nsec }}{\sqrt{\text { inlervals averaged }}}=2$ picoseconds.
-Tugger efo: in sinewaves of 40 ob signal-to noise amplitude satio is $=1=0.3$, or one period rumber of periods nusraged], II prak noise amplitude is greater than 10 millwolts, additional miscounking may occur this situation can arise when measiming high-level entituls of breadband syontiasized si insal sourcess.
\cdots For sny wave shape, trizger errot is heas lian

- 00025 125
\pm signal Slopo
(V/ $\mu \mathrm{s})$
fatio B / A
Range: both channels accept dc to 500 MHz .
Accuracy: = L.S.D. 士 trigger error".

Start/stop

Range: both inputs dc 10500 MHz .
Modes: A, A B determined by rear panel switch.
Scallng
Range: dc 10500 MHz .
Scalling factor: selectable by GATE TIME setting. Scoling factor equals GATE TIME selting/10-9 seconds.
Input: mput signal ihrough channel A.
Output: outpuifrequency equals inpul frequency divided by scaling faclor. Rear pancl BNC supplics 80% duly cycle TTL compatible pulses.
Input channels A and B
Range: 0 to 500 MHz de coupled 50Ω and $1 \mathrm{M} \Omega ; 4 \mathrm{MHz}$ to 500 MHz ac coupled. $50 \mathrm{~s}: 200 \mathrm{~Hz}$ to 500 MHz ac coupled, $\mathrm{I} \mathrm{M} \Omega$.
Impedence: selectable. $1 \mathrm{M} \Omega$ shunted by less than 30 pF or 50Ω (nominal).
Senslitivity: X), 20 mV mins sine wave and 60 mV peak-to-peak pulse $X 10.250 \mathrm{mV}$ ms sine wave and 750 mV peak-10-peak pulse. Dynamic range: 50Ω \& $\mid \mathrm{M} \Omega: 20 \mathrm{mV}$ to 250 mV rass sine wave (XI); 250 mV to 2.0 V ms (X 10).

Trigger level: adjusiable over $=1.3 \mathrm{~V}$ dc.
Output: rear panel BNC connectors bring out CHAN A TRIG LEVEL and CHAN B TRIG LEVEL for convenien DVM monitoring. Accurate to $\pm 15 \mathrm{mV}$.
Common input
In this mode the signal is applied to channel A.
Range: ac coupled $50 \Omega, 4 \mathrm{MHz}$ to 400 MHz ; ac coupled I $\mathrm{M} \Omega .300$ Hz to 400 MHz .
Impedance: 50Ω remains 50Ω; I $M \Omega$ becomes $500 \mathrm{k} \Omega$ shunted by $<60 \mathrm{pF}$.
Senslitily: $50 \Omega: 40 \mathrm{mV} \mathrm{rms}: 1 \mathrm{M} \Omega$: No change.
Dynamic range: 50S: 40 mV to $500 \mathrm{mV} \mathrm{ms}(\mathrm{XI}) ; 500 \mathrm{mV}$ to 4 V rms (X 10): $1 \mathrm{M} \Omega$: No change.

General
Display: II digil LED display and sign. Annunciator displays ksec 10 nsec, k to $\pi, \mu \mathrm{Hz}$ to GHz . Decimal point is positioned with DISPLAY POSITION conirol or positioned after the firsi, second or third most significant digit if DISPLAY POSITION is in AUTO. Leading zeros are suppressed.
Overflow: asterisk is illuminaled when display is overflowed.
Sample rate: continuously variable from $<0.1 \mathrm{sec} 10>5$ sec with front panel control. In HOLD position the lasi reading is maintained until the counter is reset.
External arm Input: counter can be armed by a -1.0 V signal applied to the rear panel 50Ω inpul.
External gate Input: same conditions as for EXT ARM.
Gate output: >1 volt into 50Ω.

Time base

Standard high stablity time base: crystal frequency. 10 MHz (10544 A).
Stablity
Aging rate: $<5 \times 10^{-10}$ per day
Short term: $<1 \times 10^{-11}$ for 1 sec average.
Temperature: $<7 \times 10^{-0}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Opt 001: crysual frequency, 10 MHz .
Stability
Aging rate: $<3 \times 10^{-4}$ per month.
Short term: < 2×10^{-6} rms for 1 sec .
Temperature: $<2 \times 10^{-0}, 25^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.

$$
<5 \times 10^{-6}, 0^{\circ} \mathrm{C} 1055^{\circ} \mathrm{C}
$$

Llne voltage: $<1 \times 10^{-5}, \pm 10 \%$ from nominal.
Self test: a 100 MHz signal is intemally applied.
External frequency sfenderd input: input voltage $>1.0 \mathrm{~V} \mathrm{rms}$ into $1 \mathrm{k} \Omega$ required from souree of $1,2,2.5,5$, or $10 \mathrm{MHz} \pm 5.0 \times 10^{-\Delta}$ ($\pm 5 \times 10^{-n}$ for opl. 01). Inpui can be sine or square wave.
Frequency Standard Output: $>1 \mathrm{~V}$ rims into 50Ω at 10.0 M Hz sine wave.
Operating temperalure: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power fequirements: $100 / 120 / 220 / 240 \mathrm{~V}$ rms $+5 \%-10 \% 481066$ Hz . maximum power 250 VA .
Welght: $17 \mathrm{~kg}(37 \mathrm{lb})$.
Options and accessorles Price
001: Room Temperalure Time Base less $\$ 350$
010: Digital outpul only. HP Interface Bus fomma, add $\$ 250$
talk only. Useful with 5930LA ASCII-10-Parallel Con-
verter and S050B or 50SSA Digital Printers
011: Digital InpuUOutput same as Opi O10. Compati- add $\$ 800$
ble with HP Interface gus and alows 5345A to be remotely programmed
012: Digital I/O similar to Opi01I, Includes slope and $\$ 1450$
level contol
add $\$ 10$
908: Rack flange ki1
K13-59992A : includes state machine rester as an aid for
trouble-shooing the arithmetic processor
10595A Board extender kit: useful for Iroubleshooting \$475
plug-in boards white in operation
10590A Plug-in adapter: adapis 5245 series plug-ins 10
5345 (see nexi page)
K15-59992A Standby power unit: plug-in to maintain $\$ 1200$ oscillator operation for prolonged periods without line voltage

Avaliable reference material

5345A Dala Sheet
$5345 A$ Users Handbook
AN-173 Recent Advances in Pulsed RF and Microwave Measurements
AN-I73-1 Dynamic Measurement of Microwave VCO's
AN-174 Applications Series on Counter/Calcubator Instrument Groupings
AN- 19040 GHz Frequency Measurements
AN. 191 Precision Time Interval Measurements
HP Jourmal June 1974
3.D. \#90337D Colos Video Tape Applications and Demonserations

5345A Plug-In Counter
$\$ 4400$

Fully automatic to 4 GHz
Pulse Measurements
Frequency averaging

- Count a group of events between A and B
- Frequency sum and difference measuremenis

5353A

5354A Automatic frequency converter

The 5354A translates not only the microwave signal but all its modulation directly to the 500 MHz window of the counter (via the hetrodyne technique). It allows signals with a lange amount of FM to be easily characterized.

Perhaps even more powerius is its ability to take direct measurements on the carriens of very nartow mícrowave pulses. Pulse measuremenes can bc easily automated.
Range: 15 MHz 104 GHz .
Sengitlulty: -10 dBm (70 mV ms) aulo mode. -20 dBm lypical (22 mV rms) Manual/Pulse mode to 20 dBm (2.2 V rms).
Input signal capability: CW signats. Pulsed microwave signals. Signals with very high FM content.
AF Pulse width: determined by counter GATE TIME setting.
FM Sensitivity: overlap ar band edges $\pm 10 \mathrm{MHz}$. Maximum deviation al band center
$\pm 250 \mathrm{MHz}$, above I GHz and bclow 500 MHz .
$\pm 125 \mathrm{MHz}$, between 500 MHz and I GH \%
Operating modes: Automatic and Manual.
Automalic: measures lowes: frequency signal of sufficient amplitude to triger counter.
Manual; mersures signal within selected band. Signals of suff. cient ampliude between 15 MHz and 525 MHz will also be counted.
Acquisition time:
Automatle mode: CONT, WAVE. <2 ms: PULSED R.F..
<ls.
Manual mode: when proper band has been sclected CONT.
WAVE < $5 \mu \mathrm{~s}$; PULSED R.F. <20 ns.
Options Prlce
011: remole control via HP Interface Bus add \$200
and L.O. $=$ I.F.
5354A Automatle Frequency Converter
$\$ 3400$

5353A Channel C plug-in

The 5353^ Channel C Plug-In consists of a third input to the 5345A Counter. When the plug-in counting capability is combined with the mainframe galing capability it becomes quite easy to make frequency sum and frequency difference measurements.

For high speed digital applications, the grealest benefit the plug-in offers is the ability to count a specific group of events while ignoring others. This measurement is required in many applications such as compuler peripheral lesting and digital communications systems. It is accomplished in the evens C beiween A and B mode by applying a start signal to CHAN A and a stop signal to CHAN B while applying the data to be coumted to CHANC.
Fenge: de coupled: 0 10 500 MHz ; ac coupled: I M Ω : 200 Hz to 500 MHz: 50Ω : 4 MHz 10500 MHz .
Impedance: 50 (nominal). or I M $/ 2$ shunted by less than 30 pF .
Sensitluity: variable to 20 mV mss sine wave and 60 mV peak-topeak pulse. Attenuator settings are XI and X 10 .
Modes of operatlon: Frequency $C+A$ i Frequency $C-A$: Period
C: Frequency C: Ratio C/A: Average Events C, A 10 B; Events C.
A 10 B .
Events accuracy; Plus or minus one count worst case.
Optlone
011 : Digital Input. Full compatibility with HP Inter.
face Bus. Provides for digital control over all functions excluding amplifier.

Price

5353A Channel C plug-in
add $\$ 250$

10590 Plug-in adapter

The 10590 A allows the user to interface any of the 5245 series of plug-ins (except the 5264A) to the S345A (see page 254 for details on these plug-ins). The major application is to extend the frequency range to 18 GHz via the 5255 A . 5256 A and 5257 A plug-ins. In addition the adapter is "intelligent" in that it detects the plug-in being used and automatically adjusts the $\$ 345$ accordingly.

- Highest performance in general purpose counters
- Wide selection of plug-ins provide unmatched versatility
- Extremely high reliability proven from over forty million hours of field operation

The 5245L has gained unprecedented popularity due to its bigh periormance, flexibility and years of proven stability. Even (hough its performance has been recenly upstaged by the 5345A, the 5245L is still considered the slandard of the industry for instruments of this type with more 5245 L counters in operation today than all other plug-in counters combined.
The 5245 series consists of a family of majnframes and a series of plug-ins. The plug-ins provide frequency measurement 1018 GHz . high sensisivity, time interval and preset capability. The wide choice of mainframes and plug-ins means thal virually any measurement lask performable by counters can be accomplished by appropriate selection withirs this family.

The 5245 series counters are not only leaders in lerms of performance and versatility. they are unsurpassed in the indusiry for ruggedness, wide operating temperature range, and field-proven reliability.

The following is a description of the S245L mainframe. The other mainframes are similar to the 5245 L . The main differences are delineated in these condensed specifications. Refer to the 5245 series data sheet for complete details and specifications on all mainframes and plug-ins.

Specifications

5245L
Frequency measurements
Aange: dc to 50 MHz .
Gate tme: 1μ s to 10 seconds in decade steps.

Aceuracy: ± 1 count \pm lime base accuracy.
Pertod average massurements
Range: de to 1 MHz for single period; de to 300 kHz for muluple period.
Perlods avergged: I period to 10^{3} periods in decade steps.
Accuracy: $=1$ count $=$) time base accuracy $=$ trigger error**.
Malnframe measurement functions: frequency. period. period average, ratio, scaling.
Signal Input
Sensitivity: 100 mV rms.
Coupting: $A C$ and $D C$.
Impedance: I $\mathrm{M} \cap$ in paralkel with approx. 25 pF all ranges.
Attenuation: step attenuator provides nominal sensitivities of
0.1 . 1, and 10 V rms (SENSITIVITY switch).

Trigger Level: continuously adjustable over $\pm 3 \mathrm{~V}$ muhiplied by
the seting of the SENSITIVITY switch.
Compallble 5245 serles plug-Ins: all.
Tlme base: 10 MHz oscillator, aging rate $<3 \times 10^{-8} /$ day.
Display: 8 digits.
Operating temperature range: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Weight: net, 14.4 kg (32 lb) with blank plug-in panel.
Slze: $133 \mathrm{H} \times 425 \mathrm{~W} \times 416 \mathrm{mmD}\left(514^{\prime \prime} \times 16^{3 / 4} \times 16^{3 / \mathrm{h}^{\prime \prime}}\right)$.

Optlons	Price
go8: Rack Flange Kit	add $\$ 35$
5245L 50 MHz Electronlc Counter	$\$ 4675$

5245L 50 MHz Electronlc Counter $\$ 4675$

- Trigger error is <t. 3% of one period + numbar periods averaged for signals with 406 B
signas-to-noise ratio anj 100 my ms amphtude; error decreases as signal to noise ratro incoeasex

5379A

5375A

The Computing Counter is a gèneral pupose precision digital instrument with built-in arithmetic capability. It can measure the time between two events to a resolution of 100 pico-seconds. about the time it takes light to travel one inch.
The Compuing Counter's unique messurment lechnique employs extensive use of digital computation. Thus the mainframe contains an arithonetic unit which is an inhereot, indispensable part of the measurement cycle. The anithmetic capability of the macline has been made available to the user via several programming devices. This allows the system to be progratomed to solve equations where measurements are the variables, in real time. This capabiliry enomously increases the power of the Computing Counter System.
Key specifications include a de 10320 MHz direct count frequency range, measurement resolution of 1 part in $10^{10} \mathrm{per}$ sccond of gate time, and $=100$ psec single shot time intervat resolution using the 5379A Time Interval plug-in. A detailed description of the Computing Counter System and complete specifications are contained in the Computing Counter data sheet, available upon request.

5379a Time Interval plug-in

With the 5379A Time fitorval Plug-In. the Computing Counter becomes a high precision and versatile time interval meter. Measurements can be made dows to zero and even "negative" times by virtue of a unique arming scheme. Single shou events can be measured with ± 100 psec resolulion and an accuracy of ± 1 nsec. By programming the Computing Counter from any of a nomber of programming devices (such as the 5375A Keyboard), the average of a number of measurements can be displayed to resolutions better than 5 psec.

5375A Keyboard

The 5375A provides the Compuring Counter with the capability to add. subtract, multiply. divide and perform squarc root, logarihm and exponential functions. Decision capability and branching arc possible also. Electrical outpuls are made available for limit testing and peak to peak measurements.

10536A Plug-In Adapier

The 10536A Adapter is a versatile accessory which allows nine of the 5245 series plug-ins to be used in the Computing Counter. Frequency range can be extended to 18 GHz with these plug-ins.
Ordering Information 5360 A Computing Counter

Price
Opt 90.: Rack Flange Kit
$\$ 10000$
s379A Time Interval Plug-In
add $\$ 10$
5375A Keyboard
$\$ 1500$
10536A Plug-In Adapter
$\$ 2000$
$\$ 650$

5253B

5257A

5254 C

5255A

5256A

The 524s scrics of plug-ins adds greatly to the versaitity of the $5 \mathbf{2} 45$ series of plug-in counters. In addition, these plug-ins enhance the measurement capability of the 5345A Electronic Counter and the 5360 A Computing Counter by the use of plug-in adaplers which provide an interface between the plug-in and the 5345A and 5360A mainframes. A compatibility summary for presently available plugins is shown below. followed by brief descriptions of the individual plug-ins. Refer to the $\$ 245$ series data sheel for complete details and specifications for all the plug-ins.

Plug-in compatibility summary

5345A compatlbility (uging 10690A plug-In adapter): all except the 5264 A .
5380A compatlbility (using 10538A plug-In adapter): all excepl lle 5262 A . $5264 \mathrm{~A}, 5265 \mathrm{~A}$, and 5267A.
5245L/M compatiblity: all.
$5248 \mathrm{~L} / \mathrm{M}$ compatibilty: all.
5248 L compatibility; all except the 5264 A .

Specifications

5253日 Hetrodyne converter
$\$ 1150$
Frequency range: 50 MHz to 512 MHz .
Senalifily: -13 dBm to +13 dBm .
Mixing frequencles: 50 to 500 MHz in 10 MHz steps.

Input coupling: ac.

Accurgey: maintains counter accuracy.
Input Impedance: 50Ω.

5254C Heterodyna converter
Frequency sange: : 50 MHz 103 GHz .
Senaltulty: -13 dBm to +13 dBm .
MixIng frequencles: 0.15 to 3 GHz in 50 MHz sieps.
Input colipling: ac.
Accuracy: maintains counter accuracy.
input impedance: son.
Auxllary oulpuls: $1 \mathrm{MHz}-50 \mathrm{MHz}$.

5262A

5255A Heterodyne converter
Frequency range: 3 GHz to 12.4 GHz .
Senshivity: $-7 \mathrm{dBm} 10+10 \mathrm{dBm}$.
Mixing irequencles: 2.8 to 12.4 GHz in 200 MHz steps. Input eoupling: de.
Accuracy; maintains counter accuracy.
Input impedance: 50Ω.
Auxillary input: I $\mathrm{MHz}-300 \mathrm{MHz}$ at 5 mV sensitivity.
Auxillary output: $1 \mathrm{MHz}-200 \mathrm{MHz}$.

5256A Heterodyne converter

Frequency range: 8 GHz to 18 GHz .
Sensituvity: -7 dBm to +10 dBm .
Mlxing Irequenclet: 8 to 18 GHz in 200 MHz steps. Input coupling: de.
Accuracy: maintains counter accuracy.
Input impedance: 50n.
Auylliary Input: $1 \mathrm{MHz}-200 \mathrm{MHz}$ at 5 mV sensitivity.
Auxillary output: : M Hz-200 MHz.

5257A Transfer oscillator

Frequency range: 50 MHz to 18 GHz .
Input elgnal: CW. pulsed RF or FM modulated.
Sensittrity: $-7 \mathrm{dBm}, 50 \mathrm{MHz}$ to is GHz ; -4 dBm , 15 GHz to 18 GHz .

5261A

APC lock renge: approximately $\pm 0.2 \%$ of input frequency.
Pulse carrler frequency measuremonts: minimum pulse widh; $0.5 \mu \mathrm{~s}$. Minimum repetition rate: 10 pulses per second.
Input Impedance: 50』.
VFO atability: typically 1×10^{-7} per minute after 2 hours.

5262A TIme Interval unlt
$\$ 850$
Range: $1 \mu \mathrm{~s}$ to $10^{3} \mathrm{~s}$ (10 ($0^{4} \mathrm{~s}$ with 5246 L). Resolution: $0.1 \mu \mathrm{~s}$.
Input sonalivilty: 100 mV rms .
Start-Stop: ind epeadent or common channels.
Trigger slopa: positive or negative on Star and Stop channels، independently selected.
Trigger amplitude: both channels adjustable from $-250 \omega+250 \mathrm{~V}$ peak.
Input repetition rate: better than 2 MHz .
Input impedanca: from $10 \mathrm{kN} / 80 \mathrm{pF}$ at $\times 0.1$ multiplier setting 1010 $\mathrm{M} \Omega / 20 \mathrm{pF}$ at $\times 100$ setting.

5261A Video amplifler
Bandwith: 10 Hz to 50 MHz .
Input sanallivity: 1 mV .
Input Impedance: | $\mathrm{M} \Omega / 15 \mathrm{pF}$.
Auxllary output: 40 dB gain max into $50 \Omega ; 300 \mathrm{mV}$ mas max output undistored into 50Ω; source impedance 50Ω.

- $100 \mathrm{MHz}, 512 \mathrm{MHz}$ and 1300 MHz
- 100 ns or 10 ns time interval
- T.l. averaging to 10 ps resolution
- "armed" measurements
- DVM options
- HP-IB interface option

HP-IB

Model 5328A

Description

The 5328A, thn the use of the latest lechnology (such as a ROM conirolled measurement cycle) and a modular design, provides you with the optimum in universal counter price/performance. Opuional modules allow you to Lailor the performance of the 5328 A to meet your particular measurement needs. In many inslances, however. the standard 5328A offers all the capability you're ever likely to need:

Burst and CW measurements to 100 MHz : special gating circuits ston a measurement only when the input signal is present. allowing burst frequencies to be made as easily as CW measuremedis. The option 0.30 channel C extends this capability to 512 MHz : option 031, to 1300 MHz .
Single shot time Interval measurements: the standard universal module's 100 ns single shot resolvtion meets or exceeds the requircments for a wide range of applications such as mechanical and electromechanical device timing (relays), limic of Dight measurements (balistics), sonar manging, mdio ranging and navigation.

Time Interval averaging; resolution beller than 10 ps (10^{-11} seconds) for repetitive lime intervals as shon as 100 ps .
Perlod, pertod average, ratlo, fotallze, scale: cxim problem solving power for your special requiremenis.
Armed measurements; versatile arming modes (controlled by a rear panel switch) allow the real time control over when a measurement begins. Useful for measurements such as frequency burst profile and irequency sweep linearily.
Trigger lights: trigger light blinks whem channel is iriggering: light is ON when inpul is above trigger level: OFF when input is below irigger level. Simplifies erigger level adjustments.
High performance marker outputs: marker outputs (operational to 100 MHz) indicate where chamel is triggering in real time for oscilloscope monitoring applications. Provides messurement feedback to the operator for grealy simplified measurcment set-ups.

These features and capabilities make the 5328 A an excellent choice for general purpose lab use, electronic service, and production test. For more demanding applicalions, a variety of options offer extended performance al a modest increase in price.

Summary ol chaizetelotics

Model Ma	Oescripiton	Scalues
5328 A	Ualversal Counter	Frequency to 100 MHz . 100 ns single shol 1.1 ; S.I. averaging. Period Pellod Auge ratio totalizo
0 pl 010	Mugh Stablity	
Opl. 011	time Base HP-IS Interlace	Allowig 5328A to outpul data and be cantrofled wia the HP Interlace Bus.
Opl. 020	OVM	Single ended DVM for tigger level and external woltage measurements.
Opl. 021	High Performathce DUN.	fioating DYM ior trigger level ano high accuracy external yoltage measurements.
Opl. 030 OpL 031	512 hHz Channel C 1300 MHz Channed C	Frequency measurements to $512 \mathrm{MHz}_{1} 9$ digil display. Spequeng mescurements to 1300 Milk. 9 oigit display.
0 OL .040	High Perfoinancs Universal Module	Same as standard 5328 A but with 10 ns single shot T.L: improved T.I. averaging; improved T.I, accuracy; measurements with delay: I. $1 . A \rightarrow 8$ marker; hysteresis compensatiof:
OpL 041	Progrolmmanle Ingul	switchable input imperiance (I MO/50m). Full remote programming of all universal mooule controls thru opt. 011; 10 ns singlo shot T.J.; switchable I $M \Omega / 50 C t$ inpul Impedance.

5328A with Op1 021, 031, 041

5328A Option descriptions

Hlgh stablity time base (Opt 010)
The standard time base for the 5328 A is a room temperature 10 MHzerysial providing a long term aging rate of less than 3 pars in $10^{〔}$ per month. The option 010 oven oscilator offers excellent shot term and temperature stability which can concribute to higher mear. surement acuracy. The low aging rate of $<\times 10^{-11} / \mathrm{day}$ permits reduced intervals benveen time base calibrations
HP Interface bus for systems use (Opt 011)
The option $011 \mathrm{HP}-1 \mathrm{~B}$ Interface brings the full capability and power of the MP Imerface Bus. The S328A can accepi program code words over the HP-IB which remotely program various front and rear panel controls. In addition, measurement results may be outpit over the bus to H.P-IB compatible instruments, calculators, or compulers.

Remotely programmable controls include FUNCTION selection, RESOLUTION selection, ARMING. SAMPLE RATE (max, or manual). RESET, measurement modes, ouspul modes, and display modes. Option 041 adds programming of channel A and B input signal conditioning controls.
Digital voitmoters (Opt 02a, 021)
The unique combination of an integraling digital voltmeter with a universal counter produces a superb general purpose measuring instrument. By using a voltage to frequency conversion fechnique, the incremental cost of adding DVM capability to the 5328A is very low.
Two DVM options are available: the option 020 DVM with sinple-ended inpu1 and the option 021 High Performance DVM with noating input. You can use these DVMs to measure channel A and B ingeer levels and external voltages. Since a builf-in DVM greatly simplifies lime interval measurement sel-ups, it is highly recommended that one of the DVM options be selected, particularly if time iolerval measurements are one of your major applications.
High frequency channel C (Opt 030, 031)
With a high frequercy channel C module the 5328 is ideally suited for use in a wide variery of communications measuremeats. Option 030 gives direct count measurements to 512 MHz with 15 mV roms sensiliviry: option 031 counts to a full 1300 MHz with 20 mV mss sensilivity. Typical applications include servicing, maintaining,
calibrating, and monitoring communications transmitters and re ceivers such as found in two-way radio. radio and relevision broadcasting, mobile radio. and common carrier multiplexing and Iransmission.
Extended capabillty universal modules (Opt 040, 041)
Options 040 and 041 give extended performance for time interval measureinems. Option 040 is designed for bench use and includes "delay" eapabiliy for increased measurement versaility. Option 041 adds full programming of the input signat conditioning controls.

Both of these options generate a 100 MHz clock to give 10 ns single shot resolution for time interval measurments. This resolution is useful in applications such as computer/peripheral uming measurements. logic timing measurements. RADAR ranging, and optical ranging.
For improved time coterval averaging performance, the options have input channels adjusied for delay matching to better than 2 ns . Additionally, options 040 and 041 use a jiltered clock in T.I. AVG. function to give averaging even for those cases when the inpul repetition rate in syochronous with the counter's internal timebase.
Selectable input impedance adapts the counter to the measurement environment: SORfor fasl signals in a son environment, I M Ω to reduce circuit loading or to use with scope probes.
The "delay" feature of option 040 allows you 10 disable the inputs from Iriggering for selected periods of time ($20 \mu \mathrm{~s}$ to 20 ms). Delay is useful for ignoring high amplitude noise such as from chattering relays or ignoring stop pulses in multiple stop T.1. measurements.
Oplion 041 allows remote programming of input trigger level. slope, coupling. and adenuator setting. Under remote control. the input impedacce is independently selectable on the A and B channels. Also. a remote "Inver"" function switchs the A and B channel sigmuls internally. "Inver" gives exceptional flexibility for two channel time interval measurements.

Refroft kits

Retrotit kits, available for all options. allow you to upgrade the periormance of your 5328 A in response to your changing measurement requirements.
The condensed specifications on the following pages higblight some of the important performance cbaraclerisuics of the 5328 A and its options. Complere specifications and delailed applicutions information are available in the 5328 A data sheet.

Opt 020
DVM

Opl 021
High Periormance DVM

Digital voltmeter modules

Digital voltmeter measurements \dagger
DVM (Opt 020 and 021): rigger levels of input channels A and B and external voltages may be measured.

Maximum sentiwiy	Dpl 020	0 Pl 021
Heas. 1\|mer $\begin{aligned} & 10 s\left(\mathrm{~N}-10^{7}\right) \\ & 1 \mathrm{~s}\left(\mathrm{~N}=10^{\circ}\right. \\ & 01 \mathrm{~s}\left(\mathrm{~N}=10^{9}\right) \\ & 10 \mathrm{~ms}\left(\mathrm{~N}=10^{\prime}\right) \\ & 1 \mathrm{~ms}\left(\mathrm{~N}=10^{\circ}\right) \end{aligned}$	$\begin{gathered} 1 \mathrm{mV} \\ 1 \mathrm{mV} \\ 2 \mathrm{mV} \\ 20 \mathrm{mV} \\ 200 \mathrm{mV} \end{gathered}$	$\begin{gathered} 10 \mu V \\ 100 \mu V \\ 1 \mathrm{mV} \\ 10 \mathrm{mV} \\ 100 \mathrm{mV} \end{gathered}$
Range	$0 \mathrm{lo}=125 \mathrm{Vac}$	$\begin{gathered} =10 .=100 .=1000 \mathrm{Vdc} \\ \text { 3nd Autorange } \end{gathered}$
ACLUIJCy (20 m\|n. waril-uD)	$\begin{gathered} =0.5 \% \text { roasing } \\ =4 \mathrm{my} \end{gathered}$	$\begin{aligned} & \text { s } 0.03 \% \text { reading }=0.008 \% \\ & \text { range, for } 1000 \mathrm{~V} \\ & \text { range, } \pm 0.087 \% \text { reading } \\ & \pm 0.004 \% \text { rage } \end{aligned}$
Input lemminals	Single onderd	Floating pair
mout Impedance	10 mo	10 Mn
Normal mode relection ratio	$\begin{gathered} >60 \mathrm{AB} \text { al } 60 \mathrm{~Hz} \\ 150 \mathrm{~Hz})=0.1 \% \end{gathered}$	$>80 \mathrm{~dB}$ al 50 Hz giankat thilh filles on
EHectivg cammon Mode rejection rallo (1 kfe uabalance)		```DC: -120 d8 AC =120 48 for Tulughes of 60 Hz (50 Hal wah filter on```
Maximumilinput	$=500 \mathrm{~V}$	HI Io $10 . \pm 1100 \mathrm{vall}$ ranges. 10 lo chassis EIDSIS. $=500 \mathrm{~V}$
Príeser laver Meastraternenls	2 mV display resolution	! mV aleglay iesolution. Ifigerer lavel rezcing vulamalicaly nulliplied by setting of allerlualor swlich al IIsilg Opt 040 or 041 universal modules

f Periormancen 60 days at $23^{3} \mathrm{C}=5 \mathrm{SC}$ and RH $<80 \%$

Channel C modules

Input charactentilas	Opt 030	Opr 031
Sensmirily	15 mvar	20 mV 9 ms
Couplag	oc	ac
Itigere level	0 V. lixad	$0 V_{1}$ lined
Impedance	$50 n$	$50 \cap$
Maximuin ingut	5V mms	5 V rms. $\pm 5 \mathrm{~V} \mathrm{dc}$
Inpun pratection	tused	(usod
Attenuetar	No	Vaciallie for oplimum nolse surpressidn on sunals ! $5 \geq 1 \mathrm{~ms}$
Fieguency C measioements		
Range	$\begin{gathered} 5-512 \mathrm{MHz}_{3} \\ \text { (dlyect countli } \end{gathered}$	$\begin{gathered} 90-1300 \mathrm{HHz} \\ \text { (prexcalea, }-4) \end{gathered}$
Resolulion	1 MHz 100.1 Hz in decade sleps	1 MHz to 0.1 Kz In tecade sieps
Accufacy	$\begin{aligned} & =1 \text { count } \\ =1 & \text { mobase error } \end{aligned}$	$\begin{aligned} & 1 \text { count } \\ = & \text { Ifmehase error } \end{aligned}$
Ratio C/A measuemont		
$\begin{array}{r} \text { Arage: } \\ C \end{array}$	$\begin{aligned} & 0-10 \mathrm{MHI} \\ & 5-512 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 0-10 \mathrm{MHz}_{2} \\ 90-1300 \mathrm{MH} 2 \end{gathered}$
Genaral		
Probe pow	No	Fowet 10 ogerota 10855A Preamo or AP active pidhe

Events C, A to 日 (with Opt 030 only)
the number of events at the C input are totalized during the synchronized time interval defined by inputs to channels A and B. The synchronized time interval is a multiple of 100 ns with the standard universal module: a multiple of 10 ns with Opt 040 or 041 universal modules.

Standard
Universal Module

Opt 040
High Performance Universal Module

Op1 041
Programmable inpul Universal Module

Accessorles
10855A Preamp：（for use watb Op（ 031）：gives $>22 \mathrm{~dB}$ gain with ± 1 dB fateness over the entire frequency range of the Opt 0311300 MHz Channel C．For more details see page 286.

Universal modules，channels A and B

Input oharacterisics	Standard	Opt 040，Ogi 041
Sensitivily $0-40 \mathrm{MH}$ （ac coupled） $20 \mathrm{HI}_{2}-40 \mathrm{MH}_{2}$ （dc coupled） 40.100 MAR	25 ar mms 25 mV mms 50 min mms	25 TVrms 25 mims 50 mv mis
Min pulse mint	$5 \pi s, 100 \sim N 000$	
Coupling	ac ar dc，swilchable	
Impedance	$1 \text { Ma. } 40 \mathrm{pr}$	J MS br 504． swilchade
Tidger level	variable $=2.5 \mathrm{Y}$ anmes atten selting	
Irigger slope	independent selection of $+\mathrm{or}-$ 3lope	
Antantatars	X），$\times 10, \times 100$	$\begin{aligned} & \text { Opt ond: } \times 1, X_{2} \times 20 \\ & 0 p t ~ \\ & 04 i \\ & \hline \end{aligned}$
Oynamic range	25 mV to 1 V ims ilmes allenuater seting for $0-10 \mathrm{MHz} 50 \mathrm{mb}$ to $500 \mathrm{~m}: \mathrm{V}$ times attenuato setting to $40-100$ Mitit	
Chanmel lapert	Separate or Comenen A	Separgte． Commenn A_{4} or Checis
Deby	Ho	Opt 040 only： $20 \mu .3$ to 20 ms
Programmate Controls	Ho	Opt 0．41 only： fevel，slope coupling，atten， impedance SEP－COM－CHIK
Frequency a meagure		
Range	O－100 M13．dired count	
Aeralution	1 MHz 10 0．1 M Hz in docsde steps	
Accaldey	± 1 caunt．$=1$ limebase ertor	
Pcriod a messurement		
Range	$0-10 \mathrm{MNZ}$	
Resolulion	100 ns 7615 in decade sleps	28 ne to 0.1 s in bechde slapy
Accuracy	－ 1 count $=$ time base errot －Ifiges grior ${ }^{\circ}$	

Pelod Ayer ate A measuraments		
Mange	0－10 M 12	
Resolution	100 ins to 0.01 ps If deade steps	10 ns to 0．0：ps in decade sieps
decuracy	$\begin{gathered} \pm 1 \text { coum displayed } \pm \text { timebase etror } \\ \frac{\equiv \text { tigger errort }}{N} \end{gathered}$	
Пmo laterval 108 massurements		
Range	100 ns to 1088	10 ns 1010 s
Rosolution	100 ms to 1 s in cenaje steds	$10 \mathrm{~ms} \mathrm{100:5}$ in decode sleps
Atcuracy	$=1$ count－limiebse error \div ligeg zior	
Range	0.1 ns 10.10 s	01751015
Resolutian	$\begin{gathered} \pm 100 \mathrm{~ms}=\mathrm{trigRe} \text { eriof } \\ \sqrt{\mathrm{N}} \\ \pm 10 \mathrm{ps} \end{gathered}$	
accuraty		$\begin{aligned} & =\text { tesolution } \\ & \pm 2 \mathrm{~ns} \\ & =\text { Itmebase error } \end{aligned}$
Hin pulse widuh	25 ms	10 ns
Min．Gead lime flom each stop erend to nasa stant erent	150 ns	40 ns
Ratio 日／A measureniems		
$\begin{array}{r} \text { Range. } A \\ 8 \\ \hline \end{array}$	$\begin{aligned} & 0-19 \mathrm{MHz} \\ & 0-100 \mathrm{MHz} \end{aligned}$	
Totalizing and acaling，Start A The number of counts at the A 向det are potasized for $\mathrm{N}=1$ an the resolution switch．Fo： $N>1, A / N$ is totafized and the scaled eutput（A／N）is available at Ure fimetase dut reat qanel connector．		
	$\begin{aligned} & 0-100 \mathrm{WH} \\ & 0-10 \mathrm{MHz} \end{aligned}$	

Iriganer eftur is $<0.3 \%$ of one period for sinewaves of 40 日B S／N ar better ans amplituce coval ！o sersitivity of courter．For any waveshape，erigger error is less than

$$
\begin{aligned}
& \geq 2 \times \text { peak noise voltage } \\
& \text { signal slope }
\end{aligned}
$$

Model 5328A (cont.)

Measurements with delay (Opt 040)
Delay mode is activated by the inner concentric knob on Level A control of option 040 Universal Module. A red LED indicates delay is activated. In delay mode, Channel A triggers and is then disabled from triggering again until the delay times out (disabled state occurs within $\} \mu s$ after 1riggering.) Channel B is contimuously disabled unil the delay limes out. After the delay, both A and B are enabled. The delay time may be measured by placing the counter in T.I.A B and the Universal Module in check (CHK).
Delay range: $20 \mu \mathrm{~s}$ to 20 ms continuously adiustable.
Minimum dead tlme: I $\mu \mathrm{s}$ between stop and next start (T.I. average measurements orly).

General

Display: 9 digit LED display, Ninth digit used only with channel C functions (FREQ. C, Raliò C/A, Events C. A B).
Blanking; suppresses display of unwanted zeros to lett of most siguificant digi.
Storage: holds reading between samples: can be overridden by rear panel switch.
Sample rate: viariable from less than 2 ms between measurements to HOLD which holds display indefinitely.
Gate output: rear panel output. TTL levels; high when counter gate open.
Timebase output: rear panel ouzpur: TTL levels.
Check signal: with function switch in CHECK, counter should display $10 \mathrm{MHz}+1$ count. With options 040 and 041 , place function switch in FREQ A and universal module in CHECK (CHK). Counter should display $100 \mathrm{MHz} \pm 1$ count.
Trigger llghts: light is ON when input is above trigger level: OFF when input is below trigger level: BLINKING when channel is eriggering. Operate over full frequency nange of $0-10 \mathrm{MHz}$.
Marker outputs: indicate actual change of stale of input Schmide trigger for channels A and B with <20ns delay. Output levels into 50Ω are $010-100 \mathrm{mV}$ for the standard universal module, 0 to - 50 mV for option 040. and $010+1 \vee$ for option 041. Outputs are protected from inadvenently applied voltage to $=S \mathrm{~V}$ dc.
Arm: rear panel switch turms arming ON or OFF. With arming ON the measurement is armed by an input other than the input involved in the measuremens. The following are armed by an event at B: Freq A. Period A, Period Avg A, Freq C., DVM, Raio C/A; the following are amed by an event at C: T.I. A \rightarrow B. Events C. A \rightarrow B. Ratio B/A.
Operating temperature: 0° 10 $50^{\circ} \mathrm{C}$.
Power requlrements: $100 / 120 / 220 / 240 \mathrm{~V}$ rms. $+5 \%$. -10% (swich selectable). $48-66 \mathrm{~Hz}$: 150 VA max.

Tlmebase oscllators

Standard cryatal oscillator

Frequency: 10 MHz .
Agling rate: $<3 \times 10^{-1} /$ month.
Temperature: $<2.5 \times 10^{-4} .0^{\circ}$ to $50^{\circ} \mathrm{C}$.

Line voltage: $<1 \times 10^{-2}$ for 10% change.
Opt 010 oven oscillator
Frequency: 10 MHz .
Aging rate: < $5 \times 10^{-10} /$ day afler 24 -hour warm-up.
Short term: <1 $\times 10^{-10} \mathrm{~mm} / \mathrm{s}$.
Temperature: $<7 \times 10^{-9}, 6^{5}$ to $50^{\circ} \mathrm{C}$.
LIne Vohage: $=5 \times 10^{-9}$ for 10% variation,
Warm-up: within 5×10^{-8} of final value in 20 min .
Ext. Ifeq. std. Input: 30 kHz 1010 M Hz signal of amplitude $>1.0 \mathrm{~V}$ rms inlo $1 \mathrm{k} \Omega$. Maximum input: 5 V p-p. Correct readings. With options 040 and 041 the following constraints apply: ext. frea. sid. must be 10 MHz for Period Avg., T.I. Avg., Period ($\mathrm{N}=\mathrm{I}$), and T.I. ($\mathrm{N}=1$).

HP-IB Interface (Opt 011)
Option 011 provides digital output of measurement data ("talker") as well as input for remote program control ("listener"). Programmable features: function. resolution, sample rate (max or manual control), arming, display modes, measurement cycle modes, output modes, and rese commands. Option 041 adds conerol or channel A and B trigger level. slope, attenuasor, coupling, input impedance. and SEP-COM-CHECK selection.
HP-I日 commande: resprids to the following bus comorands (see HP-IB Users Guides for defipitions) - Unlisten, Unkalk. Local Lockoun. Device Clear, Serial Poll Enable, Scrial Ponl Disable, Go to Local. Selected Device Clear, and Group Execute Triger.
Service request (SRQ): if enabled, indicates end of measurement. MaxImum data outpul rate: 500 readings $/ \mathrm{sec}$.

Accessories

5363A Time Interval Probe: solve many of the "hidden" problems of precision time interval measuremens. The 5363A Time Interval Probes minimize cricuit loading, give calibrated Irigger level scttings. increase input dynamic range, and allow duferential channel delay calibration. See opposite page for more details.

Options and accessories	Price
010; High Stability Timebase	\$52S
011: HP-1B Interface	\$350
020: DVM	\$200
021: High Performance DVM	\$500
030: 512 MHz Charnel C	\$400
031: 1300 MHz Charnel C	\$600
040; High Performance Universal Module	\$350
041: Programmable Input Conirols Moduce	\$950
907: Front Handle Kit	\$15.
908: Rack Flange Kit	\$10
909: Rack Flange and Front Handle Combination Kit	\$20
10855A Preamp	\$225
5363A Time Interval Probes	\$1900
5328A Universal Counter	\$1300

ELECTRONIC COUNTERS
 Time interval probes

Model 5363A

- Solves major T.I. problems
- Precisely defines trigger points
- Greatly improves dynamic range

HP-IG programmable Time Interval Probes

Fepeatable measurements

The 536.3A provides the necessary input signal conditioning 10 allow a precision lime interval counter to make lighly accurate and repeatable measurements on time varying wavelorms. No longer are

counters restricted to "event" type measurements. Counters such as the $5345 \mathrm{~A}, 5328 \mathrm{~A}$ and 5360 A can now be adapied to make measurements such at rise time. fall time. slew rate, propagation delay and phase julter analysis.
Trigger point calibration
A unique scheme of Trigger Point Calibmion is used instead of hysleresis compensation to ussure that the value selected on the digital dials or via the HP-1B is the actual triggering point sather than some unspecified "best estimate" of the trigger point or the center of the hystersis window.
20 V dynamic range with 10 mV resolutlon
Gscally improved dynamic range allows the trigger point to be selected in 10 mV increments from -9.99 V to +9.99 V covering the range of most commorly used logic circuits. The use of allenuators on traditional T. I. counters to extend their range increases the effeclive hysiersis window by the same attenuation anount. This prevents migger points close to the top or bollom fi.e. 10% or 20% poinis) of the waveform from being selected and sometimes creates "holes" where certain ingeger points cannot be selected at all. The wide dynamic range of the 5363 A overcomes these problems,

Minimized circuit loading

Active high impedance. low capaciennce probes minimize circuil loading and pulse distortion while permitting test points to be monitored without the need for buili-in pulse tansformers or impedance matching devices. Each probe conmins both a start and a stop channel so that a rise time inlo a device uisn be measured with one probe. the rise line out of the device with the other and the propagation delay tiru the device can be measured be(ween the probes.

Sysiematic timing errors eliminated

Delays through probes, cobles and the inherent differential delays inside the counters' liming channels (i.e., <700 p> in 5345A) limil the absolute accuracy of the time interval measurement to some unknown bul fixed amount.

- Equalizes system timing errors

- Active probes minimize circuit loading
- Measures to zero time interval

The 5363 A calibration procedure equalizes oun such system delays and allows the counter and probes to be set for 0.0 ns. When a counter with a minimum T.1. mange is used (such as HP 5345 or 5328 A) a fixed ofiset of 10.0 ns can be switched in allowing the counter to müakure down to zero time incerval.

Automated operation

Undercalculator control the standard HP-1B capability allows the probes and a counter to perform a wide varicty of automated waveform analysis. In the lats or production line complex mensorements in go-no-go decisions can be made with push bution simplicits. For further details refer to the 5363A Technical Data Sheet and AN 191 on Time Interval Measurements.

Specifications

Dynamio range: +9.99 V $10-9.99 \mathrm{~V}$.
Voltage resolution: 10 mV .
Yime resofution: depends on counter used (1yp. 10 ps with 5345 A T.I. Avg).

Impedance: I Mn shunted by $<15 \mathrm{pF}$.
Effective bandwldth: 350 MHz (or I ns rise time).
Minlmum putse width: inpit signal must remain below and above trigect point for at least \leq ns 〈i.e., max repetition rate of square wave $=100 \mathrm{MHz}$.

Absolute aceuracy

$$
=1 \mathrm{~ns}=\frac{\text { START Irigger level uceuracy }}{\text { START sigral slew rake }} \begin{gathered}
\text { at Irigger point }
\end{gathered}
$$

Trigger level accuracy (A\&B)": $= \pm 8 \mathrm{mV} \pm 0.2 \mathrm{mV} /{ }^{\circ} \mathrm{C} \pm 0.15 \%$ of trigger point.
Differentlal trigger level accuracy (A\&B)*: used when A\&B are set to the same vollage, same slope, and identical wave forms: ± 3 $\mathrm{mV}=0.30 \%$ of rigger poins.
Mar Input voltage: 30 V peak.
Linear operatling conge: $=10 \mathrm{~V}$
Outpul to counter: separate stari and stop channels. $-0.510+0.5$ V inus SDS. <2 ns rise lime.
Trigger level outputs: Irigger point setting $=75 \mathrm{mV}$.
Delay compensaflon range: 2 ns adjusiable about 0.0 ns or 10.0 ns.
Power: 100. 120, 220 or 240 V ac $(+5-10 \%)$; 48 to $440 \mathrm{~Hz}: 30 \mathrm{VA}$ max.
Welght: $16.2 \mathrm{~kg}(7 \mathrm{lb} .6 \mathrm{oz}$.$) .$
Dimensions: rack heighl $88.9 \mathrm{~mm}\left(31 / 8^{*}\right)$; half rack width module $212 \mathrm{~mm}\left(8^{J} / \mathrm{s}^{\prime \prime}\right)$: depth 248 mm ($114 \mathrm{H}^{\prime \prime}$). Probe Iengh 122 cm (4 fi.). Environmental: operiting lemperalure $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Systems Interface: HP.JB programming of al funclions except delay adjusi vermier (which can be measured in a system).

-Ater calituration and within the range between $100 \mathrm{~m} /$ or 3% wathicheves is greater) from the top ar bottom of inpuil signai.	
Aecommended counters	Price
5345A Electronic Counter: 2 ns single shol T.I., True	
T.l. averaging	\$4400
S328A Opi 040 Universal Counter: 10 ns single shot	
T.l., True T.l. averaging	\$1650
5360A/5379A Computing Counler: I ns T.I. accuracy,	
0.1 ns resolution for single shot events	\$11.500
5370A Universal Time Interval Counter 20 ps single shot, true T.I. averaging	\$11.500
5363A Accessories	
10229A Hook Tip	\$5
10218A BNC 10 Probe Adapter	\$11
1250-0655 8NC Tee to Probe Adapler	\$15
10IOOC 50Ω Feedithru termination for non- 50Ω T.I. counter	\$22
10821 A Accessory Kil with 2 each or above plus adapless	\$125
5363A Tlme Interval Probes	\$2250

ELECTRONIC COUNTERS
 High resolution time synthesizer
 Model 5359A

- Precise digital delays 0-160 ms
- Jitter <100 ps
- Increments 50 ps

Programmable

- Fully synced to external trigger

The 5359A Time Synthesizer produces two extremely precise. Jow jitter time delays. These delays. Td and Tw, are individually selectable by means of the keyboard, in 30 ps or greater steps to generate delays of up 10160 mS .

The 5359A has many applications and may be used for the catlibration of Radar, Loran. DME and Tacan Systems, or for precision generation of delayed sweeps in oscilloscopes. and for exticmely accurate "ime positioning" conirol of external gates on frequency counters. In component and circuit test, the instrument may be uxed for extremely accurate delay line simulation.

Specifications
 Modes

External Trigger Mode: the dehay from the sync out to the beginning of the uutput pulse, and the width of the oulput pulse. are selecied.
Internal Trigger Mode: the "period" or "frequency". and the widit of the oulpul pulse. are selecied.
Range
Dalay Td: 0 nS to 160 mS .
WIdih Tw: $\varsigma \mathrm{nS}$ to 160 mS (width \& delay $\leqslant 160 \mathrm{mS}$).
Period: 100 nS min. or width $+80 \mathrm{nS}, 160 \mathrm{mS}$ max.
Frequency: same as corresponding "period".
Repetilon rate: 10 MHz max.
Accuracy: $=1 \mathrm{nS} \pm$ time base error.
Insertion delay: fixed at $<130 \mathrm{nS}$; selectable as $<30 \mathrm{nS}$ for delays $>100 \cap S$.

Jltter: 1ypical 100 pS RMS; maximum 200 pS RMS
External trigger Input: -2 V to - 2 V slope sclectable.
Sync output: IV - 50Ω : $5 \mathrm{~V}-1 \mathrm{M} \Omega$. Width 15 nS nomman:
Output pulse
Amplitude: $0.5 \vee$ to $5 V$ inio 50 .
Polarity; positive or negative.
Ollset: - I V 10 I V. or OFF.
Transition time; <S nS,
Exiemal voltage must not be applied. Offict and Amplitude voluge inlo $50 \Omega 1$ may be displayed
EDGE 1 OUTPUT (rear panel): occurs in Sync with leading tdge of outpuit pulse (same spec. as Syinc out).
EOGE 2 OUTPUT (rear panel): occurs in Syne with falling edge of oulput pulse (same spec. as Sync out).
Events mode: substitutes extemal input (10100 MHz) for the internally counted clock (Delay and width must both be specified in events and not time.).
Triggered frequency mode: the same as intemal frequency mode except the output is a burst beginning in synchronism with an external trigger signal. and continues for the duration of this signal.
Callbrate mode: performs in internal calibration to remove the effects of iniemal delay differences.
External probes: provides outputs to control the 5363A probes and accepts inputs fram the probes to include extemal devices in the calibration loop.
HP-IB: All conirols except trigger levels are programmable.

Time base

Frequency 10 MHz
Agling $<3 \times 10^{-7} /$ month
Temperature $<2.5 \times 10^{-6}, 0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Line voltage 1×10^{-7} for 10% change
oor High stabllity tlme base
Frequency 10 MHz . Aglng $5 \times 10^{-10} /$ day .
Temperature $3 \times 10^{-9}, 0^{\circ} 105^{\circ}$
Size: $146.1 \mathrm{H} \times 425.5 \mathrm{~W} \times 520.7 \mathrm{~mm}$ D $\left(5 . .75^{\prime \prime} \times 16.75^{\prime \prime} \times 20.50^{\prime \prime}\right)$.
Welght: 30 lbs .
Optlons and accessories
001: High Stability Time Base
908: Rack Flange Kit add $\$ 20$
10870A Service Kit add $\$ 430$

5359A Time Synthesizer

- 20 ps single shot time interval counter
- Statistics
- Automatic calibration of systematic errors
- Positive or negative time intervals
- Frequency and period to 100 MHz

The 5370A Universal Time Interval Counter represents we highest resolution single-shot time interval counter available today. The counter utilizes a new concept of phase locked vemier interpolation. which allows single-shot time inlerval measurements with $\pm 20 \mathrm{pS}$ resolution, and $\pm 100 \mathrm{pS}$ accuracy. This technique allows positive. zero, and degative time intervals to be measured. High resolution period and frequency measurernents may also be made.

All major front panel controls including lrigger level are programmable by means of the Hewlett-Packard Interface Bus (HP(B),

User convenience is increased by the inclusion of a microprocessor. which extends the usefulness of the instrument by offering the statistical functions of mean, standard deviation, max, and min for repetivive time intervals. A user-defined time interval reference is included for the cancellation of systematic errors.

The high resolution time interval capability makes the instrument ideal for IC Iesting, radar and laser ranging, digital communications, ballistics and nuclear measunements.

Functlons

TI: Time Interval function measures time difference from START channel to STOP cbannel.
Trig lev: Measures the trigger levels of START and STOP channels and displays both levels simultaneously.
Freq: Measures the frequency of the STOP channel signal by taking the reciprocal of a period average.
Perlod: Measures a period average of STOP channels events.
Statistics
Sample blze: push-button selectable to 1.100 .1 K .10 K , and 100 K samples.
Mean; displays the mean estimate which is the average for the selected sample size.
Sid dev: displays a standard deviation cstimate for the selected sample size.
MIn; displays the minimum time interval measured within the selected sample size.
Max: displays the maximum time interval measured wibin the selected sample size.

5370 Specifications

Input Amplifiers
Bandwidth: $D C$ to 500 MHz (at DC, 50 n or I M M)
4 MHz to 500 MHz (AC. 50Ω)
200 Hz to 500 MHz (AC, J M Ω)
Sensitivity: $\times 1.40 \mathrm{mV}$ peak to peak
$\times 10-400 \mathrm{mV}$ peak to peak
Dynamic range: $X 140 \mathrm{~m} V$ to 1 V peak to peak.
X 100.4 V to 7.0 V peak to peak al 50Ω.
0.4 V to 10 V peak to peak at I M .

Trigger tevel: adjustrble from - 1.3 V to 0.5 V .
Range
$\pm \mathrm{T}:-10 \mathrm{~s}$ to 10 s .

+ TI only Arm Mode: +10 ns $10+10 \mathrm{~s}$.
Resolution: $\pm 20 \mathrm{ps}$ minimum.
Accuracy: with respect to user-defined reference. \geq lime base accuracy \pm jilter $=$ trigger error.
Jitter: Iypical 35 ps RMS; maximum 100 ps RMS.
Tilgger error; $\frac{ \pm 2 \times \text { noise peak voltage }}{\text { signal slope } V / \mu s} \mu$.
Frequency/Deriad average measurement range: 0.100 MHz .
Max datarate: 100 M bits.
Gate time: I period, $0.0 \mathrm{ls}, 0.15,1 \mathrm{~s}$.
Tímebese
Frequency: 10 MHz .
Aging: $<3 \times 10^{\circ} /$ month.
Temperature: $<2.5 \times 10^{-1 .} .0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Olsplay: 16 digits, suppressed leading zeros.
Slze: $133 \mathrm{H} \times 426 \mathrm{~W} \times 521 \mathrm{~mm} \mathrm{D}\left(514^{\prime \prime} \times 18^{3} 4^{\prime \prime} \times 201 / 2^{\prime \prime}\right)$.
Welght: 32 lbs.
Optlons and accessorles Price
001: High Stabitity Time Base add $\$ 575$
900: Rack Flange Kis add $\$ 20$
10870A Service Kil
add $\$ 430$

5300 Measuring system

The 5300 mensuring system marks a new era of high performance and versatility for low cost counters.

Features Include

$10 \mathrm{MHz}, 50 \mathrm{M} / \mathrm{Hz}, 525 \mathrm{MHz}$ and 1.3 GHz
100 ns Time interval resolution and lime interval averaging

Up 108 digits

Aulo ranging.
Unique time incervial hold off
Expandable with incerchangeable modules
Oplional FCC lype approved TCXO ime base
Porable-hatiery operation with all modules
Compasi and rugged
High reliability MOS/LSI circuilry and LED display
Designed for quick \& easy owner-iervicing
Outpul via BCD, HP Inerface $\mathrm{Bus}(\mathrm{HP}-\mathrm{B} \mathrm{B}$), or D to \AA conveners

Descriptlon

Large scale integration and solid state display technology have helped to produce a uniquely versatile and capable counter at a sumprisingly low cost. Easy to use and reljable, this counter does what is important-solves your measurement problems while saving your money. Versatility and antiobsolescence come from modular construction. Take your choice from Iwo mainlrames and select the snap on module that you need now. Expand the capability later with more modules. if and when you necd them. You can expand the capability of your 5300 Medsuring system to match your expanding needs and budget. Hewlett-Packu'd is engaged in an on-going program to develop expanded capabilities for the 5300 as shown by the "new modules" just added in this catalog. An optional batery pack provides portable cord-free operation of any of the modules, eliminating power problems and ground loops. The new plugbetween digital 10 analog conventergives you in inalog outpul that can drive a strip chant recorder, providing hard copy of any of the 5300 System's measurements. You can now easily obrain hasd copy recondings of frequency drifts. time interval shifts, ratio changes. ohms variations. and cven totalized levels from the 5300 system and its plug-between D to A conventer. The BCD oulpul and HP-IB module lets you interface digitally with other insimments and systems. This is versatility that cruly avoids obsolence and oplimizes your instrument dollars.

Unique benetits

Snap-logether modularity ullows you 10 match the display/ mainframe capabilities with the fonctional module of your choice to match your present needs. Additional modules can be added as your meitsurement nceds and budget expend, including the selcction of threc center modules which allows you to add a battery, a D 10 A Converter, or an HP-18 output to your system when and if you nced them. Frequencies up to 1.3 CHz can be measured with his portable precision frequency counter. Single lime intervals can be meidsured with 100 ns resolution. Time interval averaging up 1010^{*} intervals allows you much greater resolvtion than ever available before in a counter of this price range.

Auto ranging

Auto ranging is included in many of the functions, enhancing the case of operalion by aulomalically selecing a correct gate time to lill the display. Any lirequency within the range of the 5301 A, 5302A, 5304A, 5307A and 5308A may be counted with the counter's logic circuils automalically selecting the correct gate time up to I second for maximum resolution withoul exceeding the display range. In the 5302A and 5304A auto ranging is also provided for the Period Average funcion to seleal the number of periods to be averaged. The high performance 5308A Universal Counter provides auloranging in the Frequency. Period Average. Ratio, and Time Interval average modes, a first for counters in any price range.

Time Interval holdoff

Time interval holdoff is a unique feaiure of the 5304 A Time/Counter module. This fealure allows you to add a fixed delay between the stam of a time interval measurement and the enabling of the stop channcl. Thus any electrical pulses or irregularilies in a waveshape hat occur between the desired irigger points can be ignored. Even the delay inself can be measured with the 5304A.

SxOCM 6 DIGII MNNFRAME						35018 P11 280					
						5450 Pr 280					
bj 104 BATIERY PACX						\$275 P1 288					
53Hib digimat to aralos camverier						5395 -1 285					
bil2a ascil interatace						\$350 P8 245					
Model	$\begin{gathered} \text { Traquency } \\ \mathrm{MHz} \\ \hline \end{gathered}$	Poriod	Foriad Avernge		$\begin{gathered} \text { Mma } \\ \text { imerval } \\ \text { Avarage } \end{gathered}$	Totalize	Ralio	Halkimetar AEV. OCV,	High Resaluthon heslprocsil		
53014	10					-				\$325	pe 220.1
53024	50	-	\bullet	-		-	-			\$325	[8281
53038	525									\$825	98 282
53044	10		-	-		-				5385	Dg 282
53058	1300									\$800	PR 283
S306A	10							-		\$550	H8 783
5307 A	2								-	3395	P8 2.84
53098	73	\bullet	©	-	-	\bullet	*			5450	D8 286

Typical Conilguratlons

5300A, 5311B, 5306A

5300B, 5312A. 5308A

Frequency Measurement System for Mobile Communfeations Go Anywhere Portability

Trend Recoroing System for Vollage. Resisionce. and Frequency Graphle Copy tor Visual Analysis
acquisition System for Measurement and Aecording of Dala Reduction of All Measurements

High resolutlon
High resolution at low frequencies is provided by the 5307A counter module. This easy to use counter makes a period average measurement, inverts it and distays the result is as frequency . thereby providing the high resolution of a period measurement and the ease of use of a frequency measuremen automatically.
Digltal and analog output
Digital output is avallable in BCD format (standard in 5300A mainframe) or ASCll format vin the HP Inicrface Bus (to be used with 5300 B mainframe) to provide interfacigg with digital printers or with desktop culculators and other data processing equipment. Analog oulput for long teron monitoring with strip chan recorders is provided by a digithl 10 analog converter. This provides the capability 10 generate hard copy results of any of the measurements made by any of the 5300 modules.
日attery pack
A snap between battery pack provides a tnly portable. light weight. go-anywhere measuring system for any of the 5300 Systems.
Serviceabllity
Reliability and casy servicing have been major design criteria for all of the 5300 modules. The small number of components and the use of modular desigo techniques allows problems to be easily traced to functional blocks. A check function is buill into mosi of the functional modules to allow immediate checking of the basic counter circuits from the front panel. A user oriented service suppori package is available that provides plug-in cards with automatic diagnostic routines that dlow the $\$ 300$ mainframes to (roub)csheor themselves. Fcalures like these make the net cost of owning enther a 5300 A or 5300 B Measuring System less ithan that of conventional counters.

5300A

5300A and 53008 measurement system mainframe

The mainframe units provide the system with power, reference frequency. display. counting logic and timing control.

The 5300A has a six digit. dot marrix display, srandard cime base. extemal time base input and BCD oufpul as a standard rear panel output. The 5300B has an 8 -digit 7 -segment display. standard time base or optional TCXO time base. extenal time base input and no digital oulput from the mainsrame. Sce manframe/plug-on display char below for number of display digits with a paricular mainframe and plug-on combination.
Time-base
Standand crystal frequency: 10 MHz .
Stabillty
Aging rate: <3 Pans in $10^{7} / \mathrm{mo}$.
Temperature: < ≤ 5 Parts in $10^{\prime \prime} .0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Typlcally: $< \pm 2$ Pars in 10°. $15^{\circ} 1040^{\circ} \mathrm{C}$.
Line voltege: < $=1$ Part in 10 'for 10% line variation.
Osclllator output: 10 MHz . Approximately 1 V rms at rear panel BNC. 100Ω source impedance.
Extemal Input: 1 MHz to 10 MHz , 1 V uns into 200Ω,
Opt 001 High stablity time base (53008 only)
Frequency: 10 MHz .
Stabillty
Aging rate: <1.2 paris in $10^{6 / y e a r .}$
Temperature: $<x .5$ parts in $10^{\circ}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Line voltage: $< \pm 5$ parss in 10^{s} for 10% line variation.
Osclllator output: 10 MHz , approximately 1 V rms at rear panel BNC. 200Ω source impedance.
External inputi l to 10 MHz . 1 V rms into 500Ω.

General

Dlsplay: 6 Digir, Dot Matrix (5300A) or 9 Digi1, 7 Sepment Matrix (5300B). Solid state LED display (Gablum Arsenide Phosphıde Light Emitting Diodes) including decimal point and annunciator units.
Overllow: LED Light indicales when display range is excceded.
Display storage: holds reading be1ween samples. Sample rate: Sample rate control adjusts the delay from the end of one measurement to the start of a new measurement. Cominuously variable from less than $50 \mathrm{msec} t 0$ greater than 5 seconds. HOLD position: display can be held inderinitely. Renel: Front panel pushbution switch resets all registers and iniliates new measurement. Reset input by contaci closure to ground or TTL type low level also available on rear panel connector (5300A only).
Operating temperature: 0° ro $50^{\circ} \mathrm{C}$.
Power requirements: IIS or 230 volts $\pm 10 \%, 50$ to $400 \mathrm{~Hz}, 25 \mathrm{VA}$ maximum (depends on plug-on module). Mainframe power withou
plug-on nominally 5 ivalts. Batlery opemtion: with 5310 A rechargeable battery pack (see 5310A specifications).
Digital output (5300A only)
Digital serial, 4-bil BCD parallel avadable at rear pancl connector.
Code: 4 line 1.2-4-8 BCD. "1" state low. TTL type logic levels.
Declmal polnt: decimal point code (Binary "1Ill") automatically inserted al correct digit posilion.
Print command: positive slep. TTL output.
Holdoff: contace closure to ground or TTL low level, inliüit, har of new measurcment cycle.
Connector: $20-\mathrm{pin}$ PC connector. Mating connector Viking 2VH10/IJN or equivalent.
Parallel data output: available from Printer Interface. See 10533A specification.
Note: digital ousput for 5300B Matnirame is provided by 53I2A HP-IB interface module.
Weight: net. 1.5 kg ($31 / 3 \mathrm{lb}$). Shipping. $2.5 \mathrm{~kg}(51 / \mathrm{lb}$).
Dimenslons: (with smap-on module): $89 \mathrm{~mm} \mathrm{H} \times 160 \mathrm{~mm} \mathrm{~W} \times 248$ $\mathrm{mm} \mathrm{D}\left(31 / 2^{\prime \prime} \times 61 / \mathrm{c}^{\prime \prime} \times 9^{3} / 4^{\prime \prime}\right)$.

Mainframe/plug-on compatibility

Pluğ-ōn	Dlaplay Diglts with 5300A with	
5301A	6	7
5302A	6	7
5303B	6	8
5304A	6	7
5305B	6	8
5306A (Frequency)	6	7
(ACV.DCV.OHMS)	5	5
5307A	6	6
5308A	N/A	8

Accessories

Price
Olglial Recorder Interface: (for use with 5300A.
BCD output) See 10533A Specifications, Page 255
10548A Service support package: Conlains an
interface card and 4 diagnostic cards for casy trouble shooling of 5300 A or 5300 B . Page 260
18019A Leather carrying case: Holds 5300A or 5300B, snap-on module and 5310A battery pack plus accessories
Rack mount klis
1085) A Single

10852A Double
10853A Single/with plug.berween
10854A Double/with plug-between

Ordering instructions

5300A 6 digit mainframe
5300B 8 digil mainsrame
$\$ 460$
Opf 001: TCXO (5300 B only)

- 10 MHz
- Auto ranging
- External gate

5301A

5301A 10 MHz frequency counter module

 InputRange: 10 Hz to 10 MHz .
Sensilivity (min): 25 mV rms sine wave 50 Hz to $1 \mathrm{MHz}, 50 \mathrm{mV}$ rms sine wave 10 Hz 1010 MHz : $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$ pulse at minimum pulse width. 50 ns . Sensitivity variable to 2.5 V rms.
Impedance: I $\mathrm{M} \Omega$ shumled by less than 30 pF .
Overlaad protection: 500 V (dc + peak ac), 250 V ms de to 400 $\mathrm{Hz}, 10 \mathrm{~V}$ ms al 10 MHz .
Trigger level: selectable positive. negalive, or zero volts.
Frequency measurement
Range: 10 Hz to 10 MHz .
Gate times: manually selected 0.1. 1. or 10 seconds AUTO position selects gate time to 1 second for maximum resolution.
Accuracy: $=1$ count \pm lime base accuracy.
Open/close (totalizing)
Range: $10 \mathrm{MHz} \max$ counl rate.
External gate: gate signal by contact closure to ground or TTL low.
General
Check: counts internal 10 MHz reference frequency.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$
Power requlrements: including mainframe. nominally 8 watts.
WeIght: ne1. 0.9 kg (2 lb). Shipping, 1.5 kg ($31 / \mathrm{lb}$).
Dlmenstons: see Mainframe.
5301A 10 MiHz Frequency Counter Module

10533A Recorder Interface specifications

The 10533A accessory provides an interface between the 5300 A measuremene system mainframe and a standard parallet-input recorder such as the HP 5055A. The interiace module provides conversion from the 5300 A serinl data oulput to a standard parallel format.
Output format: 10 parallel digits; 6 data, 1 decimal point. I overflow, I exponent and 1 exponent sign.
Code: 4-line 1-2-4-8 BCD: "1" slate low 'TTL levels.
Dectmal point: floating decimal point automatically insered at correct digit position. Coded "III!" ("*" on slandard HP 50S5A print wheels). Intemal jumper wire removes decimal point from data format if desired.
Overtlow: coded " 1111 " ("*") printed in first printer column when 5300A overflow light is on.
Exponent: $\pm 0, \pm 3 . \pm 6$ corresponding wilh 5300A measurement units.
Print command: ncgative slep. TTL levels.
Inhibll Input: +2.0 V or higher prevens the 5300 A from recyeling. Power requlrements: 100 mA al 5 volts, provided by 5300 A mainframe.
10533A Recorder Interface
\$225

- Kor any wave shape, tigges error ($\mu \mathrm{s}$) is less than
$=\frac{0.005 \mu \mathrm{~s}}{\text { signal Slope }(\mathrm{V} / \mu \mathrm{s})}$

For period average this is less than $=0.3 \%$ of one period + period average for signals w th 40 dB or better signat-to-noise istio.

- 50 MHz universal counter
- Automatic or manual gate selection
- 100 nsec time interval resolution

5302A

5302A 50 MHz universal counter module

Input channels A and B
Range: channel A: 10 Hz 1050 MHz . Channel B; 10 Hz to 10 MHz . Sensitfulty (min): 25 mV rms sine wave 50 Hz to : MHz .50 mV rms sine wave 10 Hz to 10 MHz . 100 mV rms sine wave at 50 MHz . $150 \mathrm{~m} \backslash \mathrm{p}-\mathrm{p}$ pulse at minimum pulse width, 50 ns . Sensitivity väriable to 2.5 V ros.
Impedance: I $\mathrm{M} \Omega$ shunted by less than 30 pF .
Overload protection: 500 V (de + peak ac). 250 V rms, de to 100 Hz . 10 V ms above 10 MHz .
Trigger level: selectable posilive, negative, or zeno volts.
Slope: automatically switched to triger on positive slope for positive pulse and negative slope for negalive pulse. Positive slope for sinusoidal inpuls.
Marker outpuls: rear BNC. TTL low level while gate is open.
Frequency
Range: channel A: 10 Hz to 50 MHz , prescaled by 10 ; channel B: 10 Hz 1010 MHz .
Gate times: manually selecied 0.I. I, or 10 seconds. AUTO position selects gate time to 1 second for maximum resolution.
Accuracy: $\pm \mathrm{I}$ count \pm time base accuracy.
Time interval
Range: 500 nsec to 1000 seconds.
Input: charnels A and B.
Resolution: 100 ns to 1 ms in decade steps.
Accuracy: $=1$ count $=$ time base accuracy $=$ trigger ${ }^{*}$ error".
Perlod
Aange: 10 Hz to 1 MHz .
Input: channel B.
Resolution: 100 ns to 1 ms in decade steps.
Accuracy: ± 1 count \pm time base accuracy $=$ trigger error*.
Perlod average
Range: 10 Hz to 1 MHz .
inputi channel B .
Perlods averaged; I to 10^{α} automatically selected.
Frequency counted: 10 MHz .
Accuracy: \geq I count \pm time base accuracy \pm inger crror*.

Rallo

Display: $F_{\mathcal{N}} F_{1,}$ times multiplier (N). $N=10$ to 10^{7}. selectable in decade steps.
Range: channel A: 10 Hz to I M Hz. Channel 8: 10 Hz 1010 MHz .
Accuracy: \pm counl of $F_{B}=$ (rigecr crror of $F_{A}{ }^{*}$.
Open/close (totalizing)
Range: 10 MHz max.
Input: channel B opening and closing of gate iniliated by fromt panel pushbution switch.
General
Check: counts internal $10 \mathrm{Mh} / \mathrm{reference}$ frequency.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requlrements; including mainframe. nominally 10 walls. Welght: net. $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $1.5 \mathrm{~kg}(3 \mathrm{y} / \mathrm{lb})$. Dimenslons: see Mainframe.

- CW or burst to 525 MHz
- Automatic gain control and fused input
- FCC type approved

53038

53038 Frequency counter module

This counter module was especially designed for servicing and mibrating mobile communications equipment and AM \& FM broadcast equipment. An automatic gain control (AGC) amplifier has been provided on the 80 MHz chaonel. This provides ease of use by compensating for input level variations and rejecting noise up 10 50% of the peak-to-peatk level of the input sigoal. The from end circuitry of the 525 MHz channel is fuse protecled against high input signal levels that would normally causc expensive frontend damage. The addition of the battery pack makes this an ideal portable instrument for the lab or the field.
Inpul channel A (CW or burst)
Aange: DC to 525 MHz . prescaled by 8.

Sensitivity (fixed):

100 mV rms sine wave, de to 500 MHz .
125 mV rms sine wave, 500 MHz to 525 MHz .
Signal must pass through zero.
Impedance: 50Ω.
Overload protection: 5 V rms (input circuitry fuse protected).
Input chanmel 日 (CW or bursi)
Aange: 50 Hz to 80 MHz . direct.
Sensilvilty (automatic):
25 mV ims sine wave. 100 Hz to 50 MHz .
50 mV ms sine wave. 50 Hz to 100 Hz and 50 MH 7 to 80 MHz . Sensitiviry is adjusted automatically by AGC (automatic gain contoll). Effective up to input clipping levels of 10 Vp -p.
Impedance: : $\mathrm{M} \Omega$ shunted by less than 40 pF .
Overioad protection: $250 \mathrm{~V} \mathrm{~ms}, 50 \mathrm{~Hz}$ to 10 KHz decling to 10 V rms above 10 MHz .

Frequency measurement

Resolution: (selectable): 1, 10, $100,1000 \mathrm{~Hz}$.
Accuracy: ± 1 digil \pm time base accuracy.

General

Check; counts internal 10 MHz reference frequency.
Overtow: light indicates display exceeded.
Operating temperature: 0° to $50^{\circ} \mathrm{C}$.
Power requirements: including mainframe, nominally 10 watts.
Weight: ne1. $0.9 \mathrm{~kg}(2 \mathrm{Jb})$. Shipping, $1.5 \times \mathrm{Kg}(31 / \mathrm{lb})$.
Dimensions: sce mainframe.

5303 s 525 MHz Counter

Opt 001:
add $\$ 180$
High stability time base (for use with 5300 A)
Frequency: 10 MHz .
Slablity
Aging rate: < 1.2 parl in $10^{6 / y e a r .}$
Temperature: $< \pm 5$ parss in $10^{7}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
LIne vollage: $< \pm 5$ parts in 10^{9} for 10% line variation.
Oscillator output: 10 MHz , approximátely 1 V ms al rear panel BNC, 200Ω source impedance.
External Input: I 1010 MHz , I V ins into 500Ω.

- For a fy waveshape. Uigeger error is less Ihan
$0.005 \mu \mathrm{~s}$
$=\frac{0.05 \mu}{\operatorname{signral} \text { Siope }(V) \mu S\}}$
- Triggne error is less than $=0.30^{\circ}$ of one perion $=$ Derloas averaged for 40 de or bether signal-to-noise ratia
- Matched input amplifier
- Time interval hold-off
- 100 nsec time interval resolution

5304A

5304A Timer/counter module

Input cbannels A and B
Range: DC coupled: 0 to $10 \mathrm{MHz}, \mathrm{AC}$ coupled: 100 Hz to 10 MHz . Sensitivity (min): 25 mV rms sine wave to $1 \mathrm{MHz}, 50 \mathrm{mV}$ rons sine wave to $10 \mathrm{MHz}, 150 \mathrm{mV}$ p-p pulse at minumum pulse wideh, 40 nsee. Sensirivity can be decreased by 10 or 100 times using ATTENUATOR swith.
Impedance: I $M \Omega$ shunied by less than 30 pF .
Overload protection: 250 V rms on X 10 and X 100 allenuator seltings. On XI attenuator setting 120 V rms up to IkHz , decreasing to 10 V nms at 10 MHz .
Trigger-level: PRESET position centers ıriggering about 0 volts. or contimuously variable over the range of $-1 \mathrm{~V} 10+1 \mathrm{~V}$ times at tenuator selting.
Slope: independent selection of triggering on positive or negauve slope.
Channel Inputs: common or separate lines.
Gate outpul: rear panel BNC. TTL low level while gate is open.

Tline Interval

Range: 500 ns to $10^{4} \mathrm{sec}$.
inpul: channels A and B: can be common or separate.
Resolution: 100 ns to 10 ms in decade steps.
Accuracy: ± 1 count $=$ time base accuracy \pm trigger error*.
Tlme interval holdott: fromi pancl concentric knob which insents variable delay of approximately $100 \mu \mathrm{~s} 10100 \mathrm{~ms}$ belween START (channel A) and enabling of STOP (channel B); may be disabled. Electrical inputs during delay time are ignored. Delay may be digitally measured in CHECK and TIME INTERVAL positions. Delay oulput: rear panel BNC. TTL low level during delay lime.

Perlod average

Range: 10 Hz to 1 MHz .
input: channel A.
Poriod averaged; 1 to 10^{3} automatically selected.
Frequency counted: 10 MHz .
Accuracy: $\pm \mathrm{I}$ count \pm time base accuracy \pm (rigger error**.
Frequancy
Aange: 0 to 10 MHz .
Input: channel A.
Gate Imes: manualy selected $0.1,1$, or 10 seconds. AUTO posi-
tion selects gate lime to isecond for maximum resolution.
Accuracy: $=1$ count $¥$ ume base accurasy.
Open/close (torallzing)
Range: 10 MHz max.
Input: channel A opening and closing of gate initiated by front panel pushbution switch.

General
Check: inserts iniernal 10 MHz reference frequency into channels A and B.
Operalling temperature: 0° 10 $50^{\circ} \mathrm{C}$.
Power requlrements: including tnainframe, nominally 10 watts.
Weight: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $1.5 \mathrm{~kg}(31 / 4 \mathrm{lb})$.
Dimenslons: see mainframe.
5304A Timer/counter module

- 1300 MHz
- Preamplifier Power
- Fast high resolution tone measurements

5305B

5305B 1300 MHz frequency counter module

Input Channel A (CW OR BURST)
Range: 90 MHz to 1300 MHz , prescaled by 16 .
Sensitivity: 20 mV rms.
impedance: 50Ω.
Attenualor: continyously variable to give optimum noise suppression for signals up 103.5 V ms
Overtoad protection: 5 V ms, maximum. Input circuitry is fuse protected: fuse is located in BNC connector and is accessible from the front panel.
Operating dynamle range: $>47 \mathrm{~dB}$.
Input Channel 9 (Normal and HIgh Resolution Mode)
Range: 50 Hz to 100 MHz . direct count in normal mode. 50 Hz to 10 kHz in high resolution mode. In the high resolution mode the §305B uses a phase-locked multiplier to increase realution X 1000 over normal measurement resolution.
Sensitulity: 20 mV rims.
Impedance: I $M \Omega$ shunted by less then 40 pF .
Overload protection: 250 V ms from 50 Hz to 10 kHz . decilining to 10 V rms above 10 MHz .
Automatic hold: in high resolution mode, the last valid reading is held in display when input is terminated.
Frequency Measurement
Resolutlon (selectable)
Normal mode (50 Hz to 1300 MHz): 0.1 Hz to 10000 Hz in decade steps corresponding to gate times of 10 s 100.0001 s in decade steps on channel B and to gate times of 160 s to 0.0016 s in decade sleps on chanoel \mathbf{A}.
High resolution mode (50 Hz to 10 kHz): $0.0001,0.001,0.01$. $0.1 .1,10 \mathrm{~Hz}$ corresponding to $10,1.0 .1,0.01,0.001,0.0001$ second gote uimes on channel B.
Accuracy: $=1$ digit displayed \pm time base accuracy.
Display: $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$ with positioned decimal poinı.

General

Check: counts internal $10 \mathrm{MHz} \mathrm{reference} \mathrm{frequency} \mathrm{to} \mathrm{check} \mathrm{couns-}$ ing circuits.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: nominally 12 watts including mainframe.
Weight: net, $1.0 \mathrm{~kg}(2 \mathrm{l} / 4 \mathrm{lb})$. Shipping, 1.8 kg (4 lb).
Slze: with mainframe, $89 \mathrm{H}\left(3^{1 / 4}\right) \times 160 \mathrm{~W}\left(61 /{ }^{\prime}\right) \times 248 \mathrm{~mm} \mathrm{~L}$ (9\%,').
Compatlble malnframes: 5300 B (8 digits).

Accessory

10855A Preamp: 22 dB gain with $=1 \mathrm{~dB}$ flamess from
2 MHz to 1300 MHz . See 14.28 .

- DC volts, $A C$ volts, ohms and frequency

5306A

5306A Digital multimeter/counter module DC voliage

Ranes		Sensitipity
10 V	= 10.63% of reading. \cdot. 0.0035% al range)	$100 \mu \mathrm{~V}$
100 V	$=(0.03 \%$ al mading $+0.003 \%$ of panze)	1 mY
1000 V	+ 10.097% of reating $+0.05 \%$ of renge)	10 mV

Temperature coefficlent: $\pm\left(0.002 \%\right.$ of reading ${ }^{\circ} \mathrm{C}+0.0002 \%$ of range $/{ }^{6} \mathrm{C}$).
Sample times: nomal, 0.5 sec: Fast, 0.05 sec .
Input: floating pair, $10 \mathrm{M} \Omega$ resistance. all ranges.
Effectlve common mode rejectlon (1 kn imbalance): DC: >80 $\mathrm{dB}: 50 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 0.1 \%:>80 \mathrm{~dB}$.
Normal mode rejection: 50 Hz or $60 \mathrm{~Hz} \pm 0.1 \%:>50 \mathrm{~dB}$.
Maximum input
High to low: 1100 V de all ranges.
Low to Guard: $=200 \mathrm{~V}$ de or peak ac.
Guard to Ground: $\pm 500 \mathrm{~V}$ dc or 240 V rms at 50 or 60 Hz .
$A C$ voliage

Range	Frequency	
10 V	40 H2 1010 kb	$=10.98 \%$ of reading $: 0.02 \%$ al ranpe)
	10 NHE 10100 xta	= 10.98% of reading $+0.10 \%$ of range)
100 V	40 Hz to 500 Hz	$=(L .5 \%$ of reasing $+0.05 \%$ ol range)
1000 V	40 Hz 20500 Hz	$\pm 11.5 \%$ of reading $+0.05 \%$ of

Temperature coelficlent
10 V and 100 V range: $\pm\left(.05 \%\right.$ of reading $+.003 \%$ of range $\left./{ }^{\circ} \mathrm{C}\right)$. 1000 V range: $\pm\left(0.5 \%\right.$ of reading $+.003 \%$ of ratge $\left.{ }^{\circ} \mathrm{C}\right)$.
Input impedance: $10 \mathrm{M} \Omega$ shuated by $\operatorname{c3s} \mathrm{pF}$ maximum.
Maxtmum Input voltage: (see DC voltage specification).
Effectlve common mode rejactlon (1 k ? Imbalance): $\mathrm{DC}:>80$ $d B ; 50 \mathrm{~Hz}$ or $60 \mathrm{~Hz} \pm 0.1 \%:>50 \mathrm{~dB}$ ($10 \vee$ range).
Ohms

Hange		Sonsifivity
10×51	=10.3\% of reading $+0.003 \%$ ol rangel	0.18
100 k	$\pm 10.5 \%$ of reating $+0.007 \%$ of range)	1Ω
10 Mn	$\pm(0.75 \%$ of 1esting $+0.005 \%$ of 13 mg)	100Ω

Temperature coefficlent: $=\left(0.0002 \%\right.$ of range $\left./{ }^{\circ} \mathrm{C}\right)$.
Current through unknown: \& mA on $10 \mathrm{k} \Omega$ range: $100 \mu \mathrm{~A}$ on 100 $k \Omega$ range: $1 \mu \mathrm{~A}$ on $10 \mathrm{M} \Omega$ range.
Overload pratecllon: $10 \mathrm{k} \Omega$ range: 240 V ms for 1 min . 140 V rms continuous (waming lamp indicales overvolcage) $100 \mathrm{k} \Omega, 10 \mathrm{M} \Omega$ ranges: 240 V rms continuous.
Frequency
Aange: 40 Hz to 10 MHz .
Sensitivity (min): 50 mV rms to 1 MHz ; 125 mV ms to 10 MHz . Trigger level: auromatically adjusts 1040% or peak leval of input. Overload protactlon: 1000 V ms. On 10 V range: 240 V ms from 40 Hz to $400 \mathrm{kHz}, 10^{8} \mathrm{~V} \mathrm{~Hz}$ from 400 kHz to 10 MHz .
Gate times: normal: i sec, fast: 0.1 sec .
Accuracy: $=1$ counl \pm time base accuracy.
Power requlraments: including mainframe, nominaily $\$ 2$ walts.
Welght: net. I. $1 \mathrm{~kg}(2.3 \mathrm{lb}$). Shipping. 1.7 kg (3.6 lb).
6306A Digital Multimeter/Counter

5300A/B System (cont)

- High resolution at low frequencies
- 10 mv rms sensitivity
- 100 Hz and 10 kHz low pass filters

5307A High resolution counter module

5307 A is a period average measuring frequency indicating (reciprocal) counter. that provides very high resolution measurements in a minimum of (ime: (i.e. 00.0000 Hz in $<1 / \mathrm{sec}$ send). The CPM mode convers $\mathrm{H} z$ to counts/minule.

Input

Range: Hz mode: 5 Hz to 2 MHz . CPM mode: 50 to 10 M counts/ minute (0.8333 Hz to 166 kHz).

Sensitivity (Min.)

10 mV ims
$5 \mathrm{~Hz}-1.2 \mathrm{MHz}$
120 CPM- 10 MCPM
$25 \mathrm{mV} \mathrm{ms} \quad 1.2 \mathrm{MHz}-2.0 \mathrm{MHz}$
50 CPM-I 20 CPM

Pulses:

For low-duly cycle pulses ($<15 \%$).
15 mV peak for 250 nsec pulses.
100 mV peak for 100 nsec pulscs.
Basic sensitivity can be varied continuously up to 2.5 V ras by adjusting sensilivity control.
Attenuator: $\div 1$ or $\div 100$ effectively mises basic inpui sensiuvity by a factor of $100(10 \mathrm{mV} \rightarrow 2.5 \mathrm{~V} 101 \mathrm{~V} \rightarrow 250 \mathrm{~V}$).
Low pass fliters (3 dB Point)
Max. Altenuation
Roll-off

100 Hz	10 kHz
60 dB	40 dB
20 dB	per Decade

Impedence

No filters $\quad \mathrm{M} \Omega$ shunted by $<50 \mathrm{pF}$
100 Hz filters $1 \mathrm{M} \Omega$ shunied by series of $100 \mathrm{k} \Omega$ and $0.015 \mu \mathrm{~F}$
10 kHz filters $1 \mathrm{M} \Omega$ shunted by serics of $100 \mathrm{k} \Omega$ and 150 pF
Couplling: AC coupled amplifier.
Overload protection: $200 \vee$ mss below $10 \mathrm{kHz} ; 2 \times 10^{6} \vee \mathrm{~Hz}$ rms to $0.4 \mathrm{MHz}: 5 \mathrm{~V}$ rms above 0.4 MHz : 300 V rms with $\div 100$ altenuator.
Trigger level: selected positive or negative for optimum triggering from sigusoidal inputs or $=$ pulses.

Frequency measurament

Periods averaged: automatically selected for maximum resoluzion. Two periods are averaged for signals up to 100 Hz . Periods averaged increase decade for decade up to 200,000 periods averaged above I MHz .
Measurement time: varies from 312 msec fora display of 170000 to 815 msec for a display of 999000 . Hold-off adjusiable from $.35 \mu \mathrm{sec}$ $103.5 \mu \mathrm{sec}$ and 1 msec to 10 msec .
Accuracy: $\pm 3 \times 10^{-5 *} \pm 1$ rigger error** \pm time base error.
Display: Hz mode: Hz and MHz with automatic decimal point.
C.PM mode. M with automatic decimal point.

General

Check: measures intemal reference frequency. Displays 1.00000 MHz in Hz mode. 100 0 00 M in CPM mode.
operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requlrements: including Mainframe, nominally 10 watts.
Weight: nct, $0.98 \mathrm{~kg}(2 \mathrm{lb})$. Shipping. $1.5 \mathrm{~kg}(31 / \mathrm{lb})$.
5307A High resolutlon counter
5395

[^23]- 75 MHz
- Time interval averaging
- Auto ranging or manual operation

5308A Unlversal counter/timer module

Input (channels A and B)
Range: DC coupled: 0 to 75 MHz , AC coupled: 201075 MHz .
Sensitulty: (min) 25 mV rms to 10 MHz .50 mV rms 1075 MHz 150 mV p-p pulse at putse widith of 10 nsec.
Impedance: I M Ω shunced by less than $\mathbf{3 0} \mathrm{pF}$.
Overload protecton: $\mathrm{XI}: 125 \mathrm{~V}$ rms to 400 kHz declining 1010 V
rms al 75 MHz . X 10 : 250 V ms 104 MHz . decling 1013 V rms at 75 MHz .
Trigger level: variable over the range of $\pm 2.0 \vee$ and $\pm 20 \mathrm{~V}$.
Slope: independent selection of trigeering on + or - slope.
Rear outputs: gate, Ingger levels and time base/scaling,

Frequency

Range: 0 to 75 MHz . Channel A or Channel B.
Gate times: 8 selectable times from 1μ s to 10 S .
Accuracy: \pm l couns \pm lime base accuracy.
Frequency ratio
Display: Fa/Fs, I to 10^{8} periods selectable manual or auto.
Range: channel A: 0 to 75 MH /. Channcl B. 0 to 5 MHz .
Accuracy: $=1$ count of $\mathrm{Fa} \pm$ trigger emor of $\mathrm{Fb} . * *$
Perlad
Range: 0 Hz to 5 MHz , Channel B .
Resolution: 100 asec to 10 sec .
Aceuracy: ± 1 count \pm lime base accuracy \pm unger error. ${ }^{5 *}$
Display: μs, or s with positioned decimal point.
Perlod average
Range: $0.1-5 \mathrm{MHz}$ (200 nsec to 10 sec). Channel B.
Perlods averaged: $1-10^{\alpha}$ selectable manual or automatic.
Accuracy: $=1$ count \pm time base accuracy \pm trigger error.*
Time interval
Range: 200 nsec to $10^{9} \mathrm{sec}, 25 \mathrm{~ns}$ minimum pulse width.
Inputs: separate A and B or Common B.
Resolution: 100 nsec to 10 sec .
Accuracy: \pm I connl \pm (ime base accuracy $=$ trigger error." " Display: $\mu \mathrm{s}$. ks or s with positioned decimal poinn.
Time interval average
Range: Ins to 10 s . dead time between intervals 200 ns .
Inputs: channels A and B separate or common B.
Intervals averaged: 1 to 10^{\wedge}. selcetable manual or automatic. Accuracy: \pm time base accuracy $\pm 5 \mathrm{~ns}$.

$$
=\frac{\text { Trigger Error } \left.{ }^{* *}=100 \mathrm{~ns}\right)}{\sqrt{\text { Intervals Averaged }}}
$$

Totalize
Iotalizes Channel A while Channel B is low.
_rin tocalizes Channel A between pulses on Channel B.
Pange: 75 MHz in XI Position. 5 MHz in $\times 10^{n}$ positions.
Accuracy: ± 1 count \pm 1rigger crror" on Channel \mathbf{B}.
General
Auto position: automatically sets time base to give maximum reso-
lution within I.I second measurement time for Frequency. Fre-
quency Ratio. Period Average, and Time Interval Avcrage.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requlrements: including 5300 B , nominally 15 wath.
Welght: net, $0.9 \mathrm{~kg}(2 \mathrm{lb})$. Shipping, $1.5 \mathrm{~kg}(31 / \mathrm{lb})$.
Note: compatible with 5300 B only.
5308A 75 MHz Timer/counter
－Three modes of operation
－Battery compatible
－Column selective

5311B Digltal to analog converter module

The 5311B Digital to Analog Conventer convenienuly smaps in－ between the mainframe and plug－on module of any 5300 system．It provides high resolution，expanded scale analog ourput of any of the 5300 system measurements．With the 5311 B you can select any three consecutive digits．or the right－hand two of the mainframe display for conversion to analog output．This makes it possible to focus on just that part of the display that contains the iasportant information． Now your stripchart recorder can give you a permanent record of any functional measurement made by any 5300 measurement sys－ tem．Easy to use，just snap it in place．The 5311B can also be used with the 5310 A battery pack to provide a rugged．portable．go anywhere monitoring system．Three modes of output makes it pos－ sible to tailor the outpu（ to the application．

Operating modes

Three modes selectable by switch on front pancl．
Normal mode：analog ourput is direculy proportional to digital in－ put．Digital 000 produces zero oulput； 999 produces full scale out－ pul．
Plus／minus mode：digital 000 produces center scale oulput；－999 produces zero output： 999 produces full scale output．
Offset mode： 500 produces zero outpur： 000 produces midscale output： 499 produces full scale outpuc．This mode effectively adds 500 to digital input to acquire half scale offset．Compatible with all mainframes and plug－on modules．

Hode		Dutpul	
	$\begin{aligned} & 01050 \% \\ & \text { of scalo } \end{aligned}$	$\begin{gathered} 50 \% \\ o f \text { Sasle } \end{gathered}$	$50 \% 10100 \%$ of scale
Normal	010499	500	50110999
Plus／minus	－ 999 to－001	000	001 10999
0Hiset	50010999	000	001 to 499

Output selection

Manual pustbbuttons to select any three conseculive digits or the last two digits of the Mainframe display．

Output ranges

Potentiometric Reconder Output； 0.1 V .1 .0 V ，or 10 V full scale inio $>20 \mathrm{k} \Omega$ ．Dua banara plups．
Galvanometer Recorder Output：I mA full scale into＜1．5 k phone jack．
General
Accuracy：$\pm 0.25 \%$ of range $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ on potentiometric output． $=20 n A /{ }^{\circ} \mathrm{C}$ on gal vanometer outpul after calitration for appropriate range．
Callbratlon：zero and full scale catibration switch and adjusiments on rear panel．
Transter time：＜5 ms．
Operating temperature： 0° to $50^{\circ} \mathrm{C}$ ．
Power requiremente：nominally）walt．
Welght：ne1， $0.8 \mathrm{~kg}(1.7 \mathrm{lb})$ ．Shipping， $1.4 \mathrm{~kg}(3.0 \mathrm{fb})$ ．
Slze：Digital－to－Analog Converter plugs between Mainframe and plug－on module．Increases height of instrument by $38.4 \mathrm{~mm}(1.5 ")$ ． 5311日 Digltal－Analog Converter
$\$ 395$
－Expanded digital oulput
－ASCII format

5312A ASCII（HP－IB）interface module

The ASCII lateriace Module snaps in between the 5300B and any plug－on module．It provides digital Output capability via the HP Interface Bus．This is an easy to implement method of interfacing any 5300 system that utilizes the 8 －digit 5300 B mainframe with any HP－IB compatible printer．

The 5312A oulputs fifleen bits of informution in the following format．

General

Sample rete：controlled by mainframe front panel control or by setting rate of reset command（when in listening mode，counter can be resel by sending＂initialize＂command）．
Transfer tlme： 20 milliseconds．
Transfer rate：maximum of 40 reading／Sec depending on capabilities of plug－on．
Indicator lights：indicates if instrument is in Talk or Lisien Mades． Self test mode：checks functioning of basic interface．

DF	Q171135E＋日
F	10171．92F＋3
F	$19173+18 E+3$
F	$10173.28 E+3$
F	$2.3555+3$
E	2． $34095+3$
F	2．3759E＋3
I＇	6． $900 \mathrm{C}+6$
V	$-2 \cdot 1555 E+1$
\because	$-2 \cdot 1654 E+8$
F	1．0Tに26eE＋ 0

Samples of digital output from 5300 measuring system utilizing the 5312A HP－IB cooverter and the 5I50A thermal printer．Note the indication of function，decimal position，exponent and overflow when required．
Programmability：front panel controls are not programmable．
Note：the 5312A is not compatible with the 5300A mainframe which cootains its own BCD Digital Outpul．
5312A ASCll Interface

\author{

- 2 MHz to 1300 MHz
 - $=22 \mathrm{~dB}$ gain
 - 50Ω input and output impedance
 - Fuse protected input
}

5310A Batlery pack

5310A Battery pack module

Provides batiery power to 5300A mainframe and snap on modules from rechargeable nickel-cadmium cells.

The 5310A Battery Pack is easidy inserted belween the 5300A or 5300 B mainframe and any functional moduc, providing a iruly portable measurement sysiem. Low vollage strobed solid state displays and the MOS/LSI IC design of the mainframes make efficienl batery operation possible. The fromt panel waming light indicates a low baltery condilion. Any 5300 syslem with une battery inserted will automatically switch over to batfery operation in the event of power failure, providing extm reliability for unattended operalion. Floating operation is also possible with the 5310A Battery Pack. thus avoiding ground loops.
Battery copacity: 48 walt-hours, nominal. Minimum 3. typically 5 hours of continuous operation al charging and operating temperature ($20^{\circ} 1030^{\circ} \mathrm{C}$).
Aecharging thme: 18 hours from minimum level (indicated by low Voliage Indicator) 10 full charge.
Battery voltage: I2 Vdc.
Low voltage indlcator: sold state waming light begins to glow at approximately 90% discharge.
Ltne fallure protectlon: allows instrument to be opcrated in LINE posilion with automatic switch-over 10 battery power if line voltage fails. Balteries receive trickle charge in LINE position lo mainain charge.
Operating temperature: operaling: 0° to $50^{\circ} \mathrm{C}$. Charging: 0° to $40^{\circ} \mathrm{C}$, mainframe nol operaling.
Power requirements: charging power via mainframe, nominal 7.5 walls.
Welght: net. $2.3 \mathrm{~kg}(5 \mathrm{lb})$. Shipping. $2.9 \mathrm{~kg}(61 / \mathrm{lb})$.
Accessories furnished: shoulder carrying strap.
Dlmenglons: battery pack plugs berween 5300 A or 5300 B mainframes and any plug-on module. Increase height of instrument by 38.4 mm (1.5 in).

5310A Batlery pack module

$\$ 275$

10548A Service support package

The unique HP 10548λ Service Kil provides an casy and efficient means of isouble shooling the 5300 A or 5300 B mainfromes. The four diagnostic cards, shown in use above, conlain 16 self running tesis that locate problems to the component level. Complele diagnostic How charts in the manuals provide fumher step by step procedures. When failures are diagnosed, repair is simple. All componenis are easily accessible by merely removing a single screw and snapping out the main PC boand.

10548A Service support package

$\$ 95$

11096B High frequency probe

Alows the 5306A to make high frequency ac voltage measurements. This probe is used for ac voluge measurements of 0.25 volt to 30 voles over a frequency range of 10 kHz 10700 MHz with an accuracy of $=0.5 \mathrm{~dB}$ from 100 kHz to 100 MHz and $\pm 1.2 \mathrm{~dB} 10500$ MH . over 10° to $30^{\circ} \mathrm{C}$. Three probe tip accessories are supplied to extend the probe's versicility.

10855A Broadband preamp

The 10855 A Preamp gives a minimum of 22 dB gain 10 enhance measurements of very low-level signals. The I0855A opemies conveniently with a variely of HP measuring instruments having probe power oullets. or will work with a separate power supply. The 10855A Preamp includes several major features to aid your measurements:
$\geqslant 22$ dB gain: from 2 MHz to 1300 MHz boosis broadband signals. $=1$ dB flat response: reduces distortion in nom-sinusoidal waveforms
50Ω Input and output impedances: match high frequency cnvironmentr.
Fuse protected input; prevents costly damage.
Excellent reverse isolation: $>45 \mathrm{~dB}$.
The 10855 A Preamp is especially useful where the source signal is at a very low level. It also helps where divider probes are used 10 reduce circuil loading. The 10855 A Preamp can operate from the HP II22A Probe Power Supply for use wih insiruments that do nol have a probe power oullet.

Compatlble Hewlet-Packard products

These producis presenlly have probe power outlels that will drive the 10855A Preamp.
5305B $\quad 1300 \mathrm{MHz}$ Frequency Counter
$5328 \mathrm{~A} 1031 \quad 1300 \mathrm{MH} 2$ Universal Counter
8505A Network Analyzer
8553B Specirum Analyzer RF Section
8557A Specirom Analyzer
8558B Spectnum Analyzer
$1810 \mathrm{~A} \quad 1 \mathrm{GHz}$ Scope Plug-in (Sampling)
1811A Simpline Time Barse and Verical Amplifier
1841A Time Risc and Delay Genemior
II22A Probe Power Supply

Spectilcatlons

Frequency range: $2 \mathrm{MHz}-1300 \mathrm{MHz}$.
3 dE 日andwldih: $1 \mathrm{MHz}-1400 \mathrm{MHz}, ~ t y p i c a l$.
Galn (minlmum): $22 \mathrm{~dB}: 24 \mathrm{~dB}$ typieal.
Galn flatness across full frequency rango: $\pm 1 \mathrm{~dB}$.
Noise llgure: $<8.5 \mathrm{~dB}$ iypical.
Outpul power for 1 dB galn compression: 0 dBm .
Harmonle distortlon: -30 dB for -15 dBm oulput, iypical.
Output for $<-60 \mathrm{~dB}$ harmonle distortion: -25 dBm , typical.
VSWR: input and output. <2.2.
Impedance: 50Ω nominal.
Reverse lsolation: $>4 \leq \mathrm{dB}$.
Maximum input: 3.5 V rms $(+24 \mathrm{dBm})$, fuse protected.

General

Current required at $\div 15 \mathrm{~V}$ supply: 40 md (matung connector included).
Wolght: net. $0.03 \mathrm{~kg}(1 \mathrm{oz}$.$) . Shipping, 0.1 \mathrm{~kg}(\overline{7} 02).$.
Slze: $25 \mathrm{H} \times 15 \mathrm{~W} \times 80 \mathrm{~mm} L\left(1^{\prime \prime} \times 1 / \mathrm{a}^{\prime \prime} \times 31 / \mathrm{s}^{\prime \prime}\right)$.
10855A Broadband preamp

Description

General

The 5381A, 5382A and 5383A are a logical result of H.P's long slanding leadership in frequency counter development. Leadership in quality, lechnology and efficient production procedures allows H-P to offer a price/performance combination in these three precision instrument unequalied in their product eategory. These counters are designed to deliver reliable, high quality operation in such diverse areas as: Produclion Line Testing, Service and Calibration (2-Way Radio and test equipment). Frequency Monitoring, Edueation and Training.

Pesolution

The 5318A, 5382A and 5383A employ the direct counting tech. nique and with 7,8 and 9 digits respeciively offer resolution of 10 Hz in 0.1 sec .1 Hz in I sec and 0.1 Hz in $I 0$ seconds.

Speciflcations

5381 A

Frequency range: 10 Hz to 80 MHz .
Sensitivity: 25 mV ms- 30 Hz to $20 \mathrm{MHz}, 50 \mathrm{mV}$ mos- 10 Hz 10 80 MHz .
Input Impedanee: $1 \mathrm{M} \Omega,<50 \mathrm{pF}$.
Input attenuation: $\mathrm{XI}, \times 10, \times 100$.
Accuracy: $=1$ count $=$ imebase error.
Reaolution: direct count; 1 Hz in 1 second.
Gate times: 0.1 second, isecond, 10 seconds.
Display: 7 LED Digits.
Rear panel Input: sensitivizy: TTL levels or $2.5 \mathrm{~V} \pi \mathrm{~ms}$.
Ratia: Rear Panel Input, 10 kHz to 2 MHz .
External frequency standard: Rear Parel Inpur, I M Hz.

Tlmabase

Frequency: I MHz .
Aging: <0.3 $\rho \mathrm{pm} / \mathrm{month}$.
Temperature: $\pm 10 \mathrm{ppm} 0^{\circ} \mathrm{C} 1040^{\circ} \mathrm{C}$.
Line voltage: ± 1 ppm for 10% line change.

5382A

Frequenoy range: 10 Hz to 225 M Hz .
Sensitivity: 25 mV rms- 30 Hz to $10 \mathrm{MHz}, 50 \mathrm{mV} \mathrm{ms}-10 \mathrm{~Hz} 10225$ MHz .
Inpul Impedence: I $M \Omega,<40 \mathrm{pF}$.
Input attenuation: X1, X $10, \times 100$.
Acouracy: ± 1 count \pm imebase emtor.
Resolutlon: direct count: I Hz in I second.
Gate time: 0.1 second, 1 second, 10 seconds.
Dlsplay: 8 LED Digits, nonsignificart zero blanking.
Rear panel Input: sensitivity: 250 mV ross.
Ratlo: Rear Panel input, 100 kHz io 10 MHy .
External frequency standerd: Rear Panel Inpul, 10 MHz .

Tlmebase

Frequency: 10 MHz .
Aging: $<0.3 \mathrm{ppm} /$ month.
Temperature: $\pm 2.5 \mathrm{ppm} 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Une voltage: $\pm 0.5 \mathrm{ppm}$ for 10% line change.

5383A
Frequency range: 10 Hz to 520 MHz . Senslitulty
$1 \mathrm{M} \mathrm{\Omega}: 25 \mathrm{mV} \mathrm{ms}-20 \mathrm{~Hz}$ to 10 MHz .
50 mV rms- 10 Hz 10 50 MHz .
50』: 25 mV rms- 20 Hz to 520 MHz .
Input Impedance: selectable: i M $\Omega .<40 \mathrm{pF}$ or 50Ω.
Inpul attenuation: : $M \Omega \times 1, \times 10: 50 \Omega \times 1$-fuse protected.
Accuracy: ± 1 count \pm timebise error.
Resolutlon: direct count: 1 Hz in I second.
Gate lime: 0.1 second. I second, 10 seconds.
Dlsplay: 9 LED Diglts, nonsignificani zero blanking.
Dlsplay test RESET function (activated with GATE TIME
switch) illuminates al segments of al digits.
Rear panel input: sensitivicy: 250 mV rms.
Ratlo: Rear Panel Inpul, 100 kHz io 10 MHz .
External frequenoy standard: Rear Panel Input. 10 MHz .
Tlmebase output
Frequency: 10 MHz cimebase.
Voltage: 200 mV p-p into 50Ω load.
Control: active with Rear Panel Internal/Extenal switch in internal position.
Tlmebase
Frequency: 10 MHz .
Agling: $<0.3 \mathrm{ppm} /$ month.
Temperature: $\pm 2.5 \mathrm{ppm} 0^{\circ} \mathrm{C}$ 1o $40^{\circ} \mathrm{C}$.
Line vollage: $\pm 0.5 \mathrm{ppm}$ for $\pm 10 \%$ line change.

TCXO Optiont

Opl 001: (avalable forall models) Temperature Compensated Crys-
iz Oscillator Timebase
Frequency: 10 MHz .
Agling: <0.1 ppmmonch.
Temperature: $<1 \mathrm{ppm} 0^{\circ} \mathrm{C}$ so $40^{\circ} \mathrm{C}$.
Une voltage: $\pm 0.1 \mathrm{ppm}$ for $\pm 10 \%$ line change.
Note: Timebase output available for both 5382 A and 5383 A with
Option 001. Rear Panel Input not available.
5380 Family general data
Overlow: LED lamp indicator when most significant digit overflows.
Reset: manual selection of resel occurs when GATE TIME switch is between three nommal positions.
Package: rugged. high sirength metal case.
Operaling temperature: $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Power requlrements: 100, 120, 220, 240, V rms ($+5 \%,-10 \%$)
48 - 440 Hz ; 20 VA maximuon.
Welght: net, $2.2 \mathrm{~kg}\left(4^{3} / 4 \mathrm{lb}\right)$. Shipping, $2.8 \mathrm{~kg}(6 \mathrm{lb})$.
Dimensions: $98 \mathrm{H} \times 160 \mathrm{~W} \times 248 \mathrm{mmD}\left(31 / 3^{\prime \prime} \times 614^{N} \times 99 / \mathrm{s}^{\prime \prime}\right)$.

Ordering information	Price
$\mathbf{5 3 8 1 A}$ Frequency Counter	$\$ 395$
$\mathbf{5 3 8 2 A}$ Frequency Counter	$\$ 495$
$\mathbf{5 3 8 4}$ Frequency Counter	$\$ 650$
Opt 001: TCXO (all models)	add $\$ 100$

- Single input 10 Hz to 18 GHz
- Automatic amplitude discrimination
- High sensitivity - 35 dBm
- Optional extension to 23 GHz
- High AM and FM tolerance
- Exceptional reliability

The 5340A Frequency Counter provides a modero, easily used, more versatile insurumenl for the direcl measurement of frequencies from 10 Hz through 18 GHz via a single ingut conncetor. Utilizing new microwave samplers incorporated in advanced phase-lock loops. this counter excels in virtually every specification parameter. It is therefore suited to a wider runge of applications than ever before possible for a fully automate microwave counter.

The excepional sensitivity of this instrument enchances measurement in the microwave field, where signals are commonly low level and many times are connected via directional couplers or lossy devices. Wide colerance of $A M$. FM. and residual noise insure accurale measurement of microwave carrier frequencics despite the presence of these devations. Aulomatic amplitude discriminution allows the 5340 A to choose the largest signd in a specirum (250 MHz io 18 GHz and measure only that signal's frequency. ignoring all olhers.

Access to the HP Interface Bus via Option OII provides a panicu. barly fexible systen interlace. The ability to prograin octave range via this input allows reduction of acquisition time to typically less than 40 ms . AN $181-1$ describes the use of a calculator-controlled measurement system buill around the HP Interiace Bus for microwave componend lesling.

5340A Specifications

Signal Input

Input 1
Range: 10 Hz to 18 GHz .
Symmetry: sinewave or squarewave inpul (40% duty factor. worst case).
Sensitivity: $-30 \mathrm{dBm}, 10 \mathrm{~Hz} 10500 \mathrm{MHz}:-35 \mathrm{dBm} .500 \mathrm{MHz}, 10$ $10 \mathrm{GHz}:-25 \mathrm{dBm}, 10$ 10 18 GHz .
Dynamic range: $37 \mathrm{~dB}, 10 \mathrm{~Hz}$ to $500 \mathrm{MHz} ; 42 \mathrm{~dB}, 500 \mathrm{MHz}$ io 10 GHz: $32 \mathrm{~dB}, 10 \mathrm{GHz}$ to 18 GHz .
Impedance: 50Ω.
VSWR: <2: I. $10 \mathrm{~Hz}-12.4 \mathrm{GHz}:<3$: 1. 12.4-18 GHz.
Connector; Precision Type N.
Coupllng: de to load. ac to instrument.
Damage level: +30 dBm . (Tolal power (ac +dc) not (o exceed 1 walt.
Acqulgition ilme: <150 ms nean typical.

Input 2

Range: $10 \mathrm{~Hz}-250 \mathrm{MHz}$ direcl count.
Sensitivity: $50 \mathrm{mV} \pi \mathrm{ms}$. $150 \mathrm{mV} \mathrm{p}-\mathrm{p}$ pulses to 0.1% duty factor: minimum pulse width 2 лs.
Impedance: $1 \mathrm{M} \Omega$ shunted by $<25 \mathrm{pF}$.
Connector: lype BNC female.

Couplling: ac.
Maximum input: 200 V rms, 10 Hz to $100 \mathrm{~Hz}: 30 \mathrm{~V}$ rms. 100 Hz to $100 \mathrm{kHz}: 2 \mathrm{~V}$ rins. 100 kHz to 250 MHz .
Automatic amplitude discrimination: automatically selects the strongest of all signals present (within $250 \mathrm{MH} \neq 1018 \mathrm{GHz}$ phaselock range), providing signal level is; 6 dB above any signal within $200 \mathrm{MHz}: 10 \mathrm{~dB}$ above any signal within $500 \mathrm{MHz}: 20 \mathrm{~dB}$ above any signal, $250 \mathrm{MHz}-18 \mathrm{GHz}$.
Maximum AM modulation: any modulation index as long as the minimum voltage of the signal is not less than the sensitivity specification.
Time Base
Crystal frequency: 10 MHz .
Stabllity
Aglng rate: $<3 \times 10^{-i}$ per month.
Short tem: $<5 \times 10^{-10}$ rms for 1 secand averaging time.
Temperature: $<=2 \times 10^{-0}$ over the range of $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Llne varlation: $< \pm I \times 10^{-y}$ for 10% line variation from nominal.
Output trequency: $10 \mathrm{MHz} \geq 2.4 \mathrm{~V}$ square wave (TTL compatibe) available from rear panel ENC.
External ilme bese: requires 10 MHz approximately 1.5 V p-p sine wave or square wave into $I k \Omega$ via rear panel $B N C$. Switch selects either intemal or external time base.
Optlonal tlme basa (Opt 001) aging rate: $<5 \times 10^{-10}$ per day after 24 hour warm-up for less than 24 hour ofl-time.

General

Accuracy: $=1$ count \pm lime base error.
Resolution: front panel switch selects $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz}$. I $\mathrm{kHz}, 100 \mathrm{~Hz} .10 \mathrm{~Hz}$, or 1 Hz .
Display: eight in-line long life display luber with positioned decimal point and appropriate measurement units of kHz . MHz . or GHz .
Self check: counis and displays 10 MHz for resolvtion chosen.
Sample rate: controls ime between measurements. Continuously adjusiable from 50 ms typical to 5 seconds. HOLD position holds display indefinitely. RESET button resets display to zero and activates a new mensurement.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, $48-66 \mathrm{~Hz}, 100 \mathrm{VA}$.
Welght: nel. 11.3 kg (25 lb). Shipping. 14.1 kg (3) lb).
Slze: $88.2 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{~mm} D\left(3^{18 / 32} 2^{10} \times 16^{3} 4^{4} \times 18^{3} / \mathrm{s}^{\prime \prime}\right)$.
Optlons
Prlce
001: High Stablity Time Base add $\$ 500$
002: Rear Panel Connectors
011: Remote Prograraming-Digital Output (HP-IB)
H10: Frequency Extension 1023 GHz
add \$105
add $\$ 390$
add \$150
900: Rack Flange Kit
5340A Frequency Counter

- Automatic or manual band-selection
- Wide FM tolerance
- Optional 1.5 GHz range
- Fast acquisition time
- High sensitivity
- Fully automatic, diagnostics

The new s341A Frequency Counter performs exceptionally fast measurements of frequency up to 4.5 GHz . Using a unique HP designed microwave switchable filter, its automalic hetcrodyne measurement technique insures high tolerance of FM on the measured sienal. In the normal mode of operation. the 5341A will automaticully measure and display the lowes? $C W$ signal within its sensitivity: in the manual mode, the opentor can choose to search within any of ten frequency bands which cover the counter's full range. Also at the operator's command. a convellient rouéne provides "qualifiens" in the display for complete diagnoslic information conceming both the measured signal and the counter's internal operation.

The high sensitivity (-15 dBm in automatic mode. -20 dBm in manual) of the 5341A makes it ideal for measurement of low-lcucl signals in the testing of UHF and microwave components and equipment. An extremely fast acquisition time ($100 \mu \mathrm{sec}$ in manual mode) makes this counter the opsimum choice for systems applicalions.

Option 003 limits the frequency range of the $5341, \mathrm{~A} 101.5 \mathrm{GHz}$ at a considembly reduced cost. Option 011 conncets the 5341A to the high-speed HP fnierface Bus for dati ouspul and complete programmability. including the ability to remotely select the manual search bands.

5341A Specifications

Signal Input

Inpul 1
Range: 50 MHz to 4.5 GHz .
Impedance: 50Ω nominal.
Connector: precision Type N .
Senshivity: - 15 dBm (AUTO uperating mode): -20 dBm (MANUAL operating mode).
Maximum Input: +20 dBm .
Damage level: +30 dBm .
Operating modes: AUTO: counler automatically selceis and displays lowest frequency within ies sensitivity range; MANUAL: Measurement band is selected manually, and counter measures wilhin a 525 MHz range above displayed band number (in the 500 MHz and 750 MHz bands, counter measures within a 250 MHz range).
Measurement Ime: acquisition time + gate time.
Acqulsifion thme: $600 \mu \mathrm{~s}$ (AUTO operating mode): $100 \mu \mathrm{~s}$ (MANUAL operuling mode).
FN tolerance: 30 MHz pcak-lo-peak wors1 case. Tolerales 500 MHz peak-lo-peak ($0-500 \mathrm{MHz}$ and $1.0-4.5 \mathrm{GHz}$) and 250 MHz peak-to-peak (500 MHz co 1.0 GHz) in center of bands.

Input 2
Range: 10 Hz to 80 MHz .
Impedance: $1 \mathrm{M} \Omega$, shunted by 50 pF .
Connector: type BNC Temale.
Coupling: ac.
Sensltivity: 10 millivolts.
Maximum input: 5 volis penk-lo-peak.
Damage level: 400 volis dc: 250 volts rms ac. 10 Hz to 100 kHz . decreasing 6 JB per octave $1080 \mathrm{M} . \mathrm{Hz}$.
Tlme base
Crystal frequency: 10 MHz .
Stabilly
Aging rate: $<1 \times 10^{-7}$ per month.
Temperature: $< \pm 1 \times 10^{-}$. $\pm 10 \%$ from nominal.
Output frequency: $10 \mathrm{MH}_{2} \geqslant 2.4 \mathrm{~V}$ sequare wave (TTL compalible) gvailable from rear panel BNC.
External time base: requires 10 MHz approximately 1.5 V p-psine wave or square wave inlo 1 kn vía rear panel BNC. Switch aclects cither intemal or extermal time base.
Opllonal tlme base (Opt 001) aging rate: $<5 \times 10^{-10}$ per day after 24 hour warm-up for less than 24 hour off-lime.

General

Accuracy: \pm count \pm lime base error
Resolution: front panel 5 whtch selecis $1 \mathrm{MHz}, 100 \mathrm{kHz}, 10 \mathrm{kHz} .1$ $k \mathrm{~Hz}_{2}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$. or 1 Hz .
DIsplay: ten-digit sectionalized LED display and appropriate measurement units of $\mathrm{kHz}, \mathrm{MHz}$, or GHz .
Sell chock: couns and displays I GHz for resolution chosen.
Sample rate: continuously adjustable from 40 msec to 10 seconds and HOLD.
OperaUng temperature: $0^{\circ} \mathrm{C}$ so $50^{\circ} \mathrm{C}$
Power: 115 or 230 vols, with $+5 \% 10-10 \%$ tolerance, 48 to 66 Hz . 104 VA
Pemote programming and digital output: optional (Option 01I) via 24-pin, series 57 Microribbon connector. Program and output information are 7-bit ASCIl code. Compa\{ible with HP Interface Bus.
Welght: Ne(10.5 kg (23 Jb). Shipping 13.2 kg (29 lb).
Size: $88.2 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{mmD}\left(31 / \mathrm{m}^{2} \times 16^{\%} / 4^{\prime \prime} \times 18 \% 0^{\prime \prime}\right)$
Optlons
Price
001: High Stability Time Base add $\$ 500$
002: Rear Pancl Conneclors
add \$105
003: 1.5 GHz Ficuluency Ringe
less $\$ 1000$
011: Remote Programming-Digital Output (HP-|B) add $\$ 390$
908: Rack Flange Kı
add $\$ 10$
5341A Frequency Counter
$\$ 4950$

- Microprocessor controlled
- Automatic measurement to 18 GHz
- Wide FM tolerance
- Simultaneously display input level
- High sensitivity
- Automatic or manual operation

Description

The 5342 A automatic microwave counter provides frequency and amplitude measure ment coverage from 10 MHz through 18 GHz in a highly portable packiage
The powerful and versatile microprocessor controlled keyboard can accomplish offset lasks as a standard feature as well as providing user interactive diagnostic informsation. The eleven-digit display is sectionalized for eisy readout to ane herly sesolution.
The 5342A uses a harmonic heterodyne down conversion technique which combines the beat performanee feslures of the heterodyne converter and cransfer oscillator techniques. Now wide FM rolerance is achicvable along with high inpul sensitivity. and automatic ampliude diserimination. Automatic amplitude discrimination allows for the measurement of the largent signsl present in the spectrum ($500 \mathrm{MHz-18} \mathrm{GHz}$) while ingnoring all others.

Amplitude measurements (Opt 002)

Option 002 adds for the first time in a microwave counter the ability to measure input level of the incident sinewave signal. The instrument then displays this level in dBm . The eleven-digit LED display simultancously presenes frequency to 1 MHz resolution and amplitude to 0.1 dB resolution. An added benefit from Option 002 is that dyramic range is extended so that frequency measurements to +20 dBm are accomplished. This extended dynamic range is also available without the amplitude measurensent capability by ordering Option 003.

FM Tolerance

The ability to measure a carier frequency while being frequency modulaled has broad appeal in the communications industry and elsewhere. The 5342 A can tolerate 50 MHz peak-10-peák worst case FM in the wide mode, or the normal mode with accompanying faster acquisition time can be selecled which gives 20 MHz peak-to-peak worsi case FM.

Offset functions

The power and versatility of the microprocessor controlled keyboard allow the user 10 perform offsel functions by way of a few keystrokes. Frequency values to 1 Hz resolution can be added to or subtracted from the measured incoming frequency for 1 F offset applications and also for monitoring variances aboul a given frequency value. With Option 002 installed, this same offset capability is applied to the amplitude measurements being displayed. At any lime. these offset values can be recalled to the display for rcviewing. Digital-to-analog converter (Special Opt HO1)
The ability to conver any three conseculive displayed digits (frequency or amplitude) into an analog voltage outpul on the rear panel of the 5342 A is added by special option HOI. This makes the monitoring of microwave oscillator frequency drift easy to make with only a strip chart recorder. HP Interface Bus for systems use (Opt 011)

The fuli power of HP-IB (IEEE488-197S) is brought to fruition with the addition of Option 011. Froni and rear panel controls can now be remotely programmed and measurement results carn be outputted to HP-1B-compatible instruments. calculators, or computers. This interface also can select a given frequency in the manual mode and reduce acquisition time 10 cypically less than 1 msec .

5342A Specifications

Signal input
Input 1
Frequency range: 500 MHz to 18 GHz .
Sensilivity: 500 MHz to $12.4 \mathrm{GHz}-25 \mathrm{dBm}$. 12.4 GHz io 18 GHz: - 20 dBm
Maximum Input: +5 dBm (see Opt 002. 003 for higher level).
Dynamic range: 500 MHz to $12.4 \mathrm{GHz}: 30 \mathrm{~dB} .12 .4 \mathrm{GHz}$ to 18
$\mathrm{GHz}: 25 \mathrm{~dB}$.
impedance: so ohms, nominal.
Connector: precision Type N female.
Damage level: +25 d mm .
Overlosd indication: displays dashes when inpur level exceeds +5 dBm.
Coupling: DC io load, $A C$ io insirument.
SWR: <2:1. 500 MHz - 12.4 CHL
<3 : $1,12.4 \mathrm{GHz}-18 \mathrm{GHz}$.
FM Tolerance: Switch selectablc (rear panel)
FM (WIde): 50 MHz peak-lo-peak worst case.
CW (Normal): 20 MHz peak-to-peak worst case.
For modulation rates from DC to 10 MHz .
AM Tolerance: any modutation index provided the minumum sigmal level is nol less than the sensitivity specificalion.
Antomatic amplitude discrimination: aniomatically measures the targest of all signals present, providing that siens is 6 dB above any signal within $500 \mathrm{MHz} ; 20 \mathrm{~dB}$ above any signal, $500 \mathrm{MHz}-18 \mathrm{GHz}$.

Modes of Operallon

Automatic: counter aulomstically acquires and displays bighest level signal within sensitivity range.
Manual: center frequency entered to within $=50 \mathrm{MHz}$ of true value.
Acquisiton the
Automatlc mode, normal FM: 530 msec worst case.
Automatle mode, wide FM: 2.4 sec worsi case.
Manual mode: I msec after frequency entered.
Impul 2
Frequency range: 10 Hz to 520 MHz direct count.
Sonsitivity: 50Ω : 10 Hz to $520 \mathrm{MHz}: 25 \mathrm{mV} \mathrm{ms}$. $1 \mathrm{M} \Omega$: 10 Hz to 25
$\mathrm{MHz}: 50 \mathrm{mV}$ rms.
Impedance: selectitble $\mathrm{M} \Omega,<50 \mathrm{pF}$ or 50 n nominal.
Coupling: $A C$.
Connector: rype BNC female.
Maximum Input
50Ω : $3.5 \vee \mathrm{rms}(+24 \mathrm{dBm})$ or 5 V DC. fuse prolected
$1 \mathrm{M} \Omega: 200 \mathrm{VDC}+5.0 \mathrm{~V} \mathrm{~ms}$
Time Base
Crystal trequency: 10 MHz .

Stabillty

$$
\text { Aging rate: }<1 \times 10^{-7} \text { per month. }
$$

Temperature: $< \pm 1 \times 10^{-0}$ over the range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Short term: $<1 \times 10^{->}$for 1 second averaging time.
Line varlation: $<\geq 1 \times 10^{*}$ for 10 ch change from nominal.
Output frequency: $10 \mathrm{M} / \mathrm{Hz}, \geqslant 2.4 \mathrm{~V}$ square wave (TTL compatible 1.5 V p-p into 50 s? avalable from reas panel BNC.
External time base: requires fif $\mathrm{MHz}, 1,5$ V. p-p sincwave or squarewave into 1 K , via rear panel BNC connector. Swith

Optiona! time base (Opt 001)
Crystal frequency: if MHz .
Stability
Aging rate: $<5 \times 10^{-13} /$ day after 24 -hour warmup.
Temperature: $<7 \times 10^{-8}$ over the range $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. Shon term: $<1 \times 10^{-14}$ for 1 s avg. time.
Line vanatlan: <1 $\times 10^{-14}$ for $10 \%^{\circ}$ change from nominal. Warim-up: $<5 \times 10^{-9}$ of tina! value 20 minutes after turn-on, al signal within $500 \mathrm{MHz} ; 20$ dB above any signal, $500 \mathrm{MHz}-18 \mathrm{GHz}$. Modes of Operation

General

Accuracy: \pm I count \pm lime base error.
Resolution: front panel push buttons select 1 Hz to 1 MHz
Display: II digir LED display, sectionalized to read GHz. MHz. KHz , and Hz .
Self-check: selecied from front panel pushbutions displays 75 MHz for resolution chosen.
Frequency offset: selected from fromt panel pishbuttons. Displayed frequency is offeet by entered value 101 Hz resolution.
Sample rate: variable from less than 20 ms between measurements to HOLD which holds display indefinitely.
If out: rear panel BNC connector provides 25 MH z to 135 MHz outpul of down-converted microwaive signal.
Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power requirements: $100 / 120 / 220 / 240 \mathrm{~V}$ rms, $+5 \%$. $-10 \%, 48-66$ $\mathrm{Hz}, 100$ VA max.
Accessorles furnished; power cord, 229 cm (7, A).
Welght: net $9.1 \mathrm{Kg}(20 \mathrm{lb})$. Shipping 11.4 Kg (25 lbs).

Amplitude Measurement (Opt 002)
Input 1
Frequency sange: 500 MHz - 18 GHz .
Dynamic range (lrequency and level):
-22 dBm to $+20 \mathrm{dBm} \quad 500 \mathrm{MHz}$ to 12.4 GHz
-15 dBm to $+20 \mathrm{dBm} \quad 12.4 \mathrm{GHz} 1018 \mathrm{GHz}$
Maximum operating level: +20 dBm .
Darrage level; +15 dBm .
Overload Indication: displays dashes when impur kevel exceeds +20 dBm nontinal.
Resolution: 0.1 dBm .
Accuracy: $\pm 1.5 \mathrm{~dB}$ (excluding mismalch umecrainiy).
SWR: <2; ((amplitude menvarement).
<5:1 (frequency measurement).
Measurement tlme: $100 \mathrm{~ms}+$ frequency measurement lime.
Dlsplay: Simulaneously displays frequency to 1 MHz resolution and input level.
input 2 (50s: impedance only)
Frequency range: $10 \mathrm{M} \cdot \mathrm{Hz}-520 \mathrm{MHz}$.
Dynamic range (frequency and level): $-11 \mathrm{dBm} 10+20 \mathrm{dBm}$.
Damage level: +24 dBm .
Resolution: 0.1 dBm .
Aecuracy: $\pm 1.5 \mathrm{~dB}$ (excluding mustareh uncerainly).
SWR: < 1.8: I.
Measurement time; $100 \mathrm{~ms}+$ frequency measurement time.
Display: Simultaneously displays frequency to 1 MHz resolution and inpul tevel.
Extended Dynamic Fange (Opt 003)
Frequency range: 500 MHz to 18 GHz
Senstifility: 500 MH 2 to $12.4 \mathrm{GH} 2:-22 \mathrm{dBm}$.
12.4 GHz to $18 \mathrm{GHz}:-15 \mathrm{dBm}$.

Maximum operating level: +20 dBm .
Dynamic range: 500 MHz to $12.4 \mathrm{GHz}: 42 \mathrm{~dB}$.
$12.4 \mathrm{GH}=1018 \mathrm{GHz}: 35 \mathrm{~dB}$.
Damage level: +25 dBm .
SWR: $<5: 1$.
Ontions and acresenrias.
001: High Stabuiny Time Base
001: righ Stabany Iime Bass
002: Amplitude Measurement odel stowe
003: Extented Dynamic Range
iutalsiss
011: Digital InputOutput (HP-1B)
K70-5992A: Rack Mounting adapter kit with shor for se-
cers 10 front connectors from reat.
H01: Digital-to-Analog Converter ndu 5250
5061-2002 Bail Handle Kíi
908: Rack Mounting Adapter K it Tansil Case
9211-2682 Transit Case
coin utzund le.4 GHz Io is GHz
Maximum operating level: +20 dBm .
Damace level: +25 dBm

General information

Hewlett-Pachard oflers Frequency Standards and clocks which provide accurale frequency. time interval and timekeeping cababilities. Further. Hewlett-Packard standards provide means for comparing these quantines against national standards such as the Nasional Bureau of Standards (NBS) and the U.S. Naval Observatory. Units of frequency or time cannot be kept in a vault for ready reference. They must be generated for each use, hence be reguarly compared against recognized primary standards.

Frequency Standard and clock systems manufactured by Hewletr-Pacand are used for control and calibration al observatories. mational center's for measurement standards, physical research laboratories. missile and satellite tracking stations, commwaication systems, radio navigation systems. manufacturing plants and radio monitoring and eransmitting stalions.

Types of frequency standards

Al the present time, three types of frequency standards are in common use. These are:

1. The cesium atomic beam controlled oscillator.
2. The rubidjum gar cell controlled osci\}lator, and
3. The quartz crystal ascillator.

Hewlett-Packsrd is the only manufacturer of all three types of frequency standards. Of these three standards, the first is a primary frequency standard and the last two are secondary frequency slandards. The distinction between a primary standard and a secondary standard is that the primary standard does not require any other reference for calibration: whereas the secondary standard requires calibrations both during manufacturing and at intervals during use depending on the accuracy desired.

Ceslum beam írequency standard

Cesium beam standards are in use wherever the goal is a very high accuracy primary frequency standard. In fact. the NBS requency standand itself is of the cesium beam sype. The cesium beam standand is an atomic resorance device which provides access to one of nature's invariart frequencies in accord with the principles of quantum mechanics. The cesium standard is a true primary standard and requires no other re. ference for calibration.
thele :

Susinard	Princigal conatruclion lezture	Princlpal adrantaga
Cesium Aromic Bean Resonato Commolied Osceitator	Atomic beam interaction wilh lieldsminimum disturbances of resonsting stams due to collsiens and extianeous infliuences.	Ligh intrinsic repreducibility and long-term sisai'ty Desipnated as brimary standas lot definition ol pime imerval.
fubidlum Gas Cell Resonalar Conuolled Oscillater.	Gus ouffered rasomance pell with optically pumped stale selection	Compaci and Ilght weignt. Nigh degee of smort-term stablity.
Quarta erysial Dseillator.	Pierodicitrleally atilve guarta crystal wilh electronic stabiluatlan.	Very compaet, Ilght and rugged. \|nexpensive

The HP Model 506\} A and the new 5062C are portable cesium beam standards proved capable of realizing the cesium 1 ransition frequency approaching tevels of accuracy and long term scabidity achicved by largescalc laboratory models. Recent beam nube improvements have made the shor-term stability compamble 10 ithat of the Rubidium Frequency Standard. With this impraved performance cesium standards now have the capability of rapid measurement to high precision along with the excellent long term stability necessary for timekecping.

Rubidium frequency standard

Rubidium frequency standards fealure a high order of boch short-term and long-term frequency stability. These are both importanl in certain fields such as deep-space communications, satellite rangiog, and doppler radar.

Rubidium slandands ure similar to cesium beans standards in that an atomic resonant element prevents drüf of a quarcz ascifllator through a frequency lock loop. Yei the rubidium gas cell is dependent upon gas mixture and gas pressure in the cell. It must be calibrated and then it is subjecr 10 a small degree of drift. The drift is iypically 100 times less than the besi quartz crystal standard.

Quartz crystal oscillators

Quarts oscillators are used in virtuatly every frequency control application including alomic slandards. The excellent shorterm stability and spectral purity of the quartz oscillators used in Hewlett-Packard atomic standards contribute to the high quality of the outpul signal of these standards. For less demanding applications where some long-tenn dríl can be tolerated. quarz oscillators are used as independent frequency sources. The quanz oscillator designs have improved over the years to provide a relarively low cost, small-size source of frequency.

However, an inherent characteristic of crystal oscillators is that their resonent frequency change with sime. Aler an imitial aging period of a few days 10 a month, the rite-of-change of frequency or aging rate is almost constant. Over a long period the accumulated drift could amount to a serious emor. and periodic frequency checks are needed to maincain an accurate quartz crystal frequency standard.

Stability

Scability is specified in wo ways. Long term stability refers to slow changes in the average frequency with time due to secular changes in the resonator and is usually expressed as a ratio. Δ / f for a given period of lime. For quartz oscillators this is often lemed "aging rale" and specified in "parts per day." Rubidium standards being more stable are specified in "parts per month." On the other hand. Cesium Beam Standards are primary unies with no systematic drift. Therefore, the frequency of these primary slandards is guaranteed to 4 specified accuracy.

Short-1em stabiliry refers 10 changes in frequency over a time suticiently short so that change in frequency due 10 long term effects is negligible.

Shor-term stability is usually specified as the mis average of a number of measureonents each over a specified period of lime. The longer the averaging time used, the more any deviation is obscured since the average musi approach the mean or nominal output frequency in the long run. HewlettPackard specifies the shore-term slability of its standards in accordance with the definilion developed by the National Bureau of Standards and others. Measurements conforming to this definition can be eusify made with available test equipment including the HP 5360A Computing Counter. Figure I is a comparison of the short-term stability of various frequency standards.
 feb. 1966 pare 221.

Figure 1. Short term stability of various standards.

Spectral purity

Spectral purity is the degree 10 which a signal is coherent. or. expressed in another way, a single frequency with a minimum of sideband noise power. It is very desizable to have high spectal purity in a standard signal. This is especially imporane in applications where the standard frequency is soul1.iplied to very bigh or microwave frequencies so that the freouency spectrum of the signal will be reasonably narrow.

The signal and its frequency spectrum are analogolls to a frequency modulated wave where the total power is constant. If the frequency multiplying device is broadband. the ratio of the lotal sideband power to the signal power increases as the square of the mulifplying factor. With frequency multiplication the signa-to-noise ratio will be degraded 6 dB per octave and 20 dB per decade.

Hewlett-Packard oscillotors are designed 10 give exceptional spectral purity. One method of indicating spectral purity is with a phase noise plol. Figure 2 shows the perCommance of the HP 5061A. OpI. 004 Cesium Beam Atomic Frequency Standard.

Frequency standards and clocks
Frequency standard and clocks have no fundamental differences- they are based upon dual aspects of the same phenomenor. Time and frequency are intangible quantilies which can be measured only with respect to some physical quantity. The basic unit of time, the second. is defined as the duration of 9.192 .631 .770 periods of eransition within the cesium atom. Conversely an unknown
frequency is determined by counting the number of cycles over the period of a second. The Master Clock at the U.S. Naval Observatory, one of the world's most accurate clocks, is made of an ensemble of more than a dozen Hewletr-Packard cesiumb bam frequency standards. The USNO direcly controls the disiribution of precise time and time interval (frequency) from Naval radio stations. LORAN-C (operated by U.S. Coasi Guard). Omega and Satellite Navigation Systems. Hewletl-Packard portable cesium standands. "nying elocks." are used. $t 0$ periodically check the synchronization between these stations and the Master Clack.

Hewlelt-Packard cesium beam standards are widely used to drive precision clocks because of the exiremely good long-lerm stability and reliability of this primary standard. If a quaru useilator or other second. ary standard is used, it musi be evaluated for rate of drift and be corrected periodically.

Tlme scale

The time interval of the atomic ime scale is the Intemational Second, defined in October 1967 by the Thirteenk General Conference of Weight and Measures. Since January 1972 the frequency offset between UTC and Alomic Time has been zero and the UTC time scale is kept in synchronism with the rolation of the earh to within ± 0.9 second by step-lime adjustments of exactly I second, when needed.

The U.S. National Burcau of Standards (NBS) and USNO provide the official basis for Slandards Time for the Uniled States. The UTC signal is broadcast from the NBS stations WWV and WWVB and by several others stations throughout the world. (See Hewlett-Packard Application Note 52-1, Fundameocals of Time and Frequency Standards. for a list of stations broadcasting (ime signals).

Standby power suppllas

Minimum down-time, important for any system, is vital to a ime standard. Its worth depends directly on continuity of operation. Noninterrupted operation is also imporkant to ulera-precise quartz oscillators.

Hewler-Packard standby power supplies ensure conlinued operation despite line intemuptions, und operate over a range of ac line voltage to supply regulated de to oper-
ate frequency standards and frequency dividers and clocks. The batterics in the supplies assume the full load immodiately when ac power falls.

Hewlett-Packard Ilme and Irequency standard

The Hewlelt-Packard House Siandard at the Santa Clara Division consisis of an ensemble of four Hewletr-Packard Cesium Beam Slandards each with the Option 004 High Performance Tube.

The standard is compared to the U.S. Naval Observsatory Master Clock in Washingion, D.C. by means of Loran D and TV Line 10 measurements through the USASTRATCOM salellite system. It is also compared with the U.S. National Bureau of Sundards Frequency Slandard (NBS FS) at Boulder. Colorndo by means of LORAN-C through the Naval Observatory. The frequency uncerainty of the standard is within a few parts in 10^{13} with respect to the standards maintained by the NBS and the USNO.

Time is maintained relative to the Naval Observatory and the National Bureau of Standards master clocks 10 an accuracy of beller than ± 2.5 microseconds. This accuracy is verified with Flying Clock trips from the Naval Observalory to both HewlettPackard Santa Cinra Division and Hewlett-Packard Geneva. Both locations have been designated U.S. Naval Observatory Time Reference Stations.

5061A

- Primary standard, $\pm 1 \times 10^{-11}$ accuracy
- Proven reliability
- World-wide usage

5061A, Opt 004

- Accuracy $\pm 7 \times 10^{-12}$
- Settability $\pm 1 \times 10^{-13}$
- Short term 5×10^{-12} (1 sec avg)

5061A

Introduction

Hewlet-Packard Acomic Frequency Standards have become the word-wide standands for trequency and kime keeping since the idtroduction of the 5060A Cesium Standards in 1964. With the introduction of the 5062 C the user now has a choice of four different frerquency standards to satisfy a wide variety of applications:
I) 5061 A Cesium Beam Frequency Sundard. This standard with an accuracy of $\pm 1 \times 10^{-11}$ was introduced in 1967 to replace the 5060 A . The high accuracy and excellent reliabitity of these unils have gained world-wide acceplance of HP frequency standards.
2) 5061 A with Opion 004 High Performance Cesium Beam Tube. With the Unique design features in this improved Cesium Beam Tube. the S061A accuracy is $\pm 7 \times 10^{-12}$ and shor term stability is improved by a factor of 10 .
3) 5062 C Cesium Beam Frequency Reference. This new unit with its small cesium beam tube is designed for on-line system applications where a rugged primary standard is required.
4) 5065 a Rubidurn Frequency Standard. This insurument feacures excellent long and short term stability periormance at approximately one-half the cost of a cesium standard.
The toits are described in detail on the following pages and the specifications are combined in a table to facilitate the comparison and selection of the best unit to suit the user's application.

Prínciples of operatlon

The basic block diagram of both cesium and rubidium standards is the same (see Figure 1). The output of the $\leq \mathrm{MHz}$ Crystal Oscillator

Figure 1. Block dlagram of atomic frequency standards.
is multiplied and synthesized to the atomic resonance frequency ($6834+\mathrm{MHz}$ for rubidiun and $9192+\mathrm{MHz}$ for Cesium). The signal is frequency modulated to sweep through the fomic resonance frequency causing the beam intensity in the cesium tube or transmitted
light through the rubidium cell to vary. The oulput signal is amplified and through a phase detector controls the frequency of a low noises MHz quartz erysal oscillator. Thís oseilator provides the 5 MHz ouiput. Dividers produce 1 MHz and 100 kHz oulputs.
The invariant resonance frequency of the cesium atoms passing through the microwave cavily maintain the oulput frequency of the cesium standard constaot 10 extremely high accuracy. The aceuracy is in part a function of the microwave cavily length and is highest in the 5061A with the long cavity of the high performance beam tube.
In the rubidium slandard a buffer gas is required to reduce collisions berween the nubidium atoms in the gas cell and the resonant frequency varies slighly with ihe pressure of the buffer gas. As a result, the rubidium standard has to be calibrated and the frequency drifs slowly with rime because of small changes in gas pressure and other effects within the rubidium cell and lamp. Offselting this disadvantage are: I) high signal-to-noise ratio of the rabidum cell output which results in excellenl short tenn stabilty and: 2) a lower cost standard because of the simpler rubidium cell and associated clectronics.
Each of the instruments has front panel controis, a circuit check swith and meter for monitoring performance. These and other controls are protected by a pancl door. Froni panel lights indicate any intermuption of continuous operation and that the crystal oscillator is locked to the atomic resonance.
Appllcations: staring with their initial usage as reierence standards in national laboratories the applications of HP atomic standards bave expanded to include use in operational systems such as the LORAN C and OMEGA navigation transmitters, satellite tracking and guidance stations, very long base line interferometers, navigation receivens based on direct distance measurament (LORAN Rho-Rho). geophysical survey positioning systems and communications systems. Precise timing for frequency control is required for some secure communication systems and to improve efficiency of PCM and spread spectrum systems.
Ceslum standard accuracy; the cesium beam standard is a primary frequency standard. A cesium beam tube carefully constructed along with the required supporing electronics will, when independenly aligned. put out the correct frequency within very narrow limils. The frequency spread of the output for over 250 indepen. denty aligned 5061A standands with the standard bean tube is shown in Figure 2. It can be seen from this data that the frequency perturbations in the standard beam tube are so small that all the units are within $\pm 5 \times 10^{-12}$ of each other and of the NBS frequency. The one signal standard deviation is 1×10^{-14} between units. This perfomance is intrinsic to the 5061A and is achieved without calibration. The absolute accuracy, intrinsic reproducibility and absence of any perceptible long-term dritt or aging are important advantages of cesium standards and assure that the output frequency of a cesium standard is always within the specified accuracy.

E21-5061A

Figure 2. Frequency of independently aligned 5061A Ceslum Beam Standards with standard beam tube.

50́61A. Ceslum beam standard

The first Hewlett-Packard Cesjum Beam Standard. the 5060A, was introduced in 1964. This was followed in 1967 with the improved S061A and in 1973 with the high performance beam mbe option for the 5061 A . Over this 11 year period the accuracy and reliability of Hewlett-Packard cesium standards has been demonstrated and these standards have become the world-wide standard for frequency and time keeping. The SO61A has provision for an optional digital divider and reliable, easy-10-read LED elock (Option 001) and for a battery with $1 / 2$ hour standby power capacity with automatic charg. ing (Option 002).
Rellabllity and Warranty: over 25 mislion operation hours have proven the performance and reliability of Hewlett-Packard cesium beam standards in various wordd-wide applications. The whits have provided dependable microsecond accuracy in aircraf, ship and fixed environmenis.
A threc-year warranty on the 5061A and the standard cesium beam ube is provided as a resuli of proven field reliability over an extended period. This warranty includes replacement of the cesium beam rube if is should fail within the warranty period. Typically. beam tube life has been in excess of four years.
5061 A with Opt 004, high performance cesium beam tube

The Hewlent-Packard Model 5061A primary frequency standard with the Option 004 cesium beam tube offers increased stability and accuracy in the instrument which has become the worldwide standard of frequency and time keeping since its introduction in 1967. Improvements in magnetic shielding. ruggedization and environ-
mentol performance permit improved performance and expansion of nuvigation and communication systems thal have been made practical by the 5061A.

The design concepl of the high performance beam tube includes unique HP desigred dual beam oplics with higher beam intensity to accomplish better short icrm stability and greater immumity to ef. fects of shock and vibration. A 50 percent increase in resonance ervity length without change in the overall beam tube size coniributes io beiter accuracy and setpability because of the high Q of the partower resonant line width. "'his tube retains the uaique cessum standard feature of virmally no long term instability or aging.

The intrinsic aceuracy is inmproved to -7×10^{-12} which provides an excellent reference standard without need of calibration. If desired, as in many timekeepins applications, two or more units may be calibrated to determine the difference in rate or may be adjusted to the same frequeney. With the improved setrability specifeations of $\mid x 10^{-1 \times}$ small changes in frequency are accomplished rapidly and accurately. A provision for degaussing the tube without adversely affecting the instrument operation allows removal of any residual rogncetic Geld in the tube. This is imporant in achieving the setubility performance.

The shorn term sability specification is improved by a factor of ten with the new tube. The 5×10^{-12} (1 sec avg.) performance compares very favonbly with thar of rubidium Iype standards which are moted for their excellent shorn ierm scability. An importent advantage from the better short tentin stobility is the capability to make measuremenis 10 I sigma precision of 1×10^{-12} in about one minute compared to the two hours required previously. The 5061A with the Option 004 High Performance Tube has the same high reliability as the 5061 A with the standard iube. The new high performance whe is warrented for 14 months (10000 hours) and is designed to have the same long life as the standand rube.

10653A/日/C Retrofit kit

The high performance beam tube may be installed in place of the standard tube in existing HP 5060A or 506IA Cesium Siandards. The 10653A/B/C Kit includes the new tube and the parts necessary for installation. Furtherinformation on the 10653A/B/C Retrofit Kit is available from HP Sales Offices.

10638 Degausser

The Model 10638A Degausser is designed for use with the Opsion 004 High Performance Beam Tube to achieve setability of $\pm 1 \times$ 10^{-12} and reproducibility of $\pm 3 \times 10^{-11}$. The degausses removes. residual magnetic fields in the beam tube which slowly decay and cause a small frequency change. The degausser should be used when initially sening up the 5061A with Option 004 os after the instrument has been moved or adjusted.

1081A/B LED clock kit

The LED Clock readout is available as a retrofil kit to replace the mechanical clock used in earlier models of the 5061 A and in the 5065A Rubbidium Standard.

E21-5061A Flying clock

The E21-506 LA consists of a 5061A Cesium Beam Standard with Option 001 LED Clock and K03-5060A Power Supply joined $10-$ gether to make one portable unit. The power supply, which can be operated from 6 or $12 \mathrm{~V} \mathrm{dc}, 241030 \mathrm{~V} \mathrm{dc}$, or $115 / 230 \mathrm{~V}=10 \%$, 50 to 400 Hz , will provide approximately 7 hours standby power (from sealed nicke)-cadmiam batieries) for the 5061A Cesium Beam Standard.

This wide range of operating power cababilites enables the E21SO6IA 10 operate on local power in virrally any country in the worid. Operation is approved abound commercial aircraft. The seven hours of standby capability make il possible to travel where there is no power available and, of course, allow the E2l-5061A to conveniently be transported between power sources and operated in almost any air or surface vehicle as a "flying chock" (see HewlettPackand Journal, Augusi 1966 and December 1967).

The Option 004 tube, becuase of the improved styielding, offers a significant increase in accuracy under the varying carkh's magnetic field conditions experienced by nying cjocks and is a desitable addition to the E21-506tA. In addition, the better shon term stability permils more accurate and rapid comparison of standards. The Option 002 Battery may also be added to increase standby capability.

Atomic frequency standards Models 5061A, 5062C, 5065A (cont.)
 Primary frequency/time reference
 - Fast warm-up
 - Rugged, reliable

5062C

5062C Ceslum beam frequency reference

The Model 5062C Cesium Beam Frequency Reference is a rugged and compaci precision oscillator designed for use in surface and aibome systems such as shipboard navigation systems and air transpor communication systems. It combines the precision of a laboratory primary standard with the rugged. compact feacures required for on-line system operations in the extreme environments sometimes encountered in ships and aircrafl.

Features important for system operation are the expanded operating emperanure range ($-38^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$). 20 minute warm-up, frequency accuracy of within ± 3 pars in 10^{11} (including temperalure and magnetic field effects) with negligible long-term drift and no need for calibration.
The basic design of the Model 5062C is pattermed after that of the Hewlett-Packard Model 5060A and the 5061A Cesium Beam Clocks, but this rugged unit is 25% smaller in size. Yel space is provided for an optional clock and standby batteries. Other features such as special oulput frequencics or a time code generator may be added. The key to the smaller size is a newly developed, small. rugged cesium beam tube. This lube, approximately six inches long and four inches diameter, includes all the features of the sixteen inch cube used in the HP 5061A lo insure high accuracy and stabitity plus long life. In addition, muliple cesium beams assure aceumacy under the shock, vibration and acceleration encountered in operating systems.

New. compact electronies compliment the small beam tube in accomplishing the 5062 C design. Plug-in keyed printed circuit cards assure ease of mainlenance. Particular attention has been given to both the clectronics and mechanical desigat to the temperature. shock and vibration encountered in system applications. The resulting rugged design assures stable operation under extreme environmental conditions. The 5062 C mects many of the requirements of MIL-E-16400 specification for ship and shore equipment. These include the wide operating temperature range. the 400 pound hammer blow specified by MIL-S-901 and the Type I shipboard vibration of MIL-STD-167-I ($4-50 \mathrm{~Hz}$).

With minor cireuit addilions the rugged, commercial, design of the 5062 C meets the operating requirements of military specification MIL-F-2881) (EC). The nomenclà (ure, 0-1695/U has been assigned to bis version of the instrument which is identified as the 5062 C . Option 010. The added leatures are described below.
Rellablity: the unit incorporates conservatively designed circuits to
insure reliability. Similar designs in the 5061A Cesium Bearn Sandard have demonstrated mean lime between failures (MTBF) in exess of 40,000 hours in laboralory environments.

Ease of mantenance was meluded along with reliabiliry and ruggedness as design goals of the 5062 C . The fromt panel circuit monitoring switch and moter permit checks for proper operation and monitoriag of critical functions. In the event of a malfuncrion, troubleshooling is simplified by well marked lest points on the circuit cards and mother boards. Board extenders permit access 10 individual boards while operating. The circuin boards are keyed to assure that they are properly localed. The few board adjusiments are readily accessible when the instrument covers are removed. The 5062 C is supplied with pivol slides for easy access when the unil is rack mounted. All these feanires simplify troubleshooting and minimize mean time 10 repair (MTTR) in the event of failure.
Optlons: the 5062C is designed to include clack and ballery options and space is avaitable to add oiber features required to meet systems requirements. Special ourput f.requencics, time code generators, and additional buffered outputs may be added. The following standard oplions are available.
Optlon D01 DIgital clock: this option adds a front panel LED display of hours, minutes and seconds. A digital divider gencrates one pulse-per-second from $S \mathrm{MHz}$. This master pulse may be synchronized to a reference pulse. The digital clock and the clock I PPS are adjustable in phase with respect to the master pulse in 0.1 microsecond sleps.
Option 002 Standby battery: the sealed gelled-electrolyte battery provides a minimum of one hour slandby al $25^{\circ} \mathrm{C}$ after fuil charge. The battery is automatically recharged after use. When external power fails, the standby battery assures continuous outpuc without interruption.
Optlon 003 Digltal clock and standby battery: this option combines Option 001 and 002.
Optlon 010 Tlme-code generator: this option includes the Option 001 Digital Clock and Option 002 Standby Battery along with other special features required to meet the operating requirements of the 0-1695/U Frequency Standard. Cesium Beam in accordance with Miliary Specification MIL-F-28811(EC). These include a time code generator, four one-pulse-per-minute outpuls, additional 5 MHz outputs. added RFI shiclding and special rear panel and mating conneclors. The rugged design of the 5062 C meets the environmeniad requirements of the military specification.

- Compact, low-price atomic standard
- Long term drift rate $<1 \times 10^{-11 / m o}$
- Short term stability $<5 \times 10^{-13}(100 \mathrm{sec}$ avg)

5065A Rubldium frequency standard

The HP Model 5065A is an atomic-1ype secondary frequency standard which uses a rubidium vapor resonance cell as the stablizing element. As a result, it has long term stability of betser than $1 \times$ 10^{-11} per month whích exceeds that of high quality quartz oscillator frequency standards by 50 to 100 times. Furthermore, it has excellent short tern stability. These features contribute to its desimability as a coherent siggal source, as a master oscillator for radio and radar systems where special requirements for stability and/or narrow bandwidth musi be mel. as a precision time keeper where the better performance of a cesium beam primary standard is not required. and as a house frequency standand for improved accuracy with fewer NBS calibrations compared to that required with quartz standinds.
Front panel controls and circuit check meter of the 5065A are protected by a panel door. The magnetic Geld control provides finc frequency adjustment with which the frequency can be set to a precision of better than 2×10^{-12} without reference 10 a char. The 5 MHz low noise quarti oscilator is phase locked to the alomic frequency and provides the standard 5 MHz . I MHz , and 100 kHz outpuls. The circuit check meter with selector switch monitors key voltages and currents for rouline maincenance readings, calibration procedures, and fault unding

The 5065A is designed for assured operation- 10 give the user confidence that the standard oulpui signals are corsect and locked to the atomic frequency. Logic within the unit maintains power to a "continuous operation" light on the front panel. If operation is interrupled, even momenturily. for any reason the light goes out and stays out until manually reset. An intcgrator timit light wams when the frequency correcting servo loop is approaching the limit of its dynamic range.
The HP Model 5065A is contained in a small sized package and is lightweight in comparison to a cesium beam standard. Additionally the rubidium resonance cell is much more frequency stable than quarz oscillators while subjected to shock and vibration, EMC. humidiry, and magnetic field effects.
Rellability and warranty: the coost significant module in the HP 5065 A in lerms of performance is the Rubidium Vapor Frequency Reference (RVFR). This temperature controlled, magnetically shielded unis includes the Rb gas cell and a photo sensitive defector designed for maximum possible reliability. Field expereience. in-
cluding several million hours of operation, have demonstrated this reliability and the module is now warranled for a period of three years. This increased warranty protects the owner in the event of random failure.

The Option 001 Digital Clock has an easy to read LED time-ofday display. The olive black upper panel provides a dark background around the readout for excellent contrast and readability. Initial clock selting is accomplished by means of pushbuttons easily accessible by removing the top cover. The LED display offers high reliability. freedom from errors due to mechurical shock, and performance over the full environmental range of the 506SA. A sync bution on the digital divider permits automatic synchronization of this I PPS pulse to an extemal pulse. The clock I PPS is adjustable in decade steps from $1 \mu \mathrm{~s}$ to 1 s , with respect to the synchronized reference. with 6 thumbwheel switches. A serewdriver adjusiment allows fine continuous adjustment over a range of I usec.

To conserve batlery power, the display is not illuminaled when ac power is not avalable. A STANDBY READ pushbution below the display is used for readout when operating on the intemal batery or extemal dc.

The LED clock readout is available as a retrofit kil. HP Model $10810 \mathrm{~A} / \mathrm{B}$, to replace the mechanical clock in earlier models of the 5065A. Contact your Hewlett-Packard sales office for full detalls.

The Option 002 Standby Battery provides the 5065 A with a minimum of 10 minutes standby power at $25^{\circ} \mathrm{C}$. Switchover from line to battery is automatic so there is no intermption of operation if ac line power should fail. A front panel ac intenuption light wams when ac power has failed or has been disconnected. Fast or floal charging rates may be selected when ac power is available.

The Oprion 003 combines the Option 001 Clock and Oprion 002 Batery and should be specified if both Options 001 and 002 are required.

E21-5065A Portable time standard

E21-506SA Portable Time Standard is a complete system for precision timekeeping and for transporing time from one location to another. Il consists of the SossA Rubidium Standard with digital clock and divider (Option 001) and the K02-5060A Power Supply with 6 or more hours standby capability. The component units are held cogether by side bars. and the interconnecting cables are protected by a back cover.

Specifications

Instrument	S0618 Option 004	50614	5062C	9085A
Type al Standardi	Cesium	Caslum	ceshum	Rubldium
Accuracy: maintained in magnetic held to 2 gauss and over temperature range ol:	$\begin{aligned} & \pm 7 \times 10^{-12} \\ & 01050^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \Rightarrow \times 10^{-61} \\ & 01050^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & =3 \times 10^{-11} \\ & -28^{\circ} \mathrm{C} 10+65^{\circ} \mathrm{C} \end{aligned}$	
Stablility: Lone Term: Shor Term 5 Whz ${ }^{\circ}$: Aweraging itme: $\begin{array}{r}0.01 \mathrm{sac} \\ 1 \mathrm{sec} \\ 10 \mathrm{sec} \\ \\ \\ \\ \\ \\ \end{array}$	$\begin{aligned} & =3 \times 10^{-12141} \\ & 1.5 \times 10^{-10} \\ & 5 \times 10^{-12} \\ & 2.7 \times 10^{-12} \\ & 8.5 \times 10^{-13} \end{aligned}$	$\begin{aligned} & \pm 5 \times 10^{-1291} \\ & 1.5 \times 10^{-10} \\ & 5.6 \times 10^{-11} \\ & 2.5 \times 10^{-11} \\ & 8 \times 10^{-12} \end{aligned}$	$\begin{aligned} & =1 \times 10^{-11113} \\ & 4 \times 10^{-10} \\ & 7 \times 10^{-11} \\ & 2.2 \times 10^{-11} \\ & 7 \times 10^{-12} \end{aligned}$	$\begin{aligned} & =1 \times 10^{-11 / m o n t h} \\ & 1.5 \times 10^{-10} \\ & 5 \times 10^{-12} \\ & 1.6 \times 10^{-12} \\ & 5 \times 10^{-13} \end{aligned}$
558 Phase Molse Slynal (1 Hz BW) Offsel Irom signal; $\mathrm{Hz}: 10^{-3}$ 10^{-2} 10^{-1} 0 10^{1} 10^{2} 10^{3}	$\begin{aligned} & -28 \mathrm{~dB} \\ & -48 \mathrm{~dB} \\ & -68 \mathrm{~dB} \\ & -96 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -125 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -8 \mathrm{~dB} \\ & -28 \mathrm{~dB} \\ & -48 \mathrm{~dB} \\ & -82 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -125 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -6 \mathrm{~dB} \\ & -26 \mathrm{~dB} \\ & -46 \mathrm{~dB} \\ & -74 \mathrm{~dB} \\ & -114 \mathrm{~dB} \\ & -134 \mathrm{~dB} \\ & -144 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & -25 d 8 \\ & -52 \mathrm{~dB} \\ & -72 \mathrm{~dB} \\ & -93 \mathrm{~dB} \\ & -120 \mathrm{~dB} \\ & -126 \mathrm{~dB} \\ & -140 \mathrm{~dB} \end{aligned}$
Reproducibility	$=3 \times 10^{-12721}$	$\pm 5 \times 10^{-12}$	$=1 \times 10^{-11}$	
Settablily (trequancy):	$=1 \times 10^{-1963)}$	$\pm 7 \times 10^{-13}$	$=2 \times 10^{-12}$	$\pm 2 \times 10^{-12}$
DC Mapnetic Flold Stablity,	$=2 \times 10-13$ 2 Gauss field	$\pm 2 \times 10^{-12}$ 2 Gauss Field	$<2 \times 10^{-12}$ 2 Gauss meld	$<5 \times 10^{17}$ 1 Gauss fiald
Wzm-up:	At $25^{\circ} \mathrm{C}$ 30 Min .	A1 $25^{\circ} \mathrm{C}$ 45 Min .	$\begin{aligned} & \text { At }-28^{\circ} \mathrm{C} \\ & 20 \mathrm{Min} . \end{aligned}$	$\begin{aligned} & \text { At } 25^{\circ} \mathrm{C} \\ & 1 \times 10^{-10} 1 \mathrm{hr} \\ & 5 \times 10^{-11} 4 \mathrm{hrs} . \end{aligned}$
Sinusoldal Outputsu Output Voliage		5 MHz . I MH	Hy, front \& Reat 50 ohnes	
Hamonic Distorion: (below raled jutput) Mon-Harmonic relatod output (below raled ouput) Onder vibration or AC Mag field: Slgal-to-Phase Nolse hatio la 30 kHz notse 日w (t and 5 MHz :	$\begin{aligned} & >40 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >40 \mathrm{~dB} \\ & >80 \mathrm{~d} \mathrm{\theta} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >40 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >80 \mathrm{~dB} \\ & >80 \mathrm{~dB} \\ & >60 \mathrm{~dB} \\ & >87 \mathrm{~dB} \end{aligned}$
Eivirgnmentas				
Pemperaturer aparating with (option 001, 002 or DYa Freq. change tram $25^{\circ} \mathrm{C}$:	$\begin{aligned} & 0 \text { to } 50^{\circ} \mathrm{C} \\ & <5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 0 \text { to } 50^{\circ} \mathrm{C} \\ & <5 \times 10^{-12} \end{aligned}$	$\begin{aligned} & -2810+65^{\circ} \mathrm{C} \\ & <1 \times 10^{-11} \end{aligned}$	$\begin{aligned} & 01050^{\circ} \mathrm{C} \\ & <4 \times 10^{-11} \end{aligned}$
Tomperature, nan-operstling without options: wih Opton 001: with Option 002 or 010 on	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { 10 } 75^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \end{aligned}$		$-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} 1075^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Homidity, operatiag: 95% op to	$40^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Altitude, aperaling: Max. Irequency change:	$\begin{aligned} & 40,000 \mathrm{Ft} \\ & 2 \times 10^{-12} \end{aligned}$	$\begin{aligned} & 40,000 \mathrm{Ft} \\ & 2 \times 10^{-12} \end{aligned}$	$\begin{gathered} 50,000 \mathrm{FI} \\ 5 \times 10^{-12} \end{gathered}$	$\begin{aligned} & 40.000 \mathrm{Fl} . \\ & 2 \times 10^{-11} \end{aligned}$
notes. (I) For life of beam lubg. (2) Shast terin slablity for the 506IA with both standard and high performance tubes is given for the norhal 1000 lime constant, For inpproved short-term stability in controlled environments the long time censtamt may be used, (3i) Wist 10638 Degausser (4) 3062 Con .				

Instrument-	50618 Opt 004	5061h	5092 C	5065
	$\begin{gathered} -2 \times 10^{-4} \mathrm{lor} \\ 2 \text { Laэus peak } \\ \hline \end{gathered}$	$\begin{gathered} 2 \times 10^{-11} \text { tor } \\ 2 \text { Gatuss peak } \end{gathered}$	$<2 \times 10^{-18} 101$ 2 Gaus Deak	$\begin{aligned} & <5 \times 10^{-11 \text { Ior }} \\ & 1 \text { Gauss peak } \end{aligned}$
Vibration: wita isolators:	$\begin{aligned} & \text { MIL-SID-167-1 } \\ & \text { MIL-7.212DO } \end{aligned}$	$\begin{aligned} & \text { MIL-STO-16年-1 } \\ & \text { MIL- } 12.200 \end{aligned}$	M16-570-167.1	MIL-570-167-1
Shack	HLL-[-5400, Class) (30 G)			
	1 MLL-T-21200, C. 1		MIL-E-16400	MIL- $-21200, \mathrm{C}$ I
[MC:	MUL-STD-6E1. Nolloe 3. Clasis A			
Beneral				
Power: AC: JC: Opison DO1: Add $\langle\mathrm{ACIDO}$ 002: kJd (AC/OC) 050: A AD (AC/DC)	50. 50 or $100 \% 42=10 \%, 115 / 230 \mathrm{~V}=10 \%$			
	$\begin{gathered} 43 \mathrm{~W} \\ 221030 \mathrm{~V} \\ 27 \mathrm{~W} \\ 1017.5 \mathrm{~W} \\ 22 / 4.5 \mathrm{~W} \end{gathered}$	$\begin{gathered} 43 \mathrm{~W} \\ 221030 \mathrm{~V} \\ 27 \mathrm{~W} \\ 1077.5 \mathrm{~W} \\ 224.5 \mathrm{~W} \end{gathered}$	$\begin{gathered} 46 \mathrm{w} \\ 2280 \mathrm{~V} 0 \mathrm{v} \\ 33 \mathrm{w} \\ 12 / 7.5 \mathrm{w} \\ 25 / 3 \mathrm{~W} \\ 62 / 15 \mathrm{~W} \end{gathered}$	$\begin{gathered} 49 \mathrm{w} \\ 231030 \mathrm{~V} \\ 35 \mathrm{w} \\ 107.5 \mathrm{w} \\ 8 / 0 \mathrm{w} \end{gathered}$
	$\begin{gathered} 221 \times 125 \times 216 \\ 83 / 4 \times 16^{1 / 4} \times 16^{3} \times x \\ \hline \end{gathered}$	$\begin{gathered} 221=425 \cdot 816 \\ 8!, \times 16,4 \cdots 161, \end{gathered}$	$\begin{gathered} 133 \times 482 \times 533 \\ 51 / 4 \times 19 \times 21 \\ \hline \end{gathered}$	$\begin{gathered} 133 \times 125 \times 416 \\ 5!4 \times 16^{3 / 4} \times 163 \end{gathered}$
Welent in:k Option 001: Ada (D/KE) 002: Add (化: h i)	$\begin{gathered} 70 / 31.8 \\ 210.9 \\ 3 / 2.3 \\ \hline \end{gathered}$	$\begin{gathered} 67 / 30.5 \\ 2 / 0.9 \\ 5 / 23 \\ \hline \end{gathered}$	$\begin{aligned} & 50 / 22.7 \\ & 52.3 \\ & 15 / 6.8 \\ & \hline \end{aligned}$	34/15.4 210.9 3.5/1.6
OpILOH DO1, Cock				
1 FPS Oulputs Muster: Clocl	Fram \& Rear BNC	Fiont \% Reat RNG	Rear 8NE Front \& Rear 8NC	fromis Paar BNC
Amgliludem		1040		
Widzh, Fls Nime, Fall Time:	$\begin{gathered} 20 \mathrm{cs} \mathrm{~m} / \mathrm{m} \\ <50 \mathrm{~ns} \\ <2 \mu 5 \\ \hline \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{~mm} \mathrm{~m} \\ <50 \mathrm{~ns} \\ <2 \mu \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} 20 \mu \mathrm{mmin}-53 \\ <20 \mathrm{~ns} \\ <1 \mu s \end{gathered}$	$\begin{gathered} 20 \mathrm{~ns} \mathrm{mun} \\ \cdot: 50 \mathrm{~ns} \\ <2 \mu \mathrm{~s} \\ \hline \end{gathered}$
Mtter, pulse-so-pulsa:	$<5 \mathrm{ng}, \mathrm{mms}$	$<5 \mathrm{~ns}$. 1 ms	$<5 \mathrm{~ns}$, tris	<5 ns. 1ms
Synchroniration,	$\begin{gathered} \text { Autpmatic, } 10=1 \mu \mathrm{~s} \\ \text { delay } \end{gathered}$	Automalle, $10=1 \mu .5$ delay	$\begin{gathered} \text { Aulo. } 10 \text { milhin } \\ =500 \mathrm{~ns} \\ \hline \end{gathered}$	Auto. $10 \div 1 \mu \mathrm{~s}$ delay
Clock pulso atjusiment paneti	$1 \mu \mathrm{slols}$	1 cc 1015	$0.1 \mu \mathrm{~s} 101 \mathrm{~s}$	$1 \mu 5$ to 1 s
Elock display:	Solut State Digital			
Opilon 002 Slandby Prower Supgly Capacily at $25^{\circ} \mathrm{C}$ with Opilon 001 Cloct	30 Mhautes 30 Minules		Ono Hour	10 Minutes
Rechaige. FasuПars	Rutomalic, last charge			Swllch

Ordering information
50614 Cesium Beam Frequency Standand Opt 001: Clock
Opt 002: Standby Power Supply
Opt 003: Clock and Standby Power Supply
Opt 004: High Performance Beam Tube
Opt 908: Rack Flange Kil
E21-5061A Fiying Clock
Conslate of: 5061 A with Opt 001 (nol included io
E2I price) and K02-5060A Standby Power Supply.
Welght: 64 kg (141 lb).
Size: $425 \mathrm{~W} \times 405 \mathrm{~W} \times 546 \mathrm{~mm} \mathrm{D}\left(16^{3} / 4^{\prime \prime} \times 15^{18} / \mathrm{m}^{10}\right.$
$\times 21 / 2^{2}$) (includes bandles).
10638a Degausser
Welght: 1.2 kg (3 lb).
Size: $130 \mathrm{H} \times 77 \mathrm{~W} \times 279 \mathrm{mmD}\left(51 / \mathrm{s}^{7} \times 31 / 32^{17} \times\right.$ 11 ").

Price
$\$ 20,450$ add \$2125 add \$1025 add \$3150 add \$3250
add $\$ 15$
add $\$ 4500$

5062C Cesium Beam Frequency Reference Opf 001: Clack
Opt 002: Standby Power Supply Opl 003: Clock and Standby Power Supply
Opt 010: Clock. Batiery. Time.Code Gencrator
5065A. Rubidium Frequency Standard
Opt 001: Clock
Opt 002: SLandby Power Supply
Opt 003: Clock and Standby Power Supply
Opt 908: Rack Flange Kit
E2l-5065A Portable Time Standard
Conslsts of: S065A with Opi 001 (not included in E21 price) and K02-5060A Slandby Power Supply. Welght: 50 kg (110 lb).
Slze: $425 \mathrm{H} \times 405 \mathrm{~W} \times 546 \mathrm{~mm} \mathrm{D}\left(16^{3 / 1 "} \times 15^{13 / 1 n^{\prime \prime}}\right.$ $\times 211 / 2^{\prime \prime}$) (includes handles).

Models 105A and B Quarz Oscillators provide state-of-the-ar performance in precision frequency and time systems because of their excellent long and short icrm stability churacteristices. spectrally purc outputs, unexcelled seliability, and ability to operatc under a wide range of environmental conditions. They fill a need for a small and economical yet highly stable precision quarty oseillator for frequency and time standnrds. Both models can be operated from the ac line; the 1058 has a built-in 8 -hour standby battery for uninterrupted operation should line power fail. Both have 5 MHz , MHz and 100 kHz buffered sinusoidal outpuls with excellent shor (erm itability (5 pans in ${\mathbf{~} 0^{\prime 2}}^{2}$ rms for Is averaging lime) and aging rate (<5 pars in 1014 per day)

The $105 A / B$ features rapid wam-up. Typically, the oseillator will be withan I par in $10^{\prime \prime}$ of the previous frequency in 30 minutes atter an "off" period of 24 hours. The basis of these oscillators is an exiremely stable 5 MHz . Sth overtone quarz crystal developed by Hewict-Packand. New technologies in the crystal mounting and packaging have resuled in a cleaner crystal which in tum has a lower aging rate. The crystal. oscillator and AGC circuit ure all enclosed in a proparional oven which reduces the temperature er. fects on these components and circuits.
The 68 num $\times 68 \mathrm{~mm} \times 137 \mathrm{~mm}\left\{2.7^{\prime \prime} \times 2.7^{\prime \prime} \times 5.4^{\prime \prime}\right\}$ package containing the oven enclosed crystal oscillator with AGC circuit and buffer amplifier are avaitable separately as a component oscillator, the K07-105A. for use in equipment where a high quality 5 MHz source is required. Details are availible from Hewlent-Packard sales offices.

Panicular care was eaken to provide a spectrally pure 5 MHz output which, when mulliplied high into the microwave region, provides signals with specira only a few cycles wide. Spectra less than I Hz wide can be oblained in X -band $(8.2$ to 12.4 GHz). The slability ond purity of the 5 MHz output make il suitable for doppler medsurements, microwave speciroscopy, and similar applicalions where the reference frequency musi be multiplied by a large factor.

Specifications

Outputs: 5 MHz . I $\mathrm{MHz}, 100 \mathrm{kHz}: 1 \mathrm{~V}$ rms into 30Ω front and rear connectors.
Clock output: I MHz or $100 \mathrm{kHz}: 0.5 \mathrm{~V}$ rmsinto $\mathrm{k} \Omega$. rear connecior. Nurmally supplied wired for I MHz outpul.

Frequency stability

Aging rate: $<5 \times 10^{-14}$ per 24 hours.
Short-term stability: for 5 MHz output only.

r(sec)	$a \pm 1 / 12.1)$	n St (2.p)sec
10^{-2}	1.5×10^{-111}	1.5×10^{-11}
10^{-1}	$1.5 \cdot 10^{-11}$	1.5×10^{-17}
10°	$5 \cdot 10^{1}$	5×10^{-14}

Temperalure: $<2.5 \times 10^{-y}$ tolal change $0^{\circ} \mathrm{C} 1050^{\circ} \mathrm{C}$.
Losd: \pm ? $\times 10^{-11}$ open to shon circuil, son R, L or C load change.
Supply voltage: $=5 \times 10^{-11}$ for $22-30 \mathrm{~V}$ de from 26 V de refercnce and for $115 / 230 \mathrm{~V} \pm 10 \%$
Warm-up (al $25^{\circ} \mathrm{C}$): 10 within 1×10^{-3} of previous frequency in 15 $\min ., 1 \times 10^{-6}$ in $20 \mathrm{~min} ., 1 \times 10^{-8}$ in 30 min .
Dislortion ($5 \mathrm{MHz}, 1 \mathrm{MHz}, 100 \mathrm{kHz}$) below rated output
Harmonic: $>40 \mathrm{~dB}$.
Non-harmonlc: >80 dB.
Signal-to-nolse ratio: for 1 and $5 \mathrm{MHz},>90 \mathrm{~dB}$ in a 30 kHz noise BW (5 MH z ourpul filser BW is approximatcly 100 Hz),
Frequency adjustments
Fine: 5×10^{-8} range with digital dial reading pars in $10^{\prime \prime}$.
Coarse: 1×10^{-6} front panel screwdriver conirol.
Phase locking: extemal $+5 \vee$ to -5 V allows ン2 $\times 10^{-8}$ frequency control for locking to exiemal source.

Environmental

Temperature, operating: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$.
Temperature, storage: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}\left(+50^{\circ}\right.$ for 1058).
Altitude: $15.24 \mathrm{~km}(50000 \mathrm{n}$.$) .$
Shack: MIL-T-2 1200 (30 Gs).
VIbration: MIL-STD. 167 and MIL-T-2I200.
Electromagnetlc compatlillty (EMC): MIL-1-618ID.
Standby supply capacily: model 105 B only, 8 hours al $25^{\circ} \mathrm{C}$ ambient lemperalures.
Power requirements: $115 / 230 \mathrm{~V}=10 \%, 50-400 \mathrm{~Hz}$ at $17 \mathrm{~W}(70 \mathrm{~W}$ warm-up) for 105A. For 1058 add I W for floal charge and 12 W for fasl charge. 23.30 V de al 6.4 W (10.3 W warm-up).
Size: $88 \mathrm{H} \times 425 \mathrm{~W} \times 286 \mathrm{mmD}$ ($3^{159 /: ~ " ~} \times 163 / \mathrm{s}^{\prime \prime} \times 1 \mathrm{I}^{\prime \prime}$).
Weight: 105 A - net. 8 kg (16 lb). Shipping. $10.5 \mathrm{~kg}(23 \mathrm{fb}) .1058$ net. 11 kg (34 lb). Shipping. 14 kg (3) lib).

Opilons
908: Kack Flange Kit
910: Exira manual
Orderling information
105a Quarz Oscillatori
$\$ 2800$
1058 Quarn. Oscillators
$\$ 3250$

- Excellent spectral purity
- Low power
- Fast warm-up

The losis Quarz Crystal Oscillators were developed by Hewletr-Packand to meet the needs for compact, high stability oscillators is test equipment and systems. Their excellent shor-term stability and high spectral purity are especially desirable in applications where multiplication and synthesis are used to generate microwave frequencies. Rugged construction and high quality components assure high reliability and optimum performance. With the extremely low aging rate of these oscillators, significant cost savings can be realized at the end user by reducing the frequency of calibralion needed to slay within FCC accuracy requirements.

The erystal for the oscilator is supported in a new rugged mounting in a cold-welded, high bake-out enclosure. The housing around the crystal enclosure is massive with high thermal conductivity which contributes both to rapid wannup and excellent temperature stability. The oscillator. AGC amplifier and oven control circuits are all inside a themally insulated oven. Rigid plastic foam with extremely low thermal conductivity is used to provide thermal insulation and firm mectanical suppor for the oven enclosure.

The 10544A has low powes consumption because of the use of a switching regulator in the oven controller circuits. The 10544B/C uses a de over controlier which requires a litue bit more power bul results in better phase noise and shon-term stability specifications. The 10544 C has provisions for shock mounting and uses SMB snap-od of connectors for the 10 MHz outpul and for the EFC input. versus P.C-board connectors in the A and B versions. Other differences are listed in the specification section.

The 10544 oscillators ane ideally suited for use in communication and navigation systems, synthesizers, lime-code generaton, counters and specirum analyzers. The 10 MHz output frequency is a conveniegt starting point since it is easily divided or multiplied.

A screwdriver adjustment through the top of the oven enclosure permits frequency adjustment over a range of $2 \times 10^{-8}(20 \mathrm{~Hz})$. yel the control is sensitive enough to allow adjustment to better than $1 x$ $10^{-5}(0.01 \mathrm{~Hz})$. Frequency can also be controlled electronicaliy over a 1 Hz range with an externally applied voltage.

- High reliability
- Rugged
- Compact

Specifications
Output:
Impedames:

10544A
10 MHz
$1.0 \pm 0.2 \vee \mathrm{rms}$ 1000Ω

10544B/C
10 MHz
$0.6 \pm 0.1 \mathrm{~V} \mathrm{~ms}$ 50Ω

Aging rate (bfter 24 -hour warmup): $<5 \times 10^{-10 / d a y .}$ Shorl term stablity:
Averaging lime(s)

10^{-4}	5×10^{-4}	1×10^{-4}
10^{-3}	5×10^{-4}	1×10^{-11}
10^{-9}	5×10^{-11}	1×10^{-10}
10^{-1}	5×10^{-11}	1×10^{-11}
10^{0}	1×10^{-11}	1×10^{-11}
10^{1}	1×10^{-11}	1×10^{-11}
10^{2}	2×10^{-13}	2×10^{-11}
perature:	$<5 \times 10^{-10}$	$<5 \times 10^{-15}\left(01071^{\circ} \mathrm{C}\right)$
	$(\pm 25 \%$ load change $)$	$< \pm 10 \%$ load change $)$

Warmup: Within $\leq \times 10^{-9}$ of final value 20 min , after tum on. Frequency adjustment
Coarse:
$>2 \times 10^{-6}(20 \mathrm{~Hz})$
Harmonic distortion: $>25 \mathrm{~dB}$ from rated output
Non-harmonlc distoriton: $>80 \mathrm{~dB}$
SSE phase nolse rallo (1 Hz bw)

For offsets of $1 \mathrm{~Hz}:$	83 dB	85 dB
$10 \mathrm{~Hz}:$	120 dB	120 dB
$100 \mathrm{~Hz}:$	140 dB	140 dB
$1000 \mathrm{~Hz}:$	145 dB	150 dB
$10000 \mathrm{~Hz}:$	145 dB	150 dB
Power:		3 W

Power;
Csse slye: $72 \mathrm{H} \times 52 \mathrm{~W} \times 62 \mathrm{~mm} \mathrm{D}\left(2.8^{\prime \prime} \times 2^{\prime \prime} \times 2.4^{\prime \prime}\right)$.
Welght: 0.31 kg (ll oz.).

Prlee

Quantity	10544 A	10544 B	10544 C
$1104:$	$\$ 625$	$\$ 690$	$\$ 775$
$5109:$	600	$685:$	745
$101025:$	575	635	715 i
$251049:$	525	580	650

- Versatile with 3 input and 12 output channels
- Low noise, high stability, and isolation

The Hewleth-Packard Model 5087A Distribution Amplificr provides the isolation and flexibility required for distribution of the oulpur of high quality frequency standards. Low distortion and excellent isolation make it ideal for providing multiple outputs from atomic or crystal [requency standards. The 3 input channels will accepı $10 \mathrm{MHz}, 5 \mathrm{MHz}, 1 \mathrm{MHz}$ or 100 kHz in any combination. The number of ourputs for each channel is selectable up 10 a lotal of 12 outputs. The outpul levels are individually adjustable from 0 to 3 V mos. All inpui and output levels are monitored on a front panel meter,
The Distribution Amplifier features plug in modular construction, shon circuit isolation. exceptional phuse stability, low noise and cross-talk. and uninterruped switchover to standby de in evenu of ac power failure.
The shielding around cach inpur and output plug-in amplifier assures minimuro noise and cronstadk. The tuned output amplifiers provide elean signals and high channel-to-chamel isolation.

The instrument is designed for maximum versatility and can be supplied to meet al wide tariety of special requiremeats. The standard configuration of mpul and oulpu: amplifiers is shown in Figure J.

Sceveral other commonly used configurations are also available and special combinations of the various input and ousput modules can be smpplied. Input and output amplifiers can be added or the configration casily changed al sny time.

Figure 1. 5097A Distribution Amplifier whth Option 031. Standard Configurathon input and outpul amplifiers.

Specifications

Inputs (up to three, rear panel BNC)
Frequencles: 10 MHz .5 MHz . 1 MHz or 100 kHz .
Level: 0.3 to 3.0 V rms. 50 ohms.
Outputs (up to 12 rear panel BNC)
Frequencles: $10 \mathrm{MHz}, 5 \mathrm{MHz}$. 1 MHz or 100 kHz .
Level: $0-3 \mathrm{~V}$ into 50 ohms (screwdriver adjustment).
Harmonic distortion: $>40 \mathrm{~dB}$ brilow rated outpur.
Non-harmonte distortion: $>80 \mathrm{~dB}$ below rated oulput.

Isolation
Load (open or short on any ouher channel)
Ampilfude change: 0.1 percent.
Phase change: <0.1 ns al 5 or 10 MHz .
$<0.5 \mathrm{~ns}$ al 1 MHz .
$<5.0 \mathrm{~ns}$ at 100 kHz .
Injected signal: I V signal up 1050 MHz applied to any output except 10 MHz , will be down more than 60 dB in all oher outputs: 10 MHz output channcl will be down more than 50 dB .
SSB phase nolse (5 MHz): > 145 dB below signal in : Hz BW for frequencies $>1 \mathrm{kHz}$ from carrict.
Short term stablity degradation (5 MHz) $<1 \times 10^{-12}$ in 10 kHz band. (1 s average).
Environmental
Temperature: MIL-E-I6400. Class 4.
Operating: $0-50^{\circ} \mathrm{C}$; storage: -62° to $+75^{\circ} \mathrm{C}$.

Stabillty

Amplitude: $\pm 0.5 \mathrm{~dB}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$.
Phase: <0. 1 ns $/{ }^{\circ} \mathrm{C}$. . 5 and 10 MHz .
EMC: MIL-STD-461A.
Humidity: 95% al $40^{\circ} \mathrm{C}$.
VIbratlon: MIL-STD-167.
Altitude: up to $30,000 \mathrm{ft}$.
Shock: MJL-T-21200, Class I and MIL-E-5400 (30 Gs).
General
Power: 115 or $230 \mathrm{~V}=10 \%, 48$ to $440 \mathrm{~Hz}, 20 \mathrm{VA}$, max, or $22-30 \mathrm{~V}$
dc. 500 milliaroperes, max.

Dimensions: $88 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm} \mathrm{~W} \times 286 \mathrm{mmD}\left(3^{15} / \mathrm{m}^{4} \times 16^{2 / 3 / 4} \times\right.$ $\left.11 \% c^{\prime \prime}\right)$.
Welght: rypical. Opt $03 \mathrm{I}-\mathrm{Net} 7 \mathrm{~kg}$ (15 lb).

Optians

Price
Normal conflgurations (input and ouspul amplifiers)
031: 5, I and 0.1 MHz inputs and 4 oulputs at each frequency
add $\$ 1100$
032: Single 5 MHz inpul and 12 oulpuls
033: Single 10 MHz input and 12 outputs
034. Single 5 MHz inpul 4 each outputs at 51 and 0.1 MHz

Special confligurations
Input preamplitiers (up 103 tocal)
004: 1spu Preamplifier (0.1 to 10 MHz) add $\$ 35$
005: 5 to I MHz Input Divider add $\$ 90$
006: 1 to 0.1 MHz Input Divider add $\$ 90$
011: 5 to 10 MHz Input Doubler
add $\$ 90$
013: 10 to S MHz Input Divider
add $\$ 90$
014: 10 to 1 MHz Inpur Divider add $\$ 90$

5087A: Dlatributlon Ampllifer Malntrame
$\$ 1100$

- 12 Amp-hr capacity
- Sealed nickel-cadmium cells
- Used in "flying clocks"

K02-5060A

The HP Models 5083A and K02-S060A Standby Power Supplies fumish dc power to keep frequency or time standard systems operaling during extended interruptions of ac line power. For applications where it is essential to maintain continuous operation and avoid loss of precise time, the use of a standby power supply is an absolute necessity. These units are designed for use with the HewlettPackand Cesium Beam Standards, Rubidium Vapor Standards. Quartz Oscillators and other equipment which will operate from 22 1030 V dc . No switching is used in transferring power from line to battery operation and back again thus assuring unintermupted operation.

HP K02-5060A

The K02-5060A is a very versatice unit which was designed specifically as a portable power supply for the 5061A and 5065A "Flying Clocks" where it is necessary to operate from a wide range of power sources along with the standby capability to maintain continuous operation where no external power is available. A special inverter permits operation from a 6 or 12 V de car baltery in addítion to the $115 / 230 \mathrm{~V}$ ac and 24-30 V de capability. The 12 ampere-hour standby batteries are the sealed, niekel-cadrrium type and thus spill-proor. Mounting hardware is avallable to atlach the K02-5060A to either the 5061A or 5065A Standards to make a porable standard, the E21.5061A or E21-5065A.

HP 5085

The HP S085A is intended for installation where IIS or 230 V ac is available. Vented nickel-cadrium batteries with an is ampere-hour guaranteed capacity (derated from 25) are used. They provide about 10 hours of standby power for the 5061A Cesium Standard or 5065A. Rubidíum Standard (at average ambient cemperanure of $25^{\circ} \mathrm{C}$).
Front panel lights indicate mode of operation, repon fuse fallure. and ac interrupt. A foal-charge switch permits rapid recharge after an ac power failure.

K02-5060A Speclfications

Input and output voltages

Input
6 or 12 Vdc
125 or $230 \mathrm{~V} \mathrm{ac} 50-.400 \mathrm{~Hz}$
$24-30 \mathrm{~V} \mathrm{dc}$

Output

$0-230$ V. 60 Hz nominal $0-230 \mathrm{Vac}$
$24-30 \vee \mathrm{de}$

Standby batlery, $26 \pm 4 \mathrm{~V} \mathrm{dc}$ available at all times.
$A C$ and bout de inputs may be connected simultaneousiy.
Output current: $0.5 \mathrm{~A} \mathrm{ac}, 2 \mathrm{Adc}$.
Standby capacity: 12 ampere-hour at $25^{\circ} \mathrm{C}, 7$ hours standby when used in E21-5061A. 6 hours in E21-5065A.

- 18 Amp-hr capacity
- Vented nickel-cadmium cells

Recharging: 1.6 hours recharging time required for each ampere hour of discharge.
Alarm Indicator: external power failure.
Panel mbters: voltmeter, ammeter indicating voltage and current of 4 intemal batteries and load.
Battery: four paralleled rechargeable battery packs each containing 20 sealed nickel-cadmium cells. Packs may be removed individually withous interfering with power supply operation.

Temperature

Operating $01050^{\circ} \mathrm{C}$.
Storage: -40 to $60^{\circ} \mathrm{C}$.
Dimenslons: $177 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm} \mathrm{~W} \times 416 \mathrm{mmD}\left(6^{31 / 3: 3 ")} \times 16^{3 / \%^{\prime \prime}}\right.$ $\times 16{ }^{1 / 9}$ ').
Welght: net. 30.5 kg (67 b).
Accessories fumished; ac and $d c$ input and output cables.

5085A Specifications

Output voltage: $24 \pm 2 \mathrm{~V}$ de at rated current.
Output current: 2 amperes (2.5 A for 30 min .).
Standby capacity: (at $25^{\circ} \mathrm{C}$) 18 amp-hrs. after 48 hours charge.
Alarm indicators: panol lamps indicate: (I) FUSE FAlLURE. (2)
AC POWRR, (3) AC INTERRUPT, (4) CHARGE.
Remote alarm provisions: SPDT relay contactis provided at rear terminals for operating remole alarm from separate power system,
Panol meters: battery voltage and charge/discharge current.
Power requifements: 115 or $230=10 \%$ V ac; 50 to 400 Hz <2.0 A max. at 15 V line).
Battery (suppled): vented nickel-cadmium 25 ampere-hour capacity derated to 18 ampere-hours. Periodic maintenance required.
Additional (externat) battery provision: rear connector.

Temperature

Operatige: 0 to $50^{\circ} \mathrm{C}$.
storage: - 40 10 $75^{\circ} \mathrm{C}$.
Dimensions: $177 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm} \mathrm{~W} \times 416 \mathrm{~mm} \mathrm{D}\left(6^{3} 1 / z^{\prime \prime} \times 161 / \%^{\prime \prime}\right.$ $\times 16^{\left.3 / n^{\prime \prime}\right)}$.
Welght: nel, $34.1 \mathrm{~kg}(75 \mathrm{lb})$. Shipping. 45.9 kg (101 lb) including battery. Option 001 (no batleries) is 22.8 kg (50 lb) less.

Accessorles furnished:

AC Power Line Cable, 6 it. long, DC Output Connector. Instrument Exiension Slides (for std. 24 " deep rack).

Ordering Intormatton Price
5085A (complete with batteries) $\$ 2700$
Opt 001: without baneries less $\$ 640$
K02-5060A

The wide range of quality pulse and wond generators available from Hewlett-Parckard includes a cost elfective solution for mosi pulse testing applications. Instruments range from inexpensive unius ideal for clocking simple logic circuits to high performance models offering precise contsol of rill pulse parameters which are ideal for detuiled parametne analysis. Uoits from 1 MHz to 1000 MH 2 and withoul oulpul vollages ranging from a tew volts to 100 V . This wide range of instrument capabilities lets you choose a pulse generator exaclly tailored to your testing needs.

In addition to technical performance. impomant design emplasis is always placed on the ruggedness. reliability, and serviceability of every Hewlelt-Packard pulse gencrator. This means, for example, that all outputs are fully protected against open and shor circuit conditions and that only the highest quality components are used. The result is that each of these mstrument. from
the simplest 10 the most advanced, is a high value genetator thal should provide you excellent service.

Pulse generalar functlonal blocks

Pulse genemtors are made up of sevenal basic functional blocks. Included are repetiion rate. delay. width, and slope genezalors, :and oulpul amplifiers. Specific pulse genemators may include some or all of these functional blocks, depending on the complexily and intended applications area. The basic pulse genemator functional blocks are described below.

The repetition rate generator is an oscillator that derermines the period of the pulse Irain: the lime frem the start of one pulse 10 the beginning wh the next one.

The oulput ot the repetition rate gencrator drives the delay generator and is supplied to the front panel engger oulput as a references and synchronzing signal.

The delay generalor enables shilling the

PULSE GENERATOR BLOCK CIAGiKAM
pulse in time by delaying it a viriable lengin of time with respect to the trigger oulpul. It also fumishes the duuble pulse mode of opevation, in which the firme pulse is directed strajght to the widu gencrator with zero delay and a second pulse is produced after the delay inferval.

The width generator provides adjusiment of the duration of the output pulse. The selected pulse width is independent of ficquency. remaining constant as the frequency is varied. The slope generator enable selting the rise and fall limes of the output simal to simulate desired lesi conditions.

The output amplifier block amplific and conditions the pulse for clean Imamisuion co an extemal 50 ohm environment and also includes altenuator ano infset circuilry. The attenuator provider adjusiment of the amplitude of the output pulse; offsel controls permit a DC shift of the entire pulse either above or below ground. Moss amplifiers also include a pulse complementing function 10 allow pulse duty cycles to approach 100%. and provide selectable posiuve and negauive going pulses as well.

The extemal input provides a mesens of contraling or synchonising the generator wilh extermal signals. It functions in a number of different operaling modes. In Exiemal Trigger mode the repecition rate enerator is disabled and one oulpul pulse is produced for each pulse reccived al the external input. Manual ixiggering of single pulses is also ifforded.

In Giate mode the repctition rate generalor is yunchronombly switched on as lons in the Firesmal Input in held ligh. A pulse burst is thus produced whose frequency is delermined by the intemal rate gencimat and whose length ix determined by the widin of the exicmitly applied signal. Synchronous galing assures thal the pulse bursi ilways start with zero phase and that the last pulse of the burst is alwisy completed, even if the gating signal is removed during the pulse.

In Exiemal Width mode the external bignal is applied to the inpul of the sinpe generator. Rise and fall ilmes as well as amplitude and oflise are determined by the pulse generator: the period and duration of the input signal tare unclanged.

50 ohm source Impedance

All Hewlelt-Packand pulse and word generators have constanl $\mathbf{S} 0$ ohm source impedance, a feature very important in producing clan outpur pulses. Signal reflections from the circuit under test ate effectively absorbed by the 50 ohm source thus avaid. ing re-rethection to the iested circuil. The
internal 50 ohm aousce also enithles backterminated operalion in whach high impedance loads may be driven withoul an external terminating resistor.

Many HPgeneralors providc, in addilion. a switih selectable 5 on som source. The pulse generator outpul stige is a cument suurce which produces ils maximum vollige wher its lutal available current is concenirated in in simgle 50 ohm load. Thus 10 achicve maximum outpul voltage, only une SO ohm temination may be used, lucaled eiblor al the source on at be load. With a switch selecrable source impedance you cass choust the bent termimation configuration for your inflizalion. Highly capasulive loads, for eximple. are best uriven irom a 50 ohm source without a teminating rexistor at the load. Low capacilance loads ais best driven from a high impedance surce with the 50 uhm temninalion placed at the laad.

Independent parameters

All variable pulse parameters on Hewlett-Packard pulse genemtors can be adjusied completely independenily of one another. This means, for example. if pulse
offiel is varied. the amplilude is not ar. fected. and if pulsa frequency is adjusted. frambition limes and width remain constant. A further fealure is complete specilication of all pulse parameters including thorough specincation of pulse perturbetions and jitter. Thus you nlways know what pulses to cxpect from your genesator.

Counted burst generatlon

Applicalions such as digital circuil design or radar testing often require a burst of pulses with in exact predetermined lengul A Jigital system, for extmple. could be clocked to a particular stite at it 's operaling frequency using such a pulse bursi, A shin register or counter could be given a desircd number of pulses. A comated bursi mode of operation is available in several Hewlell. Packaral generators and greaty simplifics bursi ecneration. The number of pulses desired is simply dialed inlo a llumbwheel switch and a bursi of this length will be produced upon command. Als pulse purameters (frequency, width etc.) may then be varied without affecting the number of pulses in the bursi.

Pulse Generators

Model Ma.	1184	8010 A	80058	80IIA	80128	80138	8015A	8007 B	8082A	1500 Sysiem
	1	10	20	20	50	50	50	100	250	25
Outpul Y into son	$=100$	ご-10	-51-: 0	-81 16	- 512	$=5 i=10$	$=81=151=30$: 5	-5. LCL	$=510=50$
Humser al outpour	1	2 mider		1	1	\%	2 nmote	1	?	+. - nred COM:-
Min. Uams. timas	15 п5	it ne vor.	10 is war.	10 ns	$3 \mathrm{~ns} \mathrm{var}$.	3.5 ns	6 \%s var.	2 п 3 ras	i fiz \%al.	$359 \mathrm{DS} \mathrm{(Yad)}$
Widit	$\begin{gathered} 50 \mathrm{~ns} \\ 1010 \mathrm{~ms} \end{gathered}$	$\begin{aligned} & 20 \mathrm{~ns} \\ & 101 \mathrm{~s} \end{aligned}$	$\begin{aligned} & 25 \mathrm{~ns} \\ & 103 \mathrm{~s} \\ & \hline \end{aligned}$	$\begin{gathered} 25 \mathrm{~ns} \\ 14100^{2} \mathrm{~ms} \end{gathered}$	$\begin{array}{r} 10 \mathrm{nx} \\ 10 \% \mathrm{~s} \\ \hline \end{array}$	$\begin{array}{r} 10 \mathrm{~ns} \\ 401 \mathrm{~s} \\ \hline \end{array}$	$\begin{aligned} & 10 \mathrm{~ns} \\ & 101 \% \end{aligned}$	$\begin{gathered} 5 \mathrm{~ns} \\ t 050 \mathrm{~ms} \end{gathered}$		$\begin{gathered} 0 \mathrm{ID} \\ 80 \mathrm{~ms} \\ \hline \end{gathered}$
Delay	-	-	-		-	-	\square	-	-	-
Othe et V imiosoil		$=2$	± 2		-25	± 2.3	$\pm 7 /=14 / \pm 14$	$=1$	± 2	$=1.510=5$
Grernal inpul	*	-	*	*	-	-	-	-	-	-
Double pulse mode	-	-	-		-	-	-	+	-	-
Solectablo is			.	-	-	-	-			\bullet
Ofther				butst			busil			Droprammabla

Word Generators

model Ho.	80gas	80164	90184	37604
Max. reg. rate (MHz)	10	50	50	150
No. at channels	2	9	2	1
Glis per chanmel	16132	32/64/1281256	1024	3 to 10
Outper ${ }^{\text {y }}$ Into $501 /$	+2.5/-5	ECLTLl (vas.)	13	3.2
Warth/aelay comual		\square		-
MUNR2 Iormats	-	-	-	-
Pres	-		-	-
Progammable	-	-	-	

8080 Subnamosecond Pulbe/Word Generator System

Madel ${ }^{\text {no }}$	Rap. rate gen.		$\begin{array}{\|c\|} \hline \text { Delay gen. } \\ \hline \text { A0 }{ }^{2} 2 \mathrm{Za} \\ \hline \end{array}$	$\begin{gathered} \hline \text { Word ganaritios } \\ \hline \text { 80BAA } \\ \hline \end{gathered}$	Output amplilijers	
	8081A	809Ja			B0a3A	90894
Max. cep. rale (MHL)	300	1000	1uca	300	305	1200
Outpui Y imio 50 n	jLitimip f	500 my i- L	$69 \mathrm{CmV} \mathrm{p}-\mathrm{p}$		- 2: ECL	$\therefore 1.2 / \mathrm{ECL}$
Oatpur	(${ }_{\text {! }}$	$1 \mathrm{um!}$	$2(1 n)$		2 (NORM/COMP\}	1
M/a. Uans. Itmes	1.2 II	0.5 m			500 ps	300 ps
Oelariadrance			9.9 ns		.	
Ofiser V Intes 5017			$\left[\begin{array}{ll} {[180} & -2 \end{array}\right]$		$=1$	$=12$
Enc nigizate	-	-		-		

The counted bursi feature is included in the 8165A programmable signal source and is optionally avaitable in the 8011 A and 80ISA pulse generators.

Human engineering

Carefu atcention to human engincering as well as extersive experience in the design of instrument frone panels has enabled Hewlet-Packard to produce pulse and word gencrators with logical front panel layout and controls that are easy to operale. On many Hewlet-Packard pulse generators liming parameters are adjusted by horizontally oriented controls and amplitude parameters by verically oriented controls. exactly as these timing and amplitude paramelers are displayed on an oscilloscope. In addition the physical relationship of pulse period, delay. and width controls minimizes the risk of incompatible control sctings. Reduced operator familiarization time and faster setup of the desired pulse are direel benefils.

Pulse generator applications

Digital integrated circuits

Digital circuil development, covering such logic families as TTL, ECL, and CMOS is a very important pulse generator applications area.
MOS/CMOS: MOS. and particularly CMOS, is a popular logic family due to its very low power dissipation, bigh packing density, and high noise immunity. The 8015A and 8011A pulse generators are ideal for MOS and CMOS applications, providing the high amplitude, 16 volt test pulses that these circuits require. The 8015A even produces 30 volt pulses when both its output channels are combined. The 1915A and 1917A ourput slages for the 1900 system are also suiled to MOS/CMOS application.
ECL: Emicter Coupled Logic features loggle rates over 100 MHz and propagation delays ranging into the subnanosecond region. The 8082A pulse generator is well suited for ECL applications ranging up to 250 MHz . Pulse transition times variable down to a state-of-1he-an I ns match the 8082A to any test specification. A low reactance 50 ohm source helps ensure clean pulses at the device under lest, and presel ECL oulpus levels can be selected with a single switch. Applications above 250 MHz are covered by the 8080 system. See the following paragraphs on subnanosecond applications. TTL: Transistor-transistor logic is the most popular logic family. A wide range of Hewlett-Packard generators, including the $8005 \mathrm{~B}, 8011 \mathrm{~A}, 8012 \mathrm{~B}$, and 8007 B . are well suited to testing these devices. The 250 MHz 8082A with its 5 volt amplitude is also
well suited here, and provides frequency coverage for future faster applications.

Subnanosecond applications

Modem research io telecommunications, IC design, fiber optics. and in the nuclear area offen requires pulses with transition simes in the subaanosecond region. To meet these needs. Hewleti-Packard has developed the modular 8080 system. This systcm . fastest of all HP's pulsers, provides isansition times down to 300 ps and repetition rates $10: \mathrm{GHz}$. The system is modular so that a pulse generator can be tailored to fit a particular lesting requirement. The 8084A module brings word generation capability at rates up 10300 MHz to the system.
HIgh voltage applications
Radar and power semiconducior testing as well as materials and other forms of basic research offen require very high power output pulses. Model 214A offering l00 V/2 A periormance and model $1915 A$ with $50 \mathrm{~V} / 1$ A are ideal for these applications.

System applications

Spurred by the need to reduce lesting time and cosis. the use of automatic and semi-automatic test systems is rapidly expanding. A primary componcal in such systems is a signal source whose parameters can be remotely programmed by a computer or other system coniroller.
The 8165A programmable signal source produces sine, square, and triangle waves over a frequency range of 0.001 Hz to 50 MHz . All parameters and operating cootes are remotely programmable via the HP-IB. This insmument with its 0.001% frequency accuracy, 20 voll output amplitude, and 5 ns transition times is ideally sunted to the requiremenes of system applications.

The 1900 series, in conjunction with the 6940B multiprogrammer is a fully programmable pulse generator system providing repetition rates up to 25 MHz .

Word generators

In constrast to a pulse generalor, which normally provides conuinuous streams of pulses. a word generator produces digital waveforms with bit content programmed by the user. Digital information is normally encoded suck that a high level or pulse represents a logical one and a low level or lack of a pulse represeats a logieal zero. Thus the user may deremine his digital word to be 11100110 and program his word generator to produce 3 pulses followed by 2 spaces. then 2 pulses and linally a single spoce.
Word senerators are used to produce the complex waveforms necessary for integrated circuil lesting, telecommunications system development, and for interface simulation. Word generation may be serial, in which data is produced on only a single
channel, or parallel, in which many channels of information are simultanteously produced. A repelition rate generator (clock generator) and output amplifier are normally also included to produce a self-coniained unit fully capable of delivering data to a device under sest.
Word generator appllications
Parallel: the $50 \mathrm{Mbit/s} 8016 \mathrm{~A}$ is designed for applications where a source of parallel data is required. This 8 -chamel word gencrator delivers 32 individually programmable bits from each of its channels. Channels can also be serialized to produce patteros up to 256 bits long. Adjustable pulse width and interchannel delays enhance the usefulness of the 8016 A enabling full parametric as well as functional (esting. An HP-IB interface provides rapid loasing of the instrument's memory or integration into an automatic test system. Typicas applications areas include testing complex MSI and LSI integrated circuils as well as parallel interface design.
Serial: the 8016A is excellent in applications where long streams of serial data are required. Typical areas include data terminal and disc controller design. SDLC pattem simulation. bubble memory and charge coupled device testing, and all forms of serial interface and bus development.
The $50 \mathrm{Mbiv} / \mathrm{s} 8018 \mathrm{~A}$ serial data generator conteins 2048 bits of serial memory which can be output as a single channel or as 2 chaonels of 1024 bits each. Pattem length can be anything from 3 to 2048 bits and the data stream can be divided into serial words for lesting systems that are byle, character or word oniented. Generation of pieudorandom binary sequences (PRBS) is also included. As with the 8016A, an HP-IB interface enables rapid. remote loading of the bit pattern.
Another important applications area for the 8018 A and other word generators is in testing of eclecommunications systems. The word generator is used to inser a known digital pattem into the system. The model 8084A word generator module for the $\$ 080$ system can supply 64 -bit data paltems with repetition rates up 10300 M bits per second in either RZ or NRZ formats. Pseudorandom binary sequences (PRBS) and variable content digital words useful in communications lesting applications are also produced by the $8006 \mathrm{~A}, 1925 \mathrm{~A}, 1930 \mathrm{~A}$, and 3760 A .

The 3760 A has been specifically designed for communications applications and provides variable length $P R B S$ and WORD pattems at repetition rates 10150 M bils per second. A second data ouput delayed 8 bits with respect to the main output is optionally avaiable. The 3760A may be used with the 3761A Error Detector to make bit-by-bil error rate measurements.

PULSE GENERATORS
 50 MHz programmable signal source

8185A with Sweep Option 001

Intraduction

The 8165A Programmable Signal Source generates sinewaves. triangles, ramps, square waves and pulses over a frequency mange of 1 mHz to 50 MHz . Thie pushbution front parel controls and the LED parameter display enatble rapid and accurate setting of parameters with no repeatability problems. When you include other features such as microprocessor control, remote programmability of all parameters, and seven operaling modes, you have a veratile signal source in just a single instrument thar can be used in a wide range of applications.

Microprocesser control

The 8165A contains a micnoprocessor-conirolled interface and keyboard designed to simplify operating and programming. Whether operating the instrument from its keyboard or from a controller via the HP-IB, the microprocessor simplifies parameter und data entry.

In as so checks for Ilegal operations. incompatible settings, and sets up front pancl dispiays. The microprocessor greally simpllfies frone panel aperation by enabling any parameter to be changed using only 3 sleps; a PARAMETER key, DATA keys, and an ENTRY key. Operating set storage
Up to 10 complete operating sets (functions and parameters) can be slored in the built-in memory. Subsequently you can recall any of the 10 sets insentaneously by pressing only two keys or using one program statement. And you don't have 10 wony about losing operating sets if the 8165A is accidentally swithed off or if the power fais. Intemal batterics preserve the current and stored operating sets for up to four weeks.
Siabilify, accuracy and resolution
The use of phase lock loop rechniques, plus a 10 MHz internal or extemal crystal reference. ensures very slable outpul frequencies with an accuracy of $\pm 1 \times 10^{-4}$ deviation from programmed value. Resalution is four digits over the frequency range of 1 mHz to 50 MHz . For example, in the frequency range $1-9.999 \mathrm{mHz}$, this is equivalent 10 a resolution of $\{\mu \mathrm{Hz}$.

Multiple waveform generation

The multiple waveforms thal can be generated by the 8165A suit it co a wide range of digital and analog applications. Sinc, iriangle or square whes can be generated at frequencies up 1050 MHz . Ramps and rectangular pulses with 20% or 80% dury cycle/symmeiry can be generated all frequencies up to 19.99 MHz .

Operating modes

The 8165A can be operated in any of seven different modes: normal, irigger, gate, voliage conirolled oscillator (VCO). sweep. counled burst. and frequency modulation (FM). This wide range of modes enables the 8165A to be used in any operaling environment.

Output capability

The 8165A has been designed to fulfil the requirements of analog and digital lesting. The source impedance can be set 10 SO ohms or 1 k ohms for best termination. i.e. minimum distontion and reflection in euch applicalion. The 8165 A can also be used as a current source. or supply a variable de level.
HP-IB programming
The use of a microprocessor makes the 8165A very easy 10 program across the HP-1B, and ideal in automatic lest systems. AlJ operating parameters and functions can be programmed and in leam mode the 8165A can report its status and its current or stored operaling sets. Programming is further simplified by the codes on the instrumedt front panel. The framed mnemonics are the ASCII characters required for programming.
For specifications see page 341.

PULSE GENERATORS

8080 System-general information

$1 \mathrm{GHz} / 300 \mathrm{MHz}$ pulse/word generator system

System description

Each of the 8080 system modules is a typical pulse or word generator functional block. Repelition rate generators and output amplifiers are available for either 300 MHz or 1 GHz operation. The 64-bit serial word generator module brings high speed data siream capability to the system, and a 1 GHz delay generator/frequency divider provides interchannel delay in 100 ps increments, as well as half-frequency operation. The ful-rack-widit mainframe houses and powers the modules.
Using these modules you can configure systems with capabilitics covering a broad specinsm of stimulus applications. A basic square wave signal source. for example. consisting of repetition rate generator and output amplisier can provide clocking signals for assemblies of logic circuits. More complex systems. even multi mainframe. can produce single or mutrichannel data streams oplimized for subnanosecond PCM research or IC tesling.
The combisation of pulse and word generation capability in an integrated system makes possible economical, easy-touse sesting solutions. Modular flexibility eljminates the redundancies inherent in less convenient combinations of separate instruments and ensures easy expansion at a later date should test requirements change.

The two systems described as follows are typical of the wide range of systems that can be configured using the fully compatible 8050 modules.

Typleal systems showing full range of modules available

1 GHz pulse generator system

Models 8091A repetition rate generator, 8092A delay generator/ frequency divider, and two 8093A outpus amplifiers form a versatile I GHz pulse gencrator system. The system includes two outpul stages with fully independent level controls and the eapability to offsel the outputs timewise from one another. This system configuration and the waveforms it generates are ideal for testing the fastest iotegrated and discrete digital circuits and oplical components. Major fealures or this system include:

- I Ghz repelition rale
- $\leqslant 300 \mathrm{ps}$ transition times
- $\pm 1.2 \mathrm{~V}$ output amplitude (into 50 ohms)
- interchannel pulse advance and delay
- selectable half-frequedcy operation on one channel

Model 8092A delay generator/frequency divider roodule provides the system with two innovative measurement capabilities very useful, for example, in dynamic testing of high speed clocked devices. The first of these is interchannel delay. Delay is produced from one channel with respect to the other. Secondly, the repetition rate of one of the channels can be set to half of the frequency of the other. The two output waveforms thus provide the clock and data signals necessary for flip-flop and shift register lesting.

PULSE GENERATORS
 8080 System: general information/mainframe
 Model 8080A

- Powers all 8080 series modules
- Full RFI shielding

The full frequency output drives the tested device's clock input. and the half frequency waveform supplies the data input. Setup and hold times are easily determined by adjusting the interchannel delas. With counter circuits, the same lechnique can be applitied to measure the serup time required between count enable and clock inputs,

The full and half frequency outpuls of the generator contain each of the four digital combinations of two bits. Thus all types of dual input gotes can also be tested. Possibilitics include determination of proper functional operation. propagation delay, and sensitivity to race-induced signal overlaps.

Formerly two separate, synchronized pulse generators have been required to perform the above measurements. The 8080 system provides all the necessary capabilities in a single, integrated solution. and with the lesting precision afforded by 300 ps rise and fall time test pulses.

300 MHz Word generator system

Combining the Model 8084 A word gencrater module with a repelition rate gencrator and an output amplifier produces a high periormance 300 MHz serial data generator. The varisble content digital bit stream and synchronizing clock of sneh a system provide the waveforms necessary for test and development of integrated cincuits and telecommunicntions systeme components such as shifi repistes, modulators and multiplexers.
The Model 8081A repetition rate generator supplies the system clock. It drives the werd genergtor module at rates from 10 Hz to 300 MHz . The Model gos 3 A output amplifier applies amplitude. rise-time and pulse shape parmeters to the word generator outpu signal and conditions it to provide clean waveforms to an extemal so ohm environment. Major features of the system include

- selectable word lengih-16. 32 or 64 bits
- 300 MH z clock rate
- $\leqslant 800$ ps Iransition limes
- $\pm 2 \mathrm{~V}$ output amplifude into 30 ohms

With a single switch you can rapidly select preset ECLcompaulble signal levels. When different or more precise levels are required, outpul pulse amplitude and eifsel are olso separately adjustable. The word generator module gives you a choice of RZ or NRZ data format and provides word framing signats to trigger in oscilloscope. Simultaneous data and data signals, supplied by the complementary output amplifier, are particularly useful for testing balanced transmission line systems and line receivers or for simulating dual-ended IC outputs.

8080Â Description

The Model 8080A Mainframe provides housing and DC power supplies for the 8080 system modules. The rnodules are buil in $1 / \mathrm{s} .1 / 6$ and $1 / 2$ mainframe widths and can be accommodated in the mainframe in any position and combination.

Systems can be reconfigured very easily; the modules are slid into the required position in the mainframe and secured with screws. The high frequeney signal connections between modules are then made intermally using 50 ohm coaxial cable with SMC connectors.

The ease with which modules can be exchanged greatly improves serviceability because a defective module can be isolated rapidly and repaired or exchanged. Ease of maintenance is further enhanced by the free access provided to all circuits and assemblies in the system.

The entire system is RFI shielded including a power line filterand sealing gaskets on the modutes.

8080A Speciflcations

Compatlblity

Electrical: provides power for all modules in any combination or $1 / 3$. $1 / 1$ or $1 / 2$-size modules.
Nechankal: mainframe companments accepl up 10 two $1 / s$-size. four $1 / r$-size or eight $1 / n$-size modules in any combination.

General

Operating temperalure range: $0^{\circ} \mathrm{C}$ to $\leq 5^{\circ} \mathrm{C}$.
Powar: 115 V or $230 \mathrm{~V}, 10 \%$, -22%. Frequency 48 Hz to 66 Hz single phase. Up to 200 VA . Power available for modules 55 waths de.
Weight: ne: $5 \mathrm{~kg}(11 \mathrm{lb})$. Shipping, $8.7 \mathrm{~kg}(19.1 \mathrm{lb})$.
Dlmenslons: $133 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{mmW} \times 422 \mathrm{~mm} D\left(5.24^{n} \times 16.77^{\prime \prime}\right.$ $\times 16.61^{\prime \prime}$)
Optlons and accessories Price
907: front handle kit add \$15
908: rack flange kit add $\$ 10$
909: rack flange/front handle kit add $\$ 20$
910: additional instrument manual (includes add $\$ 15$
binder and system description)
15400A: blank panel, quarter mainframe width $\$ 30$
15401A: blank panel, eighth mainframe width $\$ 20$
16402A: Feedthru panel ($6 \times$ BNC) eighth mainirame $\$ 25$
widlh
8090A Maintrame

8080 System: $300 \mathrm{MHz} / 1 \mathrm{GHz}$ output amplifiers Modeis 8083À \& 8093A

- 800 or 300 ps transition times
- 8083A-2 V amplitude, $\pm 1 \mathrm{~V}$ offset
- 8093A-1.2 V amplitude, $\pm 1.2 \mathrm{~V}$ offset

$8083 A$ and 8093A Descriptions

Models 8083A and 8093A are the output amplifiers of the 8080 series. They apply amplitude and output format parameters 10 the generated signals, and supply precision fast ise tire pulses to the rested device or system.

Model 8083A is a quarter-width module that covers repection rates up 10300 MHz with fixed transition times of less than 800 ps . Pulse amplitude is variable up to 2 V , can be set to positive or negative polarity, and can be offset from ground by $\pm 1 \mathrm{~V}$. Simultaneous normal and complement outputs simplify tesis of balanced iuput devices and systems.
Model 8093A is an eighth-width module that extends performance $10: \mathrm{GHz}$ repetition rate. The 300 ps pulse transition times provided by this module enable parametric testing of even the fastest logic families. Other applications include bandwidith deternination, switching eramsistor and circuil evaluation, and driving high speed data multiplexers and modulators. The amplinier delivers positive or negative pulses with up to 1.2 V amplitude and $\pm 1.2 \mathrm{~V}$ offset. The output format can be set to deliver nornal or complementary pulses.
An additional amplitude setting on both modules provides fixed ECl-compatible oulput levels. Levels can be adjusted inlernally.

Connection to the eircuit or system under test is simplitied by the tow-reactance 50 ohm source impedances of the (wo modules. These outpuls will deliver clean pulses into 50 ohm systems and preserve pulse shapes by absorbing reflections from external loads.

8083A Specifications

Output channels Sioultaneous normal and complement outputs provided
Source impedance: 50 ohnns $\pm 5 \%$.
Polarity: neg Jpos. selectable.

Oulpul pulse

Amplitude (Into 50 ohm load): 0.2 V to 2 V in two ranges continuously adjustable, plus ECL range (-0.8 V 10 -1.6 V adjustable). Maximum levels: $\pm 4 \mathrm{~V}$.
Oftset (Into 50 ohm load): $\pm 1 \vee$ common to both channels. Transition time (10% : $0 \mathrm{~B} 0 \%$): $\leqslant 800$ ps.
Duty cyole (with drive input duty cycie of 50%): $50 \% \pm 10 \%$.
Preshoot, overshoot and pinging: $\$ 10 \%$
Output protection: max applied ext. voltage $=2 \mathrm{~V}$ in pos. mode and 0 V to -4 V in neg. mode, or max ext. current $\pm 40 \mathrm{~mA}$.
Dilve Input (Impedance 50 ohms typical)
Input frequency: $0-300 \mathrm{MHz}$.
High angnal level: more positive than -100 mV .

- Norm/compl, pos./neg. outputs available
- Selectable, preset ECL outputs
- Low reactance 50 ohm source impedance

8093A
Low algnal level: more gegative than -500 mV .
Min. amplitude: $\geqslant 500 \mathrm{~m} V \mathrm{pp}$.
Tranaltion tmes ($10 \%-90 \%$): $\leqslant 3$ ns.
Max. external voltage: $\pm 1 \mathrm{~V}$.
Propagation delay time: $4.8 \mathrm{~ns} \pm 500 \mathrm{ps}$.
General
Slze: quarter mainframe width.

8093A Specificatlons

Output channel
Format: normad or complemen selectable.
Source impedance: 50 ohms $=5 \%$.
Polarity: neg /pos. selectable.
Output pulse
Amplitude (into 60 ohm loed): $\leqslant 0.6 \mathrm{~V}$ to 1.2 V coninuously adjustable, plus ECL range (-0.8 V to -1.6 V adjustable).
Maximum levels: $=4 \mathrm{~V}$
Offset (Into 50 ohm load): $\pm 1.2 \mathrm{~V}$.
Tranation IIme (10% 10 90%): $\leqslant 300 \mathrm{ps}$.
Duty cycie (with drive Input duty cycle of 50%): $50 \% \pm 10 \%$.
Preshooh, overshoot, inging: $\leqslant 10 \%$ to 500 MHz . $\leqslant 15 \%>500$ MHz.
Output protectlon: max applied ext. voltage: $\pm 2 \mathrm{~V}$.
Drive input A (impedance 50 ohms typical)
Input frequency: 1 GHz .
High signal loval: more positive than -100 mV .
Low signal level: more negative than -500 mV .
Min. amplitude $\cong 500 \mathrm{mVpp}$.

Max. extornal voltage: $\pm 1 \mathrm{~V}$.
Propagailon delay tlmea: 5 ns ± 200 ps.
Schmitt trigger input B (impedance 50 ohms typical)
Signal levels: amplitude, ext. voliage as for input A.
Input trequency: $0-300 \mathrm{MHz}$.
Transition times $(10 \%-90 \%)$: $\leqslant 10$ ns.
Propagation delay: $7.8 \mathrm{~ns} \pm 300 \mathrm{ps}$.

General

Slze: eighth mainframe width.
8083A and 8093A Option
Price
910: additional operating and service manual add $\$ 7.50$
Ordering information
8083 A 300 M Hz Output Amplifier module
8093 A 1 GHz Output Amplifier module
$\$ 1525$

- RZ/NRZ formats

- 16, 32 or 64 bit word lengths
- Selectable auto/single/gated cycle mode

8004A

8084A Description

The Model $8084 A$ word generator module provides high speed data streams for testing integrated circuits, memories, and dala iransmission lines and systerns.

The 8084A with complementary rate generalor and output amplifier modules. forms a serial data generator system with pulse parameters tailored 10 your measurement requirements.

The g0\&AA module generates a serial digital word in RZ or NRZ mode as repelition rales up to 300 MHz . Word lenglh of 16,32 or 64 bits is selectable via front panel pushbuttons. Dasa is fetched from and loaded into the 64 -bit memory in 16 -bit segments using the Fetch and Load pushbutions. The 16 -bit segonents are selected using a Row Address pushbution with four LED indicators, and the data content is loaded and displayed using a row of 16 data pushbutions and adjacent LEDs.

The 8084A operates in Auto, Single or Galed cycle modes. In Aulo mode the ouput is continuous and the word is recycled suto matically. In Single cycle mode one word is produced for each cycle command pulse. la Gated cycle mode datia is continuously generated as long as the cycle command input is held high. and the last word is always compleied.

Synchronizing the s084A to resi instruments of circults is achieved using the First and Last Bit framing outpuls and the Clock output.
808dA option 001 replaces the intenal Clock input and Gate and Word oulputs with front panel BNC connectors and should be ordered only when parallel connecting 8084A modules in separate mainf rames.

Specifications

Data capacity
Number of data channels: $1 \times 16,32$ or 64 bits selectable.
Cycle command input (impedance 50 ohms $\pm 10 \%, 600$ ohms $\pm 10 \%$)
Amplitude: $\geqslant+0.8 \mathrm{~V}$. Max. input: $=6 \mathrm{~V}$. Width: $\geqslant 3 \mathrm{~ns}$.
Period between cycle comms: word length $+2 x$ clock periods + 100 ns .
Clock Input (internal)
Repetition rate; $0-300 \mathrm{MHz}$. Impedance: 50 obons typical.
High slgnal leval: more positive than -100 mV .
Low signal level: more negative than -500 m V.
MIn. amplitude: $\geqslant 500 \mathrm{mVpp}$. Max. input voluge $\pm 3 \mathrm{~V}$.
Tranalton times ($10 \%-90 \%$): $\leqslant 3 \mathrm{~ns}$.
WIdth: ≥ 3 ns at $\leqslant 100 \mathrm{MHz}, ~ 50 \%$. $\pm 10 \%$ at $>100 \mathrm{MHz}$.
Slope: low to high Iransition generates bit.
Internal outpuis (Word, Word, Clogk, Gate)
Far-out: drives one $\$ 080$ system module.
Gate function: high level starts/low level stops rate generaior. Word, Word format: RZ or NRZ. switch selectable. Glock: inverted ousput simultaneous with Clock output.
High slgnal level: more positive than -100 mV .
Low elgnal level: more pegalive than - 500 mV .
Min. amplitude: $\geq 500 \mathrm{mV}$ Pp. Source impedances; 50 ohms $\pm 5 \%$.
Trangitlon times ($10 \%-90 \%$): Word $\leqslant 1.2 \mathrm{~ns}$, Gate ≤ 1.5 ns.
RZ duty cycle (whth 50% duty cycle drive input): $50 \% \pm 10 \%$,
External outputs (Clock, First Bit, Last Blt)
Clock: delivers one pulse per blt. RZ formal.
Flrat Blt (FB): coincident with hirst bit of word. NRZ format.
Last Bl: (LB): coincident with last bit of word. NRZ format.
Highilow signal levels: more pos. than $-100 \mathrm{mV} /$ more aeg than -500 mV or $>+500 \mathrm{mV} /<+100 \mathrm{mV}$. switch selectable.
MIn. amplitude: $>500 \mathrm{mVpp}$. Source impedances: 50 ohms $\pm 5 \%$.
Transtion times ($10 \%-90 \%$): FB and $\mathrm{LB} \leqslant 1.5 \mathrm{~ns}$. Clock $\leqslant 1.2 \mathrm{~ns}$.
RZ duty cycle (wlith 60% duty cyale dilve Input): $50 \% \pm 10 \%$.
General
Slze: half mainframe width.
Welght: net 1.7 kg (3.7 lb); shjpping $3.9 \mathrm{~kg}(8.6 \mathrm{lb}$). Optlons
001: brings int. clock input, cycle comn. and word
outputs to front panel in multimainframe systerns
093 \& 093: should be ordered when 8084A is con-
nected to an 8083A (Opi 083) or 8093A (Opt 093) in same mainfrume. For oher combinations, contact H.P 910: additional operating and service manual

- 9.9 ns channel separation
- Digital delay/advance in 100 ps steps
- LED display of delay or advance interval
- Selectable half frequency operation

8092A Description

The Model 8092A is a delay generator/frequency divider for use in functional and parametric testing of subnamosecond digital logic cireuits. The 8092A has two output chanuels which can be delayed or advanced with respect to each other in 100 ps steps over ± 9.9 ns range. The selecied delay is digitally displayed on numeric LEDs.
The 8092 A delay is obsisined by delay lines, which offers jirter free delay. that can be set to greater than one clock period. An added advantage of the delay line is that you can easily repeat detay settings if required in a later test.

Another feature of the 8092 A is the capability of dividing the channel B frequency by 2 . In this operating mode, the two 8092A output ebagoels carry f and $5 / 2$ witb variable interchannel delay.

Froguancy Oivition lor FLIA FLOA and Gan Taring
These waveforms are ideal for high speed flip-flop testing. The full frequency signal drives the clock input and the half frequency signal the data input. You can then use the channel separation to check device setup and hold times. The f and $f / 2$ waveforms also contain all of the four combinations of two bits (00.01 .10 and II) so that you can test dual input gaces. Both of these tests oomally require two pulse gederators to perform them.

The advance and delay pushbuttons have a buitt-io rapid count facility. If you hold down eitber pushbutton for more than one second. the channel separation inctements at a greatly increased rate. This errables you to step through large lime intervals very quickly. If you press botb pushbultons together, the delay immediately resets 10 zero.

A half-frequency trigger output is provided for triggering test equipment when the frequency divider is used. A reset control is also provided to enable you to reset the frequency divider flip-flop to the logic 0 state before the stan of a pulse burst in gated mode. You can reset the flip-flop either electrically or with a pushbution.

B092A Specifications

Channel B delayladvance (channel A reference)
Range: $\pm 9.9 \mathrm{~ns}$.
Step size: 100 ps .
Frequency divislon Channel B output frequency is selectable by frome panel switch
Frequencles avallable: f (channel A) or $1 / 2 \mathrm{f}$ (channel A).
Internal outputs (Impedance 50 ohms typleal)
Number of channels: 2 (channels A and B).
Fan-out: I for each output.
High slgnal level: more positive than -100 mV .
Low aignal level: more negative than -500 mV .
Min. amplitude: $\geq 500 \mathrm{mV}$ pp.
Tranaition times ($10 \%-90 \%$): $\leqslant 500 \mathrm{ps}$.
Duty cycle (with drive input duty cycle of 50%): $50 \% \times 10 \%$.
Max. external voltage: $=2 \mathrm{~V}$.
Trigger output (//2) The rigger oulput is present on'y in $f / 2$ mode
Sisnal levels. amplitude $\&$ ext. voltage as for internal outputs.
Transition times ($10 \%-90 \%$): <1 ns.
Internal drive Input (Impedance 50 ohms typlical)
Sienal levels, amplitude \& ext. voltage as for internal outputs.
Input frequancy: $0-1000 \mathrm{MHz}$.
Transition times ($10 \%-90 \%$): $\leqslant 350$ ps.
Pulse whth: $\geqslant 0.5 \mathrm{~ns}$.
Reset Input (Impedance 1 Kohms typlcal)
Negative-going transition resets ch. B to low level in $\mathrm{f} / 2 \mathrm{mode}$
Signal levels \& amplimede as for internal ourpuls.
Input frequency: $0-2 \mathrm{MHz}$.
Reset time: $\geqslant 0.5 \mu$.
Maximum external voltage: $\pm 6 \mathrm{~V}$.
Tranaition Itmen ($10 \%-90 \%$): $\leqslant 10$ तs.
Manual pusitbutton; resets ch. B to low lovel in $f / 2$ mode.
General
Slze: quarer dainframe width.
Welght: net I kg (2.2 lb). shipping $2.7 \mathrm{~kg}(5.9 \mathrm{lb})$.
Optlons
Price
9 10: additional operating and service manual
add 57.50
8092A Delay Generator/Frequency Dlvider

- $300 \mathrm{MHz} / 1 \mathrm{GHz}$ repetition rate
- High resolution rate controls

8081 A

8081A and 8091A Descriptions

Models 8081 A and 8091A are quarter-width rate generator modules in the 8080 sysiem. The 808 (A produces pulses al rates up to 300 MHz , and the 8091A up to 1 GHz . An 8 -position frequency range switch and 3 -turn vernier potentiome ter enable rapid, precise setting of the pulse repetition rate.

Both rale generators include an external rigger which enables you to synchronize the system 10 an extemal source. In this mode you can use the rate gencrators as pulse shapers and amplifiers.

Gating capability is also included in both modules to enable you to synchronously stan the repetition rate oscillator to produce a burst of pulses.

8081A Specifications

Timing

Repetition rate: $10 \mathrm{~Hz}-300 \mathrm{MHz}$.
Perlod jitter: $\leqslant 0.1 \%=50 \mathrm{ps}$.
External Inputs (Impedance 50 ohms typlcal)
Trigeer mode: $0-300 \mathrm{MHz}$ repetition rate. $\geqslant 1.7$ ns pulse width.
Gate on/oft time: > 1 period/ >1 period +10 ns.
Trigger level and slope: $-1 \vee$ to +1 V , pos. or neg. edge selectablc.
Sensitivity: 200 mV pp.
Maximum input voltage: $\pm 6 \mathrm{~V}$.
Internal gate input (Impedance 50 ohms typical)
Gate on/ott tme: $>10 \mathrm{~ns} />20 \mathrm{~ns}$.
High signal level: $\mathrm{OV}=100 \mathrm{mV}$.
Low slgnal level: more negative than -500 mV .
MIn. amplitude: $\geqslant 500 \mathrm{mV}$ pp.
Max. Input valtage: $\pm \mathrm{I} \mathrm{V}$.
External trigger output (Impedance 50 ohms typical)
High signal level: more positive than -100 mV .
Low slgnal leval: more negative than -500 mV .
MIn, amplltuda: $\geqslant 500 \mathrm{mV}$ pp.
Transition times (10% - 90%): $\leqslant 1.2$ ns.
Duty cycle: $50 \% \pm 10 \%$.
Max. external voltage: $\pm 2 \mathrm{~V}$.
Internal output (impedance 50 ohms typleal)
Fan-out: drives one 8080 systern module.
Other specs as for extemal trigger outpue.

- External gate and trigger
- Trigger slope and level controls

8091A Specifications

Tlming
Repetton rale: $100 \mathrm{~Hz}-1 \mathrm{GHz}$.
Perlod fiter: $\leqslant 0.1 \% \pm 20$ ps.
External inputs (Impedance 50 ohms typlcal)
Trigger mode: $0-1 \mathrm{GHz}$ rep. rate, ≥ 0.5 ns pulse width.
Gate on/aff time: >1 period $/>1$ period +10 ns.
Trigger level and slope: $-1 \vee 10+1 \mathrm{~V}$, pos. or neg. edge sclectable.
Sensitivity: $>300 \mathrm{MHz}$: pulse/sine 600 mVpp .
§ 300 MHz : pulse 200 mV pp; sise 1 Vpp .
Max. Input voltage: $=6 \mathrm{~V}$.
Internal gate Input (Impedance 50 ohms typlcal)
Gate on/ots time: $>10 \mathrm{~ns} />20 \mathrm{~ns}$.
High slgnal level: $O V=50 \mathrm{mV}$.
Low algnal level: more negative than -500 mV .
MIn. amplltude: $\geqslant 500 \mathrm{mVpp}$.
Max. Input voltage: $\pm 1 \mathrm{~V}$.
External Irlgger output (impedance 50 ohms Iypleal)
High signal level: more posikive than -100 mV .
Low slgnal level: more negative than -500 mV .
MIn. amplltude: $\geqslant 600 \mathrm{mV}$ pp.
Transition times (10% - 90%): $\leqslant 500 \mathrm{ps}$.
Duty cycle: $50 \% \pm 10 \%$.
Max. external voltage: $\pm 2 \mathrm{~V}$.
Internal output (Impedance 50 ohms typlcal)
Fan-out: drives one 8080 system module.
Other specs as for extermal trigger output.
8081A and 8091A Operating modes
Norm: repetition rale is determined by front panel controls.
External trigger: outputs are shaped version of ext. input.
External gate: gate sigoal stants rate generator synchronously. Internal gate: ext. input disconnected. Generator gated intemaly. Manual: all functions can be triggered manually by pushbution. General
8081A and 80914
Size: quarer mainframe width.
Weight: (8081 A) net 0.6 kg (t .3 lb): shipping 2.2 kg (4.8 lb).
(809 IA) nel 1.2 kg (2.6 lb); shipping 2.8 kg (6.2 lb).
8081A and 8091A optlon
Price
910: additional operating and scrvice manual add $\$ 7.50$
Ordering Information
8001 A 300 MHz Rep. Rate Generator module
8091A 1 GHz Rep. Rate Generator module
$\$ 795$
$\$ 3145$

- Repetition rate 0.1 Hz to 20 MHz
- Designed for easy operation
- Positive/negative/symmetrical output

Introduction

The 8011 A is a versatile, reliuble. low cosp pulse generator. This compact instrument realures an uncomplicated design using high quality components to ensure long. dependable scrvice. Fuse of operation is a batural result of the logical and simple fronl pinel layoul. These qualities. and the variety of pulse formats availuble. make the model 80IIA a very cost-effective solution to pulse problems encountered in à variely of situations.

Pulse burst option

For anyone working with counters, shift registers, memories or logic in general. 8011A option 001 offers a new apprualch 10 driving. troubleshooting or analy>ing logic designs. With this original oplion. the 80IIA can genemie piccincly any number of pulses from 1 to 9999. independent of pulse rate. The number of pulses required in the burst is sel on thumbwheel switches. All other pulse parameters are set on the froni panel as nermal.

The bursi can be sianed either by extemal eleetrical inigger or by pressing the siogle burst pushbution. Synchronous 1 rigeer pulses occur for the duration of each bursi. At the cand of a burst, exira pulses can be gencrated individually by pressing the single pulac bution. Thus. cincuits can be clocked to a devired vale in their operational clock rate and then analysed under static conditions.

Applications

The 8011A proves inself wibl its wide range of amplisudes to cover CMOS and the commonly uscd logic families as well as linear cir. cuitc. Studenis and engineers alike will find the clear and uncluttered front panel layout makes this a very easy pulse generator to use. With the pulse bursi oplion. model 8011A is a powertul fool in the problems of logic design and troubleshooting. This compact instrumenl features a simple design with adjustments reduced 10 u minimum so that routine recalibration is a quick and easy operilion. Reliability is itsured by the high quality componenis mounted on a gold plated petinted circuit board and a short circuit proof output prevencs accidental damage. Also, rigorous testing in hostile conditions (such as 955° relative humidity at $40^{\circ} \mathrm{C}$) has ploved that model $8011 \wedge$ will meel specifications when operated at temperatures beIween $0^{\circ} \mathrm{C}$ and $.55^{\circ} \mathrm{C}$.

- Normal/complement switch
- Switchable 50 ohm source
- Square wave mode for rapid pulse set-up

Speciflcations

Pulse characteristlcs

(50 onm source and load impedances)

Transition times: <10 ns lixed.
Overshoot, rlnging and preahool: < $\pm 5 \%$ of pulse amplitude. May increase to 10 gr al countcr-clock wise positions of amplitude vemier. Pulse wldth: 25 ns to 100 ms in foit rañges. Vemier provides coninnous adjustment within each range.
Width jitter: $c: 0 . J \%$
Maximum duty cycle: $>50 \%$ (100% using pulse complement).
Maximum output: 16 V . with intermal 50 ohms and extemal high impedance or wilh intermal high impedance and extemal 50 ohms. 8 \checkmark with 50 obms source and lad impedances.
Attenuator: three step atientatior provides the ranges 0.25 V . I V.a V - 16 V Vemier provides comtmuous adjusment within each range. Source Impedance: $0.25 \mathrm{~V}-1 \mathrm{~V}-4 \mathrm{~V}$ falmes, 50 ohms $\pm 10 \%$ shunled by $30 \mathrm{pF} .4 \mathrm{~V}-16 \mathrm{~V}$ range, 50 ohms $\pm 10 \%$ or ligh impedance. switch seleciable.
Polarlty: posilive, negative or symmetrical swifch sclectable.
Format: nomal or complement swirch selectable.
Repetition rate and irigger
Repetition rate: 0.3 Hz to 20 MHz in S ranges. Vemier provides conlinuous adjustment within each range.
Perlod IIter: $<0.1 \%+50$ ps of any period setting.
Square wave: 0.05 Hz to 10 MHz .
Trigger output: de coupled 50 ohsm (typ) source delivering $\geqslant+I V$ across 50 ohm load (can increase $10+5 v$).
Trigger pulse wldth: $20 \mathrm{~ns} \pm 10 \mathrm{~ns}$.
Externally controlled operation
External Input
Inpul lmpedance: 50 ohms $\pm 10 \%$.
MaxImum Input: $\pm 5 \mathrm{~V}$.
Trigger polarlly: posilive.
Senshivity: IV.
Manual: froni pancl pushbution for gencraling single pulsc.
External Irlggering
Pepetitlon rate: 0 to 20 MHz . In square wave, oulpul frequency is hall inpul frequency.
Trigger source: manual or extemal signal. Min external signal width 10 ms .
Pulse burst mode (option 001): preselected number of pulses gencrated on receipl of trigger.
Burst trigger source: external signal or manual. Min extemal signal widith 25 ns .

General

Operalling temperature range: $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$.
Power: 100 V. 120 V. 220 V. or 240 V. $+5 \%$. -10%. 48 Hz to 440 $\mathrm{Hz}, 70 \vee \mathrm{~V}$ max.
Welght: nel, $4 \mathrm{~kg}(9 \mathrm{lb})$. Shipping. 6.5 kg (14.6 lb$).$
Dimensions: $126 \mathrm{H} \times 200 \mathrm{~W} \times 280 \mathrm{mmD}\left(5^{\prime \prime} \times 7.9^{\prime \prime} \times 1 \mathrm{I}^{\prime}\right)$.

Options \& Accessories

Price
Opt 001: Pulse Burst
add $\$ 300$
Opl 910: extre operating and service manual
add \$10.50 15179A Adapler frame. Rack mounl for two units

8011A Pulse Generator

- Variable transition times down to 5 ns
- $\pm 10 \mathrm{~V}$ amplitude; selectable source impedance
- Ideal for testing TTL

The 8012 B and 8013 B are al the top of their class for versatility. ease of operation and wide range of application. They provide the ideal solution to almosi all digital logic testing problems with fixed 3.5 ns transition limes on the 8013 B and variable transition times down to 5 ns on the 8012日. The well-composed layout of the front panel controls (horizontal controls for horizontal parameters, veriical controls for ventical parameters) enables output pulses to be set up quickly and accurately with minimum risk of incompacible settings. Both models feature normal and complement oulputs and a switchable intemal 50 ohm source.

Specifications

Pulse characteristics

Parameter	80128		80138	
	InL. load in	fitc Joso 0 UT	Jnt lose IN	Int. load OUT
Transitlon times	$5 \mathrm{~ns}-0.5 \mu \mathrm{~s}$ 4 ianges, Vernier separate contio whin ranjes up ratios of 100:1	6 ns -0.5 us povide osth edges mor 100.	3.5 ns Fixed	5 ns fixed
Source impedance	$50 \mathrm{ohms}=10 \%$ shunlas by gipically 20 pF	>50 ohms	50 ahres $=3 \%$ shunled by syícally 20 p	$=50$ ohms

Paramota	$80126 / 80138$	
	internal losd 4 K	Intomal losd OUT
Duessinadi ringhg	- $+5 \%$ ol pulse amplitude	May increase $10=10 \%$ when amplitude is hetween $0.4 \mathrm{~V}-4 \mathrm{~V}$
Maximuin oulput	5 V atross 50 ohme. ID V acress dpen circuil. Shat ox prolecion.	10 V across 50 ohms. Shorl cct. protectron.
Hte aninstor DC allset	\$-step, reduces output 100.2 V $=2.5 \mathrm{~V}$ acoss 50 ohms . Independerl! ol gmpritude setilngs.	4-step. Ieduces artgut 100.4 V . DC oflset swiliched off.

LInearty ($\mathbf{8 0} \mathbf{1 2 8}$): for Iransítion times $>30 \mathrm{~ns}$, maximum straight line deviation is 5% of pulse amplitude.
Preshool: $< \pm 5 \%$ of pulse amplirude.
Pulse wldth: <10 ns to 1 s in four ranges. Vemier provides continuous adjustment within ranges.
Widih |itter: $<0.1 \%+50 \mathrm{ps}$ on any width setting.
Maximum duty cycle: $>75 \%$ from 1 Hz to 10 MHz , decreasing to $\geqslant 40 \%$ at 50 MHz . Up to 100% in COMPL mode.

- Fixed 3.5 ns transition times
- 10 V amplitude: selectable source impedance
- 2 outputs

Polarity: 8012B; positive or negative selectable. NORM/ COMPL/SYM selecable: 8013 B , one positive + one negalive channel. NORM/COMPL selectable.
Pulse delay: $<35 \mathrm{~ns}$ to) s (with respect to trigger output) in four ranges; vemier provides continuous adjustment within ragges.
Delay jitter: $<0.1 \%+50$ ps on any delay selting.

Repetition rate and frigger

1 Hz to 50 MHz in four ranges, continuous adjustment within ranges.
Perlod jitter: $<0.1 \%+50$ ps on any rate setting.
Square wave: 0.5 Hz to 25 MHz in four ranges. Duty cycle 50% $\pm 5 \%$ up to 1 MHz , Iolerance increases $10 \pm 15 \%$ at 25 MHz .
Trigger oulput: $>+1 \mathrm{~V}$ across 50Ω. $16 \mathrm{~ns} \pm 10 \mathrm{~ns}$ wide.
External tríggering
01050 MHz : for square wave output, frequency divided by factor 2 . Trigger ínput: sine waves $1.5 \vee \mathrm{p}-\mathrm{p}$ (about zero) or pulses $>0.8 \mathrm{~V}$ either polarity, >7 ns wide. Maximum input $\pm 7 \mathrm{~V}$.
Impedance: $50 \Omega \pm 10 \%$, dc coupled.
Delay: $25 \mathrm{~ns}=8 \mathrm{~ns}$ leading edge trig. input 10 rig. oulpur.
Manual: pushbutcon for single pulse.

Gating

Synchronous gating: gating signal lums generator "on". Last pulse is completed even if the gate ends during pulse.
Gate input: de-coupled; voliage at oped connecior approx. +1.8 V . Shoring current $\leqslant 12 \mathrm{~mA}$. Input impedance approx. 160Ω
Gate input slgnal: volage $>+1.5$ or resistor $>1 \mathrm{k} \Omega$ to ground enables rep. rate generator. Voltage $<+0.8 \mathrm{~V}$ or resistor $<160 \mathrm{n}$ disables rcp. rate generator. Input TTL compatible. max. $=5 \mathrm{~V}$.

External width and RZ

External width: ourpur pulse width determined by width of drive input signal. Aimplitude, iransition times selectable. Trigger output independent or external width input signal.
RZ mode: extemal drive input switched to delay generalor. Period delcrmined by period of drive input sigaal. Delay, amplitude and widh selectable.
Input signal: $>+$ I V. >7 ns wide. Max. ± 5 V. 50Ω de coupled.
General
Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}+5 \%$, -10%. $4810400 \mathrm{~Hz}, 100 \mathrm{VA}$ max.
Welght: net, $4 \mathrm{~kg}(8.8 \mathrm{lb})$. Shipping. 6.5 kg (14.6 lb).
Slze: $126 \mathrm{H} \times 200 \mathrm{~W} \times 280 \mathrm{~mm} \mathrm{D}(5 \times 7.9 \times 11 \mathrm{im}$.
Options and accessories
Price
15179A Aüapter fitame. Rack mounting for two units
$\$ 85$
Opt 910: extra operating and service manual
add $\$ 10$
Ordering information
s012B Pulse Generator
$\$ 1050$
8013 B Pulse Generator

Versatife source, unique level controls

- 50 MHz repetition rate
- 2 output channels
- 16 V amplitude and offset
- Counted burst option, 0-9999 pulses
- Ideal for MOS, TTL and analog applications
- Each control ergonomically designed

The 8015λ is a 50 MHz dual channcl putse generator with variable Iransition times. designed for optimum flexibility in the control of any pulse parameter Each of the two independent output amplifiers ean generate $\pm 16 \mathrm{~V}$. A unique way of avoiding the usual offset and amplitude adjusiment problems is provided by two independent pulse level sliders; with the aid of a calibrated seale the slider positions determine the pulse "high" and "low" levels.

In addition to control of pulse timmg and amplitude parameters. it is possible to delay the pusle from channel B with respeet to the pulse from channel A. For analyzing critical liming condifions or genemating ?-phase clocks this a Delay mode oficers continuous pulse delay between the iwo channels

It is also possible to parallel both outpul amplifiers using $A+B$ mode, which doubles the oulput current and enables a maximum oulput swing of 30 V (within $\mathrm{a}=16 \mathrm{~V}$ window). The combination of $\mathrm{A}+\mathrm{B}$ mode and B Delay mode logether with variable transition times and individual selection of Normal/Complement format for each oulpul permils complex waveforms to be genernied; waveforms such ats three-level signals, special codes or simulated biomedical signals

A range of options extends the $8015 A s$ usefulness and offers new solutions to applications problems. Generation of an exace number of pulses. for example, is difficult to achicve by the usual techniques. With the pulse burst option (002), however. it is possible to generace it exact number of pulses (predetermined by thumbwheel switches) at rep. rates up 1050 MHz . This is achicved by means of a built-in preset counter. A pulse bursi can be initiated by an extemal signal or pushbution conirol thus enabling continuous. multiple or single burst operation.

Direct access to the linear output amplifies (option 004) permits any TTL or even low level analog signal to be converted to MOS/ CMOS Icvels. While one output delivers the normal pulse generalor signal. the other can be used to amplify a PRES/word generator outpur signal forming a lest sel for fulb parameteric testing of MOS/CMOS shinl registers. memories etc.

A sale and simple way to drive TTL deviees is to use a separate TTL outpul with fixed levels. while all other parameters remain variable coincident with channel A oulpul. This TTL outpul, available as option 005, requires no external temination because the intermal 50 ohm source impedince ensures pulse fidelity when connected to the test circuit

A particular problem with CMOS devices is that the inpul clock/ data amplitudes must never exceed the power supply voliage or the CMOS cincuil will be destroyed. This means that if the supply voltage is varied as part of a parametric lest, the clock/data lievels must be adjusted first. An option that completely eliminates this problem is the s0I5A upper output level tracking option (006). This option enables the CMOS clock/data signals to track the CMOS power supply voltage. Thus when carrying oul CMOS parametric tesis al varying supply voliages, the signal upper levels anomatically irack the wupply volage and device safety and proper input levels are ensured. The iest circuil is sare even if the poiver supply is switched off.
The $8015 A$ can be used as part of an automatic test system using the remote controt option (003). This option enables the mage and vernier settings for the pulse period. delay. widh, transition times and output levels to be remotely controlled. Range control is achieved by eontact closure to ground using TTL compatible levels. Vemier control is achieved by vollage or current or resistor. Remotc or local control of ench pammeter in selected using the appropriate front panel range swilch. Both upper and lower signal levels of each oulpul channel can be conirolled independenily.

Specifications

Pulse charactertstics

Translifon times: 6 ns in 0.5 s in four ranges (sce table). Common for leading and irailing edges within each range up to maximum mation of 100:I or $1: 100$.
Non-IInearlty: Iransitions >30 ns: < 5% of pulse amplitude.
Overshoot and ringing: $=5 \%$ of pulse amplitude, possibly increasing $<=10 \%$ at minimum amplitude.
Preshoot, droop: < 5% of pulse amplifude.
Pulse width: < 10 ns to I s in four ranges.
Width jlter: $<0.1 \%+50 \mathrm{ps}$ for any widh sclting.
Maximum output: $\pm 16 \mathrm{~V}$.
Maximum duty cycle: $>75 \%$ from I Hz ta 1 MHz . decreasing to $\geq 50 \% a 150 \mathrm{MHz}$. Square wave: $50 \% \pm 5 \%$ from 1 Hz to 1 MHz , $\pm 15 \%$ at 25 MHz .
Pulse delay: 20 ns ($+25 n \mathrm{~ns}$ fixed) to 1 s . in four ranger.
Delay jitter: $<0.1 \%+50$ ps for any delay selting.

Mode	Source/Load Jmperance	Transitton Imes	Upper Level Volage (Vul)	Lower Leyol Vollige (VLL)	Upper Level Cutram (IUS)	lower level Cutrent (ILL)	$\begin{aligned} & V_{u} \cdot V_{L L} \\ & \text { Mail Min } \end{aligned}$	$\underset{\text { max Min }}{\text { MULI }}$	$\begin{gathered} \text { Max fisp. } \\ \text { fute } \end{gathered}$
Asap	50ヶ/50n son/l kn of $1 \mathrm{kn} / \mathrm{sofi}$	$\begin{aligned} & -6 n 5 \cdot 0.5 \mathrm{~s} \\ & 8 \pi 5 \cdot 0.55 \end{aligned}$	$\begin{array}{r} \dot{+8 V 10-7 V} \\ +16 \vee 10-14 V \end{array}$	$\begin{array}{r} \dot{7} V 10-8 V \\ \operatorname{riav10-16V} \end{array}$	r $320 \mathrm{~mA} 10-280 \mathrm{~mA}$	+280 ma $10-320 \mathrm{~mA}$	$\begin{array}{r} 8 V 1 V \\ 16 V 2 V \end{array}$	320 mA 40 mA	$\begin{aligned} & 50 \mathrm{MHS} \\ & 40 \mathrm{MHI} \end{aligned}$
A. $\mathrm{B}^{\text {B }}$	5001/5001 S0n/1 kn of $1 \mathrm{kn} / \mathrm{son}$	$\begin{aligned} & 15 \text { ns-0.5 } 5 \\ & 1505-0.5 \end{aligned}$	$\begin{aligned} & -16 \vee 10-14 V \\ & +16 \vee 10-12 V \end{aligned}$	$\begin{aligned} & -14 V 10-15 V \\ & +12 V 10-16 \mathrm{~V} \end{aligned}$	+640 ma to - 580 mA	$+5607 \mathrm{~mA} 10-640 \mathrm{~mA}$	$\begin{aligned} & 16 \mathrm{~V} 2 \mathrm{~V} \\ & 30 Y 4 \mathrm{~V} \end{aligned}$	640 mA 80 mA	$\begin{aligned} & 20 \mathrm{MHz} \\ & 20 \mathrm{MHz} \end{aligned}$

-6 ns al 8 V , may increase to 5.5 ms al 4 V .

Repatition rale and frigger
Repetition rate: 1 Hz io 50 MHz in four ranges (sec table).
Perlod $\|$ itter: $<0.1 \%+50$ ps for any rep. rate seling.
Square wave: 0.5 Hz to 25 MHz .
Double pulse: 25 MHz max. (simulates 50 MHz)
B Delay: 20 MHz max. Chanoel B pulse delayed on channel A pulse by amouna set on delay conırols.
Trigger output: de coupled, 50Ω (typ.) source impedance, delivering $\geqslant 1 \mathrm{~V}$ across 50 load. $9 \mathrm{~ns} \pm 5 \mathrm{~ns}$ width.
Externally controlled operatlon
External Input: $50 \Omega \pm 10 \%$ or $500 \mathrm{n} \pm 10 \%$. de coupled.
Maximum Input: $\pm 7 \mathrm{~V}$ (50Ω input), $\pm 25 \mathrm{~V}$ (500Ω input).
Trlgger polarity: positive or negative slope selectable.
Threshold level: +1 V to $-1 \vee$ (50Ω inpus impedance) or +10 V to - 10 V (SCOO inpul impedance).

Sensltivity: SOR inpul impedarce, sinewaves 1 V p.p. pulses ± 0.5
V : 500Ω input impedance, sinewaves $10 \vee$ p-p. pulses $\pm 5 \mathrm{~V}$.
Minimum pulse width: 5 ns in Exs. Trig., 20 ns in Burst mode.
Delay: < 50 ns between trigger input and trigger output.
Manual button: push to activale input.
External wldth: oulput pulse width and rate determined by width and rate of drive signal.
Synchronous gating: gating signal tums on repetision rate. Last pulse completed even if gatc ends during pulse. Max. reperition rate: 40 MHz .

Options

Opt 002 pulse burst
Number of pulses: 1-9999.
Burst trigger source: external signal or manual.
Repetition rate: 0 to 40 MHz .
Minimum time between bursts: 200 ns .
Trigger: all specifications as for EXT INPUT excepı minimum width: $\geqslant 20 \mathrm{~ns}$.
Opt 003 remote control
Timing ranges:

Threshald wilages. logic $0=0.4 \mathrm{Y}$, logic $1=24 \mathrm{~V}$
Timing vernlers:

Absolute maximum Input current Ilmits; 0 mA to-1.1 mA. Absolute maximum input voltage llmits: $+10 \mathrm{~V} 10-0.1 \mathrm{~V}$. Output levels

Ingur comeol voltags	Oulput tere)
	-18 8
Lerem max $-1-70$	-7y
Lower level controt set to max $+\left(\begin{array}{c}\text { (-7) } \\ 0.0 \\ -10 \mathrm{~V}\end{array}\right.$	+7V
max - (-a v	-8V

- 50 othon into 50 onm

Minlmum difference between upper level and lower leval control voltage: 1 V (for $I \mathrm{~V}$ oulpul swing).
Absolute maximum lnput voltage llmits: $\pm 20 \mathrm{~V}$.
Pulse burst: 4 decades (1-9999). 4 lines per decade (1248
BCD format). Contact closure to gnd. or TTL compatible
levels. Threshold voltages are logic $0=0.4 \mathrm{~V}$, logic $1=3.4 \mathrm{~V}$.
Note Opt 003 includas Opt 006. To use gulse burst, Opl 002 mus! be ordered with 003
Opi 004 direct outpul amplifler access
Input Impedance: 50 ohms $=5 \%$.
Operation: asymmetrical.
Inpul voliage formax. output: 2.5 V p-p (baselme $0 \mathrm{~V} .10 \mathrm{p}+2.5$ V).

Absolute maximum Input voltage: $=5 \mathrm{~V}$.
Galn: continuously wariable belween 0.8 and 6.4 by level conirols ($\mathrm{Zs}=50$ ohms. no load).
Frequency response (-3 dB): $\mathrm{Zs}=50$ ohms, no load$01050 \mathrm{M} . \mathrm{Hz}$
$Z s=50$ obms. 50 ohm load0 to 80 MHz
Polarity: invering for NORM, non-inveriing for COMPL.
Kate B OELAY mode cannat be used with inis option.

Opt 005 extra TTL output
Logic 1 level: 4.5 V min.
Logic 0 level: 0.2 V max. (20 mA sink current).
Source impedance: 50 ohms.
Pulse delay: zero, coincident with channel A.
Pulse output: nommal/complement as selected by channel A.
Opt 006 upper output Javal tracking
Input voltage: $+2 \mathrm{~V} 10+16 \mathrm{~V}$.
Absolute max. Input voltage: +20 V .
Absolute min. Input voltage; 0 V
Input Impedance: $10 \mathrm{k} \Omega=5 \%$.
Upper level accuracy: $=5 \%$ o conirol voliage.
Lower level accuracy: $0 \mathrm{~V} \pm 250 \mathrm{mV}$.
Settling time lo $\pm 5 \%$ of final value: $400 \mu \mathrm{~s}$.

General

Operating iemperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: $100 \mathrm{~V}, 130 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V},+5 \%$, -10%, 48 to 440 Hz . 180 VA maximum.
Weight; net. $11 \mathrm{~kg}(24.26 \mathrm{lb})$. Shipping, $14.7 \mathrm{~kg}(32.4 \mathrm{lb})$.
Size: $133 \mathrm{H} \times 426 \mathrm{~W} \times 346 \mathrm{mmD}\left(5.2^{\prime \prime} \times 16^{\prime 2} 7^{\prime \prime} \times 13.6^{\prime \prime}\right)$.
Options and accessorles Price
002: pulse burs \quad add $\$ 450$
003: remole conirol add $\$ 895$
004: direct output amplifier access add \$215
005: exim TTL oulpul
006: upper output level tracking add $\$ 110$
add $\$ 190$
907: Fronl Handle Kil
908: Rack Flange Kit
909: Rack Flange/Front Handle Kit
add \$20
add $\$ 15$
910: Addilional Operating and Service Manual $\$ 18$
8015A Pulse Generator
$\$ 2700$

Very fast \& variable transitions, 1 ns to 0.5 ms

Model 0082A

- < 1 ns variable transition times
- 250 MHz repetition rate
- Ultra-clean 50 ohm source
- Switch-selectable ECL levels
- $=5 \mathrm{~V}$ outputs

The 8082A is Hewlett-Packard's faslest pulse genemtor with all pulse parameters variable. With repelition rates 10250 MHz transition times down to $I n s$ and amplitudes to 5 V , the 8082A is ideally suited for slate-ofthe-an TTl. and ECL logic desipns. Lising the 8083. . you can rapidly tevi lagic cireuits under all operating conditions by simply varying pulve parimeters. Although a highly sophiscicaled insirument. the 8082A is sull casy to operate because of its logical front pánel layout and swilch selectable ECL outpul levels. Another feature that contributes to ease of operalion is the square wave mode. You can, for example, carry out loggle rate tests in this mode up to 250 MHz withoul having to worry aboul pulse duty cycle.

Hybrid ICs. manufactured by Hewlen-Packard, are used exiensively in the design of the 8082A. These ICs climinate the need for fans, reduce power consumption and enable in low reaclance 50 obm source impedance to be used. This source impedance absorbs 98% of reflecions from signals up ($0 \& \mathrm{~V}$ amplitude.

Specifications

Pulse characteristics (50Ω source and load impedance)
Tranaltion times: $<1 \mathrm{~ns}-0.5 \mathrm{~ms}(10 \% 1090 \%$) in 6 ranges, $<750 \mathrm{ps}$ ($20 \% 1080 \%$). Leading/trailing edges controlled separately on faslest range, independendy variable over $1: 10$ ratio on other ranges. Overshoot and ringling: $\leqslant-5 \%$ of pulse amplitude may increase to $\pm 10 \%$ with amplıtute vernies CCW.
Preshool: 未is 5% of pulse amplitude.
Linearlly: linearity aberration for both slopes $\leqslant 5 \%$ for transition limes $>5 \mathrm{~ns}$.
Output: maximum amplitude is $5 V$ from 50Ω into 50 . Maximum output voluge is $\pm 5 \mathrm{~V}$ (amplitude + offser).
Offset: $\pm 2 \mathrm{~V}$, into 50Ω.
DC-source Impedance: $50 \Omega \pm 5 \%$.
Reflection coefficlent: reflection is 2% typical for sicps with Ins rise time applied to outpul connector on all amplitude ranges excepl 5 V range. On the 5 V range, the renection may be 15%.
Output protectlon: cannol be dimaged by open or shon circuits or application of ext. $\leqslant \pm 6 \mathrm{~V}$ or 200 mA independent of control serlings.
Attenuator: Iwo separate three step-altenuators reduce the outputs to I V. Vomier is common for both outpuls and reduces the outpun to 0.4 V minimum. A funher position provides ECL-compatible oulpues (-0.9 V to -1.7 V lyp. open circuir).

Timing

Repatition rate: 250 MHz to 1 kHz in 6 ranges.
Perlod Jitter: < 0.1% of selting +50 ps .
Delay: $2 \mathrm{~ns}-0.5 \mathrm{~ms}$ in 6 ranges plus typ. 17 ns fxd. with respect to trigger output. Duty cycle $>50 \%$.
Delay fitier: <0. 1% or setung +50 ps .
Double pulse: up to 125 MHz max. (simulates 250 MHz).

Pulse width: <2 ns -0.5 ms in 6 ranges.
Width jltter:
$<0.1 \%$ of selsing +50 ps .
Width duty cycle: $>50 \%$.
Square wave: delay and double pulsc are disabled, max. Rep. Rate 250 MHz . Duly cycle is $50 \% \pm 10 \%$ up 10100 MHz . $50 \% \pm 15 \%$ for $>100 \mathrm{MHz}$.
Trigger output: negative going Square Wave (50% duty cycle ryp.) $>500 \mathrm{mV}$ from 50Ω into 50 . Internal 50Ω can be swilched off by slide-switch on PC-board. Amplitude up to 1 V into 50Ω up to 200 MHz .
Trigger output protection: cannol be damaged by shon circuit or application of exlemal $\pm 200 \mathrm{~mA}$.

Externally controlled operation

External input

Ingut Impedance: $50 \Omega \simeq 10 \%$. DC coupled.
Maximum Input: $\pm 6 \mathrm{~V}$.
Yrigger level: adjustable -1.5 V to +1.5 V .
Slope control: positive, ncgalive or manual selectable. In the manual position all ext. functions can be controlled by push button. Bution pushed in simulates an "on-signal."
Sengluvliy: sine-save $>200 \mathrm{mV}$ p-p pulses $>200 \mathrm{mV}$.
Repetilion rate: 0 to 250 MHz .

External-controlled modes

External Irigger: there is approximately 7 ns delay betwecn the external input and the trigger output. Rep. rate is extemally conIrolled (is Iriggesed by external signal), Trigger output provides the pulse-shaped imput signal. Square wave mode is disabled. Synchronous gatling; gating signal urns rep. rate generator on. Last pulse normal width even if gate ends during pulse.
External width: ourpui pulse width detcrmined by width of drive inpul. Rep, rale and delay are disabled. Trigger oulput provides shaped input signal.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power requirements: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}(+5 \%,-10 \%)$ $48-440 \mathrm{~Hz}$. Power consumplion 85 VA max.
Welght: nel. 7.9 kg (17.44 lb). Shipping 8.9 kg (19.63 lb).
Dimensions: $133 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~W} \times 345 \mathrm{~mm} \mathrm{D}\left(5.2^{\prime \prime} \times 16.75^{\prime \prime} \times\right.$ 13.6').

Optlons Price
907: Front Haodle Kit add \$20
908: Rack Flange Kiu add $\$ 15$
909: Rack Flange \& Front Handle Combinauion add $\$ 30$
810: Additional Operating and Service Manual add $\$ 12$
8082A Pulse Generator

- 100 MHz repetition rate
- Variable transition times down to 2 ns .
- Extremely linear slopes
- Designed to drive TTL-S and commonly used ECL

$1 \mathrm{~ns} / \mathrm{cm}$
$0.5 \mathrm{~V} / \mathrm{cm}$
1 GHz bandwidth

The 8007 B is a high speed pulse generator that is well suited for STTL and ECL applications.
The output can be set to positive or negative polarity. complement or symmetrical to ground. A high dc-offset of up to $\pm 4 \mathrm{~V}$ is also included.
Extemal trigzering and synchronous gating are provided. The trigger level is adjustable for all extemally controlled modes with the slope polarity selectable. This is very useful for avoiding malfunctions caused by noise and ringing on the exterual trigger signal.

In "Extemal Widih" mode the external input and pulse output have equal width. Transition times and amplitude of he output pulse can be set by the front papel controls. This mode is useful for shaping NRZ signals, as the width information is passed on to the oulput pulse unchanged.
The "Width Trigger" mode is suilable for RZ signal shaping. Delay, width, transition rimes and amplitude are determined by the froni panel controls.

Specifications

Pulse characteristics (50Ω source and load impedance)
Transition times: $<2 \mathrm{~ns}$ to $250 \mu \mathrm{~s}$, three anges (common for both transition times). Independent vemiers for adjusting leading and trailing edge within each range up to maximum ratios of $1: 50$ or $50: 1$. Unearlty: maximum deviation from a stright line belween 10% and 90% points $\leqslant 5 \%$ of pulse amplitude.
Preshoot overshool, ringing: < 59% of pulse amplitude.
Pulse wiath: < ns to 50 ms in Give ranges. Vemier provides continuous adjustment within ranges.
Width |liter: $<0.1 \%$ on any width setting.
Meximum duty cycle: normal $>50 \%$; complement approx, 100%. Amplitude: $5 \mathrm{~V} \max$ (10 V across open circuit) to 0.2 V in four ranges; vernier adjustment within ranges. Pulse can be swirtched off.

Pulse output: + or - polarity selectable: normal. complement. or symmetrical ta ground.
Source impedance: $50 \Omega=4 \Omega$ shinted by lyp. 10 pF .
$D C$-oftset: $=4 V$ across 50Ω load. Independent of amplitude setling. can be switched off.
Pulse delay: <30 ns to 50 ms with respect to 1 rigger outpul. Five ranges, with conlinuous adjustment within ranges.
Delay |lther: $<0.1 \%$ an any delay selting.
Repetiton rate and trigger
10 Hz to 100 MHz in 5 ranges. Continuous adjustment within ranges.
Period fiter: $<0.1 \%$.
Double pulse: available only up to pulse rate setting of 50 MHz . representing an outpul pulse rate of 100 MHz .
Trigger output: $>+1 \vee$ across $50 \Omega, 4 \mathrm{~ns} \pm 2 \mathrm{~ns}$ wide.
External triggering (0 to 100 MHz)
Delay: approx. is ns between rig, input and trig. output,
Manual: front panel pushbution for single pulse.

External width and width trigger

External width: output pulse width determined by width of drive isput.
Width trigger: extemal drive inpul switched to the width generator. pulse width determiged by front panel width setting.
Rata generator: provides trigger pulses independent of drive input. Synchronous gating
Gating signal tums generator "on. "Last pulse is completed even if gate ends during puise.
External inpur
Impedance: 50Ω, de-coupled. Max input $\pm 5 \mathrm{~V}$.
Level: adjustable from +1 V to -1 V . Polarity: + or - .
Sensitivity: sine waves I V p-pi pulses IV.
General
Oparating temperatura range: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Power requlrements: 115 or $230 \mathrm{~V}+10 \%$. -15%. 48 10 $440 \mathrm{~Hz}, 100$ VA (maximum).
Welght: net, $8 \mathrm{~kg}(17.6 \mathrm{lb})$. Shipping, $9 \mathrm{~kg}(19.8 \mathrm{lb})$.
Dlmenglons: $128 \mathrm{~mm} \mathrm{H} \times 426^{\mathrm{mm}} \mathrm{W} \times 345 \mathrm{mmD}\left(5^{\prime \prime} \times 16.8^{\prime \prime} \times\right.$ 13.6').

Opions
Price
908: Rack Flange Kir add $\$ 10$
910: Additional Operating and Service Manual add $\$ 11$
8007 P Pulse Generator $\$ 2600$

- Wide amplitude range; 0.08 V to 100 V
- 15 ns transition times
- 1 MHz repetition rate
- Double pulse mode

The 214A is a well-proven pulse generator with a very wide range of applications. The high 200 watts of pulse power (2 amp peak. ± 100 volis into 50 ohms) and fast rise time of 15 ns are particularty suited for tesling current-driven devices such as magoetic cores. as well as high-power modulators. The fast rise and fall times combined with high power ouput pulses facilitate checking switehing time of high power semiconduciors. The positive or negative pulse ourput, with identical characteristics. provides a simple means of checking either npn or pnp lype Iransistors. By gating the Model 214A output. a burst of pulses may be obtained for making computer logic measurements. The double pulse fealure may also be used for pulse resolution tesis of amplifiers and memory cores. Because of its ability to provide a 100 V amplitude output pulse, the 214A is ideally suited as a trigger sounce in high power applications where a poor signal-to-noise ratio is present.
Source impedance is 50 ohms on all but the highest (100 -volt) range. to minimize errors caused by re-reflections when operating into un matched loads. At lower outpur levels (down 1080 mV), the rise time is lexs than 13 ns (typically less than 10 ns). Carefilly controlled pulse shape, pulse rate and width. and minimum pulse jitter ensure accurate and dependable test results. All characteristics of the pulse waveform, induding ove rathoot, preshool, pulse droop. and pulse top variations. are completely specifised, and pulse irregularities are kept 10 a mintnum.
An external trigger source of dc to $: \mathrm{MHz}$ can be used instead of the interoal male generator to produce the output pulses. Positive or negative trigeer signals of 0.5 volts peak may be used and trigger slope and level may be selected to determine the triggering point on the waveform, A single pulse may be obtained from an internal circuit each time a manual button is pushed. Gating of pulses is easily achieved by applying an extemal signal and an oufput occurs only when the gating signal reaches a positive 8 volt level. Three modes of pulse operation allow: (1) setting of the output pulse to occur from 0 to 10 ms before (advance) the triger output, (2) setting of the output pulse to occur from 0 to 10 ms after (delay) the trigger output, or (3) a double pulse output with variable spreing between the two pulses.

Specifications

Pulse characterlstics

Source impedance: 50 ohms on 50 V and lower ranges: approx. 1500 ohons on the 100 V range.
Transition times: <13 ns on 20 V and lower ranges and the -50 V range. $<15 \mathrm{~ns}$ on the +50 V range: typically $<10 \mathrm{~ns}$ with the vernier set for maximum altenuation and typically is ns on the 100 V range. Pulse amplitude: 100 V into 50 ohms. Attenuator provides 0.2 to

100 V in $1,2,9$, 10 sequence (9 ranges); vernier reduces oulput of 0.2 V selling to 80 mV and provides conLinuous adjustment within ranges.
Polarlty: positive or negative.
Overshoot: $<5 \%$. both edges (rueastred on a 50 MHz oscilloscope).
Pulae eop varlation: < 5%.
Droop: < 6%.
Preshoot: <2\%.
Pulse widths: 50 ns to 10 ms in 5 decade ranges; concinuously adjustable vernier.
Width jitter: < 0.05% of pulse width +1 ns.
Maximum duty cycle: 10% on 100 V and 50 V ranges: 25% on 20 V range: 50% on 10 V and lower ranges.

Repetition rate and trigger

Internal
Repetition pate: 10 Hz to 1 MHz (5 ranges), contintously adjust-
able vemier. Rate jitter: < 0.5% of the period.
Manual: pushbution siugle pulse, 2 Hz maximum rate.
External
Repetition rate: do to 1 MHz .
Seneitulity: $<0.5 \mathrm{~V}$ peak.
Slope: positive or qegative.
Level: adjustable from -40 V to +40 V .
Delay: delay between input trigger and leading edge of pulse is approximately 250 ns in Pulse Advance mode (approx. 420 ns minimum in Pulse Delay roode).
External gatIng: +8 V input threshald. Maximum input 40 V peak.
Double pulse
Minimum spacing: I μ s on the 0.05 to $1 \mu \mathrm{~s}$ pulse width range and 25% of upper limit of width rage for all other ranges.
Trigger output
Amplitude: > 10 volts open circuit.
Source Impedance: approximately 50 ohms.
With: $0.05 \mu \mathrm{~s}$ nominal.
Polarlty: positive or negative.
General
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 :o 66 Hz , approx. 325 VA .
Stze: $172 \mathrm{mmH} \times 426 \mathrm{mmW} \times 416 \mathrm{mmD}\left(6.8^{\prime \prime} \times 16.8^{\prime \prime} \times 16.4^{\prime \prime}\right)$.
Welght: ne1, 15.8 kg (35 lb). Shipping, 18.5 kg (41 lb).
Options

Pilce

OPT 808: Rack Flange Kit
add $\$ 10$
OPT 910: Additional Operating and Service Manual
add $\$ 7.50$
214A Pulse Generator
$\$ 1900$

- 2 independent pulse generators in one
- Simulation of complex analog signals
- Independent timing for driving digital ICs

8010A

The 8010 A is a very versuide pulse generator because it is aclually two pulse generators in one. All pulsc parameters except repelition rate are generated separately for each channel. The nwo outputs can be used separately for digital logic applications or can be combined at the oulpulamplificrs co provide extremely complex waveforms for amalog applications. The repetition rate can be (riggered separatcly for each channel thus enabling one channel to be controlled by the repetition rate generator while the other is triggered extemally.

Specifications

Pulse characterlstics (with 50 ohms load Impedance)
Trangition times: separate outputs. <10 os to I s. In A + B mode. $<12 \mathrm{~ms} 10 \mathrm{l}$ s. With 10 V outpul, $<20 \mathrm{~ns}$ to 1 s .
Non-llneanty: for iransition times $>30 \mathrm{~ns},<4 \%$ of pulse amplitude.
Overshoot and ringing: < 5% of pulse amplitude.
Pulse width (A and 日): <20 ns to is.
Jitter: <0.10\% of sctling.
Max. duty cycle: $>80 \%$ ($1 \mathrm{~Hz}-1 \mathrm{MHz}$) $>50 \%$ ($1-10 \mathrm{MHz}$).
Output amplitude: 0.02 V to S V sep., up to 10 V combined (chan. nel B),
DC offset: $=2$ V across 50 obm load. Can be switched orf.
Pulse delay: (A and B) 50 ns to I s related to trig output in 8 ranges.
Jiter: $<0.1 \%$ of seting.
Repelltion rate and trigger
Free running: ; $\mathrm{Hz}-10 \mathrm{MHz}$ in 7 ranges.
Jither: <0.1\% of sering.
Square wave: I Hz-10 M Hz symmerical to ground.
Double pulse: channel A and B independently seleclable.
External triggering (Inpul Impedance 1 K ohme)
Rep. rate: $0.10 \mathrm{MHz} \div 2$ for square wave oulput.
Trigger Input: sine waves I Vp-p. Pulscs $0.5 \mathrm{~V}, 20 \mathrm{~ns}$ wide.
Delay: approximately 30 ns irig. іnpul 10 trig. oulput.
Manual: pushbution for single pulse.
Sep. trig. Ior both channels: +2 V amp. $>50 \mathrm{~ns}$ wide. 50Ω impedance.

Trigger output (50 ohms impedance)
Amplitude: $42 V$ across 50 ohms. $15 \mathrm{~ns}=10 \mathrm{~ns}$ wide.

Gating
Synchronous: - - V to -10 V signal turde rate generator on.
Asynchronous: - 2 V to -10 V signal tums the eutput pulse on.

General

Power: 115 V or $230 \mathrm{~V}+10 \%-155 \%, 4810440 \mathrm{~Hz} .200 \mathrm{VA}$ max.
Operaling temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Weight: net 10.6 kg (23.4 lb).
Slze: $177 \mathrm{H} \times 426 \mathrm{~W} \times 422 \mathrm{~mm} \mathrm{D}\left(7^{\prime \prime} \times 16.8^{\circ} \times 16.6^{\prime \prime}\right)$.

- Dual outputs, +10 V and -10 V
- TTL output
- Gating, square wave, double pulse modes

80058
The 8005 B is a general purpose, triple output putse generator. This versatue instnment has ull petameters variable and produces simulaneous pos. and nee. pulses. It also has a TTL outpul which has all parameters variable except implitude. This fealure, logether with the nomal/complement facility. greally improves the case of operation.

Specifications

Pulse characterlstics

Transiltion times: $\leqslant 10$ ns to 2 s . Edges independently variable.
Non-Itnearity: for transilion limes >30 ns. <4\% of pulse amplitude.
Preshoot, overshoot, ringing: < crí of pulse amplitude.
Pulse wlath: < 25 nm to 3 s in 5 ranges. Jitier: $<0.1 / \mathrm{c}$ of selling.
Max. duty cycle: $>80 \%(0.3 \mathrm{~Hz}-1 \mathrm{MHz}$) >50 名 ($1-20 \mathrm{MHz}$).
Square wave: $0.15 \mathrm{~Hz} \cdot 10 \mathrm{MHz}$.
Pulse delay: <100ns to 3s. Jitter: <0. I\% of selling.
Pulse outputs: simulancoms pos.. neg and TTL compalible outputs.
Pulse amplitude: 300 mV 1010 V .
Outpul protectlon: max. extermal voliage $=10 \mathrm{~V}$.
Source impedance: 50 obms $=10 \%$ or high impedance. selectable.
TYL compatible output: +4.6 V norm or comp. 50 ohms impedалсе.
Repetilion rale and trigger
Repetifton rate: 0.3 Hz to 20 MHz in 5 ranges. Jitter: $<0.1 \%$.
Oouble pulse: 10 MHz max. Simulates 20 MHz .
Trigger oulput: $>+2 \mathrm{~V}$ amp. acrons 50 whms. WIdth: $>6 \mathrm{~ns}$.

Externally controlled operation

Extemal triggering (dc to 20 MHz)
Detay: approx. 35 ns trig. input to 1 rig. oulput.
Trigger Input
Maximum Input: $=10 \mathrm{~V}$.
Impedance: approx. 1 K ohms dc-coupled.
Senaltivity: sine? Vpp.
Pulses: $=1 \vee$ peak.
Wlath: $\geqslant 10 \mathrm{~ns}$.
Gating
Synchronous: gate sipnad lums on repetilion rate. Last pulse is always completed.
Asynchronous: gote signal conirols oulput of mate yenerator.
Gate Input (Impedance 1 K ohms dc coupled)
Amplitude: 2 V to 30 V (mixix.). Polarlly: negative.
General
Operating temperature range: $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$.
Power: 115 V or $230 \mathrm{~V}+10 \%-15 \%$. 48 to 440 Hz . 180 VA max.
Welght: net $7 \mathrm{~kg}(15.5 \mathrm{lb})$. Shipping $9 \mathrm{~kg}(20 \mathrm{lb})$.
Size: $130 \mathrm{H} \times 426 \mathrm{~W} \times 290 \mathrm{mmD}\left(5, \mathrm{I}^{\prime \prime} \times 16.8^{\prime \prime} \times 11.4^{\prime \prime}\right)$.
Opttons and accessorles

Price

Opt 908: Rack Flange K'u
8010A-910: additional Operating and Service Manual add $\$ 17.50$
80050-910: additional Operaing and Service Manual add \$7
Ordering information
8010 A Pulne Gencrator
$\$ 3600$
8005 B Pulse Generalor $\$ 1750$

1900 System introduction

The Hewle1t-Packard 1900 system with is modular consituction offers the maximum possible flexibility and versatility in a pulse generator. It makes available an extrcmely wide range of facilities which could otherwise only be implemented by several convenional instuments.

The 1900 system compriscs a series of fully compalible plug-in unizs with a maximum repctition rate of 25 MHz .

8210	Data/ Tming	Output
1995	$\begin{aligned} & 908 \% \\ & 1905 A \\ & 19300 \end{aligned}$	1915A, 1917A, 19204

Applications

Because of its flexibility the 1900 system covers a very wide range of applications. The following applicalions arcas, described in terms of plug-in capibilities, are typical.

The 1917A, the general-purpose outpul amplifier of the 1900 sys. rem. produces 0.2 V to 10 V pulses from 50 ohms in 10.50 olims $\langle 14 \mathrm{~V}$ inlo $\mathrm{Hi}-2$) with Iranstion limes down to 7 ns . Is covers a wide range of digital applications meluding logic design lesting of TEL. ECL and MOS cireuils.

The 1915A produces a $\pm 2.5 \mathrm{~V}$ to 50 V oupulál 1 A into a 50 ohm load and iransition limes down 107 ns . The HSil special enables the 1915A to handle single pulses or low duly cyeles of $<0.2 \%$. Thus the 1915A is ideally suited for testing CMOS logic or as a modulator in radar. microwave or plasma experiments, or any high voltage, high current application. An overload cirevil and indicator lamp are provided to prevent output amplifier damage.

The 1920 A provides pulses with 350 ps rise limes and 400 ps fall (imes. These very fast Iransition limes suil the 1920A to rise time. propagation delay, bandwidtlo and storage time lesting of high speed imnsistors and logic familics such as ECLIII. The zero pulse widh facility is usetul for impulse testing. The HO2-1930 A special erables the 1920 A io be usod in fiber optics applications. This soucial modifies the 1920 A to deliver pulses with $\leqslant 300 \mathrm{ps}$ transition times and 10 V fixed amplitude into 50 ohms for driving LEDs and laser diodes.

The 1925A and 1930A plug-rns bring word generation and PRBS
capabulites to the 1900 system. The 1935A can generale words of 2 -16 bits in length at up 1050 MHz and PRBS of 32767 bits for lesting communications channels.

The 1930A can generale a variable lengh PRBS of 7 to 5048575 bits al rates up 1040 MHz , and also includes a bil-ctror-detection facility.

Programmability

Remote programming is available for the 1900 system which en. ables it to be buili into systems for auromatic testing of components or systems. With analog programming, pulse parameter ranges are controlled by exiemal contad closure and vermicrs by analog current or resistance. For digital programming the 1900 system is interfaced to a computer via the 6940B Multiprogrammer.

1900A Mainframe

The 1900 A mainframe provides housing, power supplies and RFI shielding for all 1900 system phug-ims. Plug-jns in the mainframe can be connceled either intemally or extemally.

1900A Malnframe specifications

General

Size: $133 \mathrm{H} \times 426 \mathrm{~W} \times 492 \mathrm{mmD}\left(5.3^{\prime \prime} \times 16.7^{\prime \prime} \times 19.4^{\prime \prime}\right)$.
Weight: net 16 kg (35 lb). Shipping $21 \mathrm{~kg}(46 \mathrm{lb})$.
Power: 115 V or $230 \mathrm{~V}=10 \% .48$ to 66 Hz .300 walls max.

Accessorles

Analog programming hit: $\mathrm{P} / \mathrm{N} 01900-69502$ for Opi 001.
Blank plug-ins: 10481A - quarter size, 10482A - hall size.
Plug-In extender: 10484A for half and quarter size plug-ins.

Options

Price
001: cables for remote programming facility add $\$ 225$
002: chassis slides
add $\$ 95$
007: rear panel inputs and oulpuls
add $\$ 80$
908: rack flange kit
910: extra opemating and service mantial
add $\$ 10$
1900A Maintrame
add $\$ 7$
\$1250

1905A 25 MHz rate generator specifications Frequency: $25 \mathrm{~Hz}-25 \mathrm{MHz}$ (mt.). $0-25 \mathrm{MHz}$ (ext.). Perlodinter: <0.1\%.
External Irlgger: amplitude 0.5 V to 5 Vpp . Slope pos. or neg. Input impedance: 50 ohms de coupled.
Synch gatling: -2 V gales generator on, -5 V max. 50 ohms impedance.
Output pulse: amp. $>1.5 \mathrm{~V}(50 \Omega / 50 \Omega)$.
Alsetlme: <5 ns. Width: <10 ns.
Wldth: < 10 ns .
1908A 25 MHz delay generator specifications Delay range: 15 ns to 10 ms .
Jiter: $<0.1 \%$ of seling.
Rate Input: $0-25 \mathrm{MHz}$.
Amplitude: ; V p-p min, 5 V p-p max.
Trigger and drive outputa Amplitude: $>1.5 \mathrm{~V}(50 \Omega / 50 \Omega)$.
Rlsetme: < 5 ns .
Whdth: <10 ns.
Impedence: 50 ohms.

1925A PABS/word generator specificatlons
Function: ward length 2.16 bits. PRBS 32.767 biss.
Clock Input (impedance 50 ohms)
Repetition rate: 0-50 $\mathrm{MHz}\left(15-35^{\circ} \mathrm{C}\right), 0-45 \mathrm{MHz}\left(0-50^{\circ} \mathrm{C}\right)$.
Amplltude: + 1 Vmin, $+5 V_{\text {max }}$.
Wldth: >4 ns, $<18 \mathrm{~ns}$ al +0.6 V .
Start Input (Impedance 50 ohms dc coupled)
Perlod: $>$ (word length plus 30 ns).
Amplifude: +1 Vmin. +5 Vmax.
Width: >5 ns.
1930A PRBS generator speciflcatlons
Functlon; PRPS 7 1o 1048575 bits variable.
Clock Inpul (impadance 50 ohms dc coupled)
Repethton rate: $0-40 \mathrm{MHz}$.
Amplitude: $=I V$ to $\pm S V$.
Wldth: >4 ns $<15 \mathrm{~ns}$.
Data Input (Impedance 60 ohms de coupled)
Rep, rate: $0-40 \mathrm{MHz}$.
Ampiltude: ' 1 ' level $+1 \mathrm{Vmin} . ~ ' 0$ ' level 0 V . Max. $\pm 5 \mathrm{~V}$.
Tfigger output (Impedance 50 ohms)
Amplitude: I V (open circuil).
Wldh: I clock period.
Error and PRES outpute (unterminated current sources)
Amplifude: $>2 \mathrm{~V}$ into 50Ω.
Wlath: $=10 \mathrm{~ns},<S 0 \%$ of period in RZ mode.
1915A Output Amplifier speriticallons
Source impedence: 50 ohms or 4 K ohms.
Amplitude: $\pm 1.25 \mathrm{~V}$ to $\pm 25 \mathrm{~V}(50 \Omega / 50 \Omega)$, $\pm 2.5 \mathrm{~V} 10 \pm 50 \mathrm{~V}(\mathrm{Hi}-\mathrm{Z} /$ S0n).
Transition times: 7 ns (10 ns with $\mathrm{Hi} \cdot \mathrm{Z}$ source) 101 ms .
Basellne ofset: $\pm i .5 \mathrm{~V}$ (S0』 source), $\pm 3 \mathrm{~V}$ (Hi-Z source).
Intemal width: $15 \mathrm{~ns}-40 \mathrm{~ms}$.
Jitter: <0.5\%.
External width: determined by drive input width.
1917A Output Armplliler speciflcations
Source impedance: 50 ohms or 3 K ohms, 45 pF shunt.
Amplitude: $\pm 0.2 \mathrm{~V} 10 \pm 10 \mathrm{~V}$ into 50 ohms, $0 \mathrm{~V} 10 \pm 14 \mathrm{~V}$ into 3 K ohms.
Transhion tlmes: 7 ns to $500 \mu \mathrm{~s}$. Separate rise and fall controls.
Basellne offael: $\mathbf{I} 2.5 \mathrm{~V}$ (50 obms ioco 50 ohms).
Internal width: 15 ns to 40 ms .
Jitter: <0.25\%.
Extemal wldth: determined by drive input width.
1920A Output Amplifier speciilcations
Source Impedance: 50 ohms $\pm 5 \%$.
Amplitude: $=0.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ into 50Ω.
Offiset: o V $10 \pm 2 \mathrm{~V}$ into 50 n .
Trangltion tlmes: leading edge $<350 \mathrm{ps}$; (railing edge $<400 \mathrm{ps}$.
Width: 0 to $10 \mu \mathrm{~s}$.
Jltter: $<20 \mathrm{ps}$ or 0.1% whichever is greater.
Duty cycte: $010>25 \%(0-20 \mathrm{MHz}), 0$ to $10 \%(>20 \mathrm{MHz})$,
Optlons
001: analog programming - 1905A, 1908A
Price
add $\$ 125$
001: analog programming - 1915A, 1920A add $\$ 300$
001: analog programming - 1917A add \$325
Programming kit: HP 01908-69 for Opt 001
002 (1915A only): positive oulpul
003 (1915A only): negative outpur
004 (1915A only); voltage calibration
005: digital programming - I90SA, I908A
005: digital programming - 1925A, 1930A
005: digial programming - 1915A. 1917A
007 (1915A, 1917A): rear pancl oulputs
add $\$ 2995, \$ 2295$
910: exira manual - all excepl 1915A.1917A
910: exira manual - $1915 A_{1}$ 1917A
less $\$ 145$
less \$225
less $\$ 225$
add \$ 25
add $\$ 550$
add \$310
add \$ 25
add \$ 5

Ordering information
1903 A 2 MHz Rate Generator plug-in add $\$ 350$
1908A Delay Generator plug-in
1925A PRBS/Word Generator plug in
add $\$ 350$
19304 PRPS Generator plug in
1915A Output Amplifier plug-in add $\$ 2300$
1917A Oulput Amplifier plus-in add $\$ 1100$
1920A Output Amplifier plyg-in add $\$ 2900$

- Full control of all parameters
- Both analog and digital control available

Introduction

Programmable pulse genemiors can be incorporated into alueomatic test systems. Progremming adds flexibility which is invaluable for applications that require several different but repeatable pulse waveforms. This capability is available in a number of the components of the 1900 sysiem.

Analog control

Analog control is particularly suitable for simple applications where only partial control is needed or when only a few pulse waveforms are required repeatedly. A vailable in the 1900 scries are four plug-ins which fearure analog programming as an opfion. They $\left.\begin{array}{l}\text { are: } \\ \begin{array}{|cc|ll|l|}\hline 1905 \text { h } & 001 & 1915 \mathrm{~A} & 001 & \begin{array}{l}\text { Programming of inasa } \\ 1908 A\end{array} \\ \hline 001\end{array}\end{array} \begin{array}{l}1920 \mathrm{~A}\end{array}\right)$
Programming is by contact closure for ranges and by resistor or analog current for vemier funcsions.

- Occupies oniy ane controller t/o stot
- System can be easily expanded

Digltal programming

For flexible control of a pulse gencralor. digital programming is the answer and Hewlelt-Packard's contribution is the 1900/6940B programmable pulse generalor.

The plug-in 1900 system and the 6940 B Muliprogrammer allow reliable and efficient control of a large number of funclions by a minicomputer, insing only a single 16 bit $1 / 0$ slot. Up to Iffeen 6941 B Extenders may be added to provide control of up to 240 separate runctions still using only one computer 1/O slol. A 10490 A connector mounting panel and stabsization card are necessary when using the 69408 with a 1900 system.

Available in the 1900 scries are six plug-ins which fedture digital programming as an option. They are:

$1905 A$	005	1917 A	005	Propammine of these
$192 B A$	005	$1925 A$	005	modules revuires an Option
i915A	005	19302	005	00119004 manframe.

Only the functions with parameicrs to be varied need be programmable. For the others, slandand plaig-ins may be used or part of the programming hardware can be omiled. For example: if only the widih of an oulput slage and not offiet. amplitude, etc. is to be programmed, then the cards in the 6940/6941B which would be required to control these non-varying paramelers can be omited.

The $1900 / 6940 \mathrm{~B}$ works with any digizal computer, however, for Hewleit-Packard digital computers, soflware in FORTRAN and BASIC is available.

- 10 MHz repetition rate
- Selectable PRBS and word length
- Selectable formats RZ/NRZ, normal/complement
- TTL compatible output
- Bit pattern programmable
- Single and continuous cycling

External clock

NAZ Oulput (16 bit continuous word recycling)

RZ Output signal
Flrsi bit synch pulse

The 8006A generates seriad digital words of variable length at clock rales up to 10 MHz . An easy selection of two 16 bit words is availablc. These two words can be serialized to produce a 32 bit word at each oulput. Selectable operating modes include positive selum-to-zero (RZ) formal, posilive and negative non-relum-to-zero (NRZ) format, manual or automatic word cycling, complementary output signals, and remole programming of the data content. The remote programming feature allows conversion of parallel words to serial words. Two outputs provide Inigger pulses coincident with the first and the last bit.

Additionally, a pseudo-mndom binary sequence variable from 710 6.553 bits can be obiained from channel A oulput. with the invered sequence available at channel B.

Speciflcatlons

Word generation

One 41032 bil word (even numbers only) or two 21016 bil words. No clock period belween words.
Word content: independenly set for bolh words by front panel switches or remote programming (parallel data input). Complement of each word selectuble by fronc panel switches, WORD AWORD A WORD E-WORD 8
Word cycllng: conlinuous or by cycle command (extemad irigger or monual).
Blt rate; intemal, 10 Hz 1010 MHz , four ranges. continuous adjustment within ranges. Manual or extemal clock 01010 MHz .
Reset: manual reset of word oulputs to bil I in AUTO CYCLE mode and to word pause in SINGLE CYCLE mode.
Word format: RZ/ NR7./-NRZ selectable for each word output. Positive outpuls have current sink capability to drive integrated circuits (TTL/DTL).
Synch outputs: Irigger pulses corresponding to the firsi bil (leading edge) and lasi bit (trailing edge).

Pseudo-random sequence generation PRN: provides a linear shifi register sequence al channel A oulpul and the inverted sequence al channel B oulpul. Maximum bit rate is 9 MHz .
Sequence length: variable from 7 to 65535 bits.
Trigger pulse: selcctable for each bil in sequence.
Interface
Clock inpui
Repetition rate: 0 io 10 MHz , amplitude $\geq \pm 2 \mathrm{~V}_{1} \leqslant \pm 10 \mathrm{~V}$.
WIdth: $>15 \mathrm{~ns}$ al +1 V . Inpul impedance: $>500 \Omega$.
Cycle command Input
Minlmum perlod: word lengit plus 100 ns . Amplitude $>+$? V . $<+10 \mathrm{~V}$.
Width: $>15 \mathrm{~ns}$ at +IV . Inpul impedance: $>500 \Omega$.
External data Inputs no storage capability for programmed data Low state: contacl closure. TTL low. or voltage source $>0 \mathrm{~V}$, $<+0.8 \mathrm{~V}$.
HIgh stata: open. TTL high or valtage source $>+3.4 \mathrm{~V},<+5 \mathrm{~V}$.
Synch outpuls
Amplitude: $>+2 \mathrm{~V}$ across 50Ω.
Whath: approx. 40 ns . Oulpul impedance: 50Ω.
Clock output (rear panei)
Amplitude: ? V across 50Ω.
Source impedance: approximately 50Ω.
Pulse width: approximately 30 ns .
Word outputs
Posltlve NAZ, AZ: high: +2.5 V across 50Ω, source impedance 50Ω. Luw: $\geq-0.7 \mathrm{~V}$. $\leqslant+0.3 \mathrm{~V}$, source impedance approx. 0Ω. Current sink capability 80 mA maximum.
R2 pulse width: approx. 45 ns.
Negatlve NR2: high: 0 V . low: -5 V across 50Ω, source impedance 50 n .
Transitton times: < 10 ns .

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: 115 Vor $230 \mathrm{~V},+10 \%$. -15%, 48 Hz 10440 Hz .59 VA .
Weight: net, $6 \mathrm{~kg}(131 / 4 \mathrm{lb})$.
Dimenslons: $86 \mathrm{~mm} \mathrm{it} \times 426 \mathrm{~mm} \mathrm{~W} \times 335 \mathrm{mmD}\left(3.4^{\prime \prime} \times 16.8^{\prime \prime} \times\right.$ 13.2").

Optlons

Prlce
908: Rack Flange Kis add \$10
910: addihonal Operaling and Service Manual add \$14
g006A 2×16 bit Word and PRBS Generator $\$ 1975$

- 2048 bit. dual channel memory
- Variable word and pattern length
- TTL. ECL, CMOS compatible
- PRBS generation
- HP-IB interface
- Mixed PRBS/word output for serial data links

The Hewlelt-Packard model $\$ 018 \mathrm{~A}$ is a high performance data generaior designed to meet all of your requirements for serial stimulus up to $50 \mathrm{Mbits} / \mathrm{s}$. lis dual channel memory, for example. contains 2048 individually programmable serial bits, sufficient capacity for the most complex data patiem requirements. Both word and dsta stream iength are variable so you can configure data streams that exactiy match your tesling applications.

Pattem generailing capability is enhanced by a Pstudo-Random Binary Sequence (PRBS) generator. PRBS is a conveneint means of generating "worsi-case" lest patterns and extends pattem length to over I million bils. An innovative new lechnique even lets you mix

PRBS and programmable data words in a single stream. perfect for simulating preambledata-postamble patterns in serial data link applications.

A high performance outpuc amplifier adds to the 8018A's wide applicability. It delivers clean, 6 ns pulses with repetition rates from de to $50 \mathrm{Mbits} / \mathrm{s}$. Outpur amplirude is variable up to 15 volts into 50 n. This enables you to directly drive logic circuls ranging from TIL to CMOS. Oulput levels for emiller-coupled-logic (ECL) are also provided.

This wide range of operating modes has been designed to shornen and simplify troubleshooting tasks whencuer a serial data source is requircd. In aerospace, 1elecommunications, integrated circuits, and in computer and peripheral interfacing. the 8018A provides the stimulus you need for digital design and testing.

For production and other systems environments an HP-1B programming interface (option 001) provides romote control of data generating functions. The interface coniroller can be anything from a large computer system to a simple card reader. The 15263A card reader (option 002) is especially suited to this purpose. Cards can be marked with insenictions or data for rapid and error free memory loading. A 4-channel adapior (HPI5450A) and 4 channel TTL. CMOS translator (1545IA) are also available as accessories for the 8018A (see page 331).

Specifications

Word and data generation
Number of chañels; 2.
Channel length: 1024 bits (2048 bit lotal memory capacity).
Word length (M): 3 to 32 bits (to 2048 bits in Dala mode).
Number of words (N): variable from I to 99.
Channel serlalzation: channels may be cascaded to extend Channel A length to 2048 bits.
Data content: each bit is individually programmable using front panel switches, or remotcly via oplional HP-IB interface.
Data lormattling: RZ and NRZ fomats independenly selectable for both output chanmels. Width in $R Z$ formal approximates wideh of clock outpu1 pulse.

Data generatlon modes

Word mode: むata frame consists of N words of length M bits/ word.
Data mode: dala frame consists of a continuous pattern of lengih beiween 3 and 2048 bils. Frame length is delermined by 4 -digil number set into thumbwheel switches.

PRES mode: Pscudo-Random Binary Sequence of length 2^{n}. 1 bits is produced; $n=9.10,15,20$.
Mlxed mode: Same as WORD mode except with PRBS sequence inserted afler every odd number word. Simulates preamble. data message. postamble.
Frame length: I to 99 words (WORD mode) or 3 to 2048 bits (DATA mode).
Channel setclear: fills selected data channel with ones or zeros.
Data outputs
DATA A, DATA A

Outpust Attonuater Positions	hs	Rt	maxhmum Ampliuda	Minlmun Ampliture	$\begin{gathered} \mathrm{n} / \mathrm{d} \\ (10 \% \\ \hline 90 \%) \end{gathered}$	Maxtmum Reprution hate
$\begin{aligned} & 254 \\ & 5.5 \\ & 7.54 \end{aligned}$	$\begin{array}{r} 310 \\ 4 k n \\ 5009 \end{array}$	$\begin{gathered} 509 \\ 508 \\ 1 \times 10 \\ \hline \end{gathered}$	$\begin{aligned} & 7.5 y \\ & 15 y \\ & 15 y \\ & \hline \end{aligned}$	$\begin{array}{r} 1.34 \\ 2.54 \\ 2.50 \\ \hline \end{array}$	$\begin{aligned} & {\left[\begin{array}{ll} 115 \\ 83 n \\ 8 n 5 \\ 88 n 5 \end{array}\right.} \\ & \hline \end{aligned}$	30 MN 40 MH 40 MHz
[C]	50 n	50 O	LDV	0.5 Y	5 nt	50 MHz

Pulse amplitude: variable in itree manges from 1.3 V to 15 V plus fuxed ECL position. See table.
Output format: simultaneous Data and Data waveforms are provided. Data output is positive-going with OV baseline. Data is inverted with identical upper and lower level voltages.
ECL position: positive-going pulse with 0.6 to 1.0 V amplitude, and +0.5 to -1.6 V offset. Amplinede and offset internally adjustabie. 5 ns maximum tansition lime. Levels preset for standard ECL (50Ω source and load resistance).
Maximum transtion times ($10-90 \%$): 6 ns. See table.
Maximum preshoot, overshoot, pulse top/baseline dlstortlon: 10% of amplitude. 15% in ECL position.
Source reslatence: selectable son or $1 \mathrm{~K} \Omega$.
Relation to clock pulse: leading edge of Channel B oulput coincides with leading edge of clock oulput ± 3 ns.
Overload protection; cannot be damaged by externally applied voltages berween 0 and 16 volts. Prolected against open and shor circuits.
DATAB
Pulse amplitude: 2.4 V min. into $50 \Omega .4 .8 \mathrm{~V}$ min. into open circuit.
Polarity: positive.
Source reslatance: 50
Relation to clook pulse: leading edge of Channel B output coinwith leading edge of clock output $=3 \mathrm{~ns}$.
Overload protection: cannot be damaged by extemally applied voltages berween +5 and -2 volts. Additionally protected against voltages beiween 0 and 16 volis when eurrent limited 1020 mA .
Protected against open circuit and shorts to ground.
Synchronizing outputs.
clock: RZ pulse. occurs with each dala bit.
Flrat blt: RZ pulse, idencifies first bil of data patiem.
Last blt: RZ pulse, idenuiftes las bit of data patterm.
Word tifgger: RZ pulse, identifies first bit of each word.
PABS trigger: NRZ pulse. identifies beginning of each PRBS pat-
tem
Amplitude
Clock: 2.4 V min. into $50 \Omega, 4.8 \mathrm{~V}$ mils. into open eircuit.
FB, LB, WT, PRES TRIG: 1.2 V min. into $50 \Omega .2 .4 \mathrm{~V}$ min. into open cireuil.
Source resistance: 50Ω.
Wlath:
Clock, FB, LB, WT: $50 \% \pm 20 \%$ of period in intemal clock mode. Approximates width of extemally applied clock pulse in extemal clock mode.
PRBS irlgger: 3 clack cucles.
Overload protection: cannot be damaged by extemally applied voltages between +5 and -2 vols. Additionally protected agninss voltages between 0 and 16 volts when curren limited to 20 mA . Protected against open circuits and shorts to ground.

Clocking

Intemal
Blt rate: 50 Hz to 50 MHz (40 MHz max. In MIXED mode). Jitter: 0.2% + 50 ps .
Controls: 5 ranges and 3 tum potentiometer for fine adjust.

External clock Input
Blt rate: $D C$ to 50 MHz (40 MHz max. in MIXED mode).
Nominal trigger lovel: $0.5 \vee(E X T+),-1.2 \vee(E X T-)$.
Mintmum pulse amplitude: $1.0 \vee(E X T+), 0.8 \vee(E X T-)$.
Trlgger slope: positive.
MInimum pulse width: 10 ns.
Input realstance: 50Ω to ground.
Overtoad protection: $\pm 7 \mathrm{~V} .0-16 \mathrm{~V}$ when current limited to 20 mA . By means of an iotemal switch, the CLOCK input may be switched to a bigh impedance mode. The following specifications then apply.
Input reslatance: 1 LS-TTL load in series with 300Ω.
Blt rate: DC 1040 MHz .
Trigger pulse: TTL levels. Amplitude may be increased to 16 volis when carrent limited to 20 mA .
Minimum pulse whith: is ns.
Manual: pushbution switch enables single bit output.

Cycle modes

Auto: data frame recycles continuously.
Blt: single bits ane triggered by pulses at the CYCLE INPUT. If the input is held high, data bits are continuously generated. Data generation ceases when the input goes low and coneinues from where it stopped when the input is retumed to the high state.
Word: single words are triggered by pulses at the CYCLE INPUT. If the input is held high, words are continuously generated. When the input goes low. data generation ceases after completion of the curtent word. Data gencration conlinues with the next word when the CYCLE INPUT is retumed to the high state.
Frame: single data frames are generated by pulses at the cycle input. If the input is held high. frames are continuously generated. When the input goes low. the current frame is completed and data generation ceases.

Cycle input

Nominal trigger level: 0.5 V .
Trlgger slope: positive.
Minimum pulse amplitude: 1.0 V .
Minimum pulse width: 10 ns .
Input realstance: 50 5 to ground.
Overload protection: $\pm 7 \mathrm{~V} .0-16 \mathrm{~V}$ when current limited 1020 mA. By means of an internal switch. the CYCLE INPUT can be sel to high impedance. The following specifications apply.
Input impedence: I L5-TTL load in serics with 300Ω.
Trigger pulse: TTL levels.
Minimum pulse width: 15 ns
Manual: Switch enables outputing single bits. words. or frames.
Reset: Retums gederator to bil 1 .

General

Power requlrements: 100 V. 120 V. 220 V. or 240 V: $+510-10 \%$. 48 to 440 Hz .230 VA max.
Environmental: 0 to $50^{\circ} \mathrm{C}$, and with relative humidity to 95% al $40^{\circ} \mathrm{C}$.
Welght: nel $12 \mathrm{~kg}(26.5 \mathrm{lbs})$. Shipping $16 \mathrm{~kg}(35.3 \mathrm{lbs})$.
Slize: $133 \mathrm{H} \times 426 \mathrm{~W} \times 422 \mathrm{mmD}\left(5.2^{\prime \prime} \times 16.8^{\prime \prime} \times 16.6^{\prime}\right)$.

Optlons

Opt 001: HP-IB incerface. Permuts loading the 8018A
Price
memory, word lengith. and number of words from any HP-1B compatible controller. Scaring and stopping of data generation is also remotely consrollable.
Opt 002: 15263A Card Reader. Provider fasil load- add $\$ 600$ ing of 8018 A . Data slored on punched or marked cards is loaded into the solsa vin is HP-IB interiace. Requires OpI 001
Opt 907: Front Handle Kit add $\$ 20$
Opt 908: Rack Mountíng Kit add \$15
Opt 909; Combined Fronl Handle and Rack Mount- add $\$ 30$ ing Kit
Opt 910 : Extra Operaling and Service manual add $\$ 20$
8018A Serial Data Generator \$3475

- DC to 50 MHz repetition rate
- 2 complementary outputs per channel, RZ/NRZ formats
- Variable RZ width, 4 delay channels
- Channel serializer
- TTL/ECL outpul levels selectable
- Optional HP-IB programming of Bit pattern

The 8016 A is a parallel and serial data generator that provides digital slimulus for a very wide range of applications. For the digital designer the 8016A is a natural companion to multichannel data display devices such as logic analyzers. It forms an ideal system component for large eest systems because it can provide the combination of digital patterms plus adjustable timing parameters necessary for testing IC's and circuit boards. It is also a quite useful time saver for design and test of complex communications systems.

The large memory size and ease with which bit patterns are programmed produce a flexibility of signal oulput, both in content and in format. Data loading and output can be in either a parallel or serial format. In parallel mode, data is ioput and output as 32 sequential byes. each 8 bits wide. In serial mode data is handled as 32 bit serial words, and 8 independent words are availatle. A built-in channel serializer also penmits caseading the channels to produce a word length of up to 256 bits. Maximum use of the memory is thus retained when fewer channels are required.

A strobe output provides additional dats formanting capability. The strobe can function either as a ninth data chanmel 32 bits long. or as a lloating 32 bit 1 rigger word assignable 10 any or all of the 32 bit sections of a serialized dala frame. The strobe is thus perfiect as a word framing pulse or as a qualifiersignal to label address and data information contained in the same data stream. Additional synchronizing signals are provided by the first and last bit outputs and the clock output.

The 8016A's front panet control scheme provides simple control of all of the 8016A's complex waveform generation capabilitics. The data entry controls are optimized to a "row of 16 . column of 8 " arrangement. Each pushbution and adjacent LED form one bit of a buffer switch register whose states are displayed on the LED's. Data is loaded either into the row pushbuttons as serial words or into the column pushbuttons as 8 bit parallel bytes. A single press of the load data switch then tmanfers the data to the high speed memory. If data needs to be edited, a "feich" facibity returns data to the
buffer register, where it is again displayed on the LED's. Bit pattems may also be more rapidly loaded into the 8016 A via an optional card reader. The entire memory may thus be loaded in less than 2 seconds.

Complete testing of digital circuits and systems requires aot only digital pattems but control of the analog parameters of the pulses as well. Pulse widths, levels, and interchannel delays must all be adjustable both for proper functional testing and, in addition, to measure such dymamic pammeters as semp and hold limes, clock pulse width seasidivilies, and the system seositivily to propagation delay variations. To meet these testing requirements the 8016 A first includes 6 independent delay circuits. Two selectable delay ranges, $0-100$ ns er $0.1-1 \mu s$ are provided. Output levels of the 8016A's 50Ω outpue amplifiers may also be adjusted 10 meet cither EC.L or TTL iesi specifications. Transition times of $<3 \mathrm{~ns}$ for TTL and <2.5 ns for ECL pulses are also in line with lesting requirements. In addition a choice of RZ or NRZ formats with variable RZ pulse width is provided. This combination of paltem and pulse parameter control means the 8016A can often provide problem solutions which would otherwise require a setup of separate pulse and word genemiors.

Its simple but very flexible bit pattern programmability combined with its short cycle time (50 MHz clock) make the 8016 A especially effective in simulating worst case conditions in IC testing. e.g. high speed resung of criucal areas of memory. Similarly. the 8016A is a time saver in component evaltation environments because twe setups can be rapidly buil and reconfigured to meet the demands of testing small quantities of a wide variety of IC types. In addition the 8016 A is very useful in feeding controlled bit patterms into data buses. data communications systems, and telemetry systems, boch for testing and for simulation purposes.

Model 15450A four-channel adapter and model IS451A TTLCMOS iranshator can both be used as accessories for the 8016A (see page 311).

Flgure 1-8016A output wavelorms

Figure $2-B C D$ counter test set-up

8016A applicatlons

Applications are the yardstick of a lest instrument's capabilicies and the 8016Λ 's main applications are in the fast growing world of digital technology. IC Icsting, telecommunications equipment. parallel interface design and automatic test systems all involve complex digital circuitry and all are applications areas for the 8016 A .

Taking one area as an example, complete functional and paramerric lesting of complex 1 Cs , such as those found in mieroprocessors. was a difficult and time-consuming task requiring complicated rest sel-ups . . . untï the 8016 A came along, Nol only can the 8016 A be used to perform a complete functional check on the device, but because of it's variable pulse parameter features it can also carry out full paramerric testiag. This is very imporant in circuit design because it is nol enough to know that the circuit works. you must also know under what conditions it works. This means you have to be able to run tests at full operating speeds, with all necessary data pattems, and be able to vary pulse parameters to operating limits. You only need one 8016A to do all this.

It is also necessary, of course. to have some means of displaying your resuliing data patterns and pulse waveforms. For this purpose you can use a Hewlett-Packard 1600A Logic State Analyzer, the ideal receiver for the 8016 A . Pulse waveforms can be displayed on an oscilloscope such as the Hewler-Packard 1740 A.

In the following example the 8016 A is used as the signal source to carry out functional and parametric checks on a BCD counter. The eight output channels can be programmed to supply signal stimuli for functionad tests. Pulse widths, inter-channel delay and clock rate are separately adjustable for pammerric testing.

A rypical test set-up. with the BCD counter as device-under-test (DUT) is shown in figure 2. The B016A is used as signal source and the 1600 A is used to verify device functional response. A HewletiPackard IS26.3A Card Reader is also included in the set-up. This card reader is custom-built for fast and easy memory loading of the 8016 A via the 8016A's HP-LB interface. An oscilloscope is also used to provide a timing display for parameter measurements.

The such table for the BCD counler provides the data input for the funcrional test. The truch table inputs are simply marked on a card: the pencil marks (or punched holes) indicating binary " 1 ". The 8016A is loaded and the timing margins are set to well within tolerance. The counter's responses and the associated commands are then displayed in binary formal on the 1600 A display. By comparing this display to the counter truth lable. device function can be verified. Dynamic tests are then perfomed by adjusting the appropriate $6016 \wedge$ controls untid the partmetric values, calculated from the oscilloscope display, cause breakdown of the counter's operation (indicated on the 1600 A).

Speclfications

Data capacity
Data can be loaded in parallel or serial form depending on the position of the PROGRAM MODE switch. The data is loaded vin a single row and single column of pushbutons, each pushbution conrolling a one-bit buffer register.
Number of channels: 8 dala channels plus 1 strobe channel.
Number of blas pes channel: 32 (fixed).
Total blt capacity: 288.
Serlal capacity
One word consists of 32 biss in serial. A front padel switch serializes words to form a frame.

Serlal tormats:

9 words on 9 channels. including strobe word. each 32 bits long.
4 frames on 4 channels. each consisting of 2 words or 64 bits
2 frames on 2 channels. each consisting of 4 words or 128 bits.
I frame on I channel consisting of 8 words or 256 bils.
Parallel capacity
Parallel lormat: 32 words with up to 9 bits in parallel-strobe channel included-will be generated. The number of bits per word depends on the number of outpil channels serialized.

Data outputs

Two separate outpuls per chansel, one for normal and one for complement.
Amplitude: TTL or ECL voltage levels, variable by front panel control.

Source impedance: 50 ohms

Delay: four chansels can be separately delayed between 0 ns and I μ sec with reference to the channels $1,3,5$ or 7 .
Two ranges: $0 \mathrm{~ns}-100 \mathrm{~ns}$

$$
0.1 \mu 5-1 \mu \mathrm{~s}
$$

Ranges are common to all delayable channels. Channcls have individual vemier controls.
Delay Jlther: $\leqslant 0.187+5 \mathrm{ps}$.
Skewtime: Skewtime of undelayable channels (3.5.7) in reference to channel one: ± 1 ns.
Format: RZ or NRZ separately sclectable for each data channel and strobe channel.
RZ Wldth: 10 nsec to 1μ sec in two ranges. Vemier provides continuous adjustment within ranges. Range swith and vemier common to all channels.
Width |liter: $\pm 0.2 \%+50 \mathrm{ps}$.

Auxillary oulputs

Flret blt: corresponds with parailel word one or with the first bit of the serial word. Format is NRZ.
Last blt: corresponds with the last parallel word or with the last bit of the last word of a frame. Fomat is NRZ.
Clock: delivers one pulse per bit. Format is RZ.
Clock pulse width: controlled by RZ-Width control. Clack pulse may be delayed between 0 ns and y s in reference to channels 1.3. 5 or 7.
Sirobe word: separate LOAD and FETCH pushbuttons and length 32 bics (can be extended to 256 bits by repetition). The strobe word may be delayed between 0 ns and 1μ sec in reference to channels I, 3.5 or 7.

Amplitude of aux. outputs: TTL or ECL voliage le vels variable by front panel control.
Source impedance: 50 ohms.
Probe power
ECL: $-5.2 \mathrm{Vdc}=10 \%: 80 \mathrm{~mA}$.
YTL: +5 V dc $\pm 10 \%: 100 \mathrm{~mA}$.

Blt rate
Internal: 0.5 Hz to 50 MHz in eight ranges. Vemier provides continuous adjustment within ranges.
Extermal: dc up to 50 MHz or manual triggering.
Clock Input
Repetitlon rale: 0 to 50 MHz .
Trigger pulse width: $\geqslant 10 \mathrm{nsec}$.
Trigger amplitude: selectable by internal switches on Bii Rate board A5. Max. Amplitude: $\pm 7 \mathrm{~V}$ at 100% dury cycle.
Ext + (TTL):+amplitude $\geqslant+2 \mathrm{~V}$. input impedance $\geqslant 1 \mathrm{k}$ to
GND.
ExL + : amplitude $\geq+1 \mathrm{~V}$, imput impedance 50 ohms to GND.
Ext -(EGL): amplitude $\leqslant-1.6 \mathrm{~V}$, inpus impedance 50 ohms to
-2 V .
ExL - : Trigger level adjustable al Potentiometer ASRIIA From
$+1 \vee 10-1 V$.
Input Impadance: 50 ohms to GND.

Recycting

Auto mode: data is recycled continuously.
Single cycle (2 modes): a) one word generated for each cycle command. b) words genesmed as long as the cycle command is aetive. Last word always completed. If channets are serialized, the serialized word (64 bits. 128 bits, 256 bits) is always completed.
Perlod between cycle commands: Byte (frame) length plus 200 ns.
Amplliude: $>+2 \mathrm{~V}, \leqslant+10 \mathrm{~V}$.
Width: ≥ 12 ns.
Input Impedance: I k Ω.
Manual reset
Auto cycie: aili channel outputs are set to " 0 ". The next clock pulse after RESET generates byte number one.
Single cycle: all channel outputs are resel to word pause. Word pause can either be 'ZERO" or "LAST BYTE". controlled by a rear panel switch.

Pulse characteristics

The level of all output signals is controlled by a TTL/ECL switch. Adjusts for ampilitude and offset. Source Impedance is 50 ohms.
TTL (acrose 50 ohms): HIGH LEVEL yariable from $2.5 \vee 10 \mathrm{IV}$. LOW LEVEL $=0.2 \mathrm{~V}$.
Transitlon tlmes: ≤ 3.0 ns (First/Last 8it Trigger <4.0ns).
ECL (across 50 ohms): HIGH LEVEL OFFSET variable from -0.9 10 +1.1 V . Amplitude variable from 0.3 V so 1.0 V .
Yranshion ilmes: E2.S ns (Firs/LLasi Bit Trigger <4.0ns).
General
Operaling temperature range: $0^{\circ} \mathrm{C} 10+50^{\circ} \mathrm{C}$.
Power requlrements: $100 \mathrm{~V} / 120 \mathrm{~V} / 220 \mathrm{~V}$ or $240 \mathrm{~V}+5 \%$. $-10 \% .48$ Hz to $66 \mathrm{~Hz}, 200 \mathrm{VA}$ (maximum).
Welght: net, 14.5 kg (31.96 lb). Shipping, 16 kg (35.27 lb).
SLe: $177 \mathrm{H} \times 426 \mathrm{~W} \times 422 \mathrm{mmD}\left(7^{\prime \prime} \times 16.8^{n} \times 16.6^{\prime}\right)$.
Oplons and accessories
Price
001: remote programming. Bit pattem can be programmed by any controller that is compatible with the HP Interface Bus (HP-LB)
002: Card Reader. This option enables rapid loading of the data and strobe channel bit pattems. The card reader accepts marked or punched cards (HP Pan Number 9320.0595) and iransmits the data/control information to the 8016A via the HP-IB (Option 001 required)

$$
\text { add } \$ 600
$$

907: Front Hzundle Kit
908: Rack Flange KiI
909: Rack Flange \& Front Handle Combination Kit
910: Additional Operating and Service Manual
add \$45
15450A: four-channel adapter
add $\$ 20$
IS451A: four-channel TTL-CMOS translator add $\$ 250$
 \title{
Accessories for logic signal sources
 \title{
Accessories for logic signal sources
 Models 15263A, 15450A \& 15451A
}

- 15263A card reader for rapid data loading
- 15450A adapter for easy circuit connections
- 15451A translator gives CMOS output levels

15263A

15450A

15451A

15263A card reader

Descrildign device. It provides paraliel instructions or data and is especially suited for the HP 8016A Parallel Word Generator or HP 8018 A Serial Data Generator: both provide the power supply vollage necessary for driving the card reader. Rapid and error free memory loading of either generator is obtained. Any bit pattern can easily be programmed by marking cards accordingly. A card is typically read in 1.5 seconds and makes data re-loading or modification a fasi and uncomplicated operation.

Specifications

Logle levels (TTL neg. true): $\mathrm{Hl}(0)+2.5 \mathrm{~V}$ to $+5 \mathrm{~V} . \mathrm{LO}$ (1) 0 V 10 +0.4 V .

General

Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: +5 V. 550 mW .
Welght: $0.6 \mathrm{~kg}(1.3 \mathrm{lb}$.) Shipping $1.6 \mathrm{~kg}(3.5 \mathrm{lb})$.
Slee: $57 \times 115 \times 195 \mathrm{~mm}\left(2.2^{\prime \prime} \times 4.5^{\prime \prime} \times 7.6^{\prime \prime}\right)$.
Accessories supplled: 50 cards, pan number 9320-0595.

15450A four-channel adapter

Description
The Model 15450A Four-Channel Adapter facilitates easy connection from a pulse or data generator to the circuil-under-test. and helps to avoid the distortion problems ofteo encountered in impro-
vised connections. These advantages are of particular signilicance where multi-channel data and pulse stimulus is required: in such instances. the Adapter is an ideal companion for the HP 8016 A Word Genemtor.
loputs to the Adapter are carried by a cable assembly. This consists of four 50 Ohm cables with BNC connectors which plug directly to the signal source. The oulputs from the Adapter are carried by 4 shon. reraovable, connecting leads with small hook-type probes which conoect easily to the circuit-under-test; even DIP's can be connected reliably. With probes removed, the connecting leads will plug onto back plane pins.
To minimize distortion due to rebections from the circuit-undertest, each channel is terminated by a passive load inside the Adapter body. Two parallel ground leads (aso with hook-rype probes) are provided to ensure good grounding to the device-under-test.

Specifícations

AC/DC characterlsties: dependent on signal source.
Internal load: 47.5 ohms in series with 33 pF .

General

Operaling temperature: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Size: body size $95 \mathrm{~mm} \times 54 \mathrm{~mm} \times 22 \mathrm{~mm} \quad\left(3.7^{\prime \prime} \times 2.1^{\prime \prime} \times\right.$
0.9°). Total lenglt including cable $152 \mathrm{~cm}(60 \mathrm{in})$.

15451A four-channel TTL-CMOS translator

Description

The model I5451A is a four channel active sigal translator which amplifies TTL signals to CMOS levels. Its capabilities are perfect for adding CMOS compatibility to pulse and word generators with 5 volt outpuls such as HP's Model 8016A Word Generator. The 1545IA's four inputs convenienty connect to the signal source with日NC connectors. Its four outputs are easily interiaced to the test circuits via small probes which direcly atach to circuit nodes. Even adjacent pins of dual-ir-line IC packages are reliably and simply contacted using these small hook-type probes. With probes removed, the connecting leads will plug onto back plane pios.
The $154 \leqq 1 \mathrm{~A}$ is nomally powered from the $\mathrm{V}_{\text {DD }}$ supply of the eircuit-under-test and accepts supplies in the range of 5 to 18 volts. The applied power supply voltage is also used 10 determine the output signal amplitude. This level-tracking capability means that puise amplitudes need not be reset when the CMOS power-supply voltage is adjusted. It further guarantees that pulse ámplitudes never exceed the $V_{D D}$ supply voltage - even when the power supply is switched off (pulse amplitude greater than $V_{D D}$ is a forbidden condition with CMOS logic. violation of which can cause rapid desinueLion of the tested IC).

Specifications

Inpuls
Number of channefs: 4, Fsn-in: 2 standard LS TTL loads.
Max. Input frequency/transition tume: $10 \mathrm{MHz} / 1 \mu \mathrm{~s}$.
Input signal levels: low 0 V to +0.8 V . high +2 V to +5 V .
Max./min. input voltage: $+7 \mathrm{~V}-1 \mathrm{~V}$.
Outputs (source impedance $\mathbf{2 2 0}$ ohms) Following specs. relate 10 5 MHz square wave input signal with $V_{D D}=15 \mathrm{~V}$ and load capacitance $=50 \mathrm{pF}$ per channel.
Output slgnal level: high (V_{D} - 1 V) typ. . low +100 mV ypp.
Transhiton times ($20 \%-80 \%$): LO to HI 23 ns ryp. HI to LO 16 os typ.
Propagation delay: LO 10 HJ 45 ns typ.. H1 to LO 35 ns typ. Interchannel skew: 2 ns typ.

General

Operating lemperalure: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Power: +5 V to +18 V al 250 mA
Slze: body size $95 \times 54 \times 32 \mathrm{~mm} \quad\left(3.7^{\prime \prime} \times 0.9^{\prime \prime} \times 2.1^{\prime}\right)$.
Total length including cable $152 \mathrm{~cm}\left(60^{\prime \prime}\right)$.

Options	Price
15263A: opt. 910 exira operating and service manual	$\$ 6.38$
15450A \& 15451A: opt 910 extra operating note	$\$ 1.40$
Ordering inlormatlon	
15263A Card Reader	$\$ 600$
15450A four-channel adapter	$\$ 140$
15451A four-channel TTL-CMOS translator	$\$ 250$

PRBS and WORD generation up to $150 \mathrm{Mb} / \mathrm{s}$

The 3760A Dala Generator is a fast. versatic PR BS and WORD generator intended for both factery and field use. with many features which make it especially allracive for applications in high frequency digital communications.
The generator can be manually or automatically iriggered from an extemal clock in the frequency range $1 \mathrm{kHz}-150 \mathrm{MH} \%$ Altematively the clock cin be derived from an optional intemal clock source which can be variable or crystal controlled in the frequency range $1.5 \cdot 150 \mathrm{MHz}$. A clock oulput is alway's provided in normal or complemented form. which is variable in amplitude and de offere.
The pseudo-random biury sequence. PRBS. is variable in lenglh from 2^{3}. 1 to $2^{23}-1$ bils. with in additional long sequence of $2^{13}-1$ bils. A sync pulse occurs once per PRBS and may be varied in postion relative to the sequence. As the 3760 A gencrator is offen used in conjunction with the 376IA Error Detector, Iwo errors can be insened once per 4000 sequences to check the accuracy of the $3760 \mathrm{~A} / 3761 \mathrm{~A}$ system.
The length of the binary WORD is variable from 3 to 10 bits and its content is selected on the front panel. A syne pulse is generated once per WORD. Altematively. a repetitive 1010 pallem can be selected.
The sync pulse can be used io initiate a block of 1 to 99 zeros which can be added to the data stream and used to examine regencrator clock extraclion and threshold circuits in PCM/TDM syslems.
The data output which can be PRBS. WORD or the fixed pattem 1010, is available in normal or complemented form. Either RZ or NRZ formats may be selecied and the data outpui can be delayed by up to 100 ns with respect to the clock. As with the clock, the data output can be varied in amplitude and J offisel. A second data output, which is synchronously delayed by 8 biks from the normal data outpul. is also avalable as an option. This feature makes the generator ideally suited for driving digital radio systems employing four phase mudulation.

Specifications

Modes of operation

PRES normal: generates a repetilive $2^{n}-1$ bit maximal length PRES where $n=3$ to 10 and 15 .
PRES add zeros: addition of a block of 11099 zeros with PRBS nommal. occuring after the sync pulse.
PRES add error: intraduction or iwo errors per 4000 sequences. 1010: generates a preser repcritive word. content 1010.
WORD normal: generates a conlinueus 3 to 10 bit word with select. able content.

WORD add zeras; addition of a block of 1 to 99 zeros inio WORD nomal, occuring belween words.
Clock Input
Rate: 1 kHz to 150 MHz .
Impedance: 50 ohms $\pm 5 \% \mathrm{dc}$ coupled (75 ohms optional)
Trigger: manual with level range $-3 \vee$ to +3 V . + ve or -ve slope.
Auto with input mark:space rutio range 10:1 to $1: 10$.
Sensitivity: belter than 500 mV pk-pk.
Amplifude: 5 V pk-pk maximum. Limils $=5 \mathrm{~V}$.
Pulse width: 3 ns minimurn al 50% pulse amplitude.
Indlcator: lamp showing clock present and riggering correctly.
Internal clock (optional)
Varlable: range 1.5 to 150 MHz .
Crystal: two rates in the range 1.5 to 150 MHz , stability $\pm 20 \mathrm{ppm}$.
Jitter: $<0.5 \%$ of period +0.05 ns pk-pk.
Clack output
Outputs: CLOCK or CLOCK.
Impedance: source impedance 50 ohms $=5 \%$ (75 ohms optional).
Amplitude: continuously variable in 5 ranges from 0.1 to 3.2 V
symmetrical about offset level.
OC offes: Zero. $<2 \%$ of pulse amplitude.
Variable, continuous $010 \pm 3 \mathrm{~V}$.
Transition tmes: <1.4 ns into 50 ohms. <1.6 ns into 75 ohms.
Overshoot: < 10% of pulse amplitude.

Data output

Outputs: DATA or DATA.
Format: NRZ or RZ (up $10130 \mathrm{Mb} / \mathrm{s}$).
Delay: data (and sync) delayed with respect to clock continuously in 10 ranges from 0 to 100 ns .
Other specifications as for clock ouput.
Delayed data output (opilongl)
Outputs: DATA or DATA ganged with normal Dala vulput.
Delay: synchronous 8 bits with respect 10 normal Dala outpul. Other specificalions as for nomal Data outpul with ganged amplitude and dc offsel conirols.

Sync output

Rale: once per PRBS or WORD cycle.
Amplliude: $+1 \vee$ inio 50 ohms.
General
Power: $115 \mathrm{~V} \pm 10 \%$ or $230 \mathrm{~V}=10 \%$. 40 to 400 Hz . consumption 90 W .
Weight: 13.5 kg . (30 lb).
Slze: 140 H. $425 \mathrm{~W} .467 \mathrm{~mm} \mathrm{D}\left(51 / 2^{2} \times 163 / 4^{\prime \prime} \times 18 \% 1^{\prime}\right)$.
3760A Data Generator

Oscillators, function
 generators

Signal sources have been described by various names-orcillators, test oscillators. audio signal generators, function generators, etc. Different names are applied, depending on design and intended use of the source. The name "lest oscillator" has been used to describe an oscillator having a calibrated attenvator and output monitor. The term" signal generator" is reserved for an oscillator with modulation capability,

A function generator is a signal generator that delivers a choice of different waveforms with frequencies adjustable over a wide range. Function generators produce sine, triangle. square wave, saw-looth waves, pulses, sweep, and modukation. HewlettPackard's function generalors extend from a low frequency of 0.0005 Hz (HP 3310A) up so a high frequency of 50 MHz (HP 8165A).

Basic requirements

In selecting an oscillator or function generator. the user will be most interested in its frequency coverage. The question to be answered here is, "Will the instrument supply both the lowest and highest frequencies of interest for anticipated tests?" As shown in Table 1. Hewlett-Packard manufactures a broad range of oscillators and function generators covering the frequeney spectoum from 0.0005 Hz 1050 MHz .

The user's nex1 concem will be with available output power or voltage. Some tests require large amounts of power. while others merely require suffucient voltage output. For almost any application, there is a Hewlett-Packard oscilfator capable of delivering desired voltage outpul into a bighimpedance load or of supplying desired power into lower impedance loads.
Besides frequency range and power output, the user will be interested in instrument stability. its dial resolution. and the amount of barmonic distortion, hum and noise in the output signal. and funcrions available. See Table) for a comparison of Hewlet1Packard oscillators and function generators.

Frequency stabllity

Frequency stability of an oscillator detemines the ability of the instrument to maintain a selected frequency over a period of time. Component aging, power-supply variations and temperature changes all affect slability. Carefully chosen components. such as precision resistors and variable capacitors in the frequency-deteromining networks, contribure to long-term stability.

Amplliude stability

Amplitude stability is important in cenain

- Iwo Generators, AM, IM, Sweep, Tripeer/Gale - See data sheed

Table 1. Functions. frequency range and power output of Hewlett-Packard oscillators and function generators.
oscillazor applications. Amplitude stability is inherent in the Hewlett-Packard RC oscillator circuis because of large negative feedback factor and amplitude slabilizing rechniques. "Frequency response." or amplitude variation as frequency is changed, is of special interest when the oscillator is used for response measurements throughoul a wide range of frequencies.

Distortion

Distortion in the oscillator's output signal is a measure of the purity of the oscilator's waveform.

Oscillator distortion can be undesirable for harmonic distorion testing of ampliviers. for example. If the amount of distorion conIributed by the oscillator is more than 20 dB below the distortion contributed by the amplitier, an error in the harmonic distortion measurement will be less than 10 percent.

Hum and nolse

Hum and noise can be introduced al a variety of points in oscilator circuits: but when the eircuil operates at a relatively high level, the amount of humand noise intro. duced into the deviee under test is usually negligible. Hum and noise introduced by a
power amplifier usually remain constant as output signal amplitude is diminished. Hence, even though hum and noise power may be quite small compared to rated output, these spurious signals sometimes become a significant portion of tow-level output signals. To overcome such a limitation. many Hewlell-Packard oscillators have their amplitude control on the output side of the power amplifier so that hum and noise are reduced proporionatly witb the signal when low-level signals are desired for test purposes.

Function generators

The function generator is a versaule mulliwaveform signal source capable of very wide frequency coverage. Available functions range from modulation (3312A) w sweep and riggered/gared waveforms ($3310 \mathrm{~A} / \mathrm{B}$. 3312A). The function generator is an indispensable gencral purpose signal source for production tesling, instrument repair, and the electronics laboratory. Diverse fields of applications in which the function generator is being used include medical research. educsion, chemical. communicalions, geophysics. industrial control. mililary. and aerospace.

5 Hz to 600 kHz audio oscillators Models 200CD，200CD Opt：H20，\＆201C

Description

These Hewlett－Packard oscillators have high stability and accu－ rate，easily reseltable tuning circuits，Low－impedance opcrating levels，together with supcrior insulation．guarantee peak perfor－ mance throughoul years of trouble－frec service．The instruments have a wide frequency range and long dial lenglbs and feature an improved vernier frequency control．

Accessories avallable

Price

Specifications

	20060	2015
frequency Range	5 Hz 10600 kH	20 H to 20 kHz
Number of Ranges	5 everlapping	3 ovor laporne
Dial Accuracy	－ 2%	＝1\％
frequancy fespon se	二1 d日（1）khe reif）	$=10 \mathrm{~B}$（1）kth（ef）
Ouloul （impo 600Ω lead）	$\begin{aligned} & >160 \mathrm{~mW}(10 \mathrm{~W} \\ & \text { Opt. } 420.93 \mathrm{~mW}(7.5 \mathrm{~V}) \end{aligned}$	
Outpul Impedance	6000	$600 \mathrm{n} \pm 10 \%$ 20． 30 and 40 dB sertings $<600 \mathrm{O}$ ． 0 dB and 10 AB settings
Outpul Batance	Batance and floating better than $0.1 \% 6$ a！Iowet trequencies and approx 1% at higher frequencies	One terninat at ground potential
Distortion	$0.2 \%, 20 \mathrm{~Hz}$ to 200 kHz $0.5 \%, 5 \mathrm{~Hz}$ to 20 Hz and 200 kHz to 600 kHz 0 pl ．H20 $0.06 \%, 60 \mathrm{~Hz}$ to 50 kHz $0.1 \%, 20 \mathrm{~Hz} 10.60 \mathrm{~Hz}$ and 50 kHz to 400 kKz $0.5 \%, 5 \mathrm{~Hz}$ to 20 Hz and 400 kHz to $6.00 \times \mathrm{H}_{\mathrm{Lz}}$	$20.5 \%, 30 \mathrm{~Hz}$ to 20 kHz 311 W $<1 \%$ ． 20 Hz te 20 kHz 引 3 H
Huri and Nalse	＜ 0.1% ol rated oulpul	＜0 03\％of rated oulput
Attenuatoi	Braged＇T＇	0 to 40 do steps．modse ane I me conuols
Inpul Powel	$11508230 \mathrm{Y}, 50101000 \mathrm{~Hz} 90 \mathrm{VA}$	115 or $230 \mathrm{~V} .5010400 \mathrm{~Hz}, 75 \mathrm{VA}$
Weight K_{B}（lu）	Net： $9.9 \mathrm{~kg}(22 \mathrm{lb})$ Shipplag： 10 \＆hg（28 BD）	HeL $7.2 \mathrm{~kg}(16 \mathrm{lb})$ Shipping： 6.6 （ 19 （b）
$\begin{aligned} & \mathrm{H} \times \mathrm{H} \times 7 \\ & \text { Olmensicns } \end{aligned}$	$\begin{aligned} & 187 \mathrm{~mm} \times 292 \mathrm{~mm} \times 365 \mathrm{~mm} \\ & \left.11 / \mathrm{m}^{-} \times 111 / 2^{+} \times 14 \mathrm{H}_{6}\right) \end{aligned}$	$\begin{aligned} & : 91 \mathrm{mmi} \times 292 \mathrm{~mm} \times 318 \mathrm{~mm} \\ & \left(71 \mathrm{~m}^{-1} \times 11^{1 / 2^{4}} \times 12^{2} \mathrm{~h}^{3}\right) \end{aligned}$
Price	200CD： 3600 ．0pt H20：ade 375．	201C：$\$ 800$

209A

204 C

2040

Description

The HP 209A is a small. lightweight, sine/square oscillator. Stable, accurate signals can be synchronized with an external source over a frequency range from $4 \mathrm{H} / 102 \mathrm{MHz}$. Separately adjusiable sine/square outputs are located on the front panel. Distortion and flarness can be minimized at low frequencies by a rear panel low distortion mode swisch.

The HP 204C is a small. lightweight capacitive-tuned oscillator. Interchangeable power packs, line, rechargeable batteries of mercury batterics make this instnment ideal for both field and laboralory use.

The HP 204D Oscillator is identical to the 204C with the addition of an 80 dB attenuator and vernier. The attenuator with the vernier provides excellent output amplitude setability

209A Specifications

Frequency: 4 Hz to 2 MHz in 6 ranges.
Dial accuracy: $\pm 3 \%$ of frequency sething.
Flatnese al maximum output into 600Ω load. 1 kHz reference

Low disiortion mada	$+1 \%$	$\pm 0.5 \%$	$\pm 1 \%$	$=5 \%$
Nomal mode	$+5 \% \%-1 \%$	$\pm 05 \%$	$=1 \%$	$\pm 5 \%$

Distortion: 200 Hz to $200 \mathrm{kHz} .0 .1 \%$ (-60 dB): 4 Hz to 200 Hz . $<0.2 \%$ (-54 dB): $200 \mathrm{kHz}-2 \mathrm{MHz},<1 \%(-40 \mathrm{~dB})$.

Hum and nolse: $<0.01 \%$ of input.

Output characteristics sine wave
Output voltage: 5 V rus $(10 \mathrm{~mW})$ into 600Ω : 10 V open circuil.
Output impedence: 600n.
Output control: $>26 \mathrm{~dB}$ range continuously adjustable.
Output belance: 140 dB below 20 kHz . Oulput can be floated up to $\pm 500 \mathrm{~V}$ peak between outpul and chassis ground.
Output characteristics square wave
Output voltage: 20 V p-p open circuit symmetrical about 0 V . Output can be floated up to $=500 \mathrm{Vp}$.
Rise and fall trme: <50 ns into 600Ω. Symmetry: $\pm 5 \%$.
Output impedance: 600Ω.

Synchronlzation

Sync output: sine wave in phase with oulput: 1.7 V rms open circuit (high end affected by capacitive loads); impedance 10 kn .
Sync Input: same as 204C.

204C Speciflcations

Frequency: 5 Hz to 1.2 MHz in 6 overlapping ranges.
Dlal accuracy: $\pm 3 \%$ of frequedcy selling.
Flatnese at maximum ouput into 600 n load, 1 kHz reference

Low alstorton mode	$\pm 1 \%$	$=0.5 \%$	$\pm 1 \%$
Nomal mode	$+5 \% \%-1 \%$	$\pm 0.5 \%$	$\pm 1 \%$

Distortion: 30 Hz i0 $100 \mathrm{kHz}, 0.1 \%(-60 \mathrm{~dB})$: 5 Hz to 30 Hz . $<0.6 \%$ (-44 dB): $100 \mathrm{kHz}-1.2 \mathrm{MHz}$. linearly derated to $<1 \%$. Hum and nolse: < 0.01% of oulpur.
Output characteristics
Outpul voltage: $>2.5 \mathrm{~V}$ rms $(10 \mathrm{mWV}$ or $+10 \mathrm{dBm})$ into $600 \Omega:>5 \mathrm{~V}$ moss open circuit.
Output Impedance: 600 Ω.
Output control: $>\mathrm{d} 0 \mathrm{~dB}$ range: continuously adjustable.
Output balance: $>40 \mathrm{~dB}$ below 20 kHz . Can be flated upt 10 ± 500
\checkmark peak between output and chassis ground.

Synchronization

Syne output: sine wave in phase with oulput: $>100 \mathrm{mV}$ rms into < 100 pF over entire range; impedance $10 \mathrm{k} \Omega$.
Sync input: oseillator can be synchronized to external signal. Syoc range, the difference between sync frequency and sel frequency, is a linear function of syoc voltage. $\pm 1 \% / \mathrm{V}$ ms for sine wave with a maximum inpul of $\pm 7 \mathrm{~V}$ peak ($=5 \mathrm{~V}$ ms).

204D Specifications

(Identical to 204C excepl "output conirol" is replaced by the following):
Output attenuator
Renge: 80 dB in 10 dB steps.
Overall accuracy: $=0.3 \mathrm{~dB} .+10 \mathrm{~dB}$ ibrough -60 dB ranges: ± 0.5
dB on -70 dB range.
Output vemler: $>10 \mathrm{~dB}$ range, continuously adjustable.

General

Operating temperature: specificiations are met from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: standard: ac-line 115 V or $230 \mathrm{~V}=10 \%$, 48 Hz to $66 \mathrm{~Hz},<7$ VA max. Opl. D01; mercury balteries 300 hours operation. Opt. 002: line/rechargeable balleries 115 V or $230 \mathrm{~V}=10 \%$, 48 Hz 1066 Hz . $<7 \mathrm{VA}$ max. 35 hours operation per recharge.
Dimenslons: $155 \mathrm{~mm} H$ (withoul removable feel) $\times 130 \mathrm{~mm} \mathrm{~W} \times$ 203 n $\mathrm{mm} \mathrm{D}\left(6^{3 /} / \mathrm{al}^{\prime \prime} \times 51 / 4^{*} \times 8^{\prime \prime}\right)$.
Welght: net $2.7 \mathrm{~kg}(6 \mathrm{ib})$. Shipping, $3.6 \mathrm{~kg}(8 \mathrm{lb})$.
$\begin{array}{lr}\text { Options and accessorles } & \text { Price } \\ \text { Option } 001,204 \mathrm{C} / \mathrm{D} \text { (for mercury bateries) } & \text { add } \$ 85 \\ \text { Option } 002.204 \mathrm{C} / \mathrm{D} \text { (for rechargeable bait/ac line) } & \text { add } \$ 95 \\ 11137 \mathrm{~A} \text { Rechargeable baftery/AC power pack for } & \\ \text { 304C/D } & \$ 140 \\ 11075 \mathrm{~A} \text { Instrument case } & \$ 115 \\ 5060-8762 \text { Rack adapter frame } & \$ 55\end{array}$

Ordering Information

209A Sine. square wave oscillator \$495
204C Sine wave oscillator \$415
204D Sine wave oscillator

Description

Hewletf-Packard's 4204A Digtal Oscillitor provides accurate. slable test signals for bolh laboratory and production work. This one insirument does the job of an audio oscillator. an ac volimeter, and an electronic counter when an accurale frequency source of known amplitude is required.
Any frequency beiween 10.0 Hz and 999.9 kHz can be digitally selected with an in-line rotary switch, to four significant figures. As many as 36.900 diserete frequencies are available. Infinite resolution is provided by one vemier control, which also extends the upper frequency limit to 1 MHz . Frequency accuracy is betlerthan $=0.2 \%$ and repeatability is yypically belter than $\pm 0.01 \%$.

A built-in high impedance voltmeter measures output. The meter is calibrated to read volts or dBm into a matched 600 ohm load. 10 $\mathrm{dBm}=1 \mathrm{~mW}$ into $600 \mathrm{0hms}$.) The oulpus allenuator has an 80 dB range, adjustable in 10 dB sleps with a 20 dB vermier. Maximum oulput power can be increased to 10 volls (22 dBm) into 600 ohms or 20 volts open circuil.

Frequency response is flat with less than $\pm 3 \%$ variation over the entire frequency range at any at tenuator setting. Frequency stability is better than 10 pants in 10^{*} per minute.

Specifications

Frequency range: $10 \mathrm{H} \%$ to $1 \mathrm{MHx}, 4$ ranges
Frequency accuracy: $=0.2 \%$ or $=0.1 \mathrm{~Hz}$ (at $25^{\circ} \mathrm{C}$).
Frequency stablity
$\pm 10 \%$ Ilne voltage variation: less than $\pm 0.01 \%$.
Change of trequency whith iemporalure: $<\approx 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Drlft: < $10 \mathrm{ppm} /$ minute.
Frequency response: fial within $\pm 3 \%$. 9.999 kHz rcf. $\left(25^{\circ} \mathrm{C}\right.$ $=5^{\circ} \mathrm{C}$).
Output: $10 \mathrm{~V}(22 \mathrm{dBm})$ into 600 ohms (160 mW). 20 V open circuit.
Output attenuator: 80 dB in 10 dB steps. $<=0.5 \mathrm{~dB}$ error.

Output monltor: voltmeter monitors level at input of attenuator in volts ar dB.
Accuracy: $\pm 2 \%$ of full scale.
Flatness: $\pm 1 \%$ at full scalc, $10 \mathrm{~Hz} 10500 \mathrm{kHz}:=2 \%$ al full scale. 500 kHz 10 1 MHz .
Distonton: less than $0.3 \% .30 \mathrm{~Hz}$ to 100 kHz . Less 1 tian $1 \% .10 \mathrm{~Hz}$ 10600 kHz . Less than $\mathrm{I} .2 \%$. 10 Hz to I MHz .
Hum and nolge: less than 0.05% of outpul.
Temperature range: $0^{\circ} \mathrm{C}$ 10 $+50^{\circ} \mathrm{C}$.
Power: $115 \mathrm{~V} / 230 \mathrm{~V}$ swich, $=10 \% .10 \mathrm{VA} .50$ to 60 Hz .
Welght: nel. 8.5 kg (19 lb). Shipping. II kg (28 lb).
DImenslons: $141 \mathrm{mmH} \times 426 \mathrm{mmW} \times 336 \mathrm{mmD}\left(51 / \mathrm{m}^{"} \times 16^{3} / 1^{\prime \prime} \times\right.$ 131/").
Accessorles avallable
Price
11000 A Cable: dual banana plugs
11001 A Cable: banana plug to BNC male connector
11004A Line Matching Transformer has a Irequency
517
response of 5 kHz to 600 kHz providing fully balanced outputs for 135 or 600 ohms
11005A Line Matching Transformer has a frequency
response of 20 Hz to 45 kHz providing full balanced output into 600 ohms.
16252A Matching Transformer has a frequency re$\$ 89$ spoose of 10 kHz to) MHz providing unbalanced 75 othm output, icmmated in UG.657/U female BNC connecior
Options
001: 4204A Output Monitor top scale calibrated in dBm/600n. Bottom scale calibrated in volts
908: Rack Flange Kit
add $\$ 25$
910: Exira Manual

Description

The 33ila Function Gencrator offers wide functional capability at a modest price. This compack unit has seven decades of range from 0.1 Hz to 1 MHz . Pusbbutton range and function selection add converience to versialitiy. Added fealures normally nol found on function gemerators in this price range are 10:1 voltage control and a separate pulse output suitable for synchronization or driving TTL logic circuils.

Output

Ten V p-p into 600Ω (20 V p-p O.C.). This outpul may be attenueted by $>30 \mathrm{~dB}$ by a variable attenuator and offset by $\pm 5 \mathrm{~V}$. The de offset allows the sine. square, and triangle functions to be positioned to the most desired level. This feature adds to the usefulness of all three fuoctions.

VCO

The de coupled voltage control allows the use of an extemal source to sweep the 3311 A $>10: 1$ in frequency.

Pulse output

A separate TTL compatible pulse output provides current sinking for up to 20 TTL loads. The pulse has a $15 / 85$ aspeer ratio with a <25 ns rise time.

Specifications

Wavetorms: sinusoid, square, iriangle, and positive pulse.
Frequency range: 0 .) Hz to $(\mathrm{MHz}$ in seven decude ranges. Dlal accuracy: $=5 \%$ of full scale.
leolation: using an extemal suppiy. outputs may be floated up to $\pm 500 \mathrm{~V}$ refalive to the instrument case (carth ground).

600 Ohm oulput

Maximum output amplifude: 20 V p-p open circuit: $10 \vee \mathrm{p}$-p into 600Ω.
Amplitude control: conlinuously variable, $>30 \mathrm{~dB}$ range. DC offsel: up to $\pm 10 \mathrm{~V}$ open circurt. $\pm 5 \mathrm{~V}$ into $600 \mathrm{\Omega}$. continuously
adjushable and independent of amphtade control. Masimum $V_{n u}$ peak $+V_{\text {at }}$ offset without clipping is $\pm 10 \mathrm{~V}$ open circuit. $\pm 5 \mathrm{~V}$ into 600π.
Output impedance: $600 \mathrm{n}=10 \%$.
SIne wave amplltude flatness: within $=3 \%$ of 10 kHz reference (maximum output amplitude) to $100 \mathrm{kHz} .=6 \%$ to 1 MHz .
Sine wave total harmonle disiontion: $<3 \%$ (maximun) outpul nmplisude).
Trlangle llnaarily: deviation $<1 \%$ from best siraight line al $160 \mathrm{H}_{2}$ (maximum oulpul amplitude).
Square wave transition time: rise time: $<100 \mathrm{n}$ n: fall time: <lot ns.
Square wave time axis symmetry error: ± 29 maximum 10100 kHz .

Pulse output

Output amplitude: >3 V positive (open circuit) TTL compatible. Duty cycle: 13.5% to 16.5% of the 10 tal period.
Transition times: <25 ns.

External frequency control

VCO range: $>10: 1$ on any ircquency range.
Input requlrement: with frequency dial sel in 1,0 , a linear ramp of 0.0 V to $-10 \mathrm{~V}=2 \mathrm{~V}$ will inearly increase frequency $>10: 1$

Input Impedance: $10 \mathrm{k} \Omega=10 \%$ in paralicl with $<60 \mathrm{pFd}$.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$: specifications apply from $+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V}-10 \mathrm{~F} / \mathrm{c}$, +5\% switchable: 48 Hz to of Hz : El2 VA.
 $9 \%{ }^{\circ}$).
Walght: net, 1.5 kg ($3 / \mathrm{h}$ (b); shipping. 2.5 kg ($5{ }^{1} / \mathrm{l}$ (b).
Rack Mount Klis: IO85IA for one 331IA. 10852A for two.

Description

Hewlett-Packard's 3312A Function Generator combines iwo separale, independeni function gencrators with a modulator section in one compact instrsment.

The main generator can-via pushbution control-be ingeered by the modulation generator to provide sweep functions. AM, FM or tone burst.
Ten V p-p into 50Ω provides adequase powes for most applica. tions. The output allenuator has a range of more than $10,000: 1$ so clean low-level signals from 10 V to $\} \mathrm{mV}$ p-p into 50 n can be obtained.
The main generator includes de offert up to 10 volis p-p into 50Ω.
Hewlett-Packard's 3312A is an effective low cost solution for generaling a multiude of functions.

3312A Specifications

Oulput waveloms: sinc, square. (riangle, $=$ ramp. pulse. $A M$, FM. sweep, Iriger and gatc.
Frequency characteristics
Range: 0.1 Hz to 13 MHz in 8 decade ranges.
Dial accuracy: $=5 \%$ of full scale.
Square wava rise or fall time (10% to 90%): <18 nsec.
Aberrations: < 10%.
Triangle llnearlfy error: $<1 \%$ at 100 Hz .
Variable symmerry: $80: 20: 80$ to 1 MHz .
Sine wave disiortion: $<0.5 \%$ THD from 10 Hz to $50 \mathrm{kHz} .>30 \mathrm{~dB}$ below fundamental from 50 kHz to 13 MHz .

Output characteristics

impedance: $50 n \pm 10 \%$.
Level: 20 V p-p into open circuit, 10 V p-p inio son.
Level flatness (sine wave): $< \pm 3 \%$ frorn 10 Hz to 100 kHz at full raled output (1 kHz reference). $< \pm 10 \%$ from 100 kHz 1010 MHz . Attenustor: I:1, 10:1, 100:1. 1000:I and $>10: 1$ continuous conirol. Attenuator error: $<5 \%$.
Sync output: impedance: $50 \Omega=10 \%$, $>1 \mathrm{~V}$ p-p square wave into open circuit. Duty cycle varies with symmetry control.
DC oftset: $=10$ volis, continuously adjuslable, independent of variable attenuator selting. Insfantaneous ac voltage $+V$ de offsel must be between $\pm 10 \mathrm{~V}$ (not terminated) or $\pm 5 \mathrm{~V}$ (terminated with 50Ω) in the I:I altenuator position.
Modulation characteristics
Types: internal AM. FM. sweep. Irigger, gate or burst; external AM. FM. sweep. iriger, gate or burst.
Waveforms: sine, square, Iriangle, ramp or pulse variable symmetry.

Frequency range: 0.01 Hz to 10 kHz .
Output level: $>1.0 \mathrm{~V}$ p-p inio $10 \mathrm{k} \Omega$.

Ampiltude modulation

Depth: 0 to 100%.
Modulation frequency: 0.01 Hz to 10 kHz (intemal). $\mathrm{DC} 10>1$ MHz (extemal)
Carrler 3 de bandwidth: $<100 \mathrm{~Hz}$ to $>5 \mathrm{MHz}$.
Carrler envelope distoriton: $<2 \%$ al 70% sine wase modulation with $f_{c}=1 \mathrm{M} H z, r_{m}=1 \mathrm{kHz}$.
External sensitivity: < 10 V p-p for 100% modulation.
Frequency modulation
Devlation: $010 \pm 5 \%$ (intemal).
Modulation frequency: intemal: 0.01 Hz to 10 kHz : extermal: DC $10>50 \mathrm{kHz}$.
Distorton: $<-35 \mathrm{~dB}$ at $\mathrm{f}_{\mathrm{c}}=10 \mathrm{MHz} . \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$. 10% modulation.
Sweep characteristics
Sweep width: > 100:I on any range.
Sweep rate: 0.01 Hz to 100 Hz . $90: 10 \mathrm{ramp}$. and 0 Hz (provides manual selting of "Sweep Start" withoul modulation generator oscillaling).
Sweep mode: repctitive linear sweep between stan and stop frequency setlings. Retrace time can be increased with symmery conirol.
Ramp output: 0 io >-1 p-p inio $5 \mathrm{k} \Omega$.
Gate characteristics: start/slop phase range: $+90^{\circ}$ 10 -80°.
Frequency range: 0.1 Hz to 1 MHz (usefil to 10 MHz).
Gating signal Irequency range (external): DC to I MHz. TTL compatible.
Externat frequency control
Range: 1000:1 on any range.
Input requirement: with dial set at 10.0 to $-2 \mathrm{~V}=20 \%$ will lincarly decrease frequency $>1000: 1$. An ac voltage will FM the frequency about a dial setling within the limits $(0.1<1<10) \times$ range seting. LInearlty: the frequency versus vollage curve will be linear within 0.5% over a $100: 1$ frequency range.
Inpuß Impedance: $2.8 \mathrm{k} \Omega=5 \%$.

General

Oparating temperadure: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; specfications apply from $0^{\circ} \mathrm{C} 1040^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$.
Power: 100 V. 120 V. $220 \mathrm{~V} .240 \mathrm{~V}+5 \%$. -10%. switchable; 48 Hz $10440 \mathrm{~Hz}: \leqslant 25$ VA.
Slze: $102 \mathrm{H} \times 213 \mathrm{~W} \times 377 \mathrm{~mm} \mathrm{D}\left(4^{n} \times 83 / \mathrm{R}\right.$ " $\left.\times 1413 / \mathrm{a}^{\prime \prime}\right)$.
Weight: nel, $3.8 \mathrm{~kg}(8 \mathrm{lbs}, 6 \mathrm{oz}$). Shipping, 5.9 kg (13 lbs).
3312A Function Generator
$\$ 900$

Description

The 3310A Function Generator is a compaci voltage-controlled generator with in decades of range. Ramp and pulse funclions are axailable in eddition to sine, square and iriangle. DC offset and extemal voltage control provide wide versatility. A fast rise time sync output is provided. Aspect ratio of nonsymmetrical function is $15 \% / 85 \%$.
The 3310B has all the features of the standard 3310 A plus single and mukiple cycle output capability.

3310A Specifications

Output waveforms: sinusoidal, square. riangle, positive pulse. negative pulse. positive ramp and negative ramp. Pulses and ramps have a fixed 15% or 85% doy cyele.
Frequency range: $0.000 \leq \mathrm{Hz}$ to 5 MHz in 10 decade renges
Sine wave frequency response
$0.0005 \mathrm{~Hz} 1050 \mathrm{kHz}:=1 \%: 50 \mathrm{kHz}$ to $5 \mathrm{MHz}: \pm 4 \%$. Reference, 1 kHz at tioll amplitude into son.

Dial accuracy

0.0005 Hz to 500 kHz all functions: $=(1 \%$ of selting $+1 \%$ of fisl) scale).
500 kHz to $\mathbf{5} \mathbf{~ M H z}$ alne, square and trlangle: $=\left(\underline{\mathbf{I}^{\prime}}\right.$; of setring + 3Fr of full scale).
500 kHz to 5 MHz pulse and ramps: $\pm(10 \%$ of selting $+1 \%$ of full scale).
Maximum output on high: $>30 \vee \mathrm{p}-\mathrm{p}$ open circutt, $>\mathrm{IS} \vee_{\mathrm{p}} \mathrm{p}$ pinto 50Ω (execept for pulses at frequency $>2 \mathrm{MHz}$).
Pulse (Irequency $>2 \mathrm{MHz}$): $>24 \mathrm{~V}$ p-p open circuit: $>12 \mathrm{~V}$ p-p inıo 50Ω.
Minimum outpat on low: $<30 \mathrm{~m} \vee \mathrm{p}-\mathrm{p}$ open circuit: $<15 \mathrm{~m} \vee \mathrm{p}-\mathrm{p}$ into 50 S.
Output level control: ringe $>30 \mathrm{~dB}$. High and low outputs overlap for a total range of 260 dB ; low output is 30 dB down from high output.
Sine wave distortion
0.0005 Hz to $10 \mathrm{~Hz} ;>40 \mathrm{~dB}(1 \%)$.

10 Hz to 50 kHz (on 1 k range): $>46 \mathrm{~dB}(0.5 \%$).
50 kHz to $500 \mathrm{kHz}:>40 \mathrm{~dB}$ (1%).
500 kHz to $5 \mathrm{MHz}:>30 \mathrm{~dB}(3 \%)$.
Square wave and pulse response: < 30 ns rise and fall (imes at fult ompul.
Triangle and ramp linearity: 0.0005 Hz 10 $50 \mathrm{kH} \%<1 \%$.
Impedance: son.
Sync
Amplitude: $>4 \vee \mathrm{p}$-p open circuil. $>2 \vee \mathrm{p}$-p into 50Ω.

DC offset
Amplitude: $=10 \mathrm{~V}$ open circuit, $\pm 5 \mathrm{~V}$ ino $50 \cap$ (adjustable).
Note: max V acp $+V$ de offset is $\pm 15 \vee$ open cincuit. $=7.5 V$ into sons.
External frequency control: $\mathbf{S}_{0}: 1$ on any range.
Inpul requlrement: with dal set to low end mark, a positive rainp or $010+10 \mathrm{~V}=1 \vee$ will lincarly increase frequency 50 : 1 . With dial set at 50 , a linear negative ramp of 0 to - $10 \mathrm{~V}=1 \mathrm{~V}$ will linearly decrease frequency $50: 1$. An ac voltage will $F M$ the frequency aboul a dial senting within the limits ($1<1<50$) \times range selting.
LInearity: ratio of outpul frequency to inpul vollage ($\Delta F / \Delta V$) will be linear within 0.5\%.
Sensitivity: approximately $100 \mathrm{ml} /$ minor division.
Input Impedence: 10 km .
General
Power: 115 V or $230 \mathrm{~V}=\mathrm{I} 0 \mathrm{ra}, 48 \mathrm{~Hz}$ to $440 \mathrm{~Hz} .<20 \mathrm{VA}$ max.
Dlmenslons: 114 mmH (without semovable feet). 197 mm W . $303 \mathrm{mmD}\left(41 / 2^{2} \times 7^{3 / 1} /^{10} \times 8^{\prime \prime}\right)$.
Weight: net, 2.7 kg (6 胞: shipping. 4.5 kg (10 It).
Accessories avallable
HP Pan No. $5060-8540$ filler strip for use with HP IOSIA Combining Case or HP 5060-8762 Rack Adlapter Frame.

3310 B Specifications

Same w3 310A with the following additions:
Modes of operallon: free run, ingle cycle. multiple cycle.
Frequency range: $0,0005 \mathrm{~Hz}$ to 50 kHz (usablc to $\leq \mathrm{MHz}$).
Single cycle-": ext triger (ac coupled) requires a positive-going square wave or pulse from $/ \mathrm{V}$ p-p to 10 V p-p. The rigenering signat can be de offsel, but (V ac peak $+V$ de) $\leqslant \pm 10 V$ exi gate (dc coupled) will Ingger a single cycle on any positive waveform $\Rightarrow 1 \mathrm{~V}$ but $\leqslant 10 \vee$ which has a penod greater than the period of the 3310 B ourpui. and a duyy cycle less ithan the period of the 3310 B oupput. The gale signal cannel exceed 10 V .
Mulifple cycle ${ }^{*}$: manuall triger will cause the 3310 B to free min when depressed. When the irigger button is released, the waveform will stop on the same phase in it stared. Ext gate will cause the 3310 B to free run when the gate is held at between +1 and +10 V . When the gate signal goes tu zeru, the 3310 B will stop on the same phase as in stared.
Start-stop phase: the stan-stop phase can be adjusted over a range of approximatcly $\pm 90^{a}$.
Ordering information Price
3310A Function Generator
Price
$\$ 800$
3310 E Function Gencrator 5900
"This sperifitation applies of the X oud to $x 1 \times$ ange only.

50 MHz programmable signal source Modei 8165A

\author{

- 1 mHz to 50 MHz
 - sine, ramp and pulse waveforms
 - counted burst
}
- 20 Vpp amplitude
- Fully programmable
- Storage of operating parameters

8165A with Sweep Opt 001

Introduction

The 8165A Programmable Signal Source generates sinewavos, triangles, ramps, square waves and pulses over a frequency range of 1 mHz to 50 MHz . The pushbution fromt panel controls and the L.ED parameter display enable rapid and accurate setting of pirameters with no repeatability problems. When you include other features sizch as microprocessor control, remole programmablity of all parameters, and seven operaing modes, you have a versatile signal source in just a single instrument that can be used in a wide range of applications.

Microprocessor contral

The 8165A contains a microprocessor-controlled interface and keyboard designed to simplify operating and programming. Whether operating the instrument from is keyboand or from a controller via the HP-IB , the microprocessor simplifies parameier and data entry.

It also checks for illegal operations, incompatible settings, and sels up fronl panel displays. The mieroprocessor greaty simplifies froni panel operation by enabling any parameter to be changed using only 3 steps: a PARAMETER key. DATA keys, and an ENTRY key.
Operaituo set storage
Up to 10 complete operating sets (functions and parameters) can be stored in the built-in memory. Subsequenly you can recall any of the 10 sets instantaneously by pressing only two keys or using one program slatement. And you don't have to worry abou: losing operating sets if the 8163A is accidentally switched off or if the power fails. Intemal batteries preserve the current and stored operating sels for up to four weeks.
Stability, accuracy and resolution
The use of phase lock loop techniques, plus a 10 MHz intemal or extemal crystal reference, ensures very stable ouipul frequencies with an accuracy of $\pm 1 \times 10^{-3}$ deviation from programmed value. Resolution is four digits over the freguency range of 1 mHz 1050 MHz . For example, in the frequency range $1-9.999 \mathrm{mHz}$. this is equivalent to a resolution of $1 \mu \mathrm{~Hz}$.
Multiple waveform generation
The multiple waveforns that can be generated by the 8165A suit it 10 a wide range of digital and analog applications. Sine. triangle or square waves can be generated at frequencies up to 50 MHz . Ramps and reclangular pulses with 20% or 80% dury cycle isymmerry can be genemated al frequencies up to 19.99 MHz .

Operating modes;

The 8165A can be operated in any of seven different modes; normal. trigger, gaie, voltage controlled oscillazor (VCO), sweep. counted burst, and frequency modulation (FM). This wide sange of modes enables the 8165A to be used in any operating environment.

Output capability

The B165A has been designed to fulfil the requirements of analog and digital testing. The source impedance can be sel to 50 ohms or I k ohms for best termination, i.e. minimum distortion and reflection in each application. The 816SA can also te used as a current source. or supply a variable de level.

HP-IIB programming

The use of a microprocessor makes the 8165A very easy to program across the HP-l日, and ideal in automatic test systems. All operating parameters and functions can be programmed and in learm mode the 816SA can repon its status and its current or stored operating sets. Programming is further simplified by the codes on the instrument front panel. The framed mnemonics are the ASCII characters required for programming.

Specifications

Waveforms

Sine, square/pulse (20. 50.80% duty cycle), Iriangle/ramp (20,50, 80% symmerry)
Frequency characteristics
Range: 1.000 mHz to 50.00 Mhz (1.000 mHz to 19.99 MHz for 20 and 80% duty cycle/symmetry).
Output characteristics
Range: amplitude ard offser independently variabie within $\pm 10 \mathrm{~V}$.
Source impadance: selectable $S O \Omega \pm 1 \%$ or $1 \mathrm{k} \Omega=10 \%$. in parallel with 50 pF .
Amplitude: 10.0 mVpp to 10.0 Vpp (50Ω into 50Ω)
$2.00 \mathrm{Vpp} 1020.0 \mathrm{Vpp}(1 \mathrm{k} \Omega$ into $50 \Omega)$
Accuracy

graguany	Sint	Squrit	Trimngle (1002)	${ }_{\text {(20\% }}^{\text {flangig }}$	$\begin{gathered} \text { Puise } \\ (20 \% \\ 80 \% \%) \end{gathered}$
		$\begin{aligned} & =2 \% \\ & =2 \pi \\ & =55 \% \\ & =5 \% \end{aligned}$	$\begin{gathered} 5 \% \% \\ =2 \% \% \\ =5 \% \\ =5 \%{ }^{20 \%} \\ -200 \% \end{gathered}$	Fi\% $=5 \%$ $=5 \%$ $=5 \%$	$\begin{aligned} & =\% \\ & =2 \% \\ & =5 \% \\ & =5 \% \end{aligned}$

Resolutlon: 3 digits.
Offset: $0=10 \mathrm{mV}$ to $=5.00 \vee$ (50Ω into 50Ω). $0=20 \mathrm{mV}$ to $\pm 10.0 \vee$ ($1 \mathrm{k} \Omega$ into 50Ω).
Accuracy: $\pm 1 \%$ programmed value $\pm 1 \%$ signal $V_{D D} \pm 20 \mathrm{mV}$.
Resolutlon: 2 digits (10 to 99 mV), 3 digits ($\geqslant 100 \mathrm{mV}$).
Sine eharactorletlos
Distortion: total harmozic distonion (THD) for fundamental up
to $) \mathrm{MHz}$: $<=1 \%$.
Harmonlo aignale (fundamental 1-10 MHz): $<-36 \mathrm{~dB}$.
Harmonic signals (fundamental above 10 MHz): <-30 dB.
Non-harmonle: $<-40 \mathrm{~dB}$.
Square/pulse characterietioe
Duty oycle: 20, 50. 80% selectable.
Tranalition tlmes ($10 \% 1090 \%$): <S os (50Ω into $50 . n$), <7 ns (1 $\mathrm{k} \Omega$ into 50Ω).
Overshootiringing: $<=5 \%$ (50Ω into 50 n). $<=10 \%$ ($\mathrm{k} \Omega$ inio 50 n).
Preahoot: $<=5 \%$ (50Ω into 50Ω), $< \pm 10 \%$ ($k \Omega$ into 50Ω).
Triangle/ramp charncterlatics
Symmetry: 20. 50, 80% selectable.
Linearlty: ($10 \% 1090 \%$):
$< \pm 1 \%$ (up to 5 MHz), $< \pm 5 \%$ (above 5 MHz).
Operating modes
Norm: continuous waveform is generated, phase locked 10 an incernal 10 MHz crystal reference.
VCO: extemal voltage V_{in} ($f_{\text {max }}=100 \mathrm{kHz}$) sweeps output frequency over a band. The band is delermined by the frequency setring, and the frequency shif by the amplitude of $V_{\text {to }}$.
Trig: each trigger input cycle or manual command generates one output cycle, min trigger pulse width: 10 as.
Gate: external signal enables oscillator when more positive than threshold. First and last output cycles are always complete, min. pulse width; 10 ns .
Burat: a preprogrammed number of output cycles is generaled on receipt of an input trigger signal or manual command, min. time between bursts: 50 ns. Burst length: 1 to 9999 cycles. Min. trigger pulse width: 10 ns.
Frequency modulation: output is frequency modulated by an external voltage applled to a rear panel BNC. 0 to $=1 \mathrm{~V}$ modulates 0 to $\pm 1 \%$ deviation.

Modulating frequency: 100 Hz to 20 kHz (Norm mode). dc to 20 kHz (Gate mode with carrier frequency $\geqslant 1 \mathrm{kHz}$),
Auxilliary inputs and outputs
Ext. Input: common front panel BNC for extermal signals used in VCO. Trig. Gate, Burst and (Option 001) Sweep ext./rig.

Signal threshold: +250 mV (upper), 0 V (lower).
Max input: $\pm 20 \mathrm{~V}$.
Input impedence: $10 \mathrm{k} \Omega=10 \%$.
Sync output: front panel BNC provides one trigger cycle per main outpur cycle.

Ampiltude: $0.8 \mathrm{~V}_{\mathrm{pg}}$ into 50Ω (low level zero V , high +0.8 V).
Duty cycle: as msin outpur.
Ext. 10 MHz Ret: rear panel BNC for connection of 10 MHz , TTL. system clock. selected by rear panel switch.

HP-I日 programming (IEEE Std 468)

Sotting imes
Frequency: <200 ms to serte to final value.
Other functions: 20 ms .

Memory

10 addressable locations plus one for cument operating state.
Capacity: each location can store a complete set of operating paramoters and modes.
Access Ime: 20 ms each location.
Storege time: incemal bathery provides memory retention for approx \& weeks at room temperature.
Options
OOT Sweep: provides logarithmic frequency swecp be-
iween limits set in on the 8165A. Rear panel BNC provides triangular sweep vollage ($\mathrm{V}_{\text {, }}$ (wegs) $), 0102.99 \mathrm{~V}$
amplitude.
Sweep fate: 0.01, D.I. I, 10, 100, 1000 seconds per decade selectable.
Trigger: internal for condinuous sweep. extemal produces one up-down sweep per trigger pulse.

General

Power requirsments: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}$ or 240 V ; +5 to -10%, 48 to $66 \mathrm{~Hz}, 200$ VA max.
Environmental: operates to specifications from 010 $50^{\circ} \mathrm{C}$. and with relative humidity 1095% al $40^{\circ} \mathrm{C}$. Storage: -20 to $+70^{\circ} \mathrm{C}$.
Woight: net 12 kg (26.5 lbs). Shipping 16 kg (35.3 lbs).
Sl2e: $133 \mathrm{~mm} \mathrm{H} \times 426 \mathrm{~mm} \mathrm{~W} \times 422 \mathrm{~mm} \mathrm{D}\left(5.2^{\prime \prime} \times\right.$ $16.8^{\prime \prime} \times 16.6^{\prime \prime}$).
Accessories ayailable
The foliowing cables for incerconneciling HP-IB instruments io the bus are available:

$$
\begin{array}{lllll}
10531 \mathrm{~A} & 1 \mathrm{~m} & (3.28 \mathrm{ft}), 10631 \mathrm{~B} & 2 \mathrm{~m} & (6.56 \mathrm{fl}) \\
1063 \mathrm{C} & 4 \mathrm{~m} & (13.1 \mathrm{ft}), 10631 \mathrm{D} & 0.5 \mathrm{~m} & (1.64 \mathrm{n})
\end{array}
$$

Options	Price
001: Sweep	add $\$ 350$
907: Front Handle Kit	add $\$ 20$
900: Rack Mounting Kit	add $\$ 15$
909: Combined Front Handle and Rack Mounting Kit add $\$ 30$	
910: additional Operating and Service Manual	add $\$ 22$

8165A Programmable Signal Source
$\$ 5000$

Specifications

MaOEL N0．	651日	8524	654
Description	Amplitude and freguency stability of this solid state capacitance－tuned test oscillator provides high quality signals for general purpose lab of production measure－ ments．	Same as Model 65：8．HP＇s Model 652A offers an ex pandable outpu！manitor for amplitude control to 0.25% across its entine trequency band lot EFater oulpul and resettability．	Similas to the 6518Test Oxciltata，MP＇s Model 6SAA has balanced outputs of $135 \Omega .150 \Omega$ ，and 600Ω ． Antornatic leveling over entive frequency range and ex panded meter．
Frequency Range	10 He to 10 MHz． 6 dmats．		
Frequency Accuracy	$=2 \%$ ， 300 Hz to $1 \mathrm{MHs}=3 \%, 10 \mathrm{~Hz}$ to 100 Hz and 1 MHz to 10 HHz		$\begin{aligned} & =2 \% 100 \mathrm{~Hz} \text { to } 5 \mathrm{MHz}_{2} \pm 30 \% 10 \mathrm{~Hz} \text { 10 } 100 \mathrm{~Hz}_{i} \\ & \pm 4 \% 5 \mathrm{MHz} \text { to } 10 \mathrm{MHz} \end{aligned}$
Frequency Response （Flatness）	$=2 \%-100 \mathrm{~Hz}$ to $1 \mathrm{MHz}_{;} \pm 3 \%, 10 \mathrm{~Hz}$ to $100 \mathrm{~Hz} ; \pm 4 \%$ ． I MHz to 10 Mhiz applies only at 50Ω or 75Ω output and amplitude readjusted to a reference on the output moniter：	$\pm 0.25 \%, 3 \mathrm{~V}$ and I V ranke，$=0.75 \%, 0.3 \mathrm{~V}$ to 0.3 mV range； $\pm 1.75 \%, 0.1 \mathrm{mV}$ range．Uemplitude resojusted using expanded scale on output monitor）．	（ -10 dBm and 0.0 Br$)=0.5 \%$ from 10 Hz to 10 MHz for unbalanced outauls and 10 Hz to 5 MHz foi 13512 万nd 150Ω outputs，and 10 Hz to 1 MHz for 600 O nusput
Distortien	$<1 \%, j 0 \mathrm{~Hz}$ to $2 \mathrm{MHz},<2 \%, 2 \mathrm{MHz}$ to $5 \mathrm{MHz} ;<4 \%$ ， 5 MHz to 10 MHz		10 Hz to I MHz >40 \＆below fendamental：I MHy
Output	3.16 V inro 50 n of $600 \mathrm{n}: 632 \mathrm{~V}$ open cilreuit 0.1 mV to 3.16 V full scale， 10 staps in $1,3,10$ sequeace：-70 dBm to－ $23 \mathrm{~d} \mathrm{Am}[50 \mathrm{n}$ outpuly tult s6ale， 10 dBmiper step； 20 dB coarse and fine adjustable smpitude control．		+11 dBm to $-90 \mathrm{dBm}, 10 \mathrm{~dB}$ and 1 dB steas wilm adjustable $\pm 1 \mathrm{~dB}$ meter range，caliorated for each im． pedance of 500 and 75Ω unbalaniced and 135 n． 150の aná boon balanced
Output Manitor （Monitor＇s Level at input of attenuator）	Top scale calibrated in wilt，battorn scale in 6B．AL－ curacy $=2 \%$ of full scale．	Same as 651B ples Expand Scale which oxponds rat－ erence voltage of the nermal scale form 0.9101 .0 or 2810 3．2．	curacy ± 0.0568 ．
Oulpu！＂ Cormectors	ENC connectors．		
Attenuator			99 AB range in 10 dB and I d8 steps：$\pm 1.5 \%$（0．15 dis except $\pm 10 \%$（I dB）at output levels below 6000 m at Irequencies＞ 300 léti．
Temperature Range	（10．C $10+55^{\circ} \mathrm{C}$（32\％to $\left.130^{\circ} \mathrm{N}\right)$		
Power			
Weight	Ne） $76 \mathrm{~kg} \mathrm{(17} \mathrm{lb)} \mathrm{stippine} 9.90 \mathrm{~kg}$（22 lb）．		Nott． 94 kg （2） 10 l ．Shlpplng 11.8 Ag （26 lb）．
Dimensions			
LPLEE	\＄345	b1100	E608

Maximum of vultage Imal can be applied to oulpule $<=$ I Y D ．

Hewlett-Packard frequency synthesizers translate the slable frequency of a precision frequency standard to one of thousands or even billions of frequencies over a broad speci rum that extends from de 102600 MHz . The table below highlights HP's complete line of frequency synthesizers.

HP Modal	Flequancy Rango	Fraquenay Resolullon	Irequency Stability	$\begin{gathered} \text { Lovel } \\ \text { Rune } \\ \text { derin } \operatorname{son} \end{gathered}$	Level Resorution	Remote Control	$\begin{gathered} \text { Other } \\ \text { festures" } \end{gathered}$
$\begin{gathered} 3320 \mathrm{~A} \\ (\mathrm{Pg} .348) \end{gathered}$	$\begin{gathered} \mathrm{OC}-12 \mathrm{NH} / 2 \\ 3 \text { Tamper } \end{gathered}$		$10^{1} \mathrm{~m}$ day	010.13	3/4 Ium Vernier	frea.	1
$\begin{gathered} 33208 \\ (\mathrm{Pg} .348) \end{gathered}$	$\begin{gathered} \text { OC }-13 \mathrm{MHz} \\ 5 \text { tanges } \end{gathered}$		10-5/day	-73 10 +27	001 dB (4 dizits)	1eso. 8 Ampl.	1, 8
$\begin{gathered} 33200 \\ \text { (Pg. } 550) \end{gathered}$	10 his 10 1) MHz	$10 \mathrm{k}=\mathrm{C}$ (20 H2 will: Vetries inf	$10-\% \mathrm{day}$	$\begin{array}{r} -79.9910 \\ +18.99 \end{array}$	001 de (A dighs)	-	1
$\begin{gathered} 33308 \\ (\mathrm{P} \mathrm{~B} \cdot 350) \end{gathered}$	0 Cb - 13 MHI	$\begin{aligned} & 0.11(\mathrm{~g} \\ & (9 \mathrm{~d} \mid \mathrm{g}(\mathrm{~s}) \end{aligned}$	10% ay	$-87 \mathrm{lo}+13$	adre (4 digits)	Fieg s Amal	2, 3, 4, 6, 8
$\begin{gathered} 3335 \mathrm{~A} \\ (\mathrm{~Pa} .345) \end{gathered}$	$200 \mathrm{HL}=80 \mathrm{MHz}$. 001 Mz	$10^{-} / \mathrm{day}$	$-8710+13$	0.01 dB (4 digits)	irtec \& Ampl.	2. 3.8
$\begin{aligned} & 8660 \mathrm{~A} / \mathrm{C}^{-\pi} \\ & (\mathrm{Fg} \mathrm{~g} 358) \end{aligned}$	10 kHz tz 2600 MHz (3 plug-ins)		$3 \times 10 \%$ ay	$-14610+13$! d8 stieps plus Vermer	freq. Modulasition	$\begin{gathered} \mathrm{A} / \mathrm{C}_{1} 5,7.8 \\ \mathrm{Ci}_{\mathrm{i}} 3 \end{gathered}$
$\begin{gathered} 8671 \mathrm{~A} \\ \left(\mathrm{P}_{\mathrm{E}} .364\right) \end{gathered}$	$\begin{gathered} 2106.2 \\ \mathrm{GHz} \end{gathered}$	$1 \mathrm{kH} / 2$		$=-8$	-	freg. FM Modulation	8.9
8672A** (Pg. 362)	$\begin{aligned} & 2 \text { to } 18 \\ & \text { Gut } \end{aligned}$	1,2,3 3 Hz	5×10 "'/Lay	$-12010+3$	$\begin{gathered} 1 \text { dB steps } \\ \text { ples } \\ \text { vernier } \end{gathered}$	Freq. Ampl. \& Nodulation	8. 10

[^24]
General information

Today's measurement needs are placing increasingly stringent requirements on signal sources for greater frequency resolution and stability. Radio astronomy, secure communications. narrowband component testing, satellite and terrestrial communications. local oscillator and automatic test systems are only a few of the many applications that continually require better and better signal sources.

Increased amplitude accuracy and resolution are also must requirements in many applications. The telecommunication iodustry's Frequency Division Multiplex (FDM) systeras require high amplitude accuracy and resolution (0.01 dB) as well as high frequency resolution and statility. These amplifude capabilities are also finding their place in many R\&D and production test situations.

The answer to these requirements has been the frequency synthesizer. With technology producing continuing cost reduetions in synthesis techniques, the synthesizer is finding use as a precision oscillator and signal generator as well as the more traditional uses as a synthesizer.

Frequency synthesizer definition

A frequency synthesizer is an instrument that translates the frequency stability of a single reference frequency to any one of many other desired frequencies. This definiton of a synthesizer distinguishes it from the oscillator or signal generator which derives its frequency from a tuned circuit or resonant cavity. The desired outpul frequency of these types of sources is produced directly by adjusting the values of oscillator componems. The stability and resolution of these sources are limited by these components. However, the synthesizer's oumpl frequency is synthesized or created by some lype of arithmetic operation on the basic frequency reference as shown in the syntiesizer model below.

As the model above shows, any desired frequency can be obtained by selecting the appropriate values for m and n. The frequency reference in the above model is in many cases an internal crystal, either ambient temperature or oven stabilized, while in other cases the reference is an external standand such as a crystal, rubidium gas cell or cesium beam.

Frequency generation

Synthesizers employ two general methods of generating the oupput frequency - direct and indirect synthesis. In the direct synthesis method, a series of arithmetic operations (multiplying, dividing, mixing) is performed on the reference to achieve the desired output frequency. High switching speed (microseconds) is the primary advantage of direct synthesizers.

Hewlell Packand synuhesizers use the indirect synthesis methed which derives its output frequency from one or more voltage tuned oscillators (VTO). The stability of the synthesizer comes from phase-locking the VTOs to the reference frequency or a harmonic of the reference via a pbase-lock loop (PLL). The VTO ourputs are then combined to achieve the desired output fre. quency. The primary advantage of the indirect methad is lower cost.
Signal quallty
The common speciñcations which describe signal sources include frequency range and resolution, amplitude range and resolution, distortion and stabiliry. These, plus severad additional parameters must be considered when comparing syathesizers. The two primary additional specifications perinent to the synthesizer are phase noise and spurious content.
Phase nolas: Phase noise describes the short term frequency stability of a signal source. Internal shor-term frequency fluctuations inherent in the signal source will produce phase modulation sidebands about the noainal frequency. Phase noise is at measure of the magoitude of these sidebands. There are two common methods of specifying phase noise - a sideband plot and inlegrated phase noise.

The first method expresses phase noise as the ratio of the power in one phase noise sideband per heriz of bandwidth to the total signal power. A sideband plot of the phase noise graphically displays the magnitude and frequency componeats (speciral density) of the phase noise.

Typical single-sideband phase noise measured ar outpue of Model 33368 Automaric Synthesizer in $1 . \mathrm{Hz}$ bendwidth with Instrument operating at 10 MHz .

The second method. integrated phase noise. is the ratio of the mis value of the total phase noise sidebands in a 30 kHz bandwidth around the carrier (excluding ± 1 Hz) to the power of the cartier.

For a detailed Incatment of the subject of phase noise and practical methods of measuring it, refer to Application Note \#207.
Spurlous slgnals: Spurious signals are discrete non-hamonically related signals appearing in the ourput. The spurious outpul specification is the maximum level, in dB below the canier, of any spurious signal.

Hewlett-Packard synthesizers

Hewleti-Packard offers a wide range of high quality frequency synthesizers covering the frequency range of DC to 18 GHz . In addition to being high performance symthesizers, they incorporate many addilional fealures which allow them to fulfill the needs for either bench or programmable precision signal sources or as versatile programmable signal generators.

Precise level control

Precision amplitude capability consisting of 100 dB ampliude mange, 0.05 dB flamess. and 0.01 dB resolution allow the $3320 \mathrm{~B} / \mathrm{C}$. 3330 B and 3335A to periorm as precision level generators as well as synchesizers. Precise leve) control using a True-RMS leveling loop eliminates the need for external leveling and level montoring.
Level contro!
The $8660 \mathrm{~A} / \mathrm{C}$ uses several interchange. able plug-ins 10 provide ourpui flexibility including a wide range attenuator and exceptionally flat frequency response across the full 2 to 18 GHz range.

Synthesized signal generator

The HP $8660 \mathrm{~A} / \mathrm{C}$ and 8672 A synchesized signal generators cover the range of 10 kHz 1018 GHz . These instruments combine synthesiver accumacy and stability and HP-IB programmability along with the precise modulation and output level calibration of a high quality signal generator. For complete details on these and other signal generators. please refer to the "Signal Generators" section.

Synthesized level generator

The HP 3335A is a synthesized level generator covering the range of 200 Hz to 80 MHz . Balanced ourputs, telecommunication output impedances and special connectors make this instrument ideal for the telecommunications industry as a stand-alone generator with symthesizer stability or as a companion generator for the HP 3745A/B SLMS. For detailed information on this generator, refer to the "Telecommunications" section.
Digital sweep
The 3330B, 3335A, and 8660 C are amons the most linear sweepers ever bull. Keyboard control of the built-in mieroprocessor gives both instruments digital sweep (a point-by-point sweep with frequency symbesizer accuracy).

The 3330 B also offers digital amplitude sweeps. Amplitude can be swept in increments as small as 0.0) dB to test levelsensitive circuils like voltage-controlied oscillators and automatic gain control loops.

Programmability (HP-IB)

The 3320B, 3330B, 3335A. 8660A/C. 8671 A , and 8672 A are programmable via the Hewlet1-Packard Interface Bus (HPIB), Hewleti-Packard's implementation of JEEE STD 488-1975. Multiple signal sources interfaced to the same interface bus each may be independently programmed for different functions or Irequencies.

Description

Covering a frequency range of $200 \mathrm{~Hz}-80 \mathrm{MHz}$, the 3335 A Synthesizer/Level Generator has performance characleristics that make it ideally suited for the relecommunications industry. as well as for traditional synthesizer applications. The 3335A's broid frequency range allows lesting of all classes of Frequency Division Mutiplex (FDM) equipment as well as R \& D and production testing of communications systems or components. In fatures precision tevel control. milliHertz resolution across iis entire frequency range, high spectral purity, optional frequency slability of $\pm 5 \times 10^{-}$"; jay. intemat frequency sweep and numerous user conveniences. The 3335A offer full programnability (IEEE Std. 488-1975) as a standard feature for use in automatic lest systems.

Micropyocessor Power

The 3335A uses a microprocessor which performs the overall control within the instrument. In addition, the microprocessor greatly simplifies upetation and provides additional powerful instrument features to include:

- Four modes of intemal frequency sweep for precision sweep applications.
- Automatic correction of the outpur amplitude display for different impedances.
- Intemal memory which will store 10 complete instrument fromt panel settings for rapid recall in repective tests.
- Out-of-limits waming for improper pammeter enlries.
- Arbitrany increment values for digitally stepping the output frequency, amplitude and phase.
- Selection of minimum output amplitude when instrumens is tumed on to preveint possibte damage to the circuil under test

Internal Storage

Characterizing a device under test often requires a selected number of spot frequencies and amplitudes. For manual lesling. this genemally means reselting all of the front panel settings every time a
change is desired. Not so with the 3335A. Up to 10 different front pancl settings (frequency, level. aincr, etc.) can be slored in intemal memory registers. Once stored, the contents of each register can be recalled to reset all front pancl controls to the preprogrammed condition, or if desired. only one parameter may be altered. The DISPLAY key allows viewing of register contents withoul atlering the synthesizer ouipul.

Precision Amplitude

Increasing channel capacity of Frequency Division Mulipiex (FDM) systems is comuinually placing more stringent requirements on the testing of transmission parameters. This, in turn, places funher demands on test equipment used to design and maintain FDM sysiems. One such area where new standerds of perfornance are being required is amplitude control. To meet these performance standards, the 3335 A incorporales a stale-of-the-an altenuator resulfing in atticnuator accuracies of tup to $=0.03 \mathrm{~dB}$ over the 80 MHz frequency range. To achieve these acturacies, the attenuater uses thin-film tantajum nitride resistor pads in a coaxial transmission line structure. A true rms leveling loop provides $=0.15 \mathrm{~dB}$ flatness over the entire frequency range. For limited frequency applications, the flaness is apeciried at $\pm 0,07 \mathrm{~dB}$ from 1 kHz 1025 MHz . For even greater flauness control or for leveling at the ouiput of a cable, an extemal leveling input is provided so the output can be leveled with an extemal DC signal.

Programmability

The 3335 A is fully programmable via the Hewlet-Packard Interface Bus (HP-IB), HP's implementation of IEEE Standard 488 1975. This industry-standand interface eliminates mechanical and electrical interface problems and greally simplifies software development. With the ease of interface, automatic test systems are economically justifiable for limited-volume applications or even one-time tests. Most Hewlett-Packard 9800 Series Programmable Calculators as well as Models 21 MX and 2100 series minicomputers are casily interfaced to the $\mathrm{HP}-1 \mathrm{~B}$.

Manual Tuning with Dlgital Preclsion

For applications which require manual frequency luning, the 3335A with its Rotary Pulse Generator (RPGi provides the optimal solution. This shaft encoder uses a dual optical sensor tu dipit ally increment (or deerement) the outpal frequency. Fine or charse uning is accomplished simply by selecting the digit to be tuned. The benefit of this type of tuning is that the "analog feel" is preverved while fully realizing the accuracy advantage of precision digital fre. quency generation.

Frequency Stability

The 3335 A synthesizes its output frequency from an imetnal rempenture-controlled erystal uscillator which provides ± 1 is $1\left(0^{-3}\right.$ iday frequency stabiliyy. For even more eaacting requirements. an opional high stability crystal with a 24 hour stadility of $\$ 5 \times$ $10^{\text {to }}$ is available. For instant um-on, the STANDBY position on the fower switch leaves power applied to the crystal oven wheneser the line cord is plugged in. Also, the 3335A can be phase-locked to any external frequency standard which is a subharmonic of 40 MHz from I MHz to 40 MHz .

Automatic Frequency Sweep

The 3335A combines the precision frequency accuracy and stabitity of a synthesizer with the time-saving convenience of a sweeper. Digital sweeping under the control of the microprocessor overcomes the major drawbacks of malog or ramp sweeping where the noise. non-lincarity and inaceumes of the analog signal is direcely translated to the ouput signal of the sweeper.

Signal Ouality

The 3335A features very high spectral purity. Hamonies are specificd it greater than 45 dB below the camier from 200 Hz 1010 MHz , and at 40 dB dowill for frequencies up to 80 MHz . Nonharmonically related spurious components are specified at greater than is dB below the cantier. Integrated phase noisc is also belter than -70 dB depending on output frequency.

SLMS - Tracking Generator

The 3335A operates as a tracking generator with the HP 3745A/B Selective Level Measuring Set (SLMS) for automatic or semiautomatic tsting of FDM systems. For closed-loop tracking where the 3335 A and $3745 \mathrm{~A} / \mathrm{B}$ ate in the same location. the frequency of the generator is controlled by the microprocestor in the SLMS. The 3745A/B and 3335A can sweep through any selectable frequency spectrum or cycle through the channels of a multiplex system by calling up the channel frequencies from the FDM plans stored in the memory of the SL MS. The 3335A and 3745A/B can also eperate in an open foop tacking mode where they are separated by the system under rest. For evell more measuremem power, the 3335A and 3745A/B can eavily the interfaced via the HP-IB

Specifications

Frequency

Aange: $200 \mathrm{~Hz}-80.999999999 \mathrm{MHz}$
Fesolution: 0.001 Hz .
Display: 11 Jigit LED display in Mriz. kHz , or Hz .
Stablity (higher stabillty avallable with Opt 001) $: \pm 1 \times 10^{-4} / \mathrm{day}$: $\pm 1 \times 10^{-1} / \mathrm{month}$
External frequency reference: the 3335A may be phase-locked with a 100 mV to 1.25 V mm signal that is any subhamonic of 40 MHz from 1 MHz through 40 MHz .
Frequency swltching and settling time: < 20 ms to within 90° of final phase.

Speciral purity

Harmonic components (relative to fundamental, full oulput): 200 Hz - $10 \mathrm{MHz}:-45 \mathrm{~dB}$.
$10 \mathrm{MHz}-80 \mathrm{MHz:}-40 \mathrm{~dB}$.
Spurlous: all non-harmonically related outpuls will be greater than 75 dB below the carrier or -125 dEm . whichever is greater.
Phase noise (30 kHz band, exc)uding $\pm 1 \mathrm{~Hz}$. centered on the carrier): $9.9 \mathrm{MHz}-63 \mathrm{~dB}: 20 \mathrm{MHz}:-70 \mathrm{~dB}: 40 \mathrm{MHz}:-64 \mathrm{~dB}: 80$ MHz: -58 dB .

Amplitude

Range

$50 \Omega:+13.01 \mathrm{dBm}$ to $-86.98 \mathrm{dBm}: 75 \Omega:+11.25 \mathrm{dBm}$ to -88.78 dBm.
Resolutlon: 0.01 dB .
Display: 4 digit LED display, anlomatically corrected for output impedance.
Absolute accuracy (full amplltude at $100 \mathrm{kHz}, 10^{\circ} \mathrm{C} 1035^{\circ} \mathrm{C}$): $\pm 0.05 \mathrm{~dB}$.
Note: To deternine absolute accumey tolemaces at other frequencies or amplimedes, the flatness and attenuator specifications must be added to the above securacy specification.
Fiatness (relatlue to 100 kHz , full amplifude): $1 \mathrm{kHz}-25 \mathrm{MHz}$: $=0.017 \mathrm{~dB}: 200 \mathrm{~Hz}-50 \mathrm{Mtz}: \pm 0.15 \mathrm{~dB}$.
Attenuator
Range: 98 dB in 2 dB sleps.
Accuracy (1 year)

Amplitude switching time: $<500 \mathrm{~ms}$ to within $\pm 0.02 \mathrm{~dB}$ of final value:

Sweep characteristics

Sweep Modes:

Slngle 10 soc: 10 second single sweep from min. 10 max. frequency.
Single 50 gec: 50 second single sweep from min. to max. frequence.
Manual: bidifectional sweep, rate and direction conirolled by the frequency loning knob (RPG).
Auto: repetitive sweep from min. 10 max. frequency al a numinal rale of 135 mis per sweep.
Center frequency; miny be sel to siny frequency from $200 \mathrm{~Hz}-80$ MHz .
Sweop wldth: may be sel to any width from 1 Hz to $\mathrm{RO} \mathrm{MH} \%$ provided the rewlana sweep does nul exced the $200 \mathrm{~Hz}-80 \mathrm{MHz}$ instrument frequency range.
Number of steps: 10 sec. 50 sec.. MANU'AL: 1000 sicps; A UTO (125 ms): 100 steps.
Phase discontlnultes: there will be no significant plase discontinuilies provided the following breakpoints are nol crossed: $200 \mathrm{~Hz}-<10 \mathrm{MHz}$; 1 MHz points, e.g. $1 \mathrm{MHz}, 2 \mathrm{MHz}$, elc.
$10 \mathrm{MHz},<20 \mathrm{MHz}: 250 \mathrm{kHz}$ poinis. c.g. $10.25 \mathrm{MHz}, 10.5 \mathrm{MHz}$. eic.
$20 \mathrm{MHz} \cdot<40 \mathrm{MHz}: 500 \mathrm{kHz}$ points.
$40 \mathrm{MHz}-80 \mathrm{MHz}$: I MHz points.

Opt 001 (high stabillty frequency reference)

Aglong rate: $=5 \times 10^{-14} /$ Say; $\pm 2 \times 10^{-8} /$ month: $\rightarrow 1 \times 10^{-7} /$ year.
Temperalure coelflcient: $<7 \times 10^{-9}$ frequency change $1010.50^{\circ} \mathrm{C}$ range).
Warm up: reference will be within 5×10^{-v} of final value 20 minutes afterturn-on at $25^{\circ} \mathrm{C}$ (linal value is defined as the frequency 24 hours aller (um-on).

Opt 002/004

For specifications not listed below. refer to standard insirument specifications.
Frequency
Range: 75Ω : $200 \mathrm{~Hz}_{2}-30.999999999 \mathrm{MHz}: 124 \Omega$: $10 \mathrm{kHz} \cdot 10$ M\&z: 135Ω : $10 \mathrm{kHz}-2 \mathrm{MHz}$
Resolution: .001 Hz .
Spectral purity
Harmonlc components [relative to fundamental, full outpul (75Ω), $0 \mathrm{dBm}(124 \Omega / 135 \Omega) \mathrm{I}: 200 \mathrm{~Hz}-10 \mathrm{MHz}:-45 \mathrm{~dB}: 10 \mathrm{MHz} 80$ MHz: -4its.
Nonharmonic spurious signals ($25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$):
7512: 75 dB helow the carrier or -125 dBm , whichever is greater.
124 : 75 dB below the cirricr or -97 dBm , whichever is greater.
1359: 75 JB below the carriet or -100 ABm , whichever is greater.
Amplilude
Range: +11.25 dBm to -86.74 dBm .
Resolutlon: 0.01 dB .
Flatness (relative to 100 kHz at full amplitude):
$75 \mathrm{I}: 1 \mathrm{kHz}-25 \mathrm{MHz}: \pm 0.07 \mathrm{~dB}: 200 \mathrm{~Hz}-80 \mathrm{MHz}: \pm 0.15 \mathrm{~dB}$ $124 \Omega: 50 \mathrm{kHz}-10 \mathrm{MHz}: \pm 0.15 \mathrm{~dB}: 10 \mathrm{kHz}-10 \mathrm{MHz}: \pm 0.40 \mathrm{~dB}$ $13512: 10 \mathrm{kHz}-2 \mathrm{MHz} \pm 0.18 \mathrm{~dB}$
Aceuracy at lull oulpul ($100 \mathrm{kHz}, 10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$): $75 \mathrm{I}:=0.05 \mathrm{~dB}$:

Amplitude accuracy (includes the effects of llatness and at(enuator)

750		$\mathrm{H}_{2} 25$	$\mathrm{Hz} \quad 80 \mathrm{MHz}$
0	$\pm 0.25 \mathrm{~dB}$	$\pm 0.15 \mathrm{~dB}$	$=0.35 \mathrm{de}$
$\stackrel{\rightharpoonup}{2}$	$\pm 0.30 \mathrm{~dB}$	$\pm 0.20 \mathrm{~dB}$	$\pm 0.45 \mathrm{~dB}$
3	$=0.40 \mathrm{~dB}$	$\pm 0.30 \mathrm{~dB}$	$=0.70 \mathrm{~dB}$

- Levels down $10-88.74 \mathrm{dBm}$ can be selecied. however, accuractes are unspecified due to spurious noise floor of -100 dBm .

Outputs

Output Impedances: 759 unbilanced, 12491 balanced. 135s: balanced
Signal Balance (100 kHz) : $>60 \mathrm{~dB}$.
Opt 002
75 12: commercial equivalent of WECO type 477B (accepes WECO plag ISNA).
124S: commercial equivalent of WECO type 477 B at 16 mm ($0.625^{\prime \prime}$) spacings (accepts W'ECO plug 372.11
135 12: commercial equivalent of WECO type 223A at 16 mm $\left(0.625^{\circ}\right)$ spacings (accepis WECO plug 241A).
Opt 004
75 Q: commercial equivalent of WECO type 560A (accepls WECO plug 439A or 40. A).
124 ?: commercial equivalent of WECO type 560 A at 12.7 mm $\left(0.5^{\prime \prime}\right)$ spacings (accepis WECO plug 44.3 A$)$.
135 ת: commercial equivateni of WECO iype 223A al la mm (0.625") spacings (accepts WECO plug 241 A).

Opt 003

Frequency
Range: 75Ω : $200 \mathrm{~Hz}-80.999999999 \mathrm{MHz}$: $150 \Omega: 10 \mathrm{kHz}-2 \mathrm{MHz}$.
Resolutlon: .001 Hz .
Spectral purlty
Harmonla components [relative to lundamental full output $(75 \Omega), 0 \mathrm{dBm}(150 \Omega)): 200 \mathrm{~Hz}-10 \mathrm{MHz}:-45 \mathrm{AB}, 16 \mathrm{MHz}-80 \mathrm{MHz}$ -40 dB .
Nonharmonle spurious signals
$750: 73 \mathrm{~dB}$ below the carrier or -125 dBm , whichever is greater.
15012: 75 dB below the carrier or -100 JB m , whichever in greater.

Amplitude

Range: + $11.25 \mathrm{k} 0-88.74 \mathrm{dBm}$.
Resolution: 0.01 dB .
Flatness (relative to 100 kHz at fult amplitude): 75Ω : $1 \mathrm{kHz}-25$
$\mathrm{MHz}:=0.07 \mathrm{~dB}, 200 \mathrm{~Hz} .80 \mathrm{MHz}: \pm 0.15 \mathrm{~dB} ; 150 \mathrm{I}: 10 \mathrm{kHz}-2 \mathrm{MHz}$ $=0.18 \mathrm{~dB}$.
Accuracy al full output ($100 \mathrm{kHz}, 10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$): 75 n : $=0.05 \mathrm{~dB}$: 150 1:: $工=10$ dB.
Amplitude accuracy (Includes the effects of llatness and atlenuator)

> Levels down to - 88.74 dBm can be selected. however accuracies dfe unspecilied due to spurigus nolse flont of -100 dBm .

Oulputs

Output Impedances
75Ω Unbalanced, 150Ω Balanced
Slgnal Balance (100 kHz) : $>60 \mathrm{~dB}$
Conneclors
75Ω : BNC: 150 : Pair of BNC: it 20 nım ($0.8^{\text {") spacings }}$

General

Warm-up Tlme
Standby to "ON": <20 s to foll frequency specifications, <30 min. to full amplitude specifications.
Applicatlon of power 10 "ON": $<30 \mathrm{~min}$. 10 meet smplitude specifications and to be within 1 z 10^{-7} of final frequency. (linal vilue is defined as the frequency 24 hours after turn-on).
Operaling environment
Temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
R.H.: $<95 \%, 0^{\circ} \mathrm{C} 10+40^{\circ} \mathrm{C}$.

Siorage temperature: $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Power: $100 / 120 / 220 / 240 \mathrm{~V},+5 \%,-10 \% ; 481066 \mathrm{~Hz} ; 195$ VA. Welghl: nel: 18.2 kg . (40 lbs). Shipping: 26.8 kg . (59 lb).
Size: $132.6 \mathrm{H} \times 425.5 \mathrm{~W} \times 497.8 \mathrm{~mm} \mathrm{D}\left(514^{\prime \prime} \times 16^{3} / 4^{\prime \prime} \times 19^{3} / \mathrm{s}^{\prime \prime}\right)$.
Ordering Information Price

3335A \$7000
Opt 001 add $\$ 580$
Opt 002
Opt 003
Opt 004
add $\$ 200$
Prices effective In U.5. A perly
add $\$ 300$

Descriptlon

The 3200 AB Frequency Synthesizer has the frequency accuracy. stability, and tesolation demanded by many of today's exaciog apphications. The ease end flexitility of adding greater stability means the 3320A/B can be tailored to your needs as they emerge. Spectral purity and bow signal-10-phase noise complement the frequency qualitics of the $3320 \mathrm{~A} / \mathrm{B}$.
The 3320 B is mose than a synchesizer. He offers necise fevel con. trol, superiar frequency response, low hamonic distortion and high power output.
Two choices of digitad remote control ationd great flexibility for today's system applications. High precision in both frequency and amplitude meons that expensive system monitoriag is unnecessary.

Frequency

The 3320A/B Frequency Synthesizer has a broad frequency range of 0.01 Hz to 13 MHz in seven frequency ranges.
Three digits phas a ten-turn iwo-digil continuous vermier, plus 30% overrange capatility, gives the $3320 \mathrm{~A} / \mathrm{B}$ one part in 10^{11} frequency resolution acrose its total frequency range.

Amplitude

The 3320A has a maximum one voll rms into 50 ohms ollput $1+13$ dBm with a continuous +13 dBm to 0 dBm amplitude vemier.

The 3320B features a four-digir leveling loop with a 0.01 dB level
resolution of a calibrated output from +26.99 dBm io -69.99 dBm (-73.00 dBm under remore contrall.

Frequency response of $\pm 0.05 \mathrm{~dB}$ over the range of 10 Hz to 1? MHz . and level accuracy of $\pm 0.05 \mathrm{~dB}$ in absolute n 10 kHz . complement the level capability of the 3320 B .

Programmability/remote control

The $3320 \mathrm{~A} / \mathrm{B}$ is a programmable signal source. Digital remole control capability may be purchased installed in the instrument. or may be added later if the need arises.
The 3320A. with its Option 003. allows parallel BCD remotc conrol of frequency only. The first digil of the frequeney vemier, the frequency range, and the main frequency digits may be controlled remotely.

The 3320B has iwo remote control options. Buth options allow full control of all functions excepl the last verner digit and the line switch. Option 004 is parallel BCD remote conirol capability. Option 007 ($\mathrm{HP}-1 \mathrm{~B}$) is a unique bil-parallel/word serial programming option. The Hewlett Packard Interface Bus (HP-IB) provides a low-cost versatile way to interconnect instruments digitally.

Specifications

Frequency range: 0.01 Hz to 13 MHz in 7 ranges.
Frequency ranges: $10 \mathrm{MHz}, 1000 \mathrm{kHz} .100 \mathrm{kHz} .10 \mathrm{kHz} .1000$ Hz : 100 Hz and 10 Hz (optional). 30% overrange on all ranges.

Frequency resolution

Rang:	Wernier Out (iceal or remote)	Vernier in (10cal)	Vernier in (vemate)
J0 M MH_{2}	10 kHz	10 Hz	1 kHz
1000 kHz	1 kHz	1 Hz	100 Hz
100 kNz	100 Hz	C. Hz	10 Hz
10 h Hz_{2}	10 Hz	021 Hz	1 Hz
1000 Hz	1 Hz	1 mHz	0.1 Hz
100 Hz	(1) H2	0.1 mhl	0.02 Hz
$10 \mathrm{H:}$	$\mathrm{OClHz}^{\text {c }}$	0.01 mH	0.001 Hz

Frequency accuracy

Vernier out: $\pm 0.001 \%$ of setting for $6 \mathrm{mo} .0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Vernier in: $\pm 0.01 \%$ of range for $6 \mathrm{mo}, 0^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.
Frequency stabllity
Long term: ± 10 parts in 10^{6} of selting per year (vemier out) with umbient temperature reference. Optional high stability erystal reference oven available (Option (NO2),
Signal-to-phase nolse (integrated): $>40 \mathrm{~dB}$ down in 30 kHz band, excluding t) Hz , centered on carrier. 10 MHz mase. vernier out. Improves on lower frequency ranges.
Harmonic distortion: with outpul frequencies >0.1 y of range at full output amplitude, any hamonically related signal will be less than the following levels: -60 d 解 with oupul from 5 Hz 10100 kHz : -50 dB with output from 100 kHz to $/ \mathrm{MHz}$; -40 dE with output from 1 MHz to 13 MHz .
Spurious: $\geq 60 \mathrm{~dB}$ down.
Internal Irequency standard: $20 \mathrm{MH} \geq$ crystal.
Phase locking: the $3320 \mathrm{~A} / \mathrm{B}$ may be phase locked with a 200 mV 10 2 V ms signal that is any subharnonic of 20 MHz .
Rear panel output: front or rear panel output is standard.
Auxiliary outpuis
Tracking outputs: 20 MHz to 33 MHz offser sienal. $>100 \mathrm{mV}$ rms/50s.

1 MHz reference output: 220 mV rms $/ 50 \mathrm{O}(>0 \mathrm{dBm} / 50 \Omega$).

Low leval output: same frequency as main output but Temains belween 50 mV rms and 158 mV mis (into 50Ω) depending on main oupul level setting.

3320A Amplitude section

Amplitude: maximum i $\mathrm{V} \mathrm{ms}=10 \%$ into 50Ω.
Ampltude range: 0 dBm to +13 dBm range through $3 / 2$ tum front panel control (not programmatle).
Frequency reaponse: $\geq 2 \mathrm{~dB}$ over loral range.
Output Impedence: 50Ω (75Ω. Opl 001).

33208 Amplifude section

Amplitude range: +26.99 dBm (1/2 walt) to $-69.99 \mathrm{dBm}(-73.00$ d Bm under remore controf) into $50 \Omega .(+26.99 \mathrm{dBm}=5 \mathrm{~V}$ rms into 50 O.
Amplitude resolution: 0.01 dB
Frequency response (10 kHz reference):

10 Hz	
	$=0.05 \mathrm{~dB}$
$=0.5 \mathrm{de}$	301) 49
	$=0.2 \mathrm{de}$
	$=0.468$

$-26.99 \mathrm{dBog}$
$-3.00 \mathrm{dBm}$
$-2300 \mathrm{dBm}$
$-53.00 \mathrm{cEm}$
$-73,0048 \mathrm{~m}$

Ampllude accuracy (absolute): $+26.99 \mathrm{dBm} .=0.05 \mathrm{~dB}$ at 10 kHz and $\left(20^{\circ} \mathrm{C}\right.$ to $30^{\circ} \mathrm{C}$).
Output lmpedance: 50Ω (75Ω Option 001).

Options

001 (3320A/B) 76 ohm: amplirude range (3320B only) +24.99 dBm $10-69.99 \mathrm{dBm}(-75.00 \mathrm{dBm}$ under remole control into 75Ω.
002 (2320A/8) crystal oven*: 5 MHz crystal in tempenture stabilized oven. Long term stability: $=1$ part in $10^{\text {n/ day: }}=1$ part in $10^{\circ} / \mathrm{mo}$. Frequency acelaracy: $=1$ part in 10^{7} of selting per mo. For field installation order accessory kit HP 11237. .
003 (3320 A only) BCD remote control': allows digital remure control of trequency only on 3320A. The most significunt digit of the vemicr may be programmed, thus giving four digits, plus 30% overrange, control of frequency in seven ranges (two are optional). Frequency switching and setting time: $=0.1 \%$ of range, 15 ms , ± 0.001 cs of range, 60 ms . For field instathation onder accessory kit HP 11238 A .
004 (3320 only) 8CD remote control': : allows digital remote control of irequency and amplitude, "2Four digits of frequency, overrange, frequency range. Vemier IniOut, four digits of amplitude. and leveling foon response times are all controlled digitally. Frequency switching and setting sime is $=0.01 \%$ of range. 15 ms ; $\pm 0.001 \%$ of range, $(0) \mathrm{ms}$. Amplitude swithing and setting time: < 1.5 s to rated accuracy. For field installation, order accessory kit HP 11238 C
$006(3320 \mathrm{~A} / \mathrm{B}) 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ Ranges*: auds swo lower frequency ranges, 100.0 Hz and 10.00 Hz , yichling greater resolution for low frequency outputs (see resolution section of specifications). These iwo ranges are fully' programmatele if digital remote options are installect. For field installation, order Accessory Kit HP 11240 A.
007° (3320B only) HP-IB remote control: allows bit-parallel word-serial remole control of all functions. *This fully-isolated option allows the 3320 B to be interconnected with up to 14 additional HP . IB compatible insImments on a common interface bus. Using a unique addressing scheme, the 3320 B con be singled out to receive its individual programning instructions on the bus. This permits several 3320B's to be intercennected to the same interface bus, each programmed to different frequencies and amplitudes. All front panel conirols are disabled when in remote control. For field installation, order Accessory Kit, HP 11239C.
Logic Level Requirements for all Digital Remote Control Options.

State
"Low' (lagical "I")
"High" (logical "0")

Requlrements

0 V e $0.4 \mathrm{~V}(5 \mathrm{~mA}$ max.) or contact closure 10 ground through <80 ohms.
$+2.4 \mathrm{~V} 10+5 \mathrm{~V}$ or removal of comact closure 10 ground.

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.
Power requlrements: 115 V or $230 \mathrm{~V}=10 \%, 48 \mathrm{~Hz}$ to $63 \mathrm{~Hz}, 110$ VA max.
Weight
$3320 \mathrm{~A}:$ net. 14.4 kg (32 lh). Shipping, $18.7 \mathrm{~kg}(40 \mathrm{lt})$.
3320 B : mel. 15.9 kg (35 fb). Shipping, $19.5 \mathrm{~kg}(43 \mathrm{fb})$.
Size: $132.6 \mathrm{H} .425 \mathrm{~W}, 542.9 \mathrm{~mm} D\left(5^{\prime} / \mathrm{az}^{\prime \prime} \times 16^{1 / 4^{\prime \prime}} \times 23^{\left.3 / 8^{\prime \prime}\right)}\right.$.
Options and accessories
Price
3320A/B Opt 001: 75n ourput N/C
3320A/B Opt 002: Crystal Oven $\$ 500$
3320A Opt 003: BCD remote control $\$ 355$
33208 Opt 004: BCD remote control
$3320 \mathrm{~A} / \mathrm{B}$ Opt 006: 100 Hz i 10 Hz ranges $\$ 425$
$\begin{array}{r}\text { S238 } \\ \hline\end{array}$
$3320 \mathrm{OpI} 007: \mathrm{HP}$-18 remote control $\$ 765$
11048C: 50Ω fecdthrough termination $\$ 17$
110948: 75 \AA feedthrough termination \$17
11473-76A: Balancing Transformers. (see page 517.) $\$ 290$

Orderlig information

3320A Frequency Synthesizer
$\$ 2600$
3320B Frequency Synthesizer
$\$ 3665$

- Fiak installable
- Ercept last vernier birit and line switch.

0.1 Hz to 13 MHz automatic synthesizer

Model 3330日

- HP-IB
- Digital sweeping of frequency and amplitude

Description

The filly prognmmable ($\mathrm{HP}-1 \mathrm{~B}$) 3330B Frequency Synthenizer has a frequency stibility of $\pm 1 \times 10^{-8}$ per day, -50 dB signal- to phase noise, with a constant resolution of 0.1 Hz up to 13 MHz . Amplitude can be controlied to a resolution of 0.01 dB over a 100 dB range.

Solid-state displays show frequency and amplitude. Nine digits of frequency and four digits of amplitude nre displayed on the Model 3330 B .

Spectral purity. rot normally associated with frequency synchesizers, is a unique leature of the 3330 B . Spurious is 770 dB below the carrier and harmonies are $>60 \mathrm{~dB}$ to 40 dB below the cartier. depending upon the frequency seting. As a sweeper, the 3330B uses digital sweeping for linearity. Either single or continuous sweeps may be set up. Pammeters such as center frequency. frequency step, time per step, and the number of steps go into the memiory. then are executed ty pressing a single button. The ROM operates the sweep as set up until told to stop. Many of the sweep parameters can be changed while the instrument is sweeping. The instrument sweeps anplitude in steps as small as 0.01 dB . The amplitide cin be slepped at the end of each frequency sweep cycle to produce a lamily of curves.

Specifications

Frequency range: 0.1 Hz to 13.000 .999 .9 Hz .
Frequency resolution: 0.1 Hz (8 digits + overrange).
Frequency stability
Long term: $\pm 1 \times 10^{-4}$ of frequency per day. $\pm 1 \times 10^{-7}$ of frequency per month.
Temperature: $\pm 1 \times 10^{-5}$ of frequency al $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. $\pm 1 \times 10^{-9}$ of irequency at $0^{\circ} \mathrm{C}$ so $55^{\circ} \mathrm{C}$.
Signal to phase noles (Integrated): 50 dB down in a 30 kHz tand. excluding $\$ 1 \mathrm{~Hz}$, centered on carrier.
Harmonic distortion: with full oueput amplitude, any harmonically related signal will be less than the following specified levels.

5 Hz to $100 \mathrm{kHz}:-60 \mathrm{~dB}$.
100 kHz to $1 \mathrm{MHz}:-50 \mathrm{~dB}$.
1 MHz to $13 \mathrm{MHz}-40 \mathrm{~dB}$.

Spurlous

All nonharmonically related spurious signals will be greater than 70) dB below selected output level or $=110 \mathrm{dBm} / 50 \Omega$. whichever is greater.

Frequency switching and setulng ilma: the cime required for frequency switching and sectiing is a function of the largest frequency digit alfecled by the frequency change in question.

tagest digh chartrod	OIHz $\mathrm{O} \mid \mathrm{Hz}$	$\begin{gathered} 10 \mathrm{~Hz} \\ \text { or } 100 \mathrm{He} \end{gathered}$	$\begin{gathered} 1 \mathrm{kHz} \\ \text { of } 10 \times 12 \end{gathered}$	100 kHz .1 MHD C 10 Whz
Swichine and setting lime	$\begin{aligned} & -1 \text { nis to } \\ & \text { wihhin } \\ & 500 \mu \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & \text { e I ms to } \\ & \text { within } \\ & 0.05 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & <1 \mathrm{~ms} \text { to } \\ & \text { within } 5 \mathrm{~Hz} \\ & <50 \mathrm{~ms} \mathrm{lo} \\ & \text { winin } 0.01 \mathrm{~Hz} \end{aligned}$	<1 ms to whinin $500 \mathrm{~Hz}=50 \mathrm{~ms}$ Io whin) ho

Internal frequency reference: 5 MHz crystal oscillator in temperalure tlabilized oven.

Frequency adjustments

Coarse: intemal adjustment adequate for five years of aging.
Fine: one ium por or $\pm 5 \mathrm{~V}$ de Cor 1.2 to 2.5×10^{-1} max control with internal reference or 3×10^{-5} max control with rear pancl switch in ext. ref. position without an extemal reference applied.
External frequency reterence: the 3330 B may be phase locked with a 200 mV to 2 V oms signal that is any subharmonic of 3 J MHz from 1 MHz through 10 MHz .
Rear panel output: front or rear panel ourpur is stundard.

Auxiliary outputs

$20-33 \mathrm{MHz}$ trackling output: $>100 \mathrm{mV}$ nas/50n.
1 MHz roference oulput: $>220 \mathrm{mV} \mathrm{ms} / 50 \Omega(0 \mathrm{dBm} / 50 \mathrm{n})$.
Synthesized search or tune: a frequency step (0.1 Hz min) may be entered. This step may be added to or subtracted from the syathesized oulput signal. Rate of search orture is selecied by the time per slep conirol.
Digital sweeplng of frequency: accomplished by entcring and setling the center frequency, a frequency' step. number of steps. time per slep, and sweep direction.
Sweep wath: the producl of the step size and number of steps.
Step size: conlinuously adjustable in 0.1 Hz increments.
Step accuracy: $=1 \times 10^{-x}$ per day for standard reference crystal. Number of eteps: 10,100 or 1000 .
Time per step: I ms. $3 \mathrm{~ms}, 10 \mathrm{~ms}, 30 \mathrm{~ms}, 100 \mathrm{~ms}, 300 \mathrm{~ms} .1000 \mathrm{~ms}$. and 3000 ms .
Direction ol sweep; up, both, down.

Single sweop；initiated by momentary pushbutton．
Continuous sweep：initiated by momentary pushbuiton．
Manuel sweep：accomplished by holding down the freq \uparrow or freq \downarrow keys．Display will follow outpul．
Sweep output：stepped de voliage proportional to sweep position， 0 $10 \div 10 \mathrm{~V}$ ．
Accuracy：$=0.2 \%$ of full scale．
Lriesarity：$\pm 0.1 \%$ of full scale．
Digital outputs
Step count： 0 to 1000 count on 12 BCD（1－2－4－8）lines to indicate sweep position．
Sweep status：line to indicate when insiniment is sweeping．
Step ready：indicates instrument has spent the selected time per slep and is ready 10 go to the next step．
sweep modiflcation（continuoua）：during a conlinuous sweep，the step size，center frequency，sweep direction，and time per slep may be cbanged without stopping the sweep．
Center Irequenoy modification：accomplished by pressing freq \uparrow or freq．
Frequency step；Io widen or narrow the sweep width，the fre－ quency step size nay be expanded or comracted by factors of 2 or 10．The keys labeled freq step $\times 2$ ，freq step $\div 2$ ，frea step $\times 10$ and freq step $\div 10$ may be pressed．
Swaep modification（slingle）：during a single sweep．the lime per step and direction sweep may be changed withoul stopping the sweed．

Amplitude section

Amplitude：maximum 2．1 V rms into open circuit：maximum 1.05 V mes inlo 50Ω ．
Amplltude range：$+13.44 \mathrm{dBm} 10-86.55 \mathrm{dBm}$ into 50Ω ．
Amplliude resolution： 0.01 dB ．
Output Impedance： 50Ω（ 75Ω Opt 001）．
Display：four digit readout in dBm with reference 1050Ω ．
Leveled irequency response：（ 10 kHz reference） $10 \mathrm{~Hz}-13$ MH2．
+13.44 dBm to $-16.85 \mathrm{dBm}=0.05 \mathrm{~dB}$ ．
-16.55 dBm to $-36.55 \mathrm{dBm}:=0.1 \mathrm{~dB}$ ．
-36.55 dBm to $-66.55 \mathrm{~dB} \mathrm{~m}: \pm 0.2 \mathrm{~dB}$ ．
-86.85 dBm to $-86.55 \mathrm{dBm}: \pm 0.4 \mathrm{~dB}$ ．
Amplltude attenuator aceuracy：$=0.02 \mathrm{~dB} / 10 \mathrm{~dB} \operatorname{stcp}(a 110 \mathrm{kHz}$ ） of attenuation down from maximum output．
Ampiltude accuracy（absolute）：$\pm 0.05 \mathrm{~dB}$ at 10 kHz and $+[3.44$ $d B \mathrm{~m}\left(15^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right.$ ）．（For absolate accuracy at other frequencies and amplitudes，ado 0.05 dB to the leveled frequency response specifica－ tion，plus the attenuator accuracy specification．）
Amplitude modulation：requires exteraal modulation source．Rear panel BNC．ALC switch must be in slow position．

Modulating slgnal： 100 Hz to 100 kHz ．

Modulation depth： 0.95 V mns modulating signal for 95% mod－ ulation depth．
Digital aweeping of amplitude：accomplished by entering and set－ ling the center amplitude，an amplitude step．number of steps，time per step and sweep direclion．
Type：linear and symmetrical about the center amplitude．
Sweep width；product of the step size and number of steps．
Step size： 0.01 dB to 99.99 dB in 0.01 dB inerements．
Number of steps： 10,100 ，or 1000.
Time per step： $30 \mathrm{~ms}, 100 \mathrm{~ms}, 300 \mathrm{~ms}, 1000 \mathrm{~ms}, 3000 \mathrm{~ms}$ ．
Direction of sweep：up，boih．down．
Slngle sweep：momentary pushbutcon．Display follows output． Contlnuous sweep：momentary pushbutton．Display of center amplitude or step．
Manual sweep：accomplished by holding down the ampl \uparrow or ampl \downarrow keys．Display will follow output．Sweep output，digital outputs， －Mad ± 0.5 de fer levallag off．
sweep modification（continuous），sweep modificalion（single），all the sime as with frequency sweep．

Digital zemote control

Remote control of the 3330B is accomplished via the Hewlett－ Packard Interface Bus（HP－18）which is a standard feature of the instrument．Beth the standand nonisolated HP－1B version and an oplional isolated HP－IB version（Opt．004）allow full programming of all frequency，amplitude and sueep fonctions．

The HP－1B interiace allows the 33908 to be interconnected with up to 14 additional HP－IA compatible instruments on a common iaterface bus．Using an industry－standard addressing scheme，the 3330日 can be singled out to receive its individual progeamming in－ structions．This permits multiple 3330 B s，or other HP－IB sources， to be commected to the same interface bus，each programmed to different frequencies and amplitudes．

Connection of instruments to a system controller is vastly simplified since all HP－IB instruments are Interfaced with a common $1 / 0$ card and driver．Hewlett－Packard Models 981SA，9825A． 9830 A and 9831A Calenlators，and Models 21MX and 2100 Series computers are all compalible with HP－IB．

Options

001： 75 ohms－I V rms（factory instaltation only）．Attenuation and outpus referenced to 75Ω ．

Amplitude range：+14.25 dBm to -88.74 dBm ．
002：High Stability Crystal Oven．
Long term frequency stabllity：$\pm 1 \times 10^{-5}$ per day．$+2 \times 10^{-8}$ per month．
Long term temparature：$\pm 1 \times 10^{-0}$ total frequency at $25^{\circ} \mathrm{C}$ ， $\pm 10^{\circ} \mathrm{C} . \pm 1 \times 10^{-6}$ total of frequency al $25^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C} 10+55^{\circ} \mathrm{C}$ ．
Frequency adjustmenta：same as standard insiniment．
003 ：delction of Crystal Oven． 20 MHz ambient temperature crystal reference uscillator．

Frequency stabllty：± 10 parts in $10^{8} / \mathrm{yr}$ ．
Frequency adjustmenta：rear panel I tum poi or rear paoel volt－ age control input for 30×10^{-6} naximum control．
004：isolated Digital Input（factory installation only）．With ibis op－ tion，the digital input lines are electrically isolated from the signal ground．（HP－IB）

DC Isolation：$\pm 250 \mathrm{~V}$ ．
AC Isolation：$>30 \mathrm{~dB} .0$ 10 1 MHz ．
005： 5 V mms－50 ohm uutput．This option gives the 3330 B a $1 / 2$ watl output．

Amplliude range：+26.99 dBm to -73 dBm into 50 ohms．

General

Operating temperalure： $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ ．
Storage temperature：$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ ．
Tumf on tme：application of power $10^{\prime \prime} \mathrm{On}^{\prime \prime}$ ： 20 min to within $\pm 1 \times$ 10^{-7} of the final frequency．
＂Standby＂to＂On＇： 15 s to full specífations．
Power requlrements： 115 V or $230 \mathrm{~V}=10 \%$ ， $48 \mathrm{~Hz} 1063 \mathrm{~Hz}, 20 \mathrm{~W}$ standby． 200 W on．
Welght：net， $22.6 \mathrm{~kg}(53 \mathrm{lb})$ ．Shipping， 26.8 kg （63 ）b）．
Dimensions： $177 \mathrm{mmH} \times 426 \mathrm{~mm} \mathrm{~W} \times 547 \mathrm{mmD}\left(7^{n} \times 16^{3} /^{\prime \prime} \times\right.$ $21^{\left.1 / 2^{\prime \prime}\right)}$ ．
Options Price
001：75』－I V oulput N／C
002：crystal oven add $\$ 580$
003：deletion of oven less \＄150
004：isolated HP－IB add $\$ 440$
005： $5 \mathrm{~V}-50 \Omega$ outpue
add $\$ 295$

Hewlett-Packard calibention instruments provide accurate and precise de and ac stimulus for your calibration needs. Accurate de voltage measurements capability 10 1000 volis is also available for testing dc power supplies and olher precision de sources. Sce Table 1 for a list of instrument tealures.

Table 1.

FUNCTIIN	Randide	REsOUTMOM	MODEL HO.	Page
AC wals	1 mv -1000 v°	1 ppm	7454	354
AC vole: OC volis AC amps DC amps	0.01 V-1000 V	3 digits	5920]	353

- X10 Ampintier lea 74sa
- Calibrate/test DC ammeters up to 4 amps
- Calibrate/test average-reading AC ammeters up to 5 amps

Description

Model 6920B is a versatile ac/dc meter calibrator. capable of both constant-volcage and constant-current output. Its absolute accuracy nakes it suitable for laboratory or production testing of panel meters, muhtimeters. and other meters having actumay on the order of 1.0% or higher. This calibator has been designed for convenience. and combines in one insinment all the outputs needed to test the most commonly used meters.

Output switch

The oupput switch has iwo ON positions. The ON TEST position has a momentary contact and output is obrained only while the switch is held $O N$. This is convenient when several full scale readings are being checked successively and the meter and calibrator are being switched through their ranges. The ON HOLD position is used when continnous output is desired.

AC output waveshape

When the fuaction switch is set on AC, the outpur wave-shape is sinusoidal (to a first approximation) and has the same frequency as the input line power applied to the instrument <except when an extemal ac reterence is used). The feedback loop. which controls and regulates this ac, is actually monitoring the average value of the ac output alihough the front panel controls are calibrated in torms of rims. Thus. this calibrator is suilable for use with average-rending ac voltmeters seated in rms. In addirion, the calibrator can be used with true-mis meters. provided allowince is made for the total output distortion. This distortion is approxinately equa) to the line inpul wavesliape distortion (or distortion or the extermal ac reference) plus 3%.

- Callbrate/test DC voltmeters up to 1000 volts
- Calibrate/test average-reading $A C$ voltmeters up to 1000 volts

Specifications

Ouiput voltage ranges

$0.01-1 \mathrm{~V}$: current capability 0.5 A .
0.1-10 V : current capability (0) A .

1-100 V: curren capability o- 190 mA.
$10-1000 \mathrm{~V}$: curem capatility $0-10 \mathrm{~mA}$.
Above ourpur voltate mages and maximum current capabilities for each range apply lio either de or ac operation.
Output current ranges (5 A maximum oupuls
1-100 $\mu \mathrm{A}$: soltage crnability $0-500 \mathrm{~V}$ (uncin iflemed in AC).
0.01-1 mA: voltage capahility $0-500 \mathrm{~V}$.
$0.1-10 \mathrm{~mA}$: volage capability 0 (500 V .
1-100 mA: vollage capability $10-50 \mathrm{~V}$.
0.1-10 A: volage eapribility $0-s \mathrm{~V}$.
0.1-10 A: is A nux. uspre) volate capability 0-0.s V.

Ahove ourput current ranges and maxmum volluge capabilutes for wach range apply for either de, $50 \mathrm{H} \angle$ or 00 Hz , operation.
Output aecuracy: $\mathrm{DC}-0.2 \%$ of sel value plus 1 digit. AC- 0.4% of sel value plas I digit (when ised with average-reading meters). Above accuracy applicable over a emperature range from $15^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$. over fill ingut voltage range, ind after 1 -hour warmup.

Cantrols

Functlon awitch: i-positions: OFF, AC, and DC. In the OFF position the in power inpur is disconnected from the unit. In the AC powition the meter calilyator produces an ac oupon, and in the DC povition the cillituator produces ade onlput.
Range switch: 10 positiens, one for each voltase and current range. Calfbrated output control: digital potentiometer readoul cornrol (3 significani digits) determines exact value of oupput.
Output switch: switch described at left.
Output terminass: two front panel terminals are provided; these are the outpue terminals for both ace and de operation. In vultige ranges. the negative terminal is grounded.
Ripple: in de operation the output ripple is typically less than 1.0% rma/s\% p-p af the outpul range swilch selling.
Input: 115 V :ac $=10 \%$, single-phase. $58-62 \mathrm{~Hz}, 0.7 \mathrm{~A}, 65 \mathrm{~W}$ max. (See Options 005 and 038 for 50 Hz and $230 \vee$ ac operation).
Operatling temperature range: $0^{\circ} \mathrm{C}-50^{\circ} \mathrm{C}$: convection cooled.
Size: $172 \mathrm{H} \times 198 \mathrm{~W} \times 279 \mathrm{mmD}\left(6^{3} 4^{4} \times 7 \mathrm{H}^{4} \mathrm{H}^{\circ} \times 1 \mathrm{l}^{\prime \prime}\right)$.
Weight: net, 6.8 kg (15 lb). Shipping 7.7 lg (17 lb)
Options Price

005: 50 Hz oulput regulation realignment N / C
028 : $230 \mathrm{Vac} \pm 16$ 'r'. single phase input
N / C

Accessarles

S000-8762 Rack kil for mounting one or two 19920B's in a $19^{\prime \prime}$ rack
50 fill- $\$ 760$ Filler panel to block unused hadt of rack ad:yper

Description

Hewlet-Packard's Model 745A AC Calibrator combined with Model 746A High Valtage Amplifier is a compact. Calibrated AC source with continuousiy adjustable frequency untjut from 10 Hz to 110 kHz . Output voltage can be varied from 0.1 mV 101099.999 V in steps as small as I ppm of range over the entire frequency range.

HP's 745A provides the first six voltage ranges. 0.1 mV 10 109.9999 V . while the combination of the 745A and 746A permits expansion to 1099.999 V as a seventh range. Madel 746 A can only be used with the 745A.

Specifications

Ranges

Output voltage eangea: sevin ranges with 10% overrange as follows:

成边	Sarubility med itsolution
1 my	0.100000 mV (0 1.059999 mV in) nV stegs
10 mv	1.00000 mV to 10.99999 mV in 10 nV steps
100 nv	10.0000 mV io 109.9999 mV in 100 nV sleos
1 Y	$0.100000 \times 10.099999 \mathrm{~V}$ in $1 \mu^{\text {Y }}$ steps
10 V	1.000) $0 \times 1010.99899 \mathrm{~V}$ in $10 \mu \mathrm{~V}$ steps
100 V	10.0000 V lo 109.9399 Y in $100 \mu \mathrm{~V}$ siepx
$1000 Y$	100000 Y lo 1099.999 Y in $\mathrm{J}^{\text {mY slops }}$

Output voltage from $100 \mu \mathrm{~V}$ to 110 V are available from 745A output Icrminals: veltages from 100 V 101100 V are avadable from the 746A output cable.
Outpur frequency ranges: continuously adjustable from 10 Hz io 110 kHz in four decade ranges with 10% overiap.
Errof measurement: two ranges with zero eenter dial; $\pm 0.3 \%$. $\pm 3 \%$. A zero range is provided so easily switch out the effects of the error measurement system.

Performance rating

Accuracy: accuracy bolds for a 90 -day period und is met after a one-hour warm-up period al $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ with $205 \%^{\prime}$ RH. This applies only to the 745 A. Wiem-up time required for HP"s 746 A is approximately 30 s .
Voltage: specifications are absolute, traceatele to National Bureau of Standards.
1 mV to 100 V ranges

Froquacy	Acepracy
50 Hz to 20 kHz	$=10.02 \%$ of setting -0.002% of range $+10 \mu V)$
20 Hz to 50 Hz 20 HHz to 110 kHz	$\begin{aligned} & \pm(0.05 \% \text { of setting }+0.005 \% \text { of } \\ & \text { ran } \overline{E E}+59 \mu \mathrm{H}) \end{aligned}$
10 Hz 1020 H	$\begin{aligned} & \pm(0.2 \% \text { of setting }+0.005 \% \text { of } \\ & \text { range }+50 \mathrm{\mu V}) \end{aligned}$

1000 V range

7 rerpuency	Acouncy
50 Hz to 20 絞	$=0.04 \%$ ifl settiris
70 HE to 50 Hz 	-0.08\% in sethens
50 ktra to 180 kHz	=0.15\% ofl setring
$\mathrm{I}_{3} \mathrm{~Hz}$ to 20 Hz	$\begin{array}{r} -0.2 \% \text { or setting } \\ +0.005 \% \text { ol range) } \\ \hline \end{array}$

Frequency: $\pm(2 \%$ of setting $+0.2 \%$ of end scale).
Error measurement: $\geq(0.5 \%$ oir setting $+0.5 \%$ of range).

Temperature coefflcient

Yoltage: 1 mV to 100 V ranges: $\pm 0.0003 \%$ of setting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. 1600 V range: $\pm 0.0005 \%$ of setting per ${ }^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Frequency: $\pm 0.05 \%$ of end scale per ${ }^{\circ} \mathrm{C} .0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. Derate accuracy specification by this temperature coefficient for operation in remperature range of $0^{\circ} \mathrm{C}$ 10 $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$.
Voliage stability: stability met after one-hour warm-up period at constant remperature with $<95 \% \mathrm{RH} .1 \mathrm{mV}$ to 100 V ranges:

Long-term: $\pm 0.01 \%$ of sering for six months.
Shor-term: $\pm 0.005 \%$ of setting for 24 hours.
1000 V range
Long-term: 50 Hz to $20 \mathrm{kHz}:=0.015 \%$ or setting for six months: 10 Hz to 50 Hz and 20 kHz 10110 kHz : $=0.02 \mathrm{gk}$ of setring for six months.
Short-term: $\pm 0.005 \%$ of setling for 24 hours.

Output cheracteristics

Total disfortion and nolse: 0.05% of setting $+10 \mu \mathrm{~V}$ over 100 kHz bandwidth on all ranges.
Total distortion, cycle-lo-cycle inslablity and nolse: will cause $< \pm 0.005 \%$ of error when used io colibrate an average-responding or true rms-respanding instrumern from 1 in 101100 V .
Load regulation (no losd to full load)
Output Impedance: < 1Ω on $1 \mathrm{mV}, 10 \mathrm{mV}, 100 \mathrm{mV}$ ranges. On the $1 \mathrm{~V}, 10 \mathrm{~V}, 100 \mathrm{~V}$ and 1000 V ringes for ouput current equal to or less than that shown in the diagram below, error is included in the accuracy specification.
Load capability: 1000 pF or 50 mA on 1 mV to 100 V ranges (50 mA allows 800 pF at 100 V . 100 kHz). 1000 pF or 63 mA on 1000 V range (63 mA atlows 100 pF at 1000 V .300 kHz).
Une regulation: $\pm 0,00$) 9 of sening change in output voltage for a 10% change in line voltage (incloded in accuracy specs).
Output torminals: high and low oulput terminals can be floated $\pm 500 \mathrm{~V}$ de above chassis ground.
Counter output: frequency coumicr outpui on 745A rear panel, 2.2 $\checkmark \pm 50 \%$, protected against shor circuits.

745A

50 ma max. independent of trequency in the 1,10,100v ranges.

Remote proyramming

Yoliaze range. treguenty range, amter radipe, ind samses	Arpuirements
Comlact crosure	Less tian 400 m fo ground
NP紬transisiter	Open circuit voltage 5 V Short cliccuilt current 2 mA Maximum voltage on program- nring line at closure 0.8%.
Reed switch through dide	
NPN Itamsision through dioje	
Fiequengy varnier	Minimum 10 msximom of range
Analap voliape	$+i \vee 10-10 \vee D C$
fesislance to ground	5000, 10×0

General

Operating temperature: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Storage temperature: $-40^{\circ} \mathrm{C}$ 10 $-73^{\circ} \mathrm{C}$.
RFI: meets MHL-1-618ID when using shielded output connecters.
Powar
745A: 115 V or $230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}, 1066 \mathrm{~Hz}, 100 \mathrm{VA} \max$.
748A: 115 V or $230 \mathrm{~V}=10 \%, 50 \mathrm{~Hz}$. $1060 \mathrm{~Hz}, 850 \mathrm{VA}$ max.
746A aux power rated at I20 VA max.
Weight
746A: net. 29.3 kg (65 lb). Shipping, $36.3 \mathrm{~kg}(80 \mathrm{lb})$.
$748 \mathrm{~A}:$ nel, 34 kg (75 lb). Shipping, 38.5 kg (85 fb).

Dimenslons

745A: $221 \mathrm{mmH} \times 425 \mathrm{mmW} \times 457 \mathrm{~mm} \mathrm{D}\left(8.75^{\prime \prime} \times 16.75^{\prime \prime} \times\right.$
18.37").

748A: $177 \mathrm{mmH} \times 425 \mathrm{~mm} \mathrm{~W} \times 464 \mathrm{~mm} D\left(7^{\prime \prime} \times 16.79^{\circ} \times\right.$ 18.25").

745A Accessories furnighed

Rack mount kit.
HP Part No, 5060-0630, 22-pin printed circuit board extender.
HP Parl No. 5060-0043. 15 -pin printed circait boad extender.
HP Part No. 5060-0031, 10 -pin printed circuit board extender.
HP Part No. $1251-0084$ remote programming plug.
7464 Accessorlas furniahed
Rack mount kil.
HP Part No. 1251-0485, remole right angle connector.
HP Part No. 1450-0356, incandescent lamp.
HP Part No. $4040-0427$. extractor.
HP Patt No. 5040-0404, probe holder.
HP Part No, 5060-0216, joining kit brackel.
HP Pant No. $5060-0630,22$-pin primed circuit board extender.
HP Part No. 00746-02701. foam filer.
Ordering Information Price
745A AC Calibrator $\$ 5500$
746A High Voltage Amplifier $\quad \$ 3500$

Signal generators

Hewlett-Packard ofiers a complete line of easy 10 use HF. VHF. UHF, and SHF signal generalors covering frequencies belween 10 kHz and 40 GHz . This line includes sym. thesized signal generators ant solid-seate gencrators as well as a complete line of performance-proven vacuum tobe signal generators. Each includes the following features: li aecurate, easy to read frequencies. calibrated aod variable; 2) accurately calibrated variabie ourpul level: 3) wide madulation capability.
Beside these banic features. HP signal gencrator eharacteristics ensure the utmost convenience and accuracy for all kinds of measurements and signal simulations. including receiver sensilivity. selectivity or rejection, signal-1o-hoise ratio, gain bandwiduh characteristics, conversion gain, antenna gain, and transmission line characteristics. as well as power to drive bridges. slotted lines, filer networks. ete.

2 to 18 GHz microwave
 synthesked signal generator

HP's newest signal generator. Model 8672A. provides AM/FM capability and calibrated output usually associated only with signal generators, along with the resolution. speciral purity. stability and programmability of a high quality synthesizer. The HP 8672A covers 2 to 18 GHz with output from +3 to -120 dBm .
A companion unit. the HP 8671A, is a synthesizer orly, with a minimum of +8
dBm from 2106.2 GHz and FM only. Both units are programmable via the HP Interface Bus.
The HP 8672A will find application in several important areas: 1) As a programmable signal simulator in automatic test systems; 2) For satellite receiver testing requiring highly stable ($5 \times 10^{-10} /$ day) signals; 3) General purpose lab use where its multiband capability can replace a benchful or separate band gencrators; and. 4) Production use where short runs require different frequency ranges from run to run.
The 8671 A will serve in local oscillator applications requiring up-conversion or multiplication for satellite communications or radku astronomy. SSB noise is $-89 \mathrm{~dB} / \mathrm{H} 2$ below the carrier at a 10 kHz offiset. Nonhamonic spurious is -70 dB .

10 kHz to 2600 MHz synthesized

 generatorThe HP $8660 \mathrm{~A} / \mathrm{C}$ is a particularly versatile synhesized generator lamily. Two mainframes are available. The 8660A utilizes thumbwheel switches for frequency selection. The 8660 C mainframe hats a more versatite keyboard control featuring synuhesized digital sweep and frequency-step capability. Programming options for both $B C D$ and $H P-1 B$ interfaces are avalable.
Three plug-in RF sections provide three separate ranges: 10 kHz to 110 MHz ,) MHz to 1300 MHz , and / MHz to 2600 MHz . Output levels are calibrated over $>140 \mathrm{~dB}$ of range. A wide range of moduta-
lions can be configured with plug-in sections. AM, FM, and phase modulation as well as exteral pulse modulation are available in various combinations.
Solid-state, high performance generators
This group of signal generators offers all the advantages of solid-state design, such as increased pornability. ruggedness, and reliability. while still retaining the outstanding signal quality characteristics of Hewlet1Packard's older vacuum lube signal generators. In idduition these generators offer many fealures nol found on the older penerators such as digital frequency readous (8640B, 8660C). ability to coumt external signals (8640 B). tield ponability ($865 \mathrm{AA} / \mathrm{B}$) and complete remote programming (8660 A . 8660C).

HF to UHF

The perfornance leader of the solid-state family is the 8640 signal generator covering 450 kH 210550 MHz . Frequency coverage can be extended to 1100 MHz with an iniernal doubler ($\mathrm{Op1} 002$) and an optional builtin audio oscillator extends the CW outpur range down to 20 Hz (Op1 001). This generawr is available in three modets: the 8540 A with mechanical slide nule frequency dial: the 8640 B feanuring a bult-in 550 MHz counter: and the 8640 M for raggedized applications.
The 8640B with built-in councer iocludes two significant new features not previously found on Hewlett-Packard sigzal generators:
I) the ability to count extemal signals at frequencies up to 550 MHz and 2) a [rom panel pushbution to phase-lock the generator's RF oulput to the counter time base for frequency stability of better than $5 \times 10^{-8} /$ hour.
Internally, the hean of the 8640 is a mechanically funed high-Q cavify oscillator that operates over the radge of 230 to 550 MPz. This oscillator has very good inberent stalvitity and exceptionally low noise chameteristics. Nine lower frequency ranges are obtained by dividing down the basic oscillator frequency and fittering oul the unwanted harmonics. Frequency range from 10 kHz to 10 MHz can be obtained using the 11710B Down Converter with the 8640 \& 8654.

The 8640 N is a ruggedized version of the 8640 B featuring phase-focked stability. digital read-out, buill-in thermal cutoff and reverse power protection. The ' M ' with its aluminum cartying case has been lypetested to withstand shock, vibration and humidity extremes, and is specilied to operate over a lemperature range of $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ for field and flighi-line measurements.
Compact, field portable
Compact, porable signal generators form another part of the solid-state ranily. The 8654 covering 10 to 520 MHz features calibrated output tevel with a full mange attenuator and both AM snd FM modulation capability. Small size ind light weight make
it well suited for field maintenance and operational rendigess checks in addition to generil purpose signal generator applications. The 8654λ is an AM gencrater with uncalibrated FM capability, while the 8634 B has full calibrated and metered FM and AM.

The R65SA Synchronizer/Counter combines with the $8654 A$ ind A to phase lock the generator:s RF output to the counter time base for frequency stability of better than $0.1 \mathrm{ppm} / \mathrm{log}$. In addition the 8655A is an RFI-proof counter with the capability to count external signals up to 520 MHz .

Performance-proven vacuum tube signal generators

HF to UHF
The HP 606日, 608 E , and 612A signal genematon colleclively cover frequencies from 50 kHz to 1.23 GHz . All feature extremely low drif and incidental frequency modulation, and may be amplitude (sine, square, pulse) modulated.

UHF to SHF

A complete line of Hewlets-Packard microwave signal generators provides coverage from 800 MHz to 21 GHz . The 618 C , 6308. 626A and 638A incoporate cavirytuned klystron oceillarons with very low drift and residual FM. They may be pulse. square-wave and frequency modulated. making them useful for microwave receiver
testing as well as SWR and transmission line measuremencs.
The HP 8614A and 8616A signal generators covering 0.8 to 2.4 GHz and 1.8 to 4.5 GHz fature built-in PIN diade modulators. These modututors allow internal or extermal olltut power leveling as well as a wide range of pulse and amplitude modulation.

HP 938A and 940A Frequency Doubler Sets provide fow-cost signal generator capability in the 18 to 40 CHz range by doutling the frequency of sigual sources in the 9 to 20 $\mathrm{CH} z$ range.

Special signal

generators/accessories

For Avionics navigation and communications ipplications, the 8640 B option (N)4 combines the digitat readout, phase lock features with a dernodulated output and special AM circoitry. Combined with suitable extemal modulation sources the 8 6talis provides for testing and calibration of aircraft VOR/ILS and Marker Beacon seceivers.

A variety of accessories are available to enhance the operation of HP signitl gencritirs. The list includes a spectumgenemtor. frequency doublers, output terminations. a fuse holder, bolanced mixers, fillers and a scries of PIN modulators to increase the modulation capability of microwave signal sources. Also available is the new HP 11720 A Pulse Modulator providing high performance pulse modulation copability over the range of 2 to 18 Gliz .

Signal generator summary

Model	Friquency	Characteristics	Page
55714 Syminesizer	2106.2 OHs	vopamnible, Exi FM	364
B6)24 Synthesuzed Gentralor	21018.6 chz	1103 hatz heouency esolution. 5 - 10^{-39} day stability. Calibrated output from-3 $10-120$ dem Complesely $H P$-la megrammable, metered, external $A M$ and IM	362
$8660 \mathrm{~A} / \mathrm{C}$ Synthesized Gemerator	$\begin{aligned} & 0.01 \text { to } 10 \mathrm{MKz} \\ & 1010.300 \mathrm{MHz} \\ & 1102600 \mathrm{MHz} \end{aligned}$	Compietely Iti plogrammable. Plug-ins detemire thequenty range and medulation capẫlity	358
6050 Sisnal Generator	50 kHz 1065 MMI	auxiliary gf output	372
8ETOA/B/M \$ignal Genprate:	$03-1024$ MHz	burput - 19 to -145 dBm imio 50n: AM, FM, and ext, pulse modulation, diract allbration, levaled output 86\&0B has built-in counter and ahase-lock capability. All solid state	305. 369
86408 Opl. 003 Rvionics Generator	$0.510512 \mathrm{~N} / 2$	same as 86400 with phase shits $<0.01^{\circ}$ at 30 HL , demodulated AM output, 1 dB steg altenuator. 1or láe wilh enlernal hor/lis fudio Generators	368
603E Signal Genenater	10 to 480 MHz	outrout IV ta a $1 \mu \mathrm{~V}$, into 50 -ohm foad; AM, pulse modutation, direct calitraticin, Eveler powel output, aik trif oulpu!	373
$\begin{aligned} & 32 \mathrm{COB} \\ & \text { Os=1late } \end{aligned}$	$10-1000 \mathrm{MHz}$	IV to $1 \mu \mathrm{~V}$ output into 5 en. 120 dB attenuator range $0.00 \% \%$ stablity, compact, portable, weipho, is 10. Wousier Extends trequency io 1000 MHz	378
$8554{ }^{2} 8$ Sirnal gentierator	10-520 MHI	output o to -120 dBm into 50 On . tirect calibration, leveled outpul, amplitude and frequency madulation, solid-slize, compatt, weighl 16 jb	370
86554 Synchronize/Caunter	10-520 MHz	elermai counl copability to 520 NH	371
612A Sugnal Generator	450 to 1230 MH2		314
8614A. 8616A Signal Ganeraior	$\begin{aligned} & 08102.4 \mathrm{GHz} \\ & 1.8104 .3 \mathrm{GHz} \\ & \hline \end{aligned}$	square-wave: external Duise. AM and fM. Juxiliary RF output	315
618 C .6208 Signal Cencators	$\begin{aligned} & \text { 3. } 107.5 \mathrm{GWz} \\ & 7.1011 \mathrm{GHz} \end{aligned}$	output $1 \mathrm{~mW} 10-127$ dem [a. 1 wh into 50 ohms. pulse, hequency or square-way modviation. Gilect calitiation, ext $5 M$ and p: Ise modulation, auxiliary RF outpul	376
626A 628A Signal Getier ziors	10101550 HL 15 to 21 GHz	outpur ; 10 dBm to - 90 dibm; dulse. Trequency oi souate-wave modulation, diect calibration	371
958A, 940A Frequanay coublors	$\begin{aligned} & 181026.5 \mathrm{GHz} \\ & 2.55 \text { to } 60 \mathrm{CHz} \end{aligned}$	5 weepers or klystrons, 100 de prectison athenuator	371

Synthesized SIgnal Generators

Model 8660A and 8660C

- 10 kHz to 2600 MHz
- Synthesizer stability and accuracy
- 1 Hz resolution (2 Hz above 1300 MHz)
- Calibrated output over>140 dB range
- AM, FM, ФM, or pulse modulation
- Fully TTL programmable

8660 C
HP-IB

System Concept

The $8660 \mathrm{~A} / \mathrm{C}$ family is a modular solid-state plug-in system. Each system includes: I) a prognammable synhesized signal gederator mainframe, 2) at least one RF section plug-in, and 3) at least one modulation section. This modular plug-in construction allows ans 8660 system to be configured for any specific application while minimizing the added expense of unnecessary features.

As its name implies, the 8660 is a true frequency synthesizer. Yet it is finding even broader appeal as a high performance signal generator. And being completely programmable, the 8660 is the perfect choice for most automated receiver or component testing situations.

Malnframes

There are two different synthesized signal generator mainframes 10 choose from. Both feature complete TTL programming of frequency, output levels, and most modulation functions. The standard prospamming interface is BCD and an optional HP-IB interface is available. Both mainframes can operate from an internal crystal ref. erence or extemal frequency standard.

The 8660 A mainframe uses thumbwheel switches to select CW outpul írequencies. Frequencies up to 1300 MHz can be entered direculy with 1 Hz resolution. (For applicalions requiring frequedcies above 1300 MHz the 8660 A must be used with the 86603A Option 003. The frequency selection process involves selecting one-half of the desired $R \bar{F}$ output frequency and aclivating the 86603A Option 003 front pancl doubler switch).

The 8660 C keyboard mainframe provides direct keyboard entry of CW frequencies up to 2600 MHz . Added capabilities of the 8660 C include digital sweep, frequency stepping, symhesized seareh, and a ten-digit numerical display.

Swept lesting of very narrowband devices such as crysta filters is made possible by the 8660 C 's digital sweep. Since the RF output consists of discrete synthesized steps, the result is a very linear sweep with extremely low residual FM. A $0-8 \mathrm{~V}$ horizontal sweep oulput is provided for driving XY plotters, oscilloscopes. etc.

For applications which require frequency to be changed in uniform increments. a frequency steppiag capability is provided on the

8660 C . For example, if a receiver with 50 kHz channel spacing is being tested. a $50 \mathrm{kHz} 5 t e p$ size can be entered and the frequency stapped to the next higher or lower channel with a single key-stroke.

Synthesized search provides the dial Iuning convenience of a signal generator while maintining synthesizer signal quality. As the dial is turned the output frequency is cuned up or down in discrete synbesized sleps which may be chosen as small as 1 Hz .

Plug-In AF Sectlons

There are throe RF sections to choose from. The 86601A covers the 10 kHz to 110 MHz frequency range with calibrated outpur of +13 so -146 dBm. The 86603 B (used with the II661B Frequency Extension Module) covers) MHz to 1300 MHz with output of +10 $10-146 \mathrm{dBm}$. The 86603 A (also used with the 11661 B) covers 1 $\mathrm{MHz} 102600 \mathrm{M} . \mathrm{Hz}$ with output of $+7 \mathrm{to}-136 \mathrm{dBm}$. All RF sections bave ; Hz frequency resolution except for 2 Hz above 1300 MHz with the 86603 A . In the remole mode output level car be programmed in I $\langle\mathrm{B}$ steps over the full operating range.

Plug-In Modulation Sections

There are five modulation sections to choose from. The 86632B and $\$ 6633 \mathrm{~B}$ are both AM/FM modulation sections. An accurate modulation meter indicates \% AM or FM peak deviation. The 86633 B differs from the 866328 in that the cisrier is phase locked while FM modulating as rates and deviations up to 100 kHz . The 86632B Litizes a frec running VCO during FM but allows rates and deviations up to 1 MHz . Any drifi can be removed by depressing the FM CF CAL bution.
The 86634 A offers only analog phase modulation at rates to 10 MHz and metered deviations to 100° befow 1300 MHz and 200° above 1300 MHz . The 86635 A क M / FM Modulation Section is similar in performanec to the 86634A except rates are limited to 1 MHz and FM capability is also included. (The 86634A and 86635A mus1 be used with Option 002 RF sections).

The 86631B Auxiliary Section provides both external AM and pulise modulation. The 86631B Auxillary Section must be used when another modulation section is not installed.
All modulation functions of the 86632B, 86633B. and 86635A are fully programmable.

8880A

8660A/C mainframe specifications

Frequency accuracy and stability: CW frequency accuracy and long term sthbility are desermined by reference oscillator in $8660 \mathrm{~A} / \mathrm{C}$ mainframe ($3 \times 10^{-\%} /$ day) or by external reference, if used. Reference osclilator

Internal: 10 MHz quariz oscillator. Aging rate less than $=3$ parts in 10^{4} per 24 hours after 72 hours warm-up. ($=3$ parts in 10° per 24 hours. Option OO1).
External: reat panel swith allows operation from 5 MHz or 10 MHz frequency standard at a level between 0.5 V and 2.5 V mis inlo 170 ohms.
Raference output: rear panel BNC connector provides output of reference signal selected at level of a least 0.5 V ms into 170 ohmis.
Digltal sweap (8680C): auto, single or manual. Selectable speeds

0.1 . 1. or 50 seconds.

Remote programming

Functions

8860A: all frum panel frequency and outpul level, and most modulation functions are progranmable.
B860C: CW frequency. frequency slepping (STEP \uparrow, STEP $)$. and ourpuc level. and most modulation functions are programmable. Noie: digital sweep is NOT programmable.

Programming input

Connector type: 36-pin Cinch 1ype 57 (mating connector supplied). (Optional HP-IB interface: 24-pin Cinct type 57 (mating conncctor NOT supplied)I.
Logle: TTL compatible (negative tue).
Switching time: less than 5 ms to be within 100 Hz of any new frequency selected. (Less than 100 ms to be within 5 Hz).

General

Operating temperature range: $0^{\circ} 10+55^{\circ} \mathrm{C}$
Power: $100,120,220$. or 240 volts $+5 \%,-10 \% .48-66 \mathrm{~Hz}$. Approximately 350 watrs.
Welght; [Mainframe on)y] nel, 23.8 kg (53 lb). Shipping, 29.6 kg (85 lb).
Options for 9860A/C
$001: \pm 3 \times 10^{-5}$ day internal reference oscillator.
002: no internal reference oxcillator.
003: operation from 50 to 400 Hz linc.
004: 100 Hz frequency resolution (200 Hz above 1300 MHz CF).
005: HP-IB programming interiace.
100: 11661 B factory installed.
009: (8660A only): from panel LED display indicates selected frequency in 1-2-4.8 BCD code.

RF section specifications (Installed in 8660 A or 8660 C mainframe)

[^25]

RF Sections specifications（conf．）

		865014	$\begin{gathered} 666078 \\ \text { (wlih } 116518) \end{gathered}$		
		$001-110 \mathrm{MHz}$	$1-1300 \mathrm{Mkz}$	1－1300 M Hz	［300－2600 MH
	Output Level（into 50s）	$-13 \mathrm{udm} \mathrm{to} \mathrm{-} \mathrm{145} \mathrm{d8m}$	＋10 to－ 1468 dm	$\div 1010-136 \mathrm{dBm}$	$+710-13688 m^{3}$
	Outpul Accurdey （focal and remofe）	$\begin{aligned} & \because 1 \mathrm{dg},-13 \mathrm{co}-66 \mathrm{dam} \\ & ¥ 2 \mathrm{te},-6610-146 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{t}-76 \mathrm{dBm} \\ & \geq 20 \mathrm{to}-146 \mathrm{dBm} \end{aligned}$		$\begin{aligned} & 8 \mathrm{~m}^{3} \\ & \Delta \mathrm{Bm} \end{aligned}$
	Flatness（output level variation with frequercys	$< \pm 0.568$	<1.018		
	Impedance	5011			
	AM Nodutalion Degit	01095%	0 10 90\％		0－50\％\％4
	3 可 Gantwidlh $0-30 \%$ $0-70 \%$ $0-90 \%$	$\begin{aligned} & 200 \mathrm{~Hz}, \mathrm{CF}<0.4 \mathrm{MHz} \\ & 10 \mathrm{kHz}, 0.4<\mathrm{CF} \& 4 \mathrm{MHz} \\ & 100 \mathrm{kHz}, \mathrm{CF} \geq 4 \mathrm{MHz} \\ & 125 \mathrm{~Hz}, \mathrm{CF}<0.4 \mathrm{MHz} \\ & 6 \mathrm{kHz}, 0.4 \leq \mathrm{CF}<4 \mathrm{MHz} \\ & 60 \mathrm{kHz}, \mathrm{CF} \geq 4 \mathrm{MHz} \\ & 100 \mathrm{~Hz}, \mathrm{CF}<0.4 \mathrm{MHz} \\ & 5 \mathrm{kHz}, 0.4<\mathrm{CF}<4 \mathrm{MHz} \\ & 50 \mathrm{kHz} \mathrm{CF} \geq 4 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 5 \mathrm{KH}_{2}, \mathrm{c}^{\mathrm{C}}-10 \mathrm{MH} \\ & 56 \mathrm{~h} / 2,6 \mathrm{~Hz} \end{aligned}$	MHz_{2} MH MHz MHz MH2 MH_{2}	10 dH n／a H／A
	$\begin{gathered} \text { Distortion.s } \begin{array}{c} \text { THO ot } 30 \% \text { AM } \\ \text { 4 } 70 \% \% \text { aY } \\ 31 ~ \\ 30 \% \\ \hline \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & <1 \%, 04110 \mathrm{NH} \\ & <3 \%, 64110 \mathrm{MHz} \\ & <5 \%, 0.4-110 \mathrm{MHz} \end{aligned}$			$\begin{aligned} & \text { C5\% } \\ & \text { N/A } \\ & \text { N/A } \end{aligned}$
	TY Rigle	DC ID 1 MHz with 866328 $20 \mathrm{yl}: 10 \mathrm{l} 100 \mathrm{kHz}$ with 86633B	OC． 10200 kHz with 86632 e ard 86635 A 20 Hz 10100 kty with 86533 B		
	Maxmunt Deviation（paak）		200 kH with 8 EE 632 P and 86575 A 100 kHz wit 86633 s		
	Distortion，MND（al rales虾 is 20 kHz	$<1 \%$ up 10200 kHz dev， ＜3\％ug 101 Mind dev．	c196 up do 200 M4，dex．		$\leq 1 \%$ up to 400 xHz der．
	Pulsa M／se／tall Mme	200 ns．	50 ns		
	ON／Off Ratlo（willi pule lovel control st mex， ）	${ }^{\circ} 508$	－4088		${ }^{\circ} 6068$
	\＄M Ralo	N／A			
	Maximuni Prela Dealation	$N / 2$	0 to 100 atgrees		0 lo 200 degrees
	Oistexion ThO	N / h	＜ 5% up 101 MHz ratex $<7 \%$ yp to 5 MHz ialms ＜ 15% up io 10 MHz iates		
咢	Weight	Net 5 kf （11（D） Shipaink bo． 4 kg 114 lb）	Nat 4.1 kg（9 m） Shipoing 5.5 kg （12 lb）	Shioping 6.4 kg （14（J）	

 1300 MHz onty

 setting the distortion nyproximateiy soulles．
6．Phase modulation is only possitic with Oplion ol2 ar sections．

Modulation gection speciflcations

Ordering information

8660A Synthesized Signal Generator Mainframe
8660 C Synthesized Signal Generator Mainframe
Opt 001: $\pm 3 \times 10^{-9} /$ day internal reference oscillator
Opt 002: no internal reference oscillator
Opt 003: eperation from 50 to 400 Hz line
Opt 004: 100 Hz frequency resolution (200 Hz above

1300 MHz)

Opt 006: HP-IB programnsing interface frequency in 1-2-4-8 BCD code

Opt 100: 11661 B factery installed inside mainframe add $\$ 3600$
8660LA RF Section
$\$ 250$
$\$ 3600$
Price
$\$ 6900$
$\$ 9150$ add $\$ 210$ less $\$ 300$ add $\$ 155$ less $\$ 350$
add $\$ 210$
ad
add $\$ 3600$

86602B RF Section
86603A RF Section
$\$ 4600$
Opt 001: no RF ourpul attenuator (all RF Sections) less $\$ 600$
Opt 002: adds phase modulation capability (86602 B , add $\$ 1650$ 86603A only)
Opt 003: allows operation of 86603 A with 8660 A main- add 5250 frame
116618 Frequency Extension Module $\$ 3600$
866318 Auxiliary Section $\$ 300$
86632B AM/FM Modulation Section \$2050
86633B AM/FM Modulation Section \$2050
86634A $\varnothing \mathrm{M}$ Modulation Section $\$ 1650$
86635A Φ M/FM Modulation Section $\$ 2350$

- 2 to 18 GHz drequency range
- 1 to 3 kHz frequency resolution
- Low spurious and phase noise
- +3 to -120 dBm calibrated output
- $<5 \times 10^{-1 \%}$ day stability
- Metered AM/FM

The 8672A synthesized signal generator covers the entire 2.010 18.0 GHz frequency range in one compact solid-state package (133 $\mathrm{mm}, 5.25 \mathrm{in}$. high) while providing calibrated output and complete AM/FM modulation capabiticy. The 8672A can replace two, three. or even four insmuments in many applications.

Advanced thin film technology

An indirect syntiesis appraach is used to phase lock a wideband 2.0106 .2 GHz YIG -Iuned transistor oscillator (YTO) to the internial (or ext.) time base. The oulput of the YTO drives a YIG luned multiplier (YTM), a product made possible by HP's advanced microcircuil technology, to achieve the 2 to 18 GHz coverage. This Y'TM produces spectrally pure harmonics of the input frequency and selects the proper harmonic automatically.

Excellent spectral purity

The 8672A has been designed for very low single sideband phase noise (see figure 2). This characteristic is very important for L. 0. applications and many tesis on communication and radar systems. Non-hammonic spurious are also controlled to prevent undesired responses. Such signals are -70 dB from 2 to 6.2 GHz and -60 dB from 12.4 to 18 GHz , excluding power líne related frequencies.

Figuna 1. Maximum power typlcally available on " +10 " altenuator setting (Overfange) at $25^{\circ} \mathrm{C}$.

Wide dynamic output range
For broadband component and receiver testing applications the 8672A incorporates an exceptionally flar frequency response across the full 2 to 18 GHz range. The addition of a calibrated 110 JB RF step attenuator on the output resuhs in accurate oulput control from +3 10 -120 dBm , enabling very sensitive receiver tests to be made. For LO applications an "overrange" position provides additional power at most frequencies across the full 2 to 18 GHz band. See figure 1.

Calibrated AM/FM modulation

To expand the versatility of the 8672A for accurate receiver cesting, AM/FM eapability is provided (with externally applied modulation signals). AM depth at rates up to 100 kHz can be aceurately set usigg the front panel meter. FM is allowed up to 10 MHz rates and peak deviations. The meter can also be used 10 monitor peak deviations on any of six selectable ranges. Both AM depth and FM deviation are linearly controlled by varying the input voltage up to $\{$ voll maximurn. The 8672A remains phase locked in both the AM and FM modes.
Front panel status indicators:
For unambiguous operation, a serics of annunciators is conveniently located on the from panel to indicate the operational "status" of the instrument. These include:

1. AM/FM modes and selected ranges
2. Outpue level 'overrange" selection
3. RF ON/OFF
4. "Not phase locked" indication
5. Unieveled condition
6. Remote operalion.

All functlons fully programmable
The 8672A provides full programmability of all its fron panel functions: frequency, oulput level (in I dB steps) and modulation selection. The 8672A has an HP-IB interface (stundard on all units) and can be used with any HP 9800 series calculator or minicomputer for automatic systems application.
Fast pulse capability avallable
High performance pulse modulation of the 8672A is available by the addition of the accessory 11720A Broadband Pulse Modulator. (See page 378). This new Pulse Modulator provides $>80 \mathrm{~dB}$ ON/OFF ratios with S nanosecsond (typical) nise and fall times over the 2 to 18 GHz range of tibe s672A.

8672A specifications

(See technical data sheel for complete specificationa)
Frequency characteristics
Frequency range: $2.0-18.0 \mathrm{GHz}$ (with overrange to 18.599997 GHz).
Frequency resolution: 1 kHz 106.2 GHz .2 kHz to $12.4 \mathrm{GHz}, 3$ kHz to 18.0 GHz .
Time base: internal $10 \mathrm{AHz}\left(<5 \times 10^{-15 f}\right.$ ay aging rate) ar exiernal 5 or 10 MHz .
Frequency awitehing tmo: $=13 \mathrm{~ms}$ to be within $\mathrm{kHz} .2-6.2 \mathrm{GHz}$: $2 \mathrm{kHz} .6 .2-12.4 \mathrm{GHz} .3 \mathrm{kHz} .12 .418 \mathrm{GHz}$.

Spectral purity

Harmonics, subharmonics and multples (510 GHz): $<-25 \mathrm{~dB}$. Single-sldeband phage nolse (1 Hz BW, CW mode):

Orrsel from $\mathrm{F}_{\text {, }}$	10 H	100 KM	1 hte	10kA	100 HL
$\geq 0.6 .2 \mathrm{GHz}$	-58 d日	-68dg	-75 8 园	-89 di	
2-12.4 Gifz	$-52 \mathrm{cz}$	-62 d8	-72 dB	-ñ1 48	- 20368
124.18 .0 GHz	-4808	-58 di	-6818	-1888	-99 J8

Figure 2. Typical 8672A single-sideband phase noise pertormance using the internal standard, $2.0-6.2 \mathrm{GHz}$.

Spurlous (CW and AM modes)
Non-harmonlcally related:
$<-70 \mathrm{~dB}, 2.0 .6 .2 \mathrm{GH}$.
$<-64 \mathrm{~dB}, 6.2-12.4 \mathrm{GH}$.
$<-60 \mathrm{~dB}$. $12.3-18.0 \mathrm{GHz}$.
Power line related (CW mode, and withln 5 Hz below line frequency, and multiples):

Ofiset fiamir	300 H2	$300 \mathrm{Ht} 10 \leq \mathrm{kHI}$	$\geq 1 \mathrm{KHz}$
2.06 .2 kim	-5048	-60 d8	-65 ${ }^{\text {ct }}$
Б2.124 G12	-38 6	-5488	- 3968
12.4180 GHz	$-40 \mathrm{de}$	-5048	-55d8

Output characterlstics
Outpul tovel ($+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$): +3 10 -120 JBm .
Total Indicaled meter accuracy ($+16^{\circ} \mathrm{C}$ to +35 C):

frequency Range	Outpot Levei Range			
	0 c 8 m	-10 d $\mathrm{mm}^{\text {m }}$	-2048n	- 90 dem sid beiam
20662 GHz	± 1.7546	-22506	$=2.45 \mathrm{~dB}$	$-1.73 \mathrm{~dB} \pm 0.3 \mathrm{~dB}$ $10 d 8$ step below 0 Abm range
6.2.12.4 6 Hz	220106	2 2.5 d8	22716	$=48 \div 0.3 \mathrm{~dB}$ 10 dB step below 0 dBm range
124)800 ${ }^{\text {che }}$	$=22588$	$=285 \mathrm{~dB}$	± 3.0508	$-2.25 d B=0.4 d B 1$ 1048 step below 0 dBm range

Remote programming aceuracy: 0.75 dB belter than indicated meter accomicy.
Flatnese $\left(+15^{\circ} \mathrm{C} 10+35^{\circ} \mathrm{C}\right): \pm 0.75 \mathrm{~dB}, 2.0-6.2 \mathrm{GHz}: \pm 1.00 \mathrm{~dB}$. $2.0-12.4 \mathrm{GHz} ; \pm 1.25 \mathrm{~dB}, 2.0-18.0 \mathrm{GHz}$.
Outpul level switching time: $<20 \mathrm{~ms}$.

Source impedance: 50Ω.

Amplitude modulation

AM depth (for RF output meter readings $\leq 0 \mathrm{~dB},+15^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$):
$0-75 \%, 2.0-6.2 \mathrm{GHz}$.

$$
0-60 \%, 6.2-12.4 \mathrm{GHz}
$$

$$
0-50 \%, 12.4 \text { IR.0 GiHz. }
$$

Senaltivity: $30 \% / \mathrm{V}, 100 \% / \mathrm{V}$ ranges. Max inpul I V peak into 600Ω. Rates (3 dB BW): $10 \mathrm{~Hz}-100 \mathrm{kHz}$.
Indlcated AM meter accuracy ($100 \mathrm{~Hz}-10 \mathrm{kHz}$ rates): $\pm 5 \%$ of range.
Distortion (rstes $\leq 10 \mathrm{kHz}, \mathrm{AF}$ output $\leq 0 \mathrm{~dB},+15^{\circ} \mathrm{C}$ (a $+35^{\circ} \mathrm{C}$): $<1 \%$ at 30% depin.
Frequency modulation
Peak devlation (max): the smaller of
10 MHz or $f_{\bmod } \times 5,2.0-6.2 \mathrm{GHz}$.
IO MHz or $\mathrm{f}_{\text {mod }} \times 10,6.2-12.4 \mathrm{GHz}$.
10 MHz or $f_{\max } \times 15,12.4-18.0 \mathrm{GHz}$.
Sensitivity: $30,100,300 \mathrm{kHz} / \mathrm{V}$ and $1,3.10 \mathrm{MHz} / V$ ranges. Max inpur $\$$ volt peak into 50Ω.
Rates (3 dB EW typical): $30,100 \mathrm{kHz} / \mathrm{V}$ ranges: 50 Hz 10 10 MHz : $300 \mathrm{kHz} / \mathrm{V}$ and $1,3,10 \mathrm{MHz} / \mathrm{V}$ ranges: 1 kHz to 10 MHz
Olstorton: $<12 \%$ for rates $<3 \mathrm{kHz}$ decreasing linearly with irequency to 5% at $20 \mathrm{kHz} ;<5 \%$ for 20 kHz to 100 kHz rates.
Indlcated FM meter accuracy (100 kHz rate, $+15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$): $\pm 10 \%$ of full scate.
Residual FM In FM and CW modes (2-6.2 GHz, resldual FM doubles for $6.2-124 \mathrm{GHz}$, tiples for $12.4-18 \mathrm{GHz}$):

Range	Pont Detention ${ }^{\text {ax }}$	
	$20 \mathrm{~Hz}-1$ kht	$20 \mathrm{~Hz}-3 \mathrm{kHz}$
$C W_{1}=30,100,300 \mathrm{w} 4 \mathrm{y} / \mathrm{V}$ $\text { and } \pm 1,3 \text {, } M H_{2} / Y$	6 ke rms	12 Ac mas
$1 \mathrm{OHH}_{2} \mathrm{~N}$	10 ita mis	

Aemote programming capability

Frequency: programmable over full range with same resolution as in manual mode.
Output level: programmable over full range in 1 JB steps.
AM modulatlon: OFF, $30 \% / \mathrm{V}$, and $100 \% / \mathrm{V}$ ranges.
FM modulation: OFF. 30. $100.300 \mathrm{kHz} / \mathrm{V}$ and $1.3 .10 \mathrm{MHz} / \mathrm{V}$ ranges.
Other: RF ON/OFF, ALC INT./EXT. (crystal or power meter). Programming format: HP-I8 (Hewletr-Packard Interface Bus).

General

Operating femperature range: $010+55^{\circ} \mathrm{C}$.
Power: 100. $120,220,240 \mathrm{~V}+5,-10 \%, 40-66 \mathrm{~Hz} .300 \mathrm{VA}$ max.
Weight: nes. $27 \mathrm{~kg}(60 \mathrm{lb})$. Shipping. $32.5 \mathrm{~kg}(72 \mathrm{lb})$.
Dimenslons: $133 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 603 \mathrm{mmD}\left(5.25^{\prime \prime} \times 16.75^{\prime \prime}\right.$ $\times 23.75^{\prime \prime}$)

Options

Price
001: No RF outpuit altemuator [ess $\$ 600$
002: No internal reterence oscillator less $\$ 550$
003: Operition at 400 Hz line only
add $\$ 250$
004: Rear panel RF outpul
006: Rear panel RF uqput without RF atienualor less $\$ 525$
000: Chassis slide kil
add \$ 45

Model 8671A

```
- 2-6.2 GHz frequency range - Low spurious and phase noise
- 1 kHz frequency resolution
- <5 < 10-10/day stability
```

- Low spurious and phase noíse
- +8 dBm minimum output power
- HP-IB programmability

8671A

Description

The 8671A microwave frequency synihesizer covers the frequency range 2.0 to 6.2 GHz in kHz steps with excelient stabitity and spectral purity. 11 is well suited for most LO applications that require state-of-the-art performance as well as broadband capability.
Spectral purity
Spurious responses (except power line related) are greater than -70 dB below the carrier across the full frequency band. And phase noise. a critical parameter in many applications, is low enough to permit exiremely sensitive measurements.

Output power

The 8671 A has a guaranted output of +8 dBm at all frequencies. This is well within the operating range of most commercial mixers. However. for the few applications requiriag greater power the 8671 A produces clean outputs as high as +10 dBm at many frequencles.

Wideband FM

The 8671 A also has frequency modulation capability at rates up to 10 MHz and peak deviations up to 10 MHz (with externally applied signals). Carrier phase-lock is maintaioed in the FM mode.

HP-IB programmability

The standard programming interface offered with the 8671A is directly compatible with the Hewlett-Packard Interface Bus. Programmable fugctions include frequency. FM, and RF ON/OFF.

Speciflcations

(See technical data sheet for complete specifications.)
Frequency characteristics
Frequancy range: $2.0-6.2 \mathrm{GHz}(6.199999 \mathrm{GHz})$.
Froquency resolution: 1 kHz .
Tme base: internal 10 MHz ($<5 \times 10^{-10 / d a y ~ a g i n g ~ r a t e) ~ o r ~ e x t e r n a l ~}$ 5 or 10 MHz .
8witohing time: <15 ms to be within 1 kHz .
Harmonice: <-15 dB.
singio-aldeband phase noles (1 Hz 8W, CW mode)

OHzot from F_{5}	10 HI	100 Hz	1 kHz	10 Hzz	100 kHz
558 tevel	-58 dB	-68 dB	-78 dB	-89 dB	$-105 \mathrm{d8}$

Spurious

Non-harmontcsilly related: <-70 dB.
Power lline related (CW mode, and within 8 Hz below any line related trequenoy)

Ofisol trom F_{1}	-3DD H2	S00 heto 1 sht	31 kta
2.0-5.2 CHz	-50 d8	-80 di	-65 dB

Output characteristics
Power (unleveled): +8 dBm (min.), +15 to $35^{\circ} \mathrm{C}$.

Figure 1. Typlcal output power avallable

Fatnese: $<6 \mathrm{~dB}$ total variation across full frequency band.
Source impedance: 50 ח
Frequency modulation
Paak doviation (maz): 10 MHz or $\mathrm{f}_{\text {moo }} \times 5$, whichever is smaller.
Sonsitulty: $50 \mathrm{kHzz} / \mathrm{V}$ and $5 \mathrm{MHz} / \mathrm{V}$ ranges. Max input 2 V peak.
Rates (3 ds 日W): 50 Hz to 10 MHz typical.

Remote programming

Frequency: programmable over full range with I kHz resolution.
FM modulation: OFF. $50 \mathrm{kHz} / \mathrm{V}$, and $5 \mathrm{MHz} / \mathrm{V}$ ranges.
Othe: RF, ON/OFF.
Programming forthat: HP-IB (Hewlett-Packard Incerface Bus).

General

Operating femperature range: $01055^{\circ} \mathrm{C}$.
Power: i00. 120. 220. or $240 \mathrm{~V}+5,-1058,48-66 \mathrm{~Hz}, 300$ VA max. Welght: net, 24 kg (58 lb): sbipping. $29.5 \mathrm{~kg}(65 \mathrm{lb})$.
Sl2e: $133 \mathrm{H} \times 42 \mathrm{SW} \times 603 \mathrm{~mm} \mathrm{D}\left(5.25^{\prime \prime} \times 16.75^{\prime \prime} \times 23.75^{\prime \prime}\right)$. 23.75").

Options
002: No insemal reference less $\$ 550$
003: Operation at 400 Hz line only
005: Rear panel RF outpu1
add \$ 75
008: Chassis slide kit

SIGNAL GENERATORS
 Precision, high stability, AM-FM, 0.5 to 1024 MHz Models 8640A, 8640B

- Wide frequency and power range
- Low broadband and close-in noise
- Calibrated, metered AM and FM
- The 8640B also features: internal phase lock synchronizer external counter to 550 MHz

B640A

Description

The 8640 Signal Generator covers the frequency range 500 kHz to 512 MHz (450 kHz to 550 MHz with band overrange) and can be extended to 1100 MHz with an intemal doubler (Opt 002). Using the 11710B Down Converter, the 8640 frequency range can be extended down to 10 kHz . An optional audio oscillator is also available with a frequency range of 20 Hz to 600 kHz . This broad coverage, together with calibrated output and modulation, provides for complete RF and IF performance tests on virtually any type of $\mathrm{HF}, \mathrm{VHF}$, and UHF receivers.
Both solid state generators 8640A and B have an output level range of +19 to $-145 \mathrm{dBm}(2 \vee 100.013 \mu \mathrm{~V}$) which is calibrated. metered, and leveled to within $\pm 0.5 \mathrm{~dB}$ across the full frequency range of the instrument.
The $8640 \mathrm{~A} /$ B generators provide $\mathrm{AM}, ~ \mathrm{FM}$, and pulse modulation for a wide range of receiver test applications. This modulation is calibrated and metered for direct readout under all operating conditions.
A reverse power protection option (Opt 003) is available to eliminate instrument damage due to accidental transmitter keying. This module protects against up to 50 watts of applied power and automatically resets upon removal of the excessive signal.

Spectrally pure output signals

Noise performance of the 8640 is state-of-he-art for a solid-state generator. The high-Q cavity oscillator has been optimized with use of a low-noise microwave transistor for spectally pure output signals.

At 20 kHz offsets from 230 to 450 MHz , SSB phase noise is >130 $\mathrm{dB} / \mathrm{Hz}$ below the carrier level and rises to $122 \mathrm{~dB} / \mathrm{Hz}$ at 550 MHz . This signal-to-noise ratio increases by approximately 6 dB for each division of the output frequency down to the broadband noise floor of better than $140 \mathrm{~dB} / \mathrm{Hz}$. This exceptional noise performance is also preserved during FM modulation and in the phase-locked mode of the 8640 B .

Mechanical dial or bullt-in counter

There are two versions of the 8640 Signal Generators. One, the 8640A, has an easy-to-read slide rule dial with scales for each of the 10 output frequency ranges. There is an additional scale to provide direct readout of the output frequency even in the INTERNAL DOUBLER band, $512-1024 \mathrm{MHz}$.

The 8640 B has the same performance features es the 8640 A , but incorporates a built-in 550 MHz frequency counter and phase lock synchronizer.

The built-in 6 digit counter displays the output frequency and can also be used to count external input signals from 20 Hz to 550 MHz . This eliminates the need for a separate frequency counter in many measurement systems.

Internal pushbutton synchronizer

At the push of a button, the 8640 B built-in phase lock synchronizer locks the RF output frequency to the crystal time base used in the counter. In this locked mode, the output stability is better than $5 \times 10^{-8} / \mathrm{h}$ and the spectral purity and FM capability of the unlocked mode are preserved. For higher stability, it is possible to lock to an externally applied 5 MHz standard. Two 86.40 B 's can also be locked together for various 2 -tone measurements.

In the phase locked mode, increased resolution is available by using the $1 / 2$ digit increment button. For example, 500 Hz resolution is possible for frequencies between 100 and 1000 MHz .

FM while phase locked

When phase locked, full FM capability is preserved down to modulation rates of 50 Hz . The narrow bandwidth of the phase lock loop ($<5 \mathrm{~Hz}$) provides for FM modulation up 10250 kHz rates and assures no degradation in noise from the unlocked mode. This crystal stability, coupled with the precision modulation and low noise. makes the 8640 B ideal for testing narrowband FM or crystalcontrolled receivers.

8640A／B specifications

（See technical data sheet for complete specifications）．All specifica－ lions apply over the nominal Frequency ranges and over the top 10 dB of the output level vemier range unless otherwise specified．

Frequency characteristics

Henge： 500 kHz so 512 MHz in 10 octave ranges（ 101024 MHz with option 002 intemal frequency doubler）．
Ranges and range overlap：ranges extend 10% below and 7π above the nominal frequency ranges shown below．

Foa foeney rangen（Hity		
$0.5-1$	$8-16$	$128-256$
$1-2$	$16-32$	$256-512$
$2-4$	$32-64$	$512-1024$
$4-8$	$64-128$	Oopt 002．

Fine tunling
8640A and 9640 B unlocked：$>1000 \mathrm{ppm}$ totad range．
日640B locked mode：$>\geq 20 \mathrm{ppm}$ by villying internal time base vemier．
Intemal counter resolution（86408 unlocked）

Frequangy Raguer （4）	Hornail Hode	$\begin{gathered} \text { Expand } \\ 110 \end{gathered}$	$\begin{gathered} \text { Expynt } \\ \times 100 \\ \hline \end{gathered}$
0．5－1	10 Hz	1 Hz	0.1 Hz
1－16	100 Hz	10 Hz	1 Hz
16－128	1 kHz	100 Hz	10 Hr
128－1024：	10 kHz	1 kHz	100 Hz

Opfimum counter resolution when phase－locked（86408）

（Minz）	Whan 6 0ipis	＋${ }_{\text {c1／2 }}$
0．5－0．9999995	1 H	0.5 Hz
1．0－9．999995	10 Hz	5 Hz
10．0－99．99995	100 Hz	50 Kz
100．0－999．9995	1 khz	500 Hz
1000－1024	10 kHz	5 kHz

Accuracy
8640A：mechanical dial；accuracy belter than $=1.0 \%$ ，resettability better than 0.1% ．

Measured SSB Nolse vs．OHset Prom carrler．Markers Indicate specillead 3 mils．

B640B： $6^{1 / 2}$ digit L．ED display with $\times 10$ and $\times 100$ expand：accu－ racy depends on intemal or extermal reference used．
Stabllity（afier $\overline{2}$ hour wermup）
Normal：＜ 10 ppm ／ 10 min．
Locked：（8640日）c0． $05 \mathrm{ppm} / \mathrm{mr}$ ．
Restablitzation time after frequency change

Normal：＜ 15 min．

Locked（86408）：＜1 min．after relocking to be within 0.1 ppm of steady state frequency．

Output characteristics

Range： 10 dB steps and $18 \mathrm{\$ B}$ vernier provide the followits output power settings into 500 ．

frapuamey Ratis （M⿴囗十心	Btaturs			
		002	003	002）003
0.5 to 512	$\begin{array}{r} +1910 \\ -1450 \mathrm{cmm} \end{array}$	$\begin{gathered} +18.5 \text { to } \\ -145 \mathrm{~d} 8 \mathrm{~m} \end{gathered}$	$\begin{array}{r} +18.510 \\ -145.48 m \end{array}$	$\begin{array}{r} +1810 \\ -14588 \mathrm{~m} \\ \hline \end{array}$
512 to 1024 （Option 002）	－	$\begin{array}{r} +1310 \\ -j 1488 \mathrm{mb} \\ \hline \end{array}$	－	$\begin{array}{r} +1210 \\ -14 \leqslant \text { dem } \end{array}$

Leval ilatness（relerred to output af 50 MHz and applles to iV range and for top 10 dB of vernler pange）

$\begin{aligned} & \text { Frequency } \\ & \text { Fange } \\ & \text { (Mhti) } \end{aligned}$	6800AR	Mith OgUomis		
		002	005	602．003
0.510 .64	20．5 28	$=0.548$	$\begin{aligned} & -0.75 \mathrm{~dB} \\ & -1.25 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} : 11748 \\ -2.508 \end{array}$
64 to 512		± 1006		
512 to 1024 10ption 002：	－	± 1.568	－	± 2.068

Level accuracy：（worst case as indieated on level meter）$\pm 1.5 \mathrm{~dB}$ is $\pm 4.5 \mathrm{~dB}$ depending on level，frequency，and oplions installed

Spectral purity

Harmonles（at 1 voll，+10 dBm outpul range and below）：
$>30 \mathrm{~dB}$ below fundamental． 0.5 to 512 MHz ．
$>12 \mathrm{~dB}$ below fundamental，$S I 2$ to 1024 NHz ．
Spurious output signala fercluding frequencles whinin 15 kHz of the algnal whose elfacts are specified in residual AM and FM）

Frequency （1）Hia	Selinumonlesily Relaled		Won－itrmanically Rolzed	
	1640d	8400	18804	86404
$\begin{aligned} & 0.5 t 0 \\ & 512 \\ & \hline \end{aligned}$	Naye setectable	$>100 \mathrm{~dB}^{8} \mathrm{c}$	none detectable	2100 d8C
512 t6 1024 （Option 0024	$>20 \mathrm{dBc}^{\prime}$			

Residual AM（averaged rms）： 0.3 to 3 kHz post－detection noise bandwidih＞85 dBc．
Resldual FM（avaraged rms）： 0.3 to 3 kHz post－detection noise bandwidth．（CW and up to $1 / 8$ maximum allowable peak deviation．） $0.510512 \mathrm{AHz}<5 \mathrm{~Hz}$ ．
$512101024 \mathrm{MHz}<10 \mathrm{~Hz}$.

[^26]
Modulation characterlstics

General
Types: Inemal AM and FM: External AM, FM and PULSE; simaltaneaus AM and FM or PULSE and FM.
Internal modulation sources: (independenily adjustable output is available at front panel.
Standard: 8640A or 8650 B .
Frequency: lixed 400 Hz and $1 \mathrm{kHz},=3 \%$.
Output level: 1 mV to 1 V rms into 600Ω.
Optronal: (internal variable audio oxcillator Option 00t, 8640A or 8640B).
Frequency: variable $20 \mathrm{~Hz} 10600 \mathrm{kHz}=15 \%$ plus fixed 400 Hz and $1 \mathrm{kHz} \pm 3 \mathrm{~s}$.
Output level: I mV to 3 V ms into 600 n .

Amplitude modulation

Depth

0.6 to 512 MHz : 0 to 100% for ounput level range from +13 dBm and below.
512 to $1024 \mathrm{MHz}: 0$ to 100% for output levets of +7 JBm and below and for 6 dB to 16 dB down on output vernier range.
AM Rates: INT and EXT ac: 20 Hz to AM 3 dB bandwidth. EXT dc; dc to $A M 3 \mathrm{~dB}$ bandwidth.
AM 3 dE bandwidth:

Freguency Aanges	01030% AM	301090% AM
0.5102 MHz	20 산	12.5 kHz
2to 8 NW2	40 MHL	$25 . \mathrm{kHz}$
A te 512 MHz	60 aty	50 kHz
512 to 1024. M 4 4	60 kHz	50 kHz

AM distortion (at $\mathbf{4 0 0} \mathrm{Hz}$ and y kHz rates):

Frequancy fanzes	01030% AM	3010 50\% NH	50 to 80% 44
1.510512 MHz	\cdots		-3\%
512101024 MHz	- 10%		

External AM senalifvity (400 Hz and $1 \mathbf{k H z}$ rates)

0.5 to 612 MHz : $(0\} \geq$.0.005) $\%$ AM per mV peak imto 6000 with AM vernier at fall c \mathbf{W} pesitions
512 to 1024 MHz : nomisal 0.1% AM permV peak into 600Ω with AM vemicr al full CW position.
indicaled AM accuracy (400 Hz and 9 hHz rates using Internal meter)
0.5 to $512 \mathrm{MHz}: \pm 5 \%$ of reading -1.5% of full scalt from 0 to $50^{\circ} \mathrm{C}$.
512 to 1024 MHz nol specified: each generator can be modividually calibraed using operaling nianual mucedure.
Peak Incidental phase modulation (at 30\% AM)
0.5 to 128 MHz : <0.JS radians.

128 to $512 \mathrm{MHz} ;<0.3$ radians.
512 to 1024 MHz < 0.6 radians.
Peak Incidental Irequency devlation: equals peak incidental phase modulation \times modulation rale.

Pulse modulation

Frequency Ranges (MHz	0.5-1	1-2	2-8	8-32	$32-512$	512-1024
Rise and F2ll Iimes	-9 us	<645	$<2 \mu s$			$<1 \mu \mathrm{~s}$ typlcal
Pulse Repetition Rate			$\begin{gathered} 50 \mathrm{~Hz} \\ 10 \\ 100 \mathrm{AHz} \end{gathered}$	$\begin{array}{r} 30 \mathrm{~Hz} \\ 10 \\ 250 \mathrm{xHz} \end{array}$		
Pulse Widh Minimun'			5015		2μ	
Pulse ON/ Off ratio 8t max. Yifliet			38048			>E0 60
Peak Input Regsind	Nominally +0.5 V (S V max) Sinewave or Pulse fetum fe zero me ban					

'For ievel accuracy withan I al al CW tevel accuracy spelification $1: 0$ log duty eycla).

Frequency modulation
Deviation: maximum allowable deviation equals 15% of lowest frequency in each nominal output frequency range.

FM 3 dB bandwidth: internal and extemal ac: 20 Hz to 250 kHz External dc: dc to 250 kHz . 186010 B locked mode: FM above 50 Hz only.)
FM distortion (at 400 Hz and 1 kHz sates)
$<1 \%$ for deviations up to $1 / 8$ maximum allowable.
$<3 / 8$ up to maximum allowable deviation.
Exiernal FM sensitivity: I volt peak sields maximum deviation indicated on PEAK DEVIATION switch with FM vernier al full CW position.
Indleated FM aceuracy: (400 Hz and I kHz rates using internal meter $)=(7 \%$ of reading $+1.5 \%$ of full scale).

Incidental AM (at 400 Hz and 1 kHz rates)

0.5 to 512 MHz : $<0.5 \%$ AM for FM up 10% max allewable deviation. $<1 \%$ AM for FM at maximum allowable deviation. 512 to 1024 MHz (Op1 002): <1\% AM for FM up 10 n/s max allowable deviation.

Counter characteristics (8640B)

External RF input
Frequency range: 1 Hz to 550 MHz .
Senaitivliy: 2100 mV ms imto 50Ω, ac only.
Resolution: 6-digil LED DISPLAY.

Mado	Narmsi	Exp3nd $\times 10$	Expand $\times 100$
$0-10 \mathrm{MHz}$	100 Nz	10 Hz	1 Hz
$10-550 \mathrm{MHz}$	10 kHz	$1 \mathrm{kt2}$	100 Hz

External reference input: 5 MHz . nominally $>0.5 \mathrm{~V}_{\mathrm{p}}-\mathrm{p}$ (5 V niax) ínto 1 kr .
Internal reference characteristics (afler 2-hr warmup).
Temperature drift: (after calibration at $25^{\circ} \mathrm{C}$)
$< \pm 2 \mathrm{ppm}$ for $15^{\circ} \mathrm{to} 35^{\circ} \mathrm{C}$.
$<=10 \mathrm{ppm}$ for 0° to $55^{\circ} \mathrm{C}$.
Aging rate: (constant semperature and fine voluge) $<0.05 \mathrm{ppm}$ per hour: <2 ppm per 90 days.
Frequency tuning: $>=20 \mathrm{ppm}$ using inlernal time base vemier. Rear output: $>0.5 \mathrm{~V}_{\mathrm{p}} \mathrm{p}$ into 500Ω. This will drive another 8640 B .

General characteristics

Operating temperature range: $016,55^{\circ} \mathrm{C}$.
Power requirements: $100,120,220$, and 240 voils. $+5 \%,-10 \%, 48$ $10440 \mathrm{~Hz} ; 175 \mathrm{VA}$ maximum. (Oplion 002. 190 VA max.)
Welght: 3640 A and 8640 B : nel, $20.8 \mathrm{~kg}(46 \mathrm{Hb}$). Slypping. 24.1 kg (53 Ib).
Dimenslons: $140 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 476 \mathrm{~mm} \mathrm{D}\left(5.5^{\prime \prime} \times 16.75^{\prime \prime} \times\right.$ $18.73^{\prime \prime}$).

Options

001: (ineernal variable audio oscillalor. 20 Hz 10 600
add $\$ 275$
kHz)
002: (internal doubler 512 - 1024 MHz) add $\$ 850$
003: (teverse power protection) add $\$ 300$
004: (avionics option) 8630 B anly add $\$ 800$
Ordering information Price
8640A Signal Generator $\$ 5200$
8640B Signal Generator $\$ 6600$
－Demodulated output from RF detector，AC and DC
－Phase shift；less than 0.01° at 30 Hz
－External Count Capability： 1 Hz io 550 MHz

86401 Ope 004

The Hewlett－Packard Model 8640B Option 004 NAV／COM Sig－ nal Gencrator is an $86-40 \mathrm{~B}$ AM／FM Signal Geaertuor specially adapted for testing ILS（Marker Beacon，Lowalizer and Glide Slope）．VOR and VHF communications reccivers used throighout the Aviation industry．VOR，LOCAlsZER and VHF conנmunica－ lions frequencies（ 308 to 136 MHz ）are available on onc frequency bavd for rapid charncl selecrion．GLIDE SLOPE（ 329 to 335 MHz ） and MARKER BEACON（ 75 MHz ）frequencies are alou easily sel using the 6－digit LED display．

The 8640 B Oplson 004 provides higinly siable，specirally pure RF signals for testing marrow－channel．crystal controlled receivers．For avionics testing．external audio generators are required to provide the compesite modulation．Designed with versatile AM and FM modulation，Option 004 fealures low disiortion modulation when used with suitable．extemal VOR／ILS Audio Generators．

Operation and specifications of the 8640 B Option 004 are the same as the Sinndard 8640 B AM／FM Signal Generator with the following additions．

Demodulated output

One front panel BNC connector provides demodulated output from the RF peak detector for precise AM settings．A choice of combined ACIDC a！IV mos or AC only al 5 V ms is provided．

Oulput level getting

To ensure the best possible demodulited output linearity．Oplion OQ4 combines a 1 dB step atlenuator and a vemicr with a In dB step attenuator．This provides ouiput levels from $+15 \mathrm{dBm} 10 \cdot 142 \mathrm{dBm}$ （ 1.3 V to $0.018 \mu \mathrm{~V}$ ）．The output level can be read directly from the attenuator dial in dBm or from the front panel meter in dBm or volts．

Externel AM Inpul Impedance

External AM input impedance of $2 \mathrm{k} \Omega$ allows compabible eperalion with old and new generations of exiemal audio generators．

Low distortion modulation

The 8640 B Option 004 provides Ha：AM response and minintum phase shift at 30 Hz and 9960 Hz as well as consiant group delay belween 9 kHz and 11 kHz for accurate VOR and ILS testing．

Specifications

（These specilications apply to 8640日 Oplion 004 in addition 10 slandard $8640 B$ specifications．Sce 8640 B AM／FM Signal Generator Data Shect for complete specifications．）
Spectral purlty
Nolse：SSB Broadband noise floor：geater than I MHz offset from carrier，$>130 \mathrm{~dB}$ down．

Output characlerlsilcs
Range：$+15 \mathrm{dBm} 10-142 \mathrm{dBm}(1.3 \vee 100.018 \mu \mathrm{~V})$
Attenuators：a 10 dB slep allenuator plus a 1 dB step altenumlor with vernier allow selection of any outpul level over the full outpul level range．
Vemler： 2 dB continuously variable from a CAL dcient position． Level flatness：$<=0.75 \mathrm{~dB}$ from 0.510512 MH 2 referred to output at $190 \mathrm{MHz}< \pm 0.5 \mathrm{~dB}$ from 10810336 MHz relerted to oulpul as 190 MHz ．（Flamess applies $10+10$ to -10 dBm. ）
Leval accuracy

	$\div 1510-10$	$-1010-50$	-50 to－162	With Oplon 003
Totial Acculacy as Muicaled on Level Matar	I15 68	$=2.0 \mathrm{~dB}$	$\pm 2.5 \mathrm{~dB}$	Add $\pm 0.5 \mathrm{~dB}$ except from 108 fo 336 MHz

Modulation charactertstics
Demodulated output（Output vemler in CAL position）（108 to 118 and 329 to 338 MHz ）：an internal selector switch allows setec． tion of $A C$ only or $A C$ and $D C$ at the demodulated output．
AC only output：dirceily proportional to AM depth．（ 90 to 150 Hz modulation frequency）．
\％AM equals：$(20 \pm 0.6) \%$ per V rms， 0 to $55^{\circ} \mathrm{C}$ ：$(20=0.4)$ \％per V miss， 20 to $30^{\circ} \mathrm{C}$ ：$(20 \pm 0.2) \%$ per V ms（using calibration sheed provided by factory）．
AC and DC output：Ac output vollage is directly proporional to AM depth（ 9010150 Hz modulation frequency）．
\％A\＆equals：（ $100=3$ ）\％per V ms． 0 to $55^{\circ} \mathrm{C}$ ：$(100=2) \%$ per V rms． $201030^{\circ} \mathrm{C}$ ；（ $\left.100 \pm 1\right) \%$ per V rms（using calibration sheei provided by factory）．
DC oulput equals（ $1.414=0.010) V$ de with vemter in CAL position．
Amplitude modulatlon characteristles（ +10 d日m output and below）
External Input Impedance：nominally $2 \mathrm{k} \Omega$ ．
Frequency responee：$\pm 0.05 \mathrm{~dB}$ from 90 Hz through 150 Hz （ 108 so II8 and 329 to 335 MHz ．）：$\pm 0.05 \mathrm{~dB}$ from 9 kHz through 11 kHz （ 10810118 MHz ：$=3 \mathrm{~dB}(01070 \% \mathrm{AM}$ ）from de through $50 \mathrm{kHz}(8$ 10512 MHz ）：$\pm 3 \mathrm{~dB}(01090 \%$ AM）from dc（hrough $35 \mathrm{kHz}(810$ 512 MHz ）．
Phase ehift from audio input to demodulated output（108 10118 MHz）（AM EXT DC mode）：
$30 \mathrm{~Hz}< \pm 0.01^{\circ}$
30 Hz to $10 \mathrm{kHz} \ll \pm 3^{\circ}$
$9 \mathrm{kHz} 1011 \mathrm{kHz}< \pm 2^{\circ}$ difference．
日640B Avlonles Opt 004
$\$ 7400$

- 500 kHz to 512 MHz
- $-40^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$ operating temperature
- Phase lock stability, external count

8640M

8640M Signal generator

The KfuloM is a highly ruggedized version of the 8640 B signal generator which adds fiedid useability and retains the excellent stability and signal purity of the 8G40B. Six-digit display, phase-lock and extemal couns capibitits similar to the 8640 B are standard on the 8640 M . Internal Pulse modulation capabitity and 50 W reverse power protection rac also standard.

The waterprof combination case. constructed to the requireinents of Mil-T-21200J, provides a protective otter shell and cushioned mounts to assure tolerance to the shock and vibration rigors of off-road transportation. All conirols on the front pitne) ari drip-pronf, and the air ducts are louvered to allow operation in wind, rain, or snow.

Reliahility iesring to Mil-Sid-781 allows prediclion of MTBF's in excess of 2200 hours. The lesting included vibration. $-40^{\circ} \mathrm{C} 10$ $+55^{\circ} \mathrm{CC}$ temperalure cycling, and power cycling. Maintanability testing to Mil-Stu-47l has venfied that the mean time to remair the $86+0 \mathrm{M}$ is less than 2 hours.

8640M Specifications

Frequency characteristics
 with Entemal Frequency Doubler).
Internal counter resolution: same sis 8640 B (excepl no) Expand X 100 range; no exira $1 / 2$ digil).
External counter resolution: Гroms 0 lo 10 MHz . 10 Hz ; from 10 to sத才) MHz: 1 kHz .
Stabtllty

	Normal (Typleal)	Lockey
fime ratrer 3-7. warm-up)	<15 apmelid min	c20pm10 min
Iemparalud	-50 pom/	

Outpul range and accuracy

	Using Iod 1080 of Vertiof Rance			Using full Vermier hange
Outpu: (aBm) Rangr	$\begin{gathered} +1310 \\ -7 \end{gathered}$	-710 $-4!$	$\begin{aligned} & -17 \text { to } \\ & -137 \\ & \hline \end{aligned}$	$\begin{aligned} & +1810 \\ & -145 \\ & \hline \end{aligned}$
Total Acruracy as indicsted or Level theter	2048	23 dB	3.0 d8	$\begin{aligned} & A \Delta d \\ &= 0.5 d B \\ & \hline \end{aligned}$

Modulation

Types: incernal AM. FM, and PULSE. exiernal AM. FM and PLILSE.
Environmental perlormance
Temperalure: MIL-STD-810B. Methed 501.502 Proe. I.
Operating: continuous operation allowed between $-40^{\circ} \mathrm{C}$ $\left(-40^{\circ} \mathrm{F}\right)$ and $+55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$. Intermitten uperation (-20 min.) allowed up to $+71^{\circ} \mathrm{C}\left(160^{\circ} \mathrm{F}\right)$.
Non-Operating: storage allowal belween $-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$ and $+85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$.

- Extends frequency range down to 10 kHz on all 8640 and 8654 series generators
- Preserves calibrated output level and modulation

Humidity: MillsTD-810B, Method 507 Proc. I. IO-day Iest.
Operating: $-40^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right)$ to $+40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ at up to $95 \% \mathrm{RH}$.
Non-Operating: storage allowed belween $-60^{\circ} \mathrm{C}(-76: \mathrm{F})$ and
$+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ up $1095 \%^{\circ}$ R.H. Condensation allowed.
Shock: MIL-T-21200J Class II. When mounted in its combination casc. the 8640 M will withstand 20 g "s shock in any of 3 planes withoul damage.
VIbration: MIL-T-21200J Clars 11.
Pain: MIL-STD-810B Method Sib Proc. I. Simulated rain and wind conditions up 1012 in. Alour rainfall and up 1040 mph wind. Inserument was in nomml opereting configuration.
Explosive Atmosphere: MilL-STD-si0B Nethes sil Proc. 1.
Type testing verified successiol aperation in potentially cxplosiye atnousphere fiden with avionic fuel vapor.
Salt Fog: MHL-STD-810B Method 509 Proc. I. A mechanical mock-up was tested to verify the non-comosive nature of patts. materials, and processes.
Fungus: non-fungus nuerient material used.
EMI: MIL-STD-f 61λ. Class C1. Tesi Methods C.E 03 and RE 02.

117108 Down converter

The 11710B Down Converter is in accessory for the 8640 and 8654 series signal generators. Frequency inputs from 50.01 to Gl MHz are down converred to the 10 kHz to 11 MHz range respectively. The output level and modutation functions of the 8640 and 8654 remain calibrated. A straight through selection allows the input to pass through unchanged and switch thus minimizes the necessity to move cables when testing

117108 Specifications

Input characteristics

Down-conversion mode: 50.01 io 61.00 MHz : $11 \leqslant 0 \mathrm{dBm}$.
Straight-through mode: 0.01 is 1100 MHz .
Down-converted output characterlstlcs
Frequency range: 10 kHz 10 II MHz .
Level ranga: $010-107 \mathrm{dBm}$.
Level llalness (referred to 4.0 MHz): $\pm 0.5 \mathrm{~dB}$.
Level accuracy: $=(1 \mathrm{~dB}$ plus input level accuracy).
Harmonles: >3 ab below the cartier (dBc).
Intermlxing spurlous: $>60 \mathrm{dBc}$.
Local oscillator feed-through (50 MHz): $<-80 \mathrm{dBm}$.
Internal reference characteristics
Time base output: I $\mathrm{MH} /$ or 5 MHz selectable, nominally $=0.5 \mathrm{~V}$ p-p into S00!2. This will drive an 8640B or 8655 A External Time Base Input.
Typleal overall accuracy: (within 3 mo. of calibration and from $15^{\circ} \mathrm{C} 1035^{\circ} \mathrm{C}$): $=2 \mathrm{ppm}$.

General characteristles

Operating temperature range: 0 to $53^{\circ} \mathrm{C}$.
Power requlrements: $100,120,220,240 \mathrm{~V}(+5 \%,-10 \%), 48$ to 440 Hz : 12.5 VA .
Welght: nel. $2.2 \mathrm{~kg}(4 \mathrm{ib} 13 \mathrm{oll}$. Shipping $3 \mathrm{~kg}(6 \mathrm{lb} 8 \mathrm{oz})$.
Dimenslons: $102 \mathrm{~mm} \mathrm{H} \times 266 \mathrm{~mm} \mathrm{~W} \times 290 \mathrm{mmD}\left(4^{\circ} \times 10.5^{\circ} \times\right.$ (1.4375").

Ordering information
Price
8640 M Sisnex gencratol $\$ 8400$
11710B Down converter
$\$ 1000$

Rugged solid-state generator 10 to 520 MHz ; synchronizer/counter

 Modals 8864A, 8654B, 8655A-

Calibrated output power

- Calibrated AM, FM; internal, external, independent
- 25 Watt reverse power protection (optional)

8854A

8654A/B Signal generators

The HP 8654A/B Signal Generators are portable. low-eost solidstate generators providing calibrated output and versatile modulaIion capabilities over the 10 to 520 MHz frequency range. The 865_{4} provides clean RF signals with harmonics $>20 \mathrm{dBc}$ (below carrier) und subhamonics and spurious. $>100 \mathrm{dBc}$ for testing receivers. amplifiers, antennas, and filter networks. The 8654 B has calibrited $A \mathrm{MI}$ and FM while the 8654 A has uncalibrated FM .
Its compactness and small size allow the 8654 to fit easily into production, mobile, airborne, and shipboard test locations. Its rugged, lightweight construction is also suitable for field maintenance and service applications.
Internal oscillators provide both amplitude modulation and frequency modulation at 400 Hz and 1000 Hz , or external modulation can be accomplished using standard audio ascillators.
A front-panel meter accurately indicates amplitude modulation depth from 0 to 90% when the meter mode switch is in the AM position. Additionally, the 8654 日 provides calibrated and metered FM over four deviation ranges: 0 to 3 kHz . 0 to $10 \mathrm{kHZ}, 0$ to 30 kHz , and 0 to 100 kHz .
Reverse power protection is available (Option 003) 10 protect against accidental triggering of transceivers of up to 25 watts into the signal generator.
Effective RF shielding and output range permit receiver sensitivity measurernents to be made down to power levels of $0.1 \mu \mathrm{~V}$.

8654A/B specifications

Specifications apply from 10 to 520 MHz for output power $\leqslant+10$ dBm and over the top 10 dB of output level vernier range uniess otherwise specified.

Frequency characteristics

Range: 10 to 520 MHz in 6 ranges.
8654A ranges (MHz): 10 to $18.6,18.6$ to 35.351066 .66 to 130.
130 10 250,250 10 520.
B654 ranges (MHz): 10 to 19. 19 to $35.351066 .6610130,13010$ 270. 270 to 520.

Accuracy: $\pm 3 \%$ after 2 -hour warm-up.
Settabllity; settable to within 5 ppm of the desired irequency with an extemal indicator after 1 -hour warm-up.
Stability (after 2 -hour warm-up and 15 min. atter frequency change): $<(1 \mathrm{kHz} \text { plus } 20 \mathrm{ppm})^{\prime} 5$ min.
Spectral purity
Harmonle distortion (output power $E=+3 \mathrm{dBm}$): $>20 \mathrm{dBc}$; with option 003. $>15 \mathrm{dBc}$.
Subharmonice and non-harmonic spurloui (excluding ilne related): $>100 \mathrm{dBc}$.

8654B
Hesidual AM (avarage rma): $>55 \mathrm{dBc}$ in a 50 Hz 1015 kHz posidetection noise bandwidit.
Residual FM on CW (averaged rma deviation): $<0.3 \mathrm{ppm}$ in a 0.3 to 3 kHz post-detection noise bandwidth. $<0.5 \mathrm{ppm}$ in a 50 Hz to 15 kHz post-detection noise bandwidth.

Output characteristics

Range: 10 dB steps and a 13 dB vernier provide power settings from +10 dBm to $-130 \mathrm{dBm}(0.7 \mathrm{~V}$ to $0.07 \mu \mathrm{~V})$ into 50 n . With Option 003 . maximum output power is $+8 \mathrm{dBm}(0.56 \mathrm{~V})$.
Impedance: 50Ω ac coupled. SWR <1.3 on $0.1 \vee$ range or lower.
With Option 003. SWR <1.5 on 0.1 V range or lower.
Level accuracy (total se Indicated on level meter): +10 to -7 $\mathrm{dBm}, \pm 1.5 \mathrm{~dB} ;-7 \mathrm{ts}-57 \mathrm{dBm}, \pm 2.0 \mathrm{~dB}:-57$ to $-97 \mathrm{dBm}, \pm 2.5$ $\mathrm{dB}:-97 \mathrm{to}-127 \mathrm{dBn} . \pm 3 \mathrm{~dB}$.
Levol flatnest: $\pm 1 \mathrm{~d}$ 保 refenced to the outpul at 250 MHz for oulpul levels $>-$? dBm .
Auxlllary RF output: $>-7 \mathrm{dBm}(100 \mathrm{mV}$) into SON.
Leakage (whth all hF outputs terminated properly): leakage limits are below those specified in MTL-I-6181D. Futhermore, with an output level $<0.01 \mathrm{~V}$, less than $0.5 \mu \mathrm{~V}$ is induced in a 2 -turn. 25 mm diameter loop 25 mm away from any surface and measured into: 50Ω receiver.
Reverse power protaction (Option 003): protects signal generetor from accidertal applications of up $1025 w(+44 \mathrm{dBm}$) of RF power (belween 10 and 520 MHz) inte generator outpur.

Modulation characteristics

Ampllfude modulation: specifications apply for outpul power < + 3 dBm.'
Depin: 0 10 00%.
Modulation rate: internal, 400 and $1000 \mathrm{~Hz}=10 \%$: exiemal 3 dB bandwidth, de coupled to $>20 \mathrm{kHz}$.
External AM sensifulty: ${ }^{2}(0.1 \pm 0.01) \%$ AM $/ m \mathrm{~m} \mathrm{pk}$ into 600 n .
Indlcated AM accuracy: ${ }^{2}=(5 \%$ of reading $+5 \%$ of full scale $)$.
Peak Incldental frequency deviation (30% AM):? less than 200 Hz .
Envelope distortion: ${ }^{2}<3 \%$. 0 to 70% modulation: $<5 \%$. 70 to 90% modulation.
Frequency modulation
86548: fully calibrated.
Peak deviation: 0 to 30 kHz from 10 to 520 MHz .
0 to 108 kHz from 80 to 520 MHz .
Deviation ranges: 0 to $3 \mathrm{kHz}, 0$ to $10 \mathrm{kHz}, 0$ to $30 \mathrm{kHz}, 0$ to 100 xHz .
Modulation rate: internal, 400 and $1000 \mathrm{~Hz} \pm 10 \%$. Extemal 3 dB bandwidth, de coupled to $>25 \mathrm{kHz}$.
FM dhatortion: ${ }^{2}<2 \%$ for deviations up to $30 \mathrm{kHz},<3 \%$ for deviaLions up to 100 kHz .
'MM is posssible above +3 dBm as long as the combination of the All depth plus carrier output iavel does not exceed 49 dim.
2400 and 1000 Hz modulation rates.

External FM sensltivity: ${ }^{2}$ I voli peak yields maximum deviation indicated on peak deviation meter with FM LEVEL vernicr at fully clockwise posilion.
Sensituvity accuracy: ${ }^{2}=12 \%$.
Indicated FM accuracy (15° to $35^{\circ} \mathrm{C}$): $:^{2}=(12 \%$ of reading $+3 \%$ of full scale). For 100 kHz devirition alsove 130 M Hz , add 3% of reading.
Incidental AM: ${ }^{2}<1 \%$ AM al 30 kHz devialion.
Frequency modulation. 3654A : uncalibrated. Doviallon: =0.1\%e of cartier frequency, maximum.
Modulation rate: internal, 400 \& $1000 \mathrm{~Hz}=10 \%$. Extermal 3 dB bandwidth. oc-coupled to -25 kHz driven from 600Ω or less.
External FM sensitlvity: $10 V_{D k}$ into 600Ω y ields >0. 1% deviaiion ($=15$ volis max).

Genergl characteristics
Power; 100. 120. 220. or 240 volis $+5 \%,-10 \%$. 48 to $440 \mathrm{~Hz} ; 25 \mathrm{VA}$ maximum. $2.3 \mathrm{~m}(7.5 \cap$.) power cable fumished with mains plugs to masch destinalion requirements.
Weight: net. 7.9 kg (17.4 lb). Shipping, $9.5 \mathrm{~kg}(21 \mathrm{Jb})$.
Slze: $178 \mathrm{H} \times 267 \mathrm{~W} \times 306$ пum $\mathrm{D}\left(7^{\circ} \times 10.5^{N} \times 12^{\prime \prime}\right)$.

8655A Synchronizer/Counter

The HP 8655A Synchronizer/Counter is a phase-lock frequency stabilizer that provides the HP 8654A and 8654 日 Signal Generators with crystal-oscillator frequency stability. It is also a frequency counier with very low RFI leakage. When used with an \$654 Sigral Gencrator, the frequency can be phase-locked at any frequency from 10 to 520 MHz . In the locked mode the spectral purity and $\mathrm{F} \cdot \mathrm{M}$ capability of the unlocked 8654 are preserved. This performance dlows testing of new state-of-1he-arl crystal controlled receivers.

Phase locking the 8654 is simple with the 8655 A Synchronizer. A push of the LOCK button establishes lock at the frequency shown on the LEED display. Maximum lock resolution is 500 Hz . If lock is broken. the LED display flashes. Lock can be re-eslablished by reluning and again pushing the LOCK button.

The 86.55 A can also be used to count extema inpul signals from 1 kHz to 520 MHz . Input sensitivity is better zhat 100 mV into So ohms. Using the EXPAND bunon it is possible to achieve a resolution of 1 Hz in the $1 \mathrm{kHz}-10 \mathrm{MHz}$ EXT COUNT mode or 100 Hz in both the $10-520 \mathrm{MHz}$ EXT COUNT and SYNCHRONIZE COUNT modes.
RF leakage from an $86548 / 8655 \mathrm{~A}$ system is $<1.5 \mu \mathrm{~V}$ in a 2 -turn, 25 mm diameter loop 25 mm away from any surface and measured into a 50 ohm receiver.

8655A Specifications

Counter characteristics

Range: 1 kHz to 520 MHz .
Senaltivity: $<100 \mathrm{mV}$ ms $(-7 \mathrm{dBm})$, ac coupled into 50 ohms. (Typically $<-20 \mathrm{dBm} .10 \mathrm{kHz}$ 10 200 MHz.)
Maximum Input: $A C: 707 \mathrm{mV}(+10 \mathrm{dBm})$ for accurate couni. $D C$: $\pm 25 \mathrm{~V}$ on EXTERNAL COUNT INPUS. 0 V de (ac only) on rear panel SYNCHRONIZE COUNT INPUT. Both iapuls gre prolecied with common fuse.
Count resolution: 6-digit LED display:

Mode	Homal	$\begin{aligned} & \mathrm{x} 10 \\ & \text { EPAND } \\ & \hline \end{aligned}$
3 KH : 1010 M $\mathrm{HLZ}_{\text {[EXIERNALJ }}$	10 Hz	1 Kz
10 MHz 10 $320 \mathrm{MH:} \mathrm{(ETERNRL} 8$ SYNCHRONIIE CDUNT)	1 kHz	100 Hz

Accuracy: ± 1 count \pm lime base accuracy.
${ }^{3}$ Wifl continue to accurately count from ? to 10 MHz and 100 to 520 MHz with loss of mosi signnifitani sigit uniuilated by overflow light!. Phase tock is not allowed.

- Synchronize 8654A/B, stability $0.1 \mathrm{ppm} / \mathrm{hr}$.
- 500 Hz lock resolution
- Low RFI counter to 520 MHz

8655A

Time base characterlatlcs
Frequency: I MHz temperature-compensated erystal oscilator. AgIng: (constant ambient temperature) <0.1 ppm/hr.<2 ppm/ 90 days.
Temperature: $=5 \mathrm{ppm}$ from $0^{\circ} 1050^{\circ} \mathrm{C}$. (Referanced $1025^{\circ} \mathrm{C}$.) Typloal overall accuracy (after 2 hour warm-ap and whin 3 months of caltbration): belter than $\pm 2 \mathrm{ppm}$ from 15° to $35^{\circ} \mathrm{C}$. (Oplional higher stability lime base available.)
Rear output: I MHz, romisally $>0.5 \mathrm{~V}$ peak-10-peak inio 500 ohms.
External reference Input: 1 MHz . nominally $>0.5 \mathrm{~V}$ peak-lo-peak into 1000 ohms. (Not available with optional high stability lime base.)

8654A/E-8655A Synchronization characteristics

Frequency range: $10-520 \mathrm{MHz}$.

Frequency count resolution: I kHz , or 100 Hz in XIO EXPAND.
Frequency lock resolution: I kHz. Depressing LOCK +500 Hz button alfows a locked resolution of 500 Hz .
Frequency accuracy: same as time base accuracy.
Lock time duration (afler 5 minute warm-up, constant amblent): 45 min. lypical.
FM rate whlle synchronlzed: $50 \mathrm{~Hz} .10>25 \mathrm{kHz}$, (with 8654 B only).
FM accuracy (wht 8654 B only):
$\left[\begin{array}{l}\text { Tolal FM } \\ \text { Accuracy }\end{array}\right]=\left[\begin{array}{l}8654 \mathrm{~B} F M \\ \text { Accuracy }\end{array}\right] \pm\left[\begin{array}{c}\text { Frequency } \\ \text { Corrcetion Error }\end{array}\right]$

Frequency correction error is rypically $<=4 ; \%$.

General

RF leakage (when operatod whh 8654B using furnished Interface cables): less than $1.5 \mu \mathrm{~V}$ in a $2-14 \mathrm{~m}, 25 \mathrm{~mm}$ diameter loop 25 mm away from any surface and measured into a 50 ohm receiver.
Power: 100. 120, 220. or 240 volts $+5 \%,-10 \%, 48$ to $400 \mathrm{~Hz}, 100$ VA maximuma. 2.3 m (7.5 ft) power cable.
Welght: nel, $6 \mathrm{~kg}(13.2 \mathrm{bb})$. Shipping $6.5 \mathrm{~kg}(14.25 \mathrm{Jb})$.
Size: $102 \mathrm{H} \times 267 \mathrm{~W} \times 318 \mathrm{mmD}\left(4^{\prime \prime} \times 10.5^{\prime \prime} \times 12.5^{\prime \prime}\right)$.
${ }^{4}$ Frequency correction error is a function of the unloched as5as frequency dith for optimum YM accuracy, this error may be eliminated by unlocking. teturnlag to tha desired frequancy. and relocking.
Ordering information Price
8654A AM sifnal generator \$21008654 AM/FM sigeal generalor$\$ 2600$
Opt 003: Reverse power prolection (for 8654A/B) add \$300
8655A Synchronizer/Counter

606B

The Hewlell-Packard 606B Signal Generator provides you with high quality, versatile performance with distinctive ease ol operation in the important and widely used 50 kHz to 65 MHz fiequency range. Outpul signals are stable and accurately known. outpui amplitude can be precisely established over a very wide dynamic range, and versatile modulation capabilities are incorporated to satisfy virtually all measurement requirements. Convenient size and shape, logether with a simple, straightforward conirol panel layout. make the 606 B well sutited for production line use as well as laboralory or fich applicanons.

Design

The 6068 is a master oscillator-power amplifier (MOPA) design with a broadband buffer amplifier stage between the oscillator and power amplifier circuits for isclation. The MOPA design permits oprimization of the oscillator circuit for highest stability including low drift, minimum residual FM, low harmonics, etc, withour restricting the modulation characteristics. Modulation is applied to the power amplifies circuit with negligible effect on the oscillator frequency (because of the buffer stage). Very fine frequenty sethbility is achieved through incorporation of it ΔF contral which provides better than 10 ppm resolution.

606B Specifications

!.ill specifications apply over 10 p (1 dB of oulpul vermier range.)

Frequency and oulput characterlstics

Range: 50 kHz to 65 MHz in 6 bands; accuracy: $\pm 1 \%$.
Drift: ($) \mathrm{V}$ output and below) less than 50 ppm (or 5 Hz , whichever is preiter) per 10 min period after $2 . \mathrm{hr}$ warmup: less dsin 10 min to rettabilize after changing frequency.
ΔF control: betser than 10 ppm setability: range of ΔF conirol approsimately 0.1't.
Resettabillty: beher than 0.15% after warmup.
Crystal callbrator: provides frejuency checkpoints every 100 kHz and 1 MHz : jack frovided for audio srequency ourputi erjstal fre. quency accuracy beller than 0.01% from $0^{\circ}-50^{\circ} \mathrm{C}$.
Residual $F M$: less than $=1$ ppon or $\pm 20 \mathrm{~Hz}$ peak. whichever is sreater.
Output level: conlinuously adjnstiblc from $0.1 \mu \mathrm{~V}$ to 3 V inco 50 -ohm resistive load, calibrated in vollage and dBm .

Frequency response and output accuracy: al oulpul below V . nuput !evel variation with frequency is less than ? dB: output accuracy is berier than ± 1 dB at any fequency.
Impedance: 50 olinms, SWR less than 1.2 on 0.3 V alsenuator range and below.
RFI; meels all conditions specified in M1L-1-6181D: permils receiver sensitivity measurements down to at leasi $0.1 \mu \mathrm{~V}$.
Harmonle output: at leas 125 dB below the carrier.
Spurious AM: hum and noise sidebands are 70 dl 3 below camer down io the thermal level of 50 ohm output system.
Auxillary RF output: (fixed leve) CW) on front panel: minimisn output: 100 mV mis into $2 U$ uhms from 50 kHz to 19.2 M Hz .200 mV ms from 19 10 6 . $\mathrm{MH} /$.

Modulation charactertstles

Internal AM
Frequency: 400 ind $1000 \mathrm{~Hz}, 5 \%$.
Modulatlon level: 0 to 95% on $\mid V$ attenualor range shd below: 0 ro at leasi 30% on 3 V range.
Incldental FM (altenuator on 1 V range and below, $30 \% \mathrm{mod}$ ulatlon): less than $5 \times 10^{-6}+100 \mathrm{~Hz}$ peak.
Carrier envelope dislortion: $<1 \%$ al 30% AM, $<3 \%$ al 70% AM (altenuator on IV range and below).

External AM

Frequency: do to 20 kHz maximum. dependent on carrier fre. quency $\left(F_{c}\right)$ and pencent modulation as tabulated.
Maximum modulation Trequency:

$30 \% \mathrm{Mod}$	$70 \% \mathrm{Mod}$	Square wave Mod.
$0.06 \mathrm{i}_{\mathrm{c}}$	0.02 C	$0.003 \mathrm{~L}(3 \mathrm{kHz}$ max. $)$

Modulation level: 0 to 95% on I V attenuator range and below. 0 10 at least 30% on 3 V range.
Inpul required: 4.5 V peak produces 95 縓 modulation (maximun) input 50 V peak): input impedance 10000 ohms.
Carrler envelope digiortion: <35 at $70 \% \mathrm{AM}$ ($\leqslant 1$ V output).
Modulation meter accuracy: $=$ (5% of full scalc $+5 \%$ of reading)
from 0 to 90% for rates to $10 \mathrm{kHz}: \pm 10 \%$ of full scale for rates to 20 kHz .
Moduration level constancy (intemal or external AM: altenuator on 1 V range and below): modulation level of 70% or less stays constant wihbin $\pm 0.5 \mathrm{~dB}$ regardless of camier frequency and oupul jevel changes.

General

Power: lis or $230 \mathrm{~V}=10 \%$, $5010400 \mathrm{~Hz}, 135 \mathrm{VA}$.
Dimenslons: cabinet, $318 \mathrm{~mm} \mathrm{H} \times 527 \mathrm{~mm} W \times 375 \mathrm{~mm} \mathrm{D}\left(12.5^{\circ} \times\right.$ $20.75^{\prime \prime} \times 14.75^{\prime \prime}$: rack $265.9 \mathrm{~mm} \mathrm{H} \times 483 \mathrm{~mm} \mathrm{~W} \times 371 \mathrm{~mm}$ D behind panel, ($10.5^{\prime \prime} \times 19^{\prime \prime} \times 14.61{ }^{\prime \prime}$).
Welght: cabiner. nel, $25 \mathrm{~kg}(55 \mathrm{lb})$. Shipping 30 kg (66 lb): rack. nel. $29.7 \mathrm{k} \underline{\underline{2}}$ (50 lb). Shipping $29.5 \mathrm{~kg}(65 \mathrm{l}$) $)$.

Accessories avallable:

IISUTA Oumput Termamition, provide ; gosilions: 50 ohms. 5 ohms and JEEE Standard Dummy Anicnnas.
1)50yA 1 useholder. profection for 606 B iransceiver sests. IOS34A Mixer. Гor use ar a manosecond pulse modulator.

Orderlng Informatlon Prlce

606B HF Signal Geoerator (cabinet) $\$ 3750$
606BR HF Signal Generalor (rack) $\$ 3750$

- Versatility and value, $10-480 \mathrm{MHz}$

608E

Model 608E provide: high-quadity, vemanite performance with distinctive ease of operation. The 608E provides an oulpul of up 101 volt over the range from 10 to 480 MH 7 .

The cose is an improved version of the pepular and time-proven HP G08C/D Signal Generators. The instrument is a master oscillatur-power amplificer (MOPA) lype with a broadband buffer amplifier stage between the oscillator and power amplifier circuits for isolation. The MOPA design pernits optimization of the oscillator stage for high stability of 0.005% per 10 minules, misimum residual FM. and low harmenics without restricting the modulation characterisuics. Modulation is applied to the power amplifier stage with negligible effecr on the oscillator frequency.

608E speclfications

Frequency characterlstics
Range: $10-480 \mathrm{MHz}$ in five bands.
Accuracy: $\pm 0.5 \%$ with cursor astiosimem.
Drift: less than $50 \times 10 \cdot 1 / 10 \mathrm{~min}$ after une hr. warmup.
Resettabllity: beller than $\pm 0.1 \%$ after initial warmup: fine-frequency-adjust provides approximately 25 kHz setrability at 480 MHz .
Crystal callbrator: provides frequency check poinls every I MHz up 10270 MHz or every 5 MHz over tolad rage: jack provided for audio frequency oulput; erystal frequency accuracy beller than 0.01% al room temperatures.

Residual FM; less Lhan $=5$ pantsin 10^{\prime} in a 10 kHz posi-detection bandwidth.
Harmonic output: al leasi 35 dB below the carricr for harmonic frequencies below 500 MHz .

Output characteristics

Oulpul level: coninuously adjuslable from $0.1 \mu \mathrm{~V}$ 10 1.0 V inte as 50 -ohrn resistive load; oulpur calibrated in vohs and dBm .
Accuracy: within $=1 \mathrm{~dB}$ or mulenuator dial reading at any irequency when RF outpui meter indicates "ATTENUATOR CALI. BRATED.'
Impodance: 50Ω with a maximum $S W R$ of 1.2 for attenuator setting below -7 dBm
RF: meets all conditions specified in MIL-I-6181D; permils receiver sensilivily measurements down to at least $0.1 \mu \mathrm{~V}$.
Auxillary RF output: al least 180 mV ms into 50Ω provided at front panel.

Modulation characteristics

Intemal AM

Frequency: 400 and $1000 \mathrm{~Hz}, \pm 10 \%$.
Modulatlon level: 0 to 95% modulation at cames levels 0.5 V and below.
Carrler envelope distortion: less than 2% at $30 \% \mathrm{AM}$, less than 5\% at 70\% AM.
External AM
Frequency: 20 Hz to 20 kHz .
Modulation level; 0 to 95% modulation at camier levels of 0.5 V and below: continuously adjustable from front panel MOD LEVEL contsol; input requited, I- 10 V rms (1000Ω input impedance).
Carrier envelope distorton: less than 2% al 30% AM. less than 5% at 70% AM (modulation source distorion less than 0.5%).
Modulation meter accuracy: $=5 \%$ of full sale 0 to 80%, $\pm 10 \%$ from $80 \% 1095 \%$ (for INT AM or 20 Hz to 30 kHz EXT $\wedge M$), Incidental FM (at 400 and 1000 Hz modulatlon): less than 1000 Hz peak at 50% AM for frequencies above 100 MHz ; below 100 MHz : less than 0.1015 at $30 \% \mathrm{AM}$.

External pulse modulatlon

Rlse and decay tlme: from 40 MHz to 230 MHz . combined rise and decay $<4 \mu 5$: above 220 MHz , combined rise and decay time $<2.5 \mu \mathrm{~s}$.
On-off rallo: al leasi 20 dB for pulsed cartier levels of 0.5 and above.
Input requlred: positive pulse, $10-50 \mathrm{~V}$ peak. inpul impedance 2

$k \Omega$.

General
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 400 Hz : approx. 220 W .
Slxe: cabinet. $416 \mathrm{H} \times 337 \mathrm{~W} \times 533 \mathrm{~mm} D\left(16.38^{\prime \prime} \times 13.25^{\prime \prime} \times 21^{\prime \prime}\right)$: rack mount: $355.6 \mathrm{H} \times 483 \mathrm{~W} \times 467 \mathrm{~mm} \mathrm{D}$ behind panel $\left(14^{4} \times 19^{\prime \prime}\right.$ $\times 18.4^{N}$).
Welghl: cabinet mount: nel. 28 kg (63 lb): shipping 33.4 kg (74 lb): rack mounl: nel. 28 kg (62 lb): shipṕing. $37.4 \mathrm{~kg}(83 \mathrm{lb})$.

Accessorles avallable:

11508A Outpul Cable for high impadance circuits.
11509A Fuse Holder protection for (ransceiver texts.
10514A Mixer for use as nanosecond pulse modulator.
Ordering Information Price
608E VHF Signal Generator (cabmet) $\$ 4800$
608ER VHF Signal Generytor (rack) \$4800

Here is an all-purpose. precision signal generator particularly designed for utmost convenience and applicability throughout the important UHF-TV frequency band. It is ideally suited for measurcments in UHF-relevision broadcasting, sludio-Lramsmitter links. cilizen's radio and public service communications systems. The HP 612A also covers the important frequencius used in aircrafi davigatioo ads such as DME, TACAN and airbornc iransponders. Accessory modulators. available from many of the manulacturers of these navigational aids, coable the 6i2A to provide the complex modulation patterns required for festing and aligning the se systems. In the laboratory, the 612A is a convenient power source for driving bridges, sloted lines. antennas and filter networks. In addition, the HP 8731 PIN Modulators can be used with the 612A to obtain RF pulsas with 30 ns rise time and $0.1 \mu s$ minimum duration-with on-of ratios approaching 80 dB .

MOPA circuit

The master oscillator-power amplifier circuit in the HP612A provides 0.5 voll into 50 ohms over the full frequency range of 450 to 1230 MH . There is very low incidencal FM (less than 0.002% at $\mathbf{3 0 \%}$ AM) and excellent anplitude modulation capabilicies by all frequencies from 20 Hz to 5 MHz . The degree of modulation is easily read from the large percent modulation meter. The instrument can be amplitude-modulated (either innernally or externally). and provision is made for extemal pulse modulation as well. Pulse modylation can be applied to the amplifier or directly to the oscillator when high on-of̃ signal ratios are required (signal may be completely cut off belween pulses). Modulation can be up or down from a preset level to simulate TV modulation characieristics accurately.

Cavity oscillator

The oscillator-amplifier circuit in the 612A employs high frequency pencil triodes in a cavity-tuned cireuit for precise tracking over the entire band. Noncontacting cavity plungers are die-cast to precise tolerances. then injection-molded with a plastic filler for optimum Q. The freqoency drive is a direct serew-operated mechanism. Tree from backlash. A waveguide-beyond-culoff pistor attenuttor and crystal monitor circuit are used to ensurc accurate. reliable output down to $0.1 \mu \mathrm{~V}$. The attenuator is calibrated over a range of 131 dB and has been carcfully designed to provide a constant impedance-versus-frequency characteristic. The SWR of the 50 -ohm output system is less than 1.2 over the complete frequency range.

Speciflcations

Frequency and output characteristics

Frequency range: 450 to 1230 MHz in one band; scale lengtb approximately 381 nm (15).
Callbration accuracy: within $\pm 1 \%$, reseltability beltur than $5 \mathrm{M} . \mathrm{Hz}$ at high frequencies.
Output volitage: $0.1 \mu \vee$ to 0.5 V into 50 -ohm load; calibmed in V and $\mathrm{dBm}(0 \mathrm{dBm}=1 \mathrm{~mW})$.
Output accuracy: $\pm 1 \mathrm{~dB}, 0$ to -127 dBm over entire frequency range.
Output impedance: 50 ohms; maximum reflection coefficient. 0.091 (I. $2 \mathrm{SWR}, 20.8 \mathrm{~dB}$ returs loss) for altenuator settings of $0 \triangleleft \mathrm{Bm}$ and below.
AFI: conducted and radiated leakage limits are below those specified in MIL-I-618ID: permits receiver sensitivity measurements down $101 \mu \mathrm{~V}$.

Modulation characteristics

Amplleude modulation: above $470 \mathrm{MHz}, 0$ io 90% al audio frequencies. indicated by panel meler: accuracy $\pm 10 \%$ of full scale, 30 10 90% modulation.
Incidental FM: less than 0.002% for $30 \% \mathrm{AM}$.
Internal modulatlon: 400 and $1000 \mathrm{~Hz} \pm 10 \%$; envelope distor-

Extemal modulation: 20 Hz zo 5 MHz ; above 470 MHz , 2 V rms produces 85% AM at modulating frequencies up to 500 kHz , at least 40% AM at 5 MHz ; modulation may be up or down from the carrier level or symmetrical about the carrier level: positive or negauve pulses nlay be applied to increase or decrease RF output from the carrier level.

Pulse Modulation

Pulsa 1 (pulse epplled to amplifier): positive or negative pulses. 4 to 40 V peak produce an RF on-off ratio of at least 20 dB : minimum RF output pulse length. $1.6 \mu \mathrm{~s}$.
Pulse 2 (pulse applied to escllator): positive or negative pulses, 4 to 40 V peak: no RF oulput during off time; minimum RF output pulse lengh. $1,0 \mu \mathrm{~s}$.

General

Power: 115 or 230 volts $\pm 10 \% .4810440 \mathrm{~Hz} .360 \mathrm{VA}$.
Dimenslons: cabinet: $419 \mathrm{mmH} \times 343 \mathrm{mmW} \times 584 \mathrm{mmD}\left(16.5^{\prime \prime} \times\right.$ $13.5^{\prime \prime} \times 23^{7}$: rack mount: $355 \mathrm{~mm} \mathrm{H} \times 483 \mathrm{mmW} \times 552 \mathrm{~mm} \mathrm{D}$ behind panel ($14^{\prime \prime} \times 19^{\prime \prime} \times 2 \mathrm{~L} 7^{\prime \prime}$).
Welght: nef. $25.2 \mathrm{~kg}(56 \mathrm{lb}$). Stripping, 30.6 kg (68 lb). (cabinet): net. 25.2 kg (56 lb). Sbipping, 34.6 kg (77 lb) (rack mount).

Accessories avallable: 11500A RF Cable Assembly: 360 L LowPass Filter (may be used where harmonic output must be reduced to a minimum, as in slotted line measurements).

HP 8614A, 8616A Signal generators

The HP 8614 A and 8616A Signal Generalors provide slable, accurace signals from 800 to $2400 \mathrm{MHz}(8614 \mathrm{~A})$ and from 1800 to 4500 MH2 (8616 A). Both frequency and atrenuation are sel on directreading digital dials, while selectable functions inelude CW. leveled outpul, square-wave modualition, and exterial AM, FM and polse modulation. Moduation can be accoroplished simultaneously with or withoul leveling.
Two RF power outputs are simultaneously available from separate front-panel connectors. One providen at least 10 mW (2 mW above 3000 MHz) or a leveled outpul from © $10-127 \mathrm{dBm}$. The other is at least 0.3 mW across the band. This signal can be used for phase-locking the signal generators for extreme stability, or it can be monitored with a frequency counter for extresae frequency resolution withou adversely affecling the primary oulput.

A unique PIN diode modulaior permits amplitude modulation from de to 1 MHz or RF pulses with a $2 \mu \mathrm{~s}$ rise time. This broad modulation bandwidtb pernuits remote control of oulput level or precise leveling using external equipment. The intemal teveling is also oblained by using a PIN modulalor.

The 8614A and 8616A can also be used with companion modwators. HP 8403A modulators and HP 8730 -series PIN modulators 10 provide 80 dB pulse on/off ratio (see page 379), In addition. TWr anplifiers can be used with these generators 10 provide high power levels.

Specifications

6614A
Frequency range: direct reading within 2 MHz 800102400 MHz . Vemier: ΔF control hes a minimum range of 1.0 MHz for fine runing.
Frequency calibration accuracy ($0 \mathrm{dBm} \&$ below): $\pm 5 \mathrm{MHz}$.
Frequency sfabllity; approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ chage in ambitit temperature, jess litan 2500 Hz peak residual FM , negligible incidentà FM in pulse and AM operalios below - $10 \mathrm{dBm}, 30 \mathrm{ppm}$ change for line voliage variation of $\pm 10 \%$.
RF output power: $+10 \mathrm{dBm}(0.707 \mathrm{~V})$ into $50 \Omega \mathrm{~s}$ load. Oulput attentration dial direcly calibrated in dBur from 0 to -127 dBm . A secind uncalibratal oulput (approximately -3 dBm) is provided on front panel.
RF output power accuracy (with respect 10 attenuatlon dal): $=0.75 \mathrm{~dB}$? aftenuator accuracy (0 10-127 dBm) including leveled oulput variations.
Attentator agcuracy: $+0, \quad 3 \mathrm{~dB}$ from 0 10-10 $\mathrm{dBm} ; \pm 0.2 \mathrm{~dB}$ $\pm 0.06 \mathrm{~dB} / 10 \mathrm{~dB}$ from $-1010-127 \mathrm{dBm}$; direct reading dial, 0.2 dB increments.
Output impedance: 50ח; SWR <2.0.
Modulation: on-off ratio at least 20 dB for square wave, pulse.
Internal squere wave: 950 to 1050 Hz . Square wave can he aynchronized with a +1 so +10 V signal at PUl.SE input.
External pulse: 50 Hz to $50 \mathrm{kHz} ; 2 \mu$ sise time. $+2010+100 \mathrm{~V}$ peak inpul.
External AM: DC to 1 MHz .

External FM: a) front panel conocctor capacity-coupled to repeller of klystron: b) four-terminal rear panel connector (Cínch-Jones type S304AB) is dc-coupled to repeller of klystron.
Power source: 115 or $230 \mathrm{~V} \pm 10 \%$, 50 to 60 Hz , approximatel's 125 W.

Size: $141 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{~mm} \mathrm{D}\left(5.5^{\prime \prime} \times 16.75^{\prime \prime} \times 18.4^{\text {" }}\right)$: rack mount $133 \mathrm{H} \times 416 \mathrm{~W} \times 483 \mathrm{mmD}\left(5.2^{n} \times 16.4^{\prime \prime} \times 19^{\prime \prime}\right)$.
Welght: net, 19.5 kg (43 lb). Shipping. $22.3 \mathrm{~kg}(49 \mathrm{lb})$.
Option 001: exiemal modulation ioput conneciors on rear pancl in paraliel with front-pancl conneclors; RF connectors on rear panel only.
8616A
Frequency range: direct reading within $2 \mathrm{MHz} / 800$ to 4500 MHz .
Vemier: ΔF control has a range of approximately 1.0 MHz for fine tuning.
Frequency callbratlon accuracy (0 dEm \& below): $\pm 10 \mathrm{MHz}$.
Frequency stablifty; approximately $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ change in ambient emperalure. less than 2500 Hz peak residual FM, negligible incidental FM in pulse and AM operation for attenuator settings below -10 dAm .30 ppm change for line volage variation of $=10 \%$.
RF output power: $+10 \mathrm{dBm}(0.707 \mathrm{~V}) 10-127 \mathrm{dBm}$ into 50Ω laad. 1800 to $3000 \mathrm{MHz} ;+3 \mathrm{dBm}$ to -127 dBm from 3000 to 4500 MHz into a 50Ω load. Output attenuation dial directly caliorated in dBm from 0 to - 127 dBm . A second uacadibrated outpul (approximately $-1 \mathrm{dBm})$ is provided on the from punel.
RF oufpul power accuracy (wht respect to attenuation dlal): $\pm 1.0 \mathrm{~dB} \div$ altenualor aceuracy 10 to -137 dBm).
Artenuator accuracy: +1 , -2 dB from 0 to $10 \mathrm{dBm},(\pm 0.2 \mathrm{~dB}$
$+0.06 \mathrm{~dB} / 10 \mathrm{~dB}$) from $-1010-127 \mathrm{dBm}$.
Output Impedance: SON: SWR less than 2.0.
Modulationi on-of ratio al least 20 dB for squarc wave, pulse.
Intemal square wave: 950 to 1050 Hz . Otherf: equencies available on special order.
Expernal putse: 50 Hz so $50 \mathrm{kHz} ; 2 \mu \mathrm{~s}$ nise time. +20 to +100 V peak input.
External AM: DC io I MiHz.
External FM; a) front panel connector capacity-coupled to repeller of klysiron: b) four-teninial rear panel connector (Cinch-Jones type S304AB) is DC-coupled to repeller of klystron.
Dimenslons: $\left\{41 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{~mm} \mathrm{~W} \times 467 \mathrm{~mm} \mathrm{D}\left(5.5^{\prime \prime} \times 16.75^{\prime \prime} \times\right.\right.$ $\left.18.4^{\circ}\right)$: rack mount $133 \mathrm{~mm} H \times 415 \mathrm{~mm} W \times 483 \mathrm{~mm} D\left(5.2^{*} \times\right.$ $\left.16.4^{N} \times 19^{\prime \prime}\right)$.
Welght: пея, 19.5 kg (43 lb). Shipping. $22.3 \mathrm{~kg}(49 \mathrm{lb})$,

Options

Price
001: extemal modulation input connectors on rear panel io parallel with front-panel connectors; RF connectors on rear panel only.
908: Rack Flange Kiz
add $\$ 10$

Ordering Informatlon
8614A Signal Generator ($800-3400 \mathrm{MHz}$)
$\$ 4500$
8616A Signal Generator (1800-4500 MHz)
$\$ 4500$

SIGNAL GENERATORS

SHF Signal generators

Models 618C, 820B

- Multiple-purpose instruments, 3.8 to 11 GHz

The Models 6.18 C and 620B SHF Signal Genemars provide versatility, mecuracy. and stability in the range from 3.8 to $1 / \mathrm{Gtiz}$. Frequency is set on a large. direct-reading dial. A ΔF vemiercontrol provides ultra-fine tuning capability. There is also a provistou for remole finc tuning.

A calibrated output from 0 to -127 dBm (0.224 voles to 0.1 microvolt is also set on a large. direct-reading dial. The dial is calibrated in both dBm and voles. An auxiliary output of at least 0.3 milliwatt is atrilable and is independent of attenuator seting. Thus, it can be used for phate-locking the signal generator when erystal-oscillator sability is required. or it can be monitured with a frequency counter for exireme frequency resolution.

The 618 C and 620 B Generators both feature oscillators of the refex klystron type, with external resonant cavity. Oscillator frequency is detemined by a movable plunger which varies the length of the cavity. Oscillator output is monitored by a temperaturecompensated detector circuit. This circuit operates virtually unaffected by ambient teroperature conditions.

Modulation includes internal puhe, square wave, and frequency modulation plus external pulse and frecpuency madubation.

618 C and 620 B specifications

Output
Frequency range
618C: 3.8 to 7.6 GH 2 covered in a single band.
6208: 7 to 11 GHz covered in a single band; repeller voltage sementatically macked and proper mode automatically selected.
Callbration; direct reading; frequency calibration accuracy better than $\pm 1 \%$.
Frequency stability: with cemperature: less than $60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ chenge in ambient temperatare: with line voltage less that, 200 ppm change for line voltage variation of $\pm 10 \%$; residual $\mathrm{FM}:<15 \mathrm{kHz}$ peak.
Output range: 1 milliswant or 0.224 volt to 0.1 microvale 0 dBm to
-127 dBm) into 50 ohms; directly calibrated in dBm and volts; ce. axial lype N connector.
Output accuracy: within +2 dB from -7 to -127 dBm. within $\div 3$ dB from $010-7 \mathrm{dBm}$. terminated in 50 -ohm load.
Source Impedance: 50 ohms nonsinal: SWR <2.0.

Modulation

Intamal pulse modulation: repetition rate variable from 40 to $4.0000^{\text {pps. pulse width variable }}{ }^{1 / 2}$ to 10 microseconds.
Sync out gignals: simulaneous with RF pulse, positive: in advance of $R F$ pulse, positive, variable 3 to 300 microseconds (beller than I microsecond rise time and 25 to 100 veles amplitude inio $1,000-\mathrm{hm}$ load).
External synchronization: sine wave: 40 to $4,000 \mathrm{~Hz}, 5$ to 50 V rms, pulse: 40 10 $4,000 \mathrm{pps}, 5$ to 50 V peak. posilive or negative, 0.5 to 5μ swide, 0.1 to 1μ s rise time.
Internat square-wave modulation: variable 40 to 4.000 Hz .
Internal FM: sawtooth sweep rate adjustable $40104,000 \mathrm{~Hz}$; frequency deviation to 5 MHz peak-to-peak over mosi of the frequency range.
External pulse modulation: pulse requiremenis: amplitude from 20 to 70 vols positive or negative, width $0.5102,500$ microseconds. External FM: frequency deviation approximately 5 MHz peak-topeak over most of the band; sensilivity appreximately $20 \mathrm{~V} / \mathrm{MHz}$ at front-panel connector, approximately $10 \mathrm{~V} / \mathrm{MHz}$ at rear-panel connector (mating connector supplied): front-panel connector is capacitively coupled to klystron repeller: sear-panel connector is decoupled to klystron repelier and is suitable for phase-fock control input.

General

AFI: conducted and rodiated leakage limits are below those specinied in MIL-Ifish
Power source: 115 or 230 volis $\pm 10 \%$, 50 to 60 Hz 230 W .
Dimensions: cabinci. $353 \mathrm{mmH} \times 445 \mathrm{~mm} \mathrm{~W} \times 518 \mathrm{~mm} \mathrm{D}\left(13.9^{\prime \prime} \times\right.$ $17.5^{\prime \prime} \times 20\left(4^{*}\right)$ ricik mount $355 \mathrm{~mm} \times 483 \mathrm{~mm} \times 483 \mathrm{~mm}\left(14^{\prime \prime} \times 19^{\prime \prime}\right.$ $\times 19^{\prime \prime}$
Welght: ncl. $34.1 \mathrm{~kg}(69 \mathrm{lb})$. Shipping, $33.5(74 \mathrm{lb})$.
Accessary furnished: 11500 A Cable Assembly, 1830 mm (6 fl) of RG-214A/U 50 -obm coax. terminated on each end by type N male coniectors.

618C or 620 B SHF Signal Generator (cabinet mount) $\$ 5400$
618CR or 620BR SHF Signal Generator (rack mount)

SIGNAL GENERATORS
 SHF generators/doublers
 Models 628A, 628A, 938A, 940A

377

- Generate stable signals, 10 to 40 GHz

628A

Description

The 626A covers frequencies 10 to 15.5 GHz , and the 628 A covers frequencies is to 21 GHz . In design and operation. the instruments are similar to Hewlett-Packard generators for lower frequency ranges. Carrier frequency is sel and read directly on the large tuning dial. No voltage adjustment is necessary during tuning because repeller voltage is tracked with frequency changes automatically. Oscillator output is also set and read directly, and no frequency correction is necessary throughout operating range. A frequency logging scale permits frequency to be reset within 0.1%.

Boin the 626 A and 628 A offer internal pulse, squarewave and frequency modulations, plus external pulse and frequency modulation. The pulse generators may be synchronized with an external sine, wave and positive or negative pulse signals.

The high power output of these signal generators makes them ideally suited for driving HP 938A and 940A Frequency Doubler sets. These doubler sets retain the modulation and stability of the driving source and have accurate power monitors and attenuators.

626A, 628A specifications

Frequency range: 626 A , 10 to 55.5 GHz : 628A. is to 21 GH C . Frequency callbratlon: dial direct-reading in GHz . accuracy better Ihan $=17$.
Output range: 10 mW to $\mathrm{pW}(+10 \mathrm{dBm}$ to $-90 \mathrm{dBm} .0 \mathrm{dBn}=1$ mW): attenuator dial calibrated in output dBm ,
Source SWR: $<2.5 \mathrm{at}+10 \mathrm{dBm} ;<1.35 \mathrm{at} 0 \mathrm{dBm}$ and below.
Output monitor accuracy: better than $\pm 1 \mathrm{~dB}$: temperaturecompensated thermistor bridge circuil monitors RF oscillator power level.
Output connector: 626A: WR75 waveguide. fat cover flange; 21.6 $\times 12.0 \mathrm{~mm}(0.85 \times 0.475 \mathrm{in}$.). 628A: WR51 waveguide, nat cover flange; $15.0 \times 8.5 \mathrm{~mm}(0.59 \times 0.335 \mathrm{in}$.).
Output attonuator accuracy: better than $\pm 2 \%$ of attenuation in $d B$ introduced by ourput attenuator.
Modulation: internal pulse, FM, or square wave; external pulse and FM.

93BA

Internal pulse modulation: repetition rate variable from 40 to 4000 pps: pulse width variable 0.5 to $10 \mu \mathrm{~s}$.
Internal equare-wave modulation: variable 40 to 4000 Hz controlled by "pulse rate" control.
Internal frequency modulation: power line frequency. deviation up $10=5 \mathrm{MHz}$.
External pulse modulation: pulse requirements: amplitude 151070 volis peak positive or negative; width I to $2500 \mu \mathrm{~s}$.
Extemal frequency modulation: provided by capacitive coupling to the klystron sepeller: maximum deviation approximately ± 5 MHz .
Sync out signals: positive 20 to 100 V peak into 1000 -ohm lead: better than I μ s rise time; 1) simultaneous with RF pulse, positive: 2) in advance of RF pulse, positive, variable 5 to $300 \mu \mathrm{~s}$.

External synchronization: 1) sine wave, 40 to 4000 Hz . amplitude 5 to 50 V rms: 2) pulse signals 40 to 4000 pps . 5 to 50 V amplitude. positive or negative; pulse width 0.5 to $5 \mu \mathrm{~s}$; rise time 0.1 to $1 \mu \mathrm{~s}$. Power: 115 or 230 volts $\pm 10 \%, 50$ to 60 Hz . approx. 200 watts.
Dimenslons: cabiner: $356 \mathrm{~mm} \mathrm{H} \times 432 \mathrm{mmW} \times 381 \mathrm{mmD}$ ($14^{-} \times$ $\left.17^{\prime \prime} \times 15^{\prime \prime}\right)$: rack mount: $356 \mathrm{~mm} \mathrm{H} \times 483 \mathrm{~mm}$ W $\times 313 \mathrm{~mm}$ D ($14^{\prime \prime} \times$ $19^{\prime \prime} \times 12.8^{\prime \prime}$).
Woight: net, $26.8 \mathrm{~kg}(59 \mathrm{lb})$. Shipping, $29.8 \mathrm{~kg}(66 \mathrm{lb})$.
Accessorles fumlshed: 626A.MX 292B and MP 292B Waveguide Adapters: 628A. NP 292A and NK 292A Waveguide Adapters.
Accessorles evallable: M362A low-pass filter.

Frequency doubler sets

Model 938 A supplies power from 18 to 26.5 GHz and Model 940 A from 26.5 to 40 GHz when driven by 9 to 13.25 GHz and 13.25 to 20 GHz sources respectively. For a swept output, use a sweptfrequency source such as Model 8690B or Model 8620A/B series with appropriate RF units.

938A, 940A specificatlons

Frequency range: 938 A . 18 to 26.5 GHz : 940 A , 26.5 to 40 GHz . Converslon loss: less than 18 dB at 10 mnW inpul.
Outpui power: approximately $0.5-1 \mathrm{~mW}$ when used with typical 626A. 628A signal generators; input power: 100 mW maximum.
Output attenuater: accuracy, $\pm 2 \%$ of reading or $\pm 0.2 \mathrm{~dB}$. whichever is greater: range, 100 dB .
Output reflection coefficlant: approx. (1.33 at full output: less than 0.2 with attenuator set to 10 dB or greater.

Output flange: 938A K-band flat cover flange for WR-42 waveguide; 940A R-band flat flange for WR-28 waveguide.
Dimenslons: $137 \mathrm{~mm} \mathrm{H} \times 489 \mathrm{mmW} \times 457 \mathrm{mmD}\left(5.4^{\prime \prime} \times 19.25^{\prime \prime} \times\right.$ 18").
Welght: net. 9 kg (20 lb). Shipping. 11.8 kg (26 fb).
Ordering Information
626 A or 628 A SHF signal generator (cabinet) $\$ 8200$
626AR or 628AR SHF signal generator (rack) $\$ 8200$
938 A or 9:0A frequency doubler
$\$ 5300$

- 10 to 500 MHz
- to 1000 MHz with doubler probe

32008

3200 BHF ascillator

The VHF oscilator, model 3200B. provides low cost, stable, 10 to 500 MHz RF for lesting receivers and amplifiers, and driving bridges. slotled línes, antennas, and filter neiworks. Good pulse modulation sensitivity allows standard audio oscillators to be used 10 provide usable square wave modulation; a 2.5 -volk sine wave wild provide adequate drive for this type application. An optional acecssory frequency doubler probe, model I3SISA. provides additional frequency coverage from 500 to 1000 MHz .
The 3200B is well suited for bench use and may be adapted for standard 483 mm (19 in .) rack mounting.

Specifications

Frequency range: $10-500 \mathrm{MHz}$ in six bands: $10 \sim 18.8 \mathrm{MHz}$: $18.5-$ $35 \mathrm{MHz}: 35-68 \mathrm{MHz} ; 68-130 \mathrm{MHz} ; 130-260 \mathrm{MHz} ; 260-500 \mathrm{MHz}$.
Frequency accuracy: within ± 29 after $1 / 2$ hour warmup.
Frequency calibration: incremeats of less than 4%.
Frequency stablity (after 4 hour wam-up under 0.2 mW load):
shon term (S min) $\pm 20 \mathrm{ppm}$; long-lem (l hour) $\pm 200 \mathrm{ppm}$; line vollage (5 V change) $=10 \mathrm{ppro}$.

RF output

Maximum power (ecross 50 ohm exiernal load): 200 mW
$(10-130 \mathrm{MHz}):>150 \mathrm{~mW}(\mathrm{I} 30-260 \mathrm{MHz}):=25 \mathrm{~mW}(260-500$ M Hz).
Range: 0 to $>120 \mathrm{~dB}$ attenuation from naximum output.
Load impedance: 50 ohms nominal.
AF Ieakage: sufijciently low to permis measurements at) $\mu \mathrm{V}$.
RFF: meets requirensents of MIL-5-618ID.
Amplitude modulation: extemally modulated.
Renge: 01030%.
Dletortion: <1\% bl 30\% AM.
External requirements: approxionately 32 volts rms ioto 600 ohms for 30% AM, 200 Hz to 100 kHz .
Pulee modulatlon: extenially modulated.
Extemal requirementa: 2.5 volt negative pulse into 2000 obms.
Power: 105 to 125 V or 210 to $250 \mathrm{~V}, 50$ to 400 Hz .30 VA .
Dimenslons: $167 \mathrm{~mm} H \times 194 \mathrm{~mm} W \times 333 \mathrm{~mm} \mathrm{D}\left(6.6^{\prime \prime} \times 7.6^{\prime \prime} \times\right.$ 13. 1^{17}).

Welght: net. 6.8 kg (15 lb). Shipping. 7.7 kg (17 lb).
Accessorles avallabie: 13515A frequency doubler probe: 00502. 60002 patching cable.

13515A Frequency doubler probe
Frequency range: 500 to 1000 MHz with the 3200 日 operaling 250
to 260 MHz (130 to 260 MHz range) or 260 to 500 MHz .
RF output: more than 4 mW across exictal 50 ohm load.

- 2 to 18 GHz
- <10 ns rise and fall times
- $>80 \mathrm{~dB}$ ON/OFF ratio

$11720 A$

11720A Pulse modulator

The li720A Puse Modulator is a high performance state-of-rthean microwave pulse modulator covering the range of 21018 GHz . Because of this wide frequency coverage it can be used 10 increase the modulation copabilities of many mictowave sources (sweepers or Signal Generalors) and eliminates the need for several individual modulators in broadband applications.

In addicion to wide frequency coverage, the 11720 A features extremely shor rise and fall times (<1005) and a high ON/OFF ratio ($>80 \mathrm{~dB}$) making it suitable for almost any pulsed RF application.

Intenally the moduator used in the 11720A is a unique seriesshunt PIN diode switch offering superior performance to a simple shuot-diode switch which reflects the inpul power back 10 the source in the "off" state. In the II720A the series components reduce this reflection without significandy increasing the insertion loss.

The I1720A contains all the neoessary modulator drive circuiry 10 achieve specified performance so that a standard pulse genemior. or any source that can deliver $>3 \mathrm{~V}$ peak into 50 ohms, can supply the input. In addition a nomal/complement function is provided to adape the IIT20A co positive-true or negative-true logic inputs.

Specllleations

Frequency range: 2 to 18 GHz .
ON/OFF retlo: >80 dB.
Alse and fall tmes: < 10 ns .
Insertion hoss: $<6 \mathrm{~dB}, 2$ 10 $12,4 \mathrm{GHz}:<10 \mathrm{~dB}, 2$ to 18 GHz .
Maximum RF Input power: +20 dBm .
Maximum ropetition rate: $>5 \mathrm{MHz}$.
Minlmum RF puise width: <50 ns.
Pules Input
Nomal mode: $>3 \mathrm{~V}(\mathrm{Oa}),<0.5 \mathrm{~V}$ (om).
Complement mode: $<0.5 \mathrm{~V}$ (on). $>3 \mathrm{~V}$ (ôt).
Impedance: 50Ω nominal.

General

Operating tomporaturo: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: $100,120,220,240 \mathrm{~V}+5$, -10%. $48-400 \mathrm{~Hz}$: 50 VA max.
Welght: net, 2.6 kg (5 lb 12 oz); shipping. 3.6 kg (8 lb).
Slie: $101 \mathrm{H} \times 222 \mathrm{~W} \times 290 \mathrm{~mm} \mathrm{D}\left(4.0^{n} \times 8.4^{\prime \prime} \times 11.4^{\prime}\right)$.
Ordering Information
Price
32008 VHF oscillaior
13515A Frequency doubler probe $\$ 150$
11720 A Pulse modulator $\$ 2500$

A730B

8730 Series PIN modulators

With HP 8730 series PIN Modulators, signal sources, including klystrons, can be pulse-monhlisted, leveled or amplitude-modulated with sinusoidal and complex waveforms. Fast-rise times, low incidental FM and a nearly constant impestance match to source and hoad are sypical of these absorption-type mexdulators.

8403A Modulator

The Model 8403A provides complete control of the PIN modulators, supplying the appropriate sodulation wave shapes and bias levels for fast rise times, rated on/off ratios and amplitude modulatien. An internal square-wave and pulse medulator with PRF or 50 H . 1050 kHz and adjustable pulse width and delay also provide square wave and pulses for general pulse applications. For upplications requiring an absoption-lype mosulator plus controls in a single unit. a PIN mordulator can be installed in the Model 8403A.

8403A specifications

Output characteristics (available sepanately al front panel).
For driving 8730 PIN modulators: AM and pulse oupul, pulse oulput specially shaped for optimum RF rise and decay times.
For general pulse applicationa: positive de-coupled pulse 25 to 30 volt in amplifude, approximisely symmetrical about 0 vole no AM signal.

Modulation

Internal equare wave

Frequency: variable fram 50 Hz to 50 kHz .
Symmetry: henter than $45 / 55 \%$.

Internal pulse

Repeltion rate: variable from 50 Hz to 50 kHz .
Delay: sariable from $0.1 \mu \mathrm{~s}$ to $100 \mu \mathrm{~s}$, between sync out pulse and RF output pulse.
Whath: vamithle from $0.1 \mu s$ to $100 \mu \mathrm{~s}$.
External bync
Signal: 5 to 20 volis poak, + or - . pulse or sine wave.
Input Impedance: approximately 2000 ohms. dc-coupled.

Trlgger out
Sync out: simultaneous with or 0.1 to $100 \mu \mathrm{~s}$ in advance of RF pulse, as sec by delay conirol.
Delayed synce out: simultaneous with outpul pulse.
Amplitude: approximately -2 volts.
Source impedance: ipproximately 330 ohms.

External pulse

Ampltude and polarity: 5 volts to 20 volts peak, + or - .
Repetliton rate: maximum average PRF, $500 \mathrm{kHz} / \mathrm{sec}$.
Inpul impedance: approximately 2000 ohms, dc-coupled.
Width: minimum $0.1 \mu \mathrm{~s}$; maximum $1 / \mathrm{PRF}-0.4 \mu \mathrm{~s}$.
Amplifude modulation (with 8730 series)
Frequency response: dc to approsimately $10 \mathrm{MHz}(3 \mathrm{~dB})$,
Sensitivily: approximately 10 dB /volt with, HP 8730A series; approximately 20 dB /vole with HP 8730 s series.
Input impedance: approximalely 100 ohms.

General

Power: 115 or 230 velts $\pm 10 \%, 5010400 \mathrm{~Hz}$, approximately 10 watts.
Slye: $96 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{~mm}$ D $\left.13.73^{\prime \prime} \times 3.75^{\prime \prime} \times 18.4^{\prime \prime}\right)$: hardware furmished for rick mount $89 \mathrm{H} \times 483 \mathrm{~W} \times 416 \mathrm{mmD}\left(3.5^{\prime \prime} \times 19^{\prime \prime} \times\right.$ 16.4").

Welght: nel. 7.4 kg (16.5 lb). Shipping. 9 kg (20 lb).
Optlons Price
PIN Modulators installed in 8403A:
001: 8731A
add $\$ 830$
002: 8731B
add \$1025
003: 8732A
add $\$ 830$
004: 8732B
add \$1120
udd $\$ 885$
add \$1415
006: 8733B
add $\$ 1000$
007: 8734A
add \$1285
009: 1npui and Outpul Connectors on rear pancl add $\$ 25$
8403A Modulator
$\$ 1600$

8730 Series speciflcations

HP Modal	81314	0131日	6734	67326	O733A	1733	0734	03348	8735	8935	H16.813184
Trequency range (Ghe) Ojnamic lange 108	$\begin{gathered} 0.8-2.4 \\ 35 \\ \hline \end{gathered}$	$\begin{array}{r} 0.8-24 \\ 80 \\ \hline \end{array}$	$\begin{gathered} 1 . \frac{6}{35} 5 \\ 5 \end{gathered}$	$\begin{gathered} 1:-14 \\ 60 \end{gathered}$	$3.7-8.3$	$\begin{gathered} 3.7-8.3 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 7.0-12.4 \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} 7.0-124 \\ 80 \\ \hline \end{gathered}$	$5.2-12.4$	$\begin{gathered} 8.2-12.4 \\ 80 \\ \hline \end{gathered}$	$\begin{gathered} 0.8-1.2 \\ 35 \end{gathered}$
Mal residual atten. (dB)'	<15	<2.0	$\stackrel{.2 .}{ }$	<3.57	- 21	<3.0	$\bigcirc 4.0$	<5.0	24,0	<5.0	<2.0
Typ cal inse time (ns)'	40	30	40	30	20	30	30	30	30	30	40
Yypizal decay time (ns, ${ }^{\text {P }}$	30	20	30	20	20	20	20	20	20	20	30
SWR, min. attenuation	1.5	1.6	1.5	$1.6{ }^{\circ}$	1.8	2.0	1.8	2.0	1.7	20	1.5
SWR, meme slirilut on	1.8	2.0	1.8	2.0	2.0	2.2	2.0	2.2	20	2.2	2, ${ }^{\prime}$
fonward bias input resistance (ohms.)	300	100	300	100	300	100	300	100	300	100	300
R1 sornector fypu	M,	N(1)	N (f)	N(I)	N(f)	N(t)	NTI	N(\%)	W/G ${ }^{3}$	W/0]	N(1)
$\begin{gathered} \text { Weight, net hg (即) } \\ \text { stipping } \\ \hline \end{gathered}$	$\begin{array}{r} 18(3) \\ \hline \end{array}$	$\begin{array}{r} 2.5(5) \\ 4.1(3) \\ \hline \end{array}$	183	$\begin{aligned} & 25.15 .5) \\ & 4.1(9) \end{aligned}$	$\begin{aligned} & 1,1(2.5) \\ & 1.8(4) \\ & \hline \end{aligned}$	3.6 .359 $2.3(5)$	$\begin{aligned} & 1.1(2.5) \\ & 1.8(4): \\ & \hline \end{aligned}$	$\begin{array}{r} 1,6(3.5) \\ 2.3(5) \\ \hline \end{array}$	$\begin{array}{r} 1.1(2.5) \\ 1.8(4) \\ \hline \end{array}$	$\begin{array}{r} 1,6(3.5) \\ 2.3(5) \\ \hline \end{array}$	$\begin{array}{r} 25(3,5) \\ \hline \end{array}$
Dimensions Height, mm (in) Width, mm (m) Depth, mm (in),	$\begin{aligned} & 57(225) \\ & 83(325) \\ & 283(11.1) \end{aligned}$	$\begin{array}{r} 57(225) \\ 1244.49 \\ 289(124) \\ \hline \end{array}$	$\begin{aligned} & 57(225) \\ & 83(3.25) \\ & 283(11.1 \end{aligned}$	$\begin{aligned} & 57(2.25) \\ & 124(48) \\ & 289(11.6) \end{aligned}$	$\begin{aligned} & 57(2251 \\ & 83(325 \\ & 2138.4 \end{aligned}$	$\begin{array}{r} 57(2.25) \\ 83(3.25) \\ 311(12.3! \end{array}$	$\begin{aligned} & 57(2.255) \\ & 83(3.25) \\ & 213(8.4) \\ & \hline \end{aligned}$	$\begin{array}{r} 57(2.25) \\ 83(3.25) \\ 311(12.3) \\ \hline \end{array}$	$\begin{array}{r} 57(2.25) \\ 83(3.25) \\ 171(6.75) \\ \hline \end{array}$	$\begin{array}{r} 57(2.25) \\ 83(3.25) \\ 267(10.51 \\ \hline \end{array}$	$\begin{array}{r} 57(2,25) \\ 124(4.9) \\ 289(11.4) \end{array}$
Price	\$725	51025	5125	51210	875	31300	8690	51170	410	$\$ 1250$	81023
Maximum ratings. maximum input power, peak or CW 1 We Dias limits: $+20 \mathrm{Y},-10 \mathrm{y}$. Bias polatity: negative voltage increases attenuation. RFt: tadiated leazage limits are belor those specified in MIL- -61810 at input levels $<1 \mathrm{~mW}$. at all mpit lesels radiated ieterference is qoificienty low to obtain rated attenvation.						1. with +5 V bias. 2. $4 \mathrm{JB}, 4$ to $4,5 \mathrm{GHz}$ 3. Driven by HP 8403A Modulator. 4. 2.0 SWr, 4 to 4.5 GHz .			5. Fits $1 \times 1 / 2$ in. (WR 90) waveguide. 5. External high-pass filters required. 7. Excluding high-pass filters.		

Accessories

Models 10511A، 10514A, 10534A, 11507A, 11508A, 11509A, 11687A, 11890A, 11697A/B/C

- Additional Capabilities for Signal Generators

11690A

11509A

10511A Spectrum generator

Extends the useful frequency range of signal generators, sources and frequency synthesizers by providing a specirum of harmonics up to 1 GHz from sine-wave inpuls between 10 and 75 MHz . A 50 S bandpass filter can then be cascaded with the losila to extract the desired hamenic. The hamonic power available is at least -19 dBm for harmonics 1 through 10 .
Inpul requirements: 1 to 3 volis rms into $50 \mathrm{n}, 10$ to 75 MHz .

10514A, 10534A Double balanced mixers

Used with signal generators in a varicty of mixing as well as AM, pulse and square-wave modulation applications. The careful balancing of the hot carrier diodes in the 10514 and 10534 Mixers provides excellent suppression of the local oscillatur and input frequencies at the oulput port. Frequency ringe of the 10.514 is $0.2-500 \mathrm{MHz}$ and the 10534 is $0.05-150 \mathrm{MHz}$.

11507A Output terminatlon

A multi-purpose temmination which enhances the usefulness of the 606A or 606 b by providing the following:

1. A matched 50 -ohm icrmination to permil use into high impedance circuils.
2. A $20-\mathrm{dB}$ (10:1) termimoted volitage driver which reduces the source impedance io 5 ohms.
3. A dummy antenna having the IEEE stundard characterinics for receiver measurements (driven from 10:I divider)
Frequency range: 50 kHz to 65 MHz on 01020 dB positions. 540 kHz to 23 MHz or dummy anienna.

1150bA Output cable

Provides 50Ω termination and standard binding posts at the end of a $610 \mathrm{~mm}(24-\mathrm{inch})$ lenglt of cuble. Nilows direct connection of the signal generator to high impedance circuits.

11509A Fuseholder

Prevents accidental burmoul of allenuators in HP 8640 . HP 606 and 608 Signal Generutors during armseciver testing by introducing a fuse element beween the signal generator and the transceiver. Several watts of RF power could otberwise be applied to the signal generator atlenuator should the transceiver accidentally be switched 10 "Trunsmit." While the fuscholder provides protection, it in no way limils the usable oupul from the signal generators.
Accessories fumished: 10 exirg lises.

11687A 50-75: Adapter

This $50-75 \Omega$ Ad:uper with Type N connectors is recommended for use with the $8640 \mathrm{~A} / \mathrm{B}$ for measurements in 75Ω systems. The vollage calibration on the ourpm level meter is unaffected by use of the adapter, but a correction of 1.76 dB must be made when using the dB scale.

116904 Frequency doubler
The HP 11690 A Frequency Doubles is designed to extend the 8640 A or 8640 B frequency range by doubling the $256-512 \mathrm{MHz}$ Frequency Band up to 1024 MHz (to 1100 MHz with band overrange). Ifs recommended inpul level for optimum performance with AM motulation is +10 dBm .
The 8640 A has a dial scale for the 512 to 1024 MHz external doubler band to indicate the correct doubled outpul frequency. The 8640 B also displays the currect doubled ouipul frequency when the 512 to 1024 range is selected. For FM in the doubled range. an additional position on the PEAK DEVIATION RANGE switch allows peak deviation up to 5.12 MHz .
The following specifications describe the 11690 A wheo used with the 8640 A or 8640 B :
inpul required: +10 so $+19 \mathrm{dBm}(0.707 \vee 102 \mathrm{~V})$.
Converslon loss: $\mathbb{<} 13 \mathrm{~dB}$.
Level flatness: 4 dB total variation. Suppression of ist and 3rd hamonic or inpul typically $>20 \mathrm{~dB}$.
11697A/日/C Bandpass filters
The 8640A/B Option 002 Intemal Doubler covers several communication bands including UHF-TV. Mobile Radio and some ATC/DME. Exiemal bandpass filters should be used to improve the generator spurious and hamonic performance in any of these bands. Three such fiters are available. 11697 A (512 to 674 MHz), $11697 \mathrm{~B}(67410890 \mathrm{MHz})$, and $11697 \mathrm{C}(800$ to 1100 MHz).
Pass band SWR: $\leqslant 1.4$.
Pasa band attenuation: $\leqslant 1.1 \mathrm{~dB}$.
Midbend attenuation: $\approx 0.6 \mathrm{~dB}$.
Rejection band attenuation

Modal	Briow Passand		Above Parliand	
	freguency (mht	anenuation	frequency (Mit)	Anemusion
$\begin{aligned} & 11697 \mathrm{~A} \\ & 116978 \\ & 11697 \mathrm{C} \end{aligned}$	$\begin{aligned} & =337 \\ & =345 \\ & 5450 \\ & 5450 \end{aligned}$	$\begin{aligned} &-20 \mathrm{dE} \\ &=20 \mathrm{de} \\ &==20 \mathrm{de} \end{aligned}$	$\begin{array}{r} 768-3000 \\ 101113000 \\ 1333-3000 \end{array}$	

Ordering information

Price

10sila Specinom Generaior $\$ 300$
10514A Double Balanced Mixer ($0.2-500 \mathrm{NHz}$)
10534A Doublé Balanced Mixer ($0.05-150 \mathrm{MHz}$) $\$ 104$
tis07A Ouput Termination \$175
11508A Oulpur Cable
II509A Fuseholder
11687A 50@-75 Ω Adapter
11690A Frequency Doubler
11697A Bandpass Filker (512-674 MHz)
11697 B Bundpass Filter ($674-890 \mathrm{MHz}$)
11697C Bandpass Filler ($8000-1100 \mathrm{MHz}$)

Sweep oscillators

Swept frequency oscillators are used in applications where the characleristics of a device must be determined over a wide, conunuous range of irequencies. Combined with a broadband detector and display test sel, sweep oscillalors provide many bencfits compared to CW frequency sources. A swept meanutement provides a dynantic display of the datia. The results of any adjustments to the unknown test device are seen immedianely (read time) on the display. By replacing laborious point-by-point techniques swept measurements increase the speed and convenience of broadband testing. The continuous frequency characterization of the unknown device also eliminates the chance of missing innponant information between frequency points. Swept iechniques are applicable in all phases of design. manufacture and maintenance.

Hewlett-Packard sweep osclllators

Hewlett-Packand sweepers cover the enLire frequency spectrum from de to 50 GHz . Self-contained, multi-oclave sweepers cover the frequency range 10110 MHz . The 8690 serics of backward wave and solid state oscillators features phig-ins from 400 kHz to 50 GHz . The 8620 family of solid stale oscil.
lators provide a versatile chaice of configurations-single bamd. multiband. or very wide band plug-ins from 10 MHz to 22 GHz . A chart of the individual frequeney bands available appeass on page 383.

Sweep oscilhator features

Sweep flexiblily

Every HP sweeper has several different sweep modes available for setting the frequency limits of the instrument. A full band or independently adjustable stant/slop fre. quency sweep can be selected. Ahernalively, a marker sweep or a symmetrical ΔF siveep aboul the desircd center frequency can be chosen. Switching from one sweep mode to another is a simple pustibution opcration. In the auto mode the sweep retriggers ausomalically. Sweep times of 0.01 to more than 100 seconds can be selected. A manual sweer is also nvailnble as a front panel control. a real convenience for calibrating displays such as $\mathrm{X}-\mathrm{Y}$ recorders. An external irigger is provided as well for applications where the sweeper must be syached so ofter instrumentation or renvelely con. trolled.
On all sweeps a linear voltage proportional to frequency is available on an external connector which is useful for driving the
horizontal of the display. Blanking and pen lift signals are alse provided at rear output connectors during flytback lime when the RF is off,

The 8620 solid state family also peatures a self-contained multi-band capability in one compact instrument. Different octave range oseillators (up to three in one drawer) can be selected by simply pressing one band select lever. This results in performance, cost, and size benefits compared to externally multiplexed sweeper systems.

Power output and leveling

Power oulput is continuously adjosiable at the front panel over approximately a 10 dB range. Built-in attenuators atte also available for greater power control. Internal or exlemal leveling is employed to obtain (I) a constant power output and (2) a goed source match (low VSWR). This ensures high accuracy when making sweplh measurements.

Modulation

Modulation capabilities further extend the sweeper's usefulness both as a sweeper and a signal generator for signal simulations. Wide AM and FM bendwidths are useful for a variety of tests on conmmunication receivers. The fexible FM capabijity allows remole inalog frequency programming which is important for many applications.

MLA compatibility

In communications applications where up-converter simulation is required in conjunction with the HP Microwave Link Analyzer. the 86200 series of plug-ins provides this capability as an oplion in frequency ranges from 500 MHZ to 18 GHz , Group delay of less than 1 nanosecend and linearity of better than 0.5% across 30 MHz across mosl of the friquency range permit very accurate RF to RF, RF 10 IF and RF to BB distortion measurements.

Programming

The 8620 C solid state sweeper mainframe provides optional BCD or HP-)B programming capability. More than ten thousind frequency poins per band permit very fine frequency conisol. In iddition, band selection, sweep mode. RF attenuator. and ramole-local cas be controlied remotely. This allows the sweeper to be used in a wide variety of auromatic systems and sophisuicated signal simulation applications.

For example, a I MHz to 18.6 GHz fre. quency synthesizer can be configured using the calculator, the $86290 \mathrm{~B} / 8620 \mathrm{C} 2.18 .6$ GHz sweep oscilator, and the 8660 UHF synthesizer. (Sec Figure I). Harmonics of the 8660 are used to phase lock the sweeper 10 the accuracy and stability of the syathe-

Figure 1.
sizer. The calculator is then used to control the sweeper, the UHF synthesizcr, and RF switches to aliow keyboard conrol of a CW signal or to step the source across a band of interest. Of course, the calculitor can also be used to assimilate data gnthered al each point.

Figure 2
Precisian power level control of the sweeper can be obtained by using the calculator to drive the sweeper's EXT AM input through a Digitad-to-Analog Cunverter. A calibration artay previously stored in the calculator would control the D-A voltage producing power level accuracy similar to that of the 436 A power mecer usad in the calibration. (Sec Figure 2). Level control of the sweepcr is important in measuring gain compressinn and when ratio measurements are not practical. If greater than 10 dB of control range is required, a programmable altenuator with as much as 110 dB of range may be used.

Digital sweaping syntheslyers

The 8660 C and 33308 combine the precision frequency accoracy and stability of a syothesizer with the time saving convenience of a sweeper. Paramelers such as center frequency, frequency step. lime per stcp, and sweep width are entered and executed through a convenienl keyboard or re. mole programming connector. An additional feature on the 3330 B is amplitude sweeping in steps as small as 0.0) dB . The combina-

Lion of frequency and amplitude swepidg сдл be used 10 produce a comprehensive family of curves.

Figure 3.

Sweeper appllcallons

Sweepers are used exiensively with swept frequency lest sets to characterize the amplitude response of broadband devices or with network analyzers when the phase characteristics of the device for S parameters) are needed as well. Two RF measurements- (ransmission and reflec-Ifon-are basic to both rypes of analyzer. Hewlett-Packand offers a complete line of directional couplers, power splitters. and other transducers which logether with the analyzers and sweep oscillators provide a totil swept measurement solution. Figure 3 shows a complete swept sysiem that can be used to simultancoualy characterize the sealar transmission and reflection properties of devices from 10 MHz to 18 GHz . This system bas a seositivity of belter than -50 dBm.

For measurements requring more sensilivity and/or phase information. sweepers may be used with nefwork analyzers. Now whth the HP 8620 fumily of solid state sweepers and the HP 8490B, thesc measurements can easily be made actoss many' octaves if frequency. Previnualy the 8din had to be refuned every octave. Now, for example, with the $86222 \mathrm{~A} / \mathrm{B}$ and the 8410 B . phaso-magnitude transmission or reflection coefficients can be nleasured across the full. $0.11-2.4 \mathrm{GHz}$ range in one continuous sweep al full sweep speed. Since the 8410 is a zuned receiver this means a spurious-free sensitivily of -78 dBm .

Figure 4

Figure 4 is a CRT photo of simultaneous phase and magnitude transmission characteristics of an 8 to 10 GHz bandpass filter across 210 IB GHz using the 86290 Sweep Oscillator Plug-in.

For high power applications such as RFl-susceplibibity iesls and high attemuation measuroments. Hewlett-Packand offers TWT amplifiers which provide better than I walt from Ito 18 GHz .

Synthesizer accuracy and stability can be obtained by phase-locking the HewlellPackard sweep oscillators to a harmonic of a
very stable source. This high stability is important in many applicavions includiog microwave spectroscopy and high-Q swept frequency measuremedis.

Two tone swept testing of deviDes such as mixers and receiver front ends requires iwo sigrals offiel from each other by the IF. This is accomplished by phase-locking the difference frequency of two sweep oscillators to a very stable source. The sweepers may then be swepl across the band of interest.
The modulation and built-in attenuator fealures of Hewlent-Packard sweep oscillator make them useful in many traditional CW signal generator applications.

In addition, accuracy. linearity, and flatacess of the broadband $86222 A / B$ and 86290 A/ 8 plug-ins make them more than adequate in many applications requiring a general purpose CW generator.

For wideband applications the 86290A/B. $2-18 \mathrm{GHz}$ plug-in and the 86222A/B 0.012.4 GHz pluy-ins feature performance that rivals octave band oscillators in the area of frequency purily and accuracy, harmonics, and flatness.

For a complete discussion of swept frequency measurements the following application notes and others are available from your local Hewlett-Packand sales office,

AN 117-1"Microwave Network Analysis Applications"
AN 117-2 "Striplíne Component Mcasurements"
AN 155-1"Aclive Device Measurements with the 875s...
AN $155-2 " 100 \mathrm{~dB}$ Dynamic Range Measurements. using the 87ss Frequency Response Test Sel
AN 183 'High Frequency Swept Mcasurements"
AN 187-2 ' Configuration of A 2-18 GHz Synuhesized Frequoncy Source using the 8620 C Sweep Osciltator"
AN 187-3 "Three HP-IB Configurations for Making Mierowave Scalar Measurements."
AN 187-4 "Configuration of a Two-Tone Swecping Generator"
AN 187-5 "Cakeulator Control of the 8620C Sweep Oscillator using the HP18"
AN 221 'Semi-Automatic Measurements using the 84108 Microwave Network Analyzer and the gresa Desk-Top Computer"

Sweep Oscillator-summary chart

8601 A

Covering 100 kHz to 110 MHz , the Model 8601 A Genervitorl Sweeper combines the high linearity and flaeness of a precision sweeper with a signal generalor's frequency accuracy and wide range of calibrated power levels. Though it's small and lightweigh. it does the work of two instrumenis easily and convenienty.

8601A Specifications

Frequency range: low range, $0.1-11 \mathrm{MHz}$: high range. I-110 MHz .
Frequency accuracy: approximately $\geq 1 \%$ of frequency.
Power output: +20 to- $110 \mathrm{dBm} \cdot 10-\mathrm{dB} \operatorname{sth} \mathrm{s}$ and 13 -dB vemier provide continuous seltings over entire range. Meter monitors oulpul in $4 B m$ and rms volis into 50Ω.
Power eccuracy: $\pm 1 \mathrm{~dB}$ accuracy for any oulpul level [rom +13 dBm to -110 dBm .
Flatness: $\pm 0.25 \mathrm{~dB}$ ovar full range, $\pm 0.1 \mathrm{~dB}$ over any 10 MHz portion (+ 10 dBm step or belowj.

Impedance: $50 \Omega, 5 W R<1.2$ on 00 dBm sicip and below.
Harmonlcs and spurlous slgnals: (CW above 250 kHz . oulpul levels bclow +10 dBm) hamonics al leası 35 dB below carrier. Spurious ar leas 40 dB below carrier.
Rosidual FM noise in a $20 \times \mathrm{Hz}$ bandwidun including line relaled components (dominant component of residual FM is noise)

CW: $<50 \mathrm{~Hz}$ rms. low range: -500 Hz rms high range.
SYM 0 , sweep: $\leqslant 100 \mathrm{~Hz}$ mis. low rangc: \&) kHz rms, high range.
Resldual AM: AM noise modulation index (mis. 10 kHz bandwidlh) is $<-50 \mathrm{~dB}$: (cypically -60 dB at $2^{\circ} \mathrm{C}$).
Crystal calltrator: intemal 5 MHz crystal allows frequency calibralion to $\pm 0.01 \%$ al any mutipie of 5 MHz .
Sweep modes: lull. video. and symmetrical.
Internal AM; fixed $30 \% \pm 5 \%$ at I kHz .
External AM: 0 io 50%, de $10400 \mathrm{~Hz}: 0$ to 30%. up 101 kHz .
Internal FM:) kHz rate, lixed $75 \mathrm{kHz} \pm 5 \%$, devialion, high range; $7.5 \mathrm{kHz} \pm 5 \%$, deviation. low range; $<3 \%$ distomion.
External FM : sensitivily. 5 MHz per vali $\pm 5 \%$. high range. 0.5 MHz per voli $=5 \%$. low range: negative polarily; FM rales to 10 kHz .
Welght: net. $9.5 \mathrm{~kg}\langle 21 \mathrm{lb})$. Shipping, $12.3 \mathrm{~kg}(27 \mathrm{lb})$.
Dimenslans: $155 \mathrm{mmH} \mathrm{H} \times 190 \mathrm{~mm} \mathrm{~W} \times 416 \mathrm{~mm} \mathrm{D}\left(6^{6 / 42^{\prime \prime} \times 7^{43} / 3 \mathrm{~m}^{\prime \prime}}\right.$ $\times 16^{3} / \mathrm{m}^{\prime \prime}$).

The Model 8600 A Digital Marker provides five independent. conlinuously variable frequency markers over the range $0.1-110 \mathrm{MHz}$ when used with the HP 8601A or $8690 \mathrm{~B} / 8698 \mathrm{~B}$ Gencrator Sweeper.

The high resolution controls and 6 -digit readoul permit 0.05% frequency sethability. The frequency of any marker may be read while sweeping. simply by pushing a buiton within the marker control. The marker selceted is brighter than the others and poiots io the opposíte diruction, ensuring positive marker identificalion.

8600A Specifications

Marker accuracy: any marker may be placed al a desired frequency $\pm(0.05 \%$ of sweep widit + sweeper strability).
Welght: net. 5.9 kg (13 lb): shipping $8.2 \mathrm{~kg}(18 \mathrm{lb})$.
Dimenglong: $99 \mathrm{mmH} \times 413 \mathrm{~mm} \mathrm{~W} \times 337 \mathrm{mmL} \mathrm{L}\left(31 / \mathrm{m}^{\prime \prime} \times 16^{3 / 1 "} \times\right.$ (31/4).

Ordering Intormation

Price

86ma Digital Marker

Opt 001: Modification kit for $8690 \mathrm{~B} / 8698 \mathrm{~B}$
8601 Generalor/Sweeper
Opt 008: 75 亿 BNC output

8620 System

The Hewletl-Packard 8620 solid state sweeper system offers the nexibility of the 8620 C mainframe in addition to a choice of singleband, multiband, and the wide band plug-ins. The 8620 system aitso offers high outpus with solid state reliability-greater than 10 mW leveled to 22 GHz .

The fundamental oscillators used in the plug-ins and modules are YIG luned transistor or bulk effect circuits. YIG tuning results in exceptional tuning linearity. low noise, and low spuriaus content: it also allows frequency modulation at high rates and wide deviations with low disiortion.

Typical unleveled power output

8620C Sweeper malntrame

The 8620 C has many feaiures which are highly useful in stringent applications. With convenient functionally grouped controls and lighted pushbutton indicators the mainframe offers extreme ease of operation and flexibility. In addition, it can be a completely programmable source. either HP-IB or BCD. an indispensable feature for automatic systems and signal simulation applications.

$86222 \mathrm{~A} / \mathrm{B}$ and 86290A/B wide band plug-ins

Now the 10 MHz to 18.6 GHz frequency range can be covered with just two plug-ins-the $86222 \mathrm{~A} / \mathrm{B}$ and $\$ 6290 \mathrm{~A} / \mathrm{B}$. Besides their broad frequency range these plug-ins offer many special features including unique crystal markers in the 86222 A and better than ± 20 MHz frequency accuracy in a $86290 \mathrm{~A} / \mathrm{B}$ even at 18 GHz .

New 88240A/B multi-octave plug-ins

Covering more than two octaves of frequency the 86240A and B span $2-8.4 \mathrm{GHz}$ with major advances in power output and signal purity. The 86240 A offers more than 40 mW leveled outpul across the full band. The 86240 B specifies harmonics of $>50 \mathrm{dBc}$ which can be very important when making measurements across more than one oclave.

88200 Series single-band plug-ins

The 86200 series of plug-ins covers both ends of the frequency spectrum from 10 MHz to 22 GHz with a choice of more than nine plug-ins.
86218 and 86300 Series multiband plug-ins
The 8621 B drawer provides capability for up 10 two fundamental oscillator modules (86300 series) plus a hetrodyne module (86320 B). Selecting the band is as simple as pressing a front panel lever.

The 8620 C offers many features as standard equipment. For example, up to four separate bands and their respective frequency scalles can be selected with a touch of the band sefect lever just to the Iefl of the dial scale. This represents a truly converient wide-band capacity. one which doesn't necessitate changing plug-ins or the addition of costly, bulky. additional instrumenis to make wide-band swepr measurements. Pushbutions. concentically located in the frequency control knobs, light when actuated to indicate the sweep function in use. For example, depressing the FULL SWEEP pushbutton results in a sweep of the total range selected by the band select lever. In this mode three markers are available, controlled by the START MARKER, STOP MARKER, and CW MARKER knobs. The MARKER SWEEP function causes a sweep belween START and STOP MARKERS. In MARKER SWEEP, the CW MARKER is still gavalable for further ीexibility in identifying specific frequencies.

The $B 620 \mathrm{C}$ is fully and continuously calibrated for any ΔF siveep width. Having chosen an optimum width, one can read the total sweep width from the calibrated ΔF dial scale. The sweep is symmeltical about the CW MARKER setting and in this function the START and STOP MARKERS are avallable. Three continuously variable ΔF ranges are avai)able by using the range swit ch below the $\Delta \mathrm{F}$ knob. This allows calibrated sweep widths of up to $1 \%, 10 \%$ or 100% of full band at the user's choiec.
The CW function is selected by depressing the CW push button. It is possible to also engage the CW VERNSER Knob to achieve very accurale setability. With the main dial scale cursor placed on any convenient mark, it is possible to interpolate accurately berween dial scale markers by utilizing the CW VERNIER. This vemier makes the effective length of the dial scale 71/2 meters (300 inches) and contributes to the increased setability.

Another fealure is the capability to fully program the sweeper. The standard 8620 C includes inputs for band selection, attenuator senting (with 8621B Opt 010 installed). sweep function selection, and analog frequency control. Option 011 provides, in addition, the capability to digitilly program the sweeper with the HP-Interface Bus (HP-IB). With this option, the user can place the sweeper into any sweep function ($\triangle F$, FULL SWEEP, etc.) and it will sweep according to the front panel frequency settings. In this mode a programmable digital marker is avaiable. In addition, an exiremely flexible digital frequency programming capability is included with this option. Resolution of 10.000 poinis per band or 10.000 poinls across the frequency range set by the front panel controls permit extremely high resolution limited only by the Residual FM of the sweeper. Option 001 BCD programming provides the same capabilities as the HP-IB option with the exception that no digital marker is available in the programmed sweep modes.

8620C Specifications

Frequency

Frequency range: determined by hind select lever and RF unit. Frequency linearty: refer to RF unit specifications.

Sweep functions

FULL sweep: sweeps the full band as determined by the plug-in and the band selecs lever.
MARKER sweep: sweeps from START MARKER to STOP MARKER irequenc's serings.
Range: both independent setlings ine fully calibrated and con-
tinuously adjustathe over the entire frequency ringe; tan be sel to sivecp either up or down in frequency.
End-point aecuracy; reler to RF unit speciñeations. same as frequency accuracy.
ΔF Sweep: swecps symmelrically upwasd in frequency, centered on CW setting, CW vernier cin be activated for fine control of center frequency.
Width: continously adjustable and calibrated from zero to 1%. zeno to 10%, or zero to 1005% of usable fieyureney band ins selected with font panel switch. Dial scale calibrated directly in MHz .
Whdt eccuracy: $=1 \%$ of maximum ΔF plus $=2 \%$ of ΔF being swept.
Center-frequency accuracy: refer to RF unil specifications. same as frequency nceuracy.
CW operations: single-frequency RF outpul controlled by CW MARKER knob selected by depressing pushbution in CW MARKER control.

Presel frequencleg: START MARKER. STOP MARKER. and $\triangle F$ end points in manual sweep mode and CW MARKER frequency can be used as presel CW frequencies.
CW vernler: calibrated directly in MHz abour CW selling. CW vemier activated by pushbutton in CW vernier control. Zero to $=0.5 \%$ or zero to $\pm 5 \%$ of lill bandwidih. selectable with front punel swilch.
Accuracy: Reler to RF unit specifications, same as frequency aceuracy.
Frequency markers: three conslant widh frequency markers are fully calibrated and independently adjustable over the cutire range in FULLL Sweep function. controlled by START MARKER. STOP MARKER. and CW MARKER conimls. In $\triangle F$ sweep START and STOP MARKERS are available, and in MAKKER SWEEP the CW MARKER is available. Fronl panel switch provides for the selection of eilher amplitude or intensity markers (amplifude modulating the RF output or Z -axis modukting the CRT display).
Resolution: berter than 0.259 of RF unit bandwidth.
Marker output: rectumpular pulse، lypically -5 volis peak available from Z-axis BNC connector on tear panel. Source irnpedance. approximately 1000 ohms
Accuracy: refer to RF unil specificalions, same as frequency accuracy.

Sweep modes

Auto: sweep recurs suromaticaily
Une: sweep can be synchronized with the ac power line.
External trigger: sweep is actuated by extemal ingecr signal.
Sweep ume: continuously adjuslable in four decade ranges iypically 0.01 to 100 seconds.
Single sweep: activated by front panel swith.
Manual sweep: fronl panel conmol provides continuous manuas adjustment of trequency between end frequencies sel in any of the above sweep funclions.
External sweep: iweep is controlled by extemal signal applied to programming connector. Zero volls for start of sweep increasing linearly to approximetely - 10 volts for end of sweep.
Sweep outpuf: direct-coupled sawtoath, zero to spproximately
+10 volts, at from panel BNC connecler, concurrent with swept RF outpul. Zero at start of sweep. approximately +10 volts at end of sweep regardless of sweep width or direction. In CW mode. dc outpul is proportional to frequency.

Modulation

Internal AM: square-wave modulation cominuously adjustable from 950 to 1050 Hz on all sweep times. On/Oी ratio. refer to RF unit specifications.
External AM: refer to RF unit specifications.
External FM: refer to RF unit specifications.
Phase-lock: refer to RF unit specificalons.

Remote control

Remote band select: frequency range can be controlled remotely by three binary concact closure lines a aridabie at rear panel connector.
Remote attenuatlon select: 0 to 70 dB altcruation in 10 dB sleps can be controlled by 4 binary contica closure lines when used with 8521B Oplion 010.

Remote frequency programming, Opt 001 (BCD) and 011 (HP-I日)
 Functions

Band: manual enable or remble control of four bands.
Mode: seven molles, inciuding digital frequency control in three modes. with a resulution of 10.000 poink acrass FULL baid, belween START MARKER and STOP MARKER as set by fromi panel controls, or actoss ΔF bs sel by fromt panel ΔF and CW controls: or selection of any of four analog swecp functions: ΔF or MARKER Sweep wilh end points sel by gppropriatc front panel conirols, CW as set by CW MARKER conirol. or FULL sweep of band selected.
Marker: with analog sweeps (FULL. $\triangle F$, or MARKER SWEEP), a programmable marker is available (Opt 011 only). in either amplitude or intensity as selected with front panel switch.

General

Blanking
RF: with blanking switch enabled. RF automatically ums off during retrace, and remains off until stant of next sweep. On automatic sweeps. RF is on long enough before sweep starts to stabilize extemal eircuits and equipment whose response is conpatible with the selected sweep rate.
Display (Z-axle/MKR/Pen LH Output): direct-coupled rectangu-
lar pulse approximately +5.0 volks coincident in time arih RF blanking is on rear panel.
Negative (Negative blanking output): direct-coupled rectangular pulse approximately -5.0 volts coincident in time with RF blanking. fully compatible with 8410A/B network analyzer.
Pen lift: For use with $X-Y$ reconders having positive power
supplies. Transistor-swith signal is aviilable oo Z-axis/MKR/
Pen lif connector. This signal is atso available on the programming connector.
Furnished: $2.29 \mathrm{~m}(71 / 2-5001)$ power cable with NEMA piug: 2 spare 3 amp fuses: extender board for servicing; and callibration scale.
Power: 100, 120, 220. or 240 volts $+5-10 \%, 50$ to 400 Hz . Approximately 140 watrs.
Welght (not incloding RF unit): Net, 11.1 kg (24 lb). Shipping 13.4 $\mathrm{kg}(30 \mathrm{lb})$.
Dimensiong: $132.6 \mathrm{mmH} \times 425 \mathrm{~mm} \mathrm{~W} \times 337 \mathrm{~mm} \mathrm{D}\left(5^{7} / 9 \mathrm{~m}^{\prime \prime} \times 16 \% /{ }^{\prime \prime}\right.$ $\times 13^{1 / 4^{\prime \prime}}$).
Ordering information
Price
Opt 001: BCD Frequency Programming add $\$ 650$
Opt 011: HP-IB Frequency Programming add $\$ 950$
Opt 908: Rack Flange Kit
add $\$ 10$

- +10 dBm 2 to 18.6 GHz with 86290 B
- +7 dBm 2 to 18 GHz with 86290 A

862901

The 86290 A and 86290 B broadband plug-ins set new standards in wideband swceper value with versalile frequency coverage and excellent performance characteristics at an atractive size and price. For broadband tesling. a continuous sweep from 2 to 18.6 GHz (1S GH 2 with the $\$ 6290 \mathrm{~A}$) is provided. In addition. higher frequency resolution is achieved by covering the 2 to 18.6 GH , range in three individuitl bands of $2106.2 \mathrm{GHz}, 6$ to 12.4 GH 2 , and 121018.6 GHz (or 1 F GHz). Individual bands and corresponding dial scales are selected using the band select lever on the 8620 C mainirame. Front panel lights indicate the frequency range selected. In each frequency band, all swacper mainframe controls are operable.

The $86290 \mathrm{~A} / \mathrm{B}$ plug-ins offer outsianding electrical perfomance along with small size and simplicity of operation. The key' microelecIronic clements of the 86290 B are a 2 to 6.2 GHz fundamental oscillator, 250 mW GaAs FET amplifict. and high-efficiency mulniplier integrated with a tracking YIG filter. which combine to produce $>10 \mathrm{~mW}$ swept oulpul over the 2 to 18.6 GH ? range. This oulput is low in hamonic and spurious conten and has excellent frequency linearity. On wideband sweeps, the 6.2 GHz and 12.4 GHz switch points can be Z-axis blanked as well as RF blanked. rcsulting in a spunous-free. clean contimueus trace on any display

The $86290 \mathrm{~N} / \mathrm{B}$ plug-ins have unique advantages as the source for network measuremenis. For 2 to 18 GHz scalar measurements, the 86290 accepts 27.8 kHz square wave AM modulation directy from the HP 8755 Frequency Response Test Sel. Thus the need for an extemal modulator is eliminated providing convenience and cost savings. and more important. makiog full sweeper power available ai the iesi device. Phase/amplitude network analysis over the continuous 2 to 18 GHz range becumes a reality using the 86290 and the HP 8410 B Network Analyzer. Interfacing between the 8410 B and the sweeper permits the $\$ 4108$ to automatically phase-lock over multiaclave sweeps. Together, the 86290 and the 8410 B now make possible phase and amplitude measurements from 2 to 18 GHz in one continuous sweep.

- Advanced technology provides outstanding performance
- Extended capability for network analysis

As a stand-alone sweeper, the 8620 C and 86290 plag-in provide still more features for ease in sucpl lesting. Even at 18 GiHz , frequency can be set with $\pm 20 \mathrm{MHz}$ accuracy. Swecp linearity is 0.05 , which micuns frequencies in the swept mode can be identified to accuracics conmarable with wavemeters. Intemal leveling is standard. External erystal and power meter leveling circuitry is aiso provided. A SLOPE conirol permits the frequency-dependent losses of a test setup to be compensated. The 2 to 6.2 GHz fundamental oscillator signal is always available through a rear outpot connector. Phase-locking from 2 to 18.6 GHz is accomplished using only 6.2 GHz hardware via this outpul. Accurate frequency readout is possible by connecting a DVM to the calibrated I volt/GHz outpur located on the rear panel.

With the plug-in flexibility and these exceptional features, the 8620 C 6290 sweeper is the ideal source for broadband sweep testing of componcnls, transmission lines. antenna systems and ECM equipment.

General speclifcsitons

Swlich polnts: broadband switch points are al 6.2 and 12.4 GH . Frequency overlap is sypically 01020 MHz al switch points.
Auxillary output: rear panel 2 to 6.2 GHz lundamental oncillator outpul. nominally- 10 dBm .

Slope contrat: front panel conlrol allowing compensation for frequency dependent losses of a lest setup by altcnuating power al lower freqencies.
Peak control: front panel conlrol for peaking power over desired frequency range.
Frequency reference output: nom. I v/GHz (2-18.6 volis) rcar pancl BNC outpul. CW írequency nccuracy typically $=35 \mathrm{M} \mathrm{Hz}$.
Mainifame compatlbility: the 86290 B will operate properly only with the 8620 C mainframe. The 86290 A will operale dincelly with 8620 A mainitames with serial number prefixes of 1332 A and above and with all 8620 C mainframes. To use the 86290 A with other 8620 A mainframes order 86290 A Option 060 which includes a mainframe modification kit.
Welght: net, $4.4 \mathrm{~kg}(9.6 \mathrm{lb})$. Shipping, 5.9 kg (1.3 lb).

86290 A and New 86290B Broadband plug-ins

Specifications with plug-in lastalled in an 8620C mainframe	BAND I	BAND 2	Band 3	band 4
$\begin{gathered} \hline \text { Frequency range: (GHz) } \\ 66290 \mathrm{~A} \\ 86290 \mathrm{~B} \end{gathered}$	$\begin{aligned} & 2-8.2 \\ & 2-6.2 \end{aligned}$	$\begin{aligned} & 6-12.4 \\ & 6-12.4 \end{aligned}$	$\begin{aligned} & 12-18 \\ & 12-18.6 \end{aligned}$	$\begin{aligned} & 2-18 \\ & 2-18.6 \end{aligned}$
Frequency accuracy ($25^{\circ} \mathrm{C}$) CW mode (or >100 ms sweep time with CM switch in $\mathrm{FM} / \mathrm{PL}$): (MHz) All sweep modes: (MHz) Marker: (MHz) Frequency linearity (correlation between frequency and sweep out voliage) typically: (MHz)	$\begin{aligned} & \pm 20 \\ & \pm 30 \\ & \pm 30 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \\ & \pm 30 \\ & \pm 8 \end{aligned}$	$\begin{aligned} & =20 \\ & =30 \\ & =30 \\ & =8 \end{aligned}$	$\begin{aligned} & =80 \\ & \pm 80 \\ & \pm 80 \\ & \pm 30 \end{aligned}$
Frequency stablility With temperature: $\left(\mathrm{MHz}_{2} /^{\circ} \mathrm{C}\right.$) With 10% line veltage change: $\left(\mathrm{KH}_{2}\right)$ With 10 dB power level change: (kHz) With 3:1 load VSWR. all phases: (kHz) Frequency drill (in 10 minute period alter 30 minute warm-up): typically (kH_{H}) Residual FM (10 kHz bandwidth; FM switch in norm) CW mode: (kHz peah)	$\begin{aligned} & \pm 0.5 \\ & \pm 100 \\ & \pm 200 \\ & \pm 100 \\ & \pm 300 \\ & <10 \end{aligned}$	$\begin{aligned} & =1.0 \\ & \pm 100 \\ & =400 \\ & =200 \\ & \pm 600 \\ & <20 \end{aligned}$	$\begin{aligned} & =1.5 \\ & =100 \\ & =600 \\ & =300 \\ & =900 \\ & <30 \end{aligned}$	$\begin{aligned} & \pm 2.0 \\ & \pm 100 \\ & =600 \\ & \pm 300 \\ & =900 \\ & <30 \end{aligned}$
Maximum leveled power (25 ${ }^{\circ} \mathrm{C}$; ; dBm) 86280A 88290日 Power level control range: (d8)	$\begin{gathered} >+7 \\ >+10 \\ >10 \end{gathered}$	$\begin{aligned} & >+7 \\ & >+10 \\ & >10 \end{aligned}$	$\begin{aligned} & >+7 \\ & >+10 \\ & >10 \end{aligned}$	$\begin{aligned} & >+7 \\ & >+10 \\ & >10 \end{aligned}$
Power varlation Intemanly leveled: (dB) External leveled (excluding coupler and detector variation) Crystal detector: Power meter: With lemperature (typically): $\left(6 B /^{\circ} \mathrm{C}\right)$	$\begin{aligned} & =0.7 \\ & =0.15 \\ & \pm 0.15 \\ & \pm 0.1 \end{aligned}$	$\begin{gathered} \pm 0.7 \\ =0.15 \\ \pm 0.15 \\ \pm 0.1 \end{gathered}$	$\begin{aligned} & \pm 0.8 \\ & \pm 0.15 \\ & \pm 0.15 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & =0.9 \\ & =0.15 \\ & =0.15 \\ & =0.1 \end{aligned}$
Spurfous signals (below fundamental at specified maximum powen) Harmonic related signals: (d8) Nonharmonics: (dB)	$\begin{aligned} & >25 \\ & >50 \end{aligned}$	$\begin{array}{r} >25 \\ >50 \\ \hline \end{array}$	$\begin{aligned} & >25 \\ & >50 \end{aligned}$	$\begin{aligned} & =25 \\ & >50 \end{aligned}$
Hesidual AM in 100 kHz bandwidth (below fundamental at specified maximum power): (dB)	>55	>55	>55	>55
Source VSWR Intemally leveied, 50 n nominal impedance	<1.9	<1.9	<19	<1.9
Extemal FM Maximum deviations for modulation frequencies. OC to 100 Hz : (MHz) 100 Hz to 2 MHz : (MHz) Sensifluity (typically) FM mode: (MHz/volt) Phase-lock mode: (MHz/volt)	$\begin{gathered} =75 \\ \pm 5 \\ -20 \\ -6 \end{gathered}$	$\begin{gathered} =75 \\ \pm 5 \\ -20 \\ -6 \end{gathered}$	$\begin{gathered} \pm 75 \\ =5 \\ -20 \\ -6 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 5 \\ -20 \\ -6 \end{gathered}$
AM (At specilied maximum power) Specific requirements guaranteeing HP 8755 with $\pm 6 \mathrm{~V}, 27.8 \mathrm{kHz}$ square wave MOD DRIVE connected to EXT AM inpul. On/orifatio: (dB) Symmely: Attenuation for +5 volt input: (dB) Internal kHz square wave On/01f ratio: (dB) RF blanking (selected by mainirame switch) On/oH fatio: (dB)	$\begin{array}{r} >30 \\ 40 / 60 \\ >30 \\ .25 \\ =30 \end{array}$	$\begin{gathered} >30 \\ 40 / 60 \\ >30 \\ >25 \\ >30 \end{gathered}$	$\begin{gathered} >30 \\ 40 / 60 \\ >30 \\ >25 \\ >30 \end{gathered}$	$\begin{array}{r} >30 \\ 40 / 60 \\ >30 \\ >25 \\ >30 \end{array}$
Minlmum sweep time typirally: (ms)	10	10	10	60
CW remote programming setting time typical time to settle into CW irequency accuracy specification, 8620C Opt. 001 or 011: FM switch in FM/PL: (ms)	5	5	5	10

Ordering Intormailon

$86290 \mathrm{~A} 21018 \mathrm{GHz}+7 \mathrm{dBm}(5 \mathrm{~mW}$) plup-in (intemal levehng standard)
$86290 \mathrm{~B} 21018.6 \mathrm{GHz}+10 \mathrm{dBm}(10 \mathrm{~mW})$ plug-in (interral leveling standard)

Price

882400

86240 C

New 86240 B Low Harmonlc Distortion: $2-9.4 \mathrm{GHz}$
The dymamic range of a swept measurement is often limited by source hamonics. Low pass filtering, either internal or extemal to the plug-in, is practical only over sweep widths less than an octave. However you can now get narrowband 50 dBc harmonic performarice with the convenience of a multi-octave sweep in the 86240B. The dynamic range advaniage of the low harmovies when measuriag filler rejection, amplifier or mixer distortion is further enhanced by the 86240 B 's 20 mDV of calibrated ouput power. Internal leveling to $\pm .5 \mathrm{~dB}$ is standard as well as a siope control for optimizing the tota measurement system thatness. A step attenuator is optionaly available if calibrated power control over an 80 dB range is desired.

Key to the 50 dec harmonic performance or the 86240 B is the HP designed YIG-FILTEA-OSCILLATOR (YFO). The YFO Includas two YIG spheres in the same magnel housing. Changing the DC magnetic field strangth tures the resonant irequency of both YIG spheres simullaneously. One YIG tunes the oscillator circult whose output is amplified by a 100 mW GaAs FET amplifiter. This signal is then coupled through the second YYG which filters harmonics down to a level >50 d日 below the carrier over the entire 2 to 8.4 GHz range. Fast nse time pulses are made possible by pulsing the gate blas of a GaAs FET in the amplifier.

New 86240A High Output Power: $2-6.4 \mathrm{GHz}$
The use of lixed attenuators to reduce mismatch errors in a swept measurement requires additional source power to maintain the same dynamic range. Similatly, if one wants to take advantage of the excellent flatness and source mateh of a resistive power splitter. additional power is needed, especially if the test deviec is a mixer or amplifier with a 10 dBm drive level specification. The 86240A. which contains a non-illered version of the YFO described above. was designed to meet these needs. It features up to 40 miv of oulpul power. competitive hammonics, at an atractive price. With the internal ieveling option, the 86240A also provides calibrated output power and slope control. For radar simulation applications. the 86240A cant be externally amplitude modulated with 20 ns rise time pulses.

New 86240C RF Distortion Analysis of MW Links:
 $3.6-8.6 \mathrm{GHz}$

Distortion analysis of microwave radio links frequency requires MLA Upconverter Simulation. The 86240 C is designed to till this need over the important 4.6. and 8 GH 2 commercial and military communication bands. The FM circuitry is modified to accept the sweep and test tone signals from she MLA. The oscillator is oplimized for group dellay of less than I as peak-10-peak over 30 MHz and linearity better than 0.5%. The 86240 C is also a very good 40 mm sweeper. It has a 10 MH z FM bandwidth. flat $10=1.5 \mathrm{~dB}$ for noise loading applications plus all the optional leveling and power control features found on the 86240 A . Thus, it is two products in one-both general and special purpose-ideal for communications systems applications.

86240A/B/C Plug-Ins

Specifications whith plug-In Installed in 8620C malnframe

Frequency linearity: typically $\pm 1 \%$.
RF power levelling: incernal de-coupled leveling amplifier provided. Internal, Opt 001: selected by fromt panel switch: sefer to RF plug-in specifications (standarj on 86240 B).

External

Crystal Input: approximately -10 to -200 mV for specified leveling at rated output: for use with negative polarity detectors such as 780 Series Directional Detectors, 423A/B and 424 Series Crystal Delectors.
Power meler lnput: swilch selects proper compensation for HP models $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$.
Indleator: front panel indicator lights when RF power level is set 100 high to permin levelime over entire selected sweep range or when operating in unleveled mode.
Reference output DC-coupled voltage proportional to RF frequeney. voltage approximately I V/GH\%. output impedance. approximately 1000 ohms.

External AM

Frequency response: rypically dc to 100 kHz unleveled. de to 50 kHz leveled (al miximum leveled power).

Input Impedance approximately 5000 ohms.
Square wave response: guarantees HP 8755 Frequcncy Re. sponse Test Set operation with 8755 Modulator Drive connected 10 PulSe input.
ON/OFF ratlo: $>30 \mathrm{~dB}$.
Symmerry: 40/k0.
Attenuatlon for +5 V inpul: $>30 \mathrm{~dB}$.
Internal AM
1 kHz square-wave $\mathrm{On} / \mathrm{OH}$ ratlo: $>40 \mathrm{~dB}$.

External pulse modulation

Rlse/Fall Time: typically 20 ns.
Minimum pulse width: typically I $\mu \mathrm{s}$.
Resldual AM In 100 kHz BW: $>50 \mathrm{~dB}$ below carrier al maximunn power.
Slze: $127 \mathrm{H} \times 152 \mathrm{~W} \times 295 \mathrm{mmD}\left(5^{\prime \prime} \times \mathrm{G}^{\prime \prime} \times 11^{*} / \mathrm{k}^{\prime \prime}\right)$.
Welght: 2.3 kg (5 fb). Shipping $3.2 \mathrm{~kg}(7 \mathrm{lb})$.
AF outpul: lype N Female.
Optlon
Price
004: Rear Panel RF Output
add 580

	862404	882408	B62acc
FRE QUENCY Frequency Range	20-3,4 6H2	2.0-8.4 64:	$3.6-8.6$ 6Hz
Fequaqncy Accurjcy: $125^{\circ} \mathrm{C}$ CW Mixfe All Sweep Miltes (tor swesp time $>100 \mathrm{~ms}$)	$\begin{aligned} & =20 \mathrm{MHz} \\ & =30 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{NH} \\ & \pm 30 \mathrm{KH} \end{aligned}$	$\begin{aligned} & \pm 20 \mathrm{MHz} \\ & =30 \mathrm{MHz} \\ & \hline \end{aligned}$
fremiency slablitry With Temperature With 10% Line Voltage Change With 10 dB Power Level Change Residual FM : (in 10 kHz bandwidth, CW Mode)	$\begin{aligned} & =500 \mathrm{hHI} / \mathrm{C} \\ & \pm 40 \mathrm{kHz} \\ & =10 \mathrm{mHI} \\ & <9 \mathrm{KHz} \mathrm{DOJk} \end{aligned}$	$\begin{aligned} & =500 \mathrm{kHzct} \\ & =40 \mathrm{NH} \\ & =1.0 \mathrm{MHz} \\ & <9 \mathrm{MHz} \mathrm{peak} \end{aligned}$	$\begin{aligned} & =500 \mathrm{kHL} / \mathrm{c} \\ & =40 \mathrm{NHz} \\ & =10 \mathrm{MHz} \\ & <9 \mathrm{KHI} \text { peah } \end{aligned}$
POWER OUTPUT Maximum Levivied Powar ($25^{\circ} \mathrm{C}$)	>-40 mim	$>20 \mathrm{~mW}$	340 mH
Power Variation: Unleveled Internally Leveled 00 pt 00 L ; Externally Leveled (Excluding Cougitet and Detestor Yssiahiont Crystal Detector and Power Meter:	$\begin{aligned} & < \pm 2 \mathrm{AB} \\ & <=1 \mathrm{~dB} \\ & <=0.16 \mathrm{~B} \end{aligned}$	$\begin{aligned} & <0.5 \mathrm{~dB} \\ & <=0.3 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & c=2 d 8 \\ & -\ldots 0.8 \mathrm{~dB} \\ & \therefore 0.1 \mathrm{~dB} \end{aligned}$
Spurious Signals: (below fundamental at specified maximum power): harmonits Nentharmonies	$\begin{aligned} & >20 \mathrm{~dB}(20 \mathrm{~mm}) \\ & >16 \mathrm{dq}(100 \mathrm{~m}(\mathrm{~W}) \\ & >60 \mathrm{~dB} \end{aligned}$	$\begin{aligned} & >50 \mathrm{~dB}(10 \mathrm{~m} \cdot \mathrm{~F}) \\ & >45 \mathrm{~dB}(20 \mathrm{~m}) \\ & >60 \mathrm{~dB} \end{aligned}$	
Source VSWR: 500 nominal impedance Internaily leveled (0p) 001) Unitiveled: Typicalli	≤ 1.6	$<_{4}^{1.6}$	46
MODULAIION Luternal FM Maximurn Deviations Ior Modulalion freguencies DC 10100 Hz DC to 1 MHz 90 kHz to 10 MHz Sensitivity: Nomtinal TM Node Phase Lock Mode Upconverter Mode	$\begin{aligned} & \pm 75 \mathrm{MHz} \\ & \pm 5 \mathrm{MHz} \\ & -20 \mathrm{MHs} / \mathrm{H} \\ & -6 \mathrm{MH/N} \end{aligned}$		$\begin{aligned} & =150 \mathrm{MHZ} \\ & \pm 1.5 \mathrm{MHz} \\ & +20 \mathrm{MHzV} \\ & -6 \mathrm{MHz} / \mathrm{V} \\ & +20 \mathrm{MHz} / \mathrm{VY} \end{aligned}$
Uipconverter Stimulation (86240C Onlys Actoss 30 MHz Sweep lyith Linearity at $27 / \mathrm{ktiz}$ Groop Delay at 277 kHz Differential Gain at 2.4 MH Differential Phase at 2.4 MH :	N/A	W/A	$\begin{aligned} & \leqslant 0.5 \% \\ & \leqslant 105 \\ & \leqslant 0.5 \% \\ & \leqslant 1^{2} \end{aligned}$
PhicE Plug-int 0 pt 001 (interras Leveling) 0 pt 002 (70 dB Step Attenustor)	$\begin{aligned} & \$ 3756 \\ & \text { add } \$ 656 \\ & 10045006 \end{aligned}$	$\$ 5200$ Included 2dd $\$ 400$	$\$ 4700$ add $\$ 850$ M/A

Models 86222A and 86222日
－ 10 MHz to 2.4 GHz in ONE，CONTINUOUS sweep
－Internaliy leveled FLATNESS $\pm 0.25 \mathrm{~dB}$ over full range

86222A

The HP $86222 \mathrm{~A} / \mathrm{B}$ sweeper provides uncompromising 10 M Hz io 2.4 GHz frequency coverage．The entire ringe can be swept conlinuously－no need to break up your measurement into two or more sweeps．Yel narmowband resolution is nol sacrificed．This pre－ cision is complemented by the 86222＇s guod stabiiot and frequency accuracy to make narrowband measurements iruly practical．Bolh narrowband and wideband linearity is excellent（ 2 MHz over full band）．The RF output charactesistics of the 86222 feature similar high performmace．Power outpul in calibrated 0 to +13 dBm in IdB increments．The output is internatly leveled $10 \pm 0.35 \mathrm{~dB}$ flatness over the entire 0.01 io 2.4 GHz rongel

For applications demanding precise frequency identification．the 86222B offers an idvanced digitally processed birdic marker system which provides the accuracy awociated with standard birdie nor－ kers without their normal liabilities．The 86232 B marker system in－ temally generales a rypical birdie marker，then processes it to pro－ duce a digital pulse．This puise ean then be used to produced an intensity dol on the CR＇T which corresponds to a precise frequency． This epens the applications of 86222 B ＂birdie＂markers to a wide variely of network andyaers and displays．such th the 8410 B and 8755，where previously it was impossible to inject them on either the detected de or RF signals．Alternately，an ampliude marker，de－ rived from the birdie，can be selecsed which produces a dip in RF power al each marker frequency．This lype of marker is useful for $X-Y$ recordings．In addirion，when the output frequency is coinci－ dent with a 50.10 ，or 1 MHz comb of the internal crystad oscillator．a front－panel LED lights．Thus．independent of the display．an operator can accurately identify a CW frequency of the 86222B－ within 75 kHz al I GHz！Provision is also made for injection of an extemal marker for identification of specific frequencies between 1 MHz marken．
－1．10，and 50 MHz crystal marker combs with 86222 B
－Marker accuracy even in CW with 86222 B

86222 B

Coninuous mulitoclave vector measurements to 2.4 GHz are now possible using the HP 86.222 logether with the HP 8410 H Ne． work Analyzer．Previously，measurements could be made only one octave at a time because manual range switching of the HP 8410 was necessary．Now．the HP 86222／8620C combination automatically range switches the nefwork analyzer for one continuous display． even from 0.1 to 2.4 GHz ．In addition．with the 86222 日 crystal marker system the important third dimension，frequency，can be added to the polar display of the HP 84100．

Increased dynamic range scatar measurements can be made using the HP 86222A／B together with the HP 8755 Swept Frequency Re－ sponse Test Set．Heterodyne plug－ins in the range of $0.01-2 \mathrm{GH}_{7}$ ． will typically have a broadband noise output only 45 to 50 d日 below the fundamenial output signal．This noise is due to the high gain outpul anmplifer used in heterodyne approaches．The noise level will be higher iban mos！broadband detectors noise level and signili－ candy higher than the noise of the Schottky diode used in the HP 8755．This will limir the dynamic range of measurements such as the transmission Joss of high pass，low pass，and notch lihers．or recurn loss of bandpuiss ifters when broadthand detectors are used．The HP 8755 ，which is a 27.8 kHz receiver does net exhibir this problem when used with the HP 8622. A／B．By designing an integral mod－ u）ator in the swecper．and an ALC loop which will handle the 278 kHz ．the fundamental oscillator outpul can be modulated at 27.8 kHz winhout modulating the noise of the output amplifier．The HP 8755 will therefore not respond 10 the noise．The typical result is a 10 so 15 dB dymamic range improvement over olher beterodyne sweep－ ers and de diode detection systems．

Specifications with plug-in installed in an 8620C mainframe

Frequency characterisilcs
Range: 10 MHz to 2.4 GHz .
Accuracy $\left(25^{\circ} \mathrm{C}\right)$
cW mode: $=10 \mathrm{MHz}$.
Using programming input (8620C Option 001 or 011): typically $\pm 6 \mathrm{MHz}$.
All sweep modes: $=15 \mathrm{MHz}(<0.1 \mathrm{sec}$ sweeptime). Accuracy of 86222 B may be enhanced to belter than $\pm 200 \mathrm{kHz}$ through use of crystal marken.
LInearlty (correlation between frequency and SWEEP OUT
Voltage): rypically $=2 \mathrm{MHz}$.
Frequency reference output: nominally) $\mathrm{V} / \mathrm{GHz} \pm 0.01 \mathrm{~V}$.
Frequency cal control: permits fine frequency calibratiod.
Stabillity
With temperature: $=500 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$.
Whit 10% line voitage change: $\pm 20 \mathrm{kHz}$.
WIth 3:1 load SWR, all phases: $=10 \mathrm{kHz}$.
With 10 dB power level change: $=20 \mathrm{kHz}$.
With time (atter 1 -hour warm-up): rypically $\pm 100 \mathrm{kHz} / 10 \mathrm{~min}$.
Resldual FM: (10 kHz , baodwidih; FM switch in NORM; CW
Mode): $<3 \mathrm{kHz}$ peak.
Output characteristics
Maxlmum leveled power ($25 \div$): $>+13 \mathrm{dBm}$ (20 mW): ypically $>+15 \mathrm{dBm}$.
Power level accuracy (intemal levelling only): $\pm 1 \mathrm{~dB}$ (includes frequency response).
Attenuator Opt 002: add $\pm 0.2 \mathrm{~dB} / 10 \mathrm{~dB}$ sicp.
Power Variation
Internally tevaled
0.01 to $2.4 \mathrm{GHz}:=0.25 \mathrm{~dB}$.

Across any 50 MHz (0.03 to 2.3 GHz): typically $=0.05 \mathrm{~dB}$.
Stabllty with temperature: tspically $=0.02 \mathrm{sB} \mathrm{B}^{\circ} \mathrm{C}$.
Externally leveled (excluding coupler and delector varlation) Crystal detector: ($-1010-100 \mathrm{mV}$ at rated oulpul): $=0$. 1 dB .
Power meter (wlih HP 432A/B/C Serles power meters): ± 0. I dB.
Unleveled Indicator: lights when R.F power ievel is set soo high to permit leveling over sweep range selected.
Residual AM In 100 kHz BW: $>50 \mathrm{~dB}$ below cartier at maximum power.
Spurlous signals: below fundamental.
Harmonks; $>25 \mathrm{~dB}$ al +13 dBra : typically $>30 \mathrm{~dB}$ at +10 dBm . Non-Harmonics
0.01 to $2.3 \mathrm{GHz}:>30 \mathrm{~dB}$ ot +13 dBm ; typically $=40 \mathrm{~dB}$ at +10 dBm.
2.3 to 2.4 GHz : $>25 \mathrm{~dB}$ at +13 dBm : typically $>35 \mathrm{~dB}$ at +10 dBm.
Broadband nolse in 100 kHz bandwidth: typically $<-70 \mathrm{dBm}$.
Impedance: 50Ω nominal.
SWA: < 1.5 .
Slope control: allows variable compensation for irequency dependent losses in test set-up.
Output connector: lype N remalc.

Modulation characteristics

External FM
Input Impedance: approximately $10 \mathrm{k} \Omega$.

Frequency response: 1ypically 150 kHz .
External AM
Square wave response: guantees HP 8755 Frequency Response
Test Set operation will kiss Modulator Drive conaected to EXT AM inpul.

ON/OFF ratio: $>30 \mathrm{~dB}$.
Symmetry; $40 / 60$ it $\geqslant 10 \mathrm{dBm}$ ouspul power.
Attenuation for $+5 \mathbf{V}$ lnput: $>30 \mathrm{~dB}$.
internal AM
1 KHz square-wave On/OH1 ratlo: $>30 \mathrm{~dB}$.
RF blanking On/Off ratlo: >30 dB.
External FM
Maxlmum deviations for modulatlon frequencles
OC to $100 \mathrm{~Hz}: \geq 75 \mathrm{MHz}$
100 Hz to $1 \mathrm{MHz}:=5 \mathrm{MHz}$.
1 MHz to $2 \mathrm{MHzi}=2 \mathrm{MHz}$
Sensitivity (typleally)
FM mode: $-20 \mathrm{MHz} / \mathrm{V}$.
phase-lock mode: $-6 \mathrm{MHz} / \mathrm{V}$.
Crystal marker capabilites (86222日 Only)
Internal crystal markers: harmonic markers of 10 and 50 MHz usable over full 0.01 to 2.4 GHz range and I MHz markers usable 0.01 to $) \mathrm{GH}$ 2. Positive (Γ or negative (4) voltage oulput puises can be selected to Z-axis intensify a scope trace: or RF amplitude pips call be selecied (at maximum sweep speed pulse widin optimized for approximately 10 markers'sweep).
Accuracy of center frequendes ($25^{\circ} \mathrm{C}$) : $\pm 5 \times 10^{-2}$.
Typical marker width around center trequency
1 MHz markers: -75 kHz .
10 MHz maskers: $=200 \mathrm{kHz}$.
50 MHz markers: - 300 kHz .
Temperature stability: 1 ypicaly $\pm 2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$.
Marker output Ω mode: nominally $>3 \mathrm{~V}$.
U mode: nominally -4 10-9 V . internally ad-
justable.
Amplitude mode: sypically 0.5 dB .
External marker Input: generates ampletude or Z-axis marker when sweep frequency equals exicitill input frequency.

Frequency range: 0.01 to 2.4 GHz .

Marker width: rypically $\leq 300 \mathrm{kHz}$.
Marker Indlcator light: green LED lighis coincident with erystal or extemal marker for accurate CW colibration.

General

Improved Network Measurements Capabillty
8410 E Network Analyzer: interfacing through 8620C rear panel connector allows the 8410 B to maintain phase lock over multioctave swecps at all sweep speeds.
8755 Frequency Response Test Set: dired connection of 8755 mod drive signal to external AM input of the 8620 C eliminates the need for an external modulator.

Orderlng Intormatlon	Prlce
86222A 0.01-2.4 GHz RF Plug-In (Intemal Leveling	
Standard)	$\$ 3500$
86222B 0.01-2.4 GHz RF Plug-In with Crystal and	
Extemal Markers (Intemal Leveling Standard)	$\$ 4100$
Opt 002: 70 dB Step Actenuator (I0 dB steps)	idd $\$ 295$
Opt 004: Rear Panel RF Oulput	add $\$ 80$

- 10 MHz to 22 GHz coverage
- $>50 \mathrm{~mW}$ from 5.9 to 12.4 GHz

86245A

Specifications

86200 Series
The 86200 series plug-ins feature a wide choice of bandwidths and power specifications for covering the $10 \mathrm{MH} \geqslant 1022 \mathrm{GHz}$ frequency range. The 8622210 MHz to 2400 MHz unit and the $862902 \mathrm{GHz}^{2}$ to 18.6 G Hz plug-in both cover multi-octave frequency ranges with exceplional frequency precision and RF oulpul characteristics. See preceding pages for specifications on these plug-ins. For oclave band applications. ymaller range plug-ins covering, for instance. 5.9 GHz to 12.4 GHz are available with optional capabiliry 10 openate as upconverters for MLA measurements.

Frequency Ilnearity: typically $\pm 1 \%$.
Frequency reference output: typically JV/GHz DC-coupled voltage is available for nefercncing or phase-locking extemal equipment to the plug-in or for multi-octave operation with an 84108.
RF power levellng: intemal dc-coupled leveling amplifice and PIN modulator provided.
Internal, Opt 001: selected by fromt pand switch: refer to RF plugin specithcations (standard on 86220 A).

External

Crystal input: approximately -20 10 250 mV for specified leveling at rated outpul; for use with negative polarity detectors such as 780 Serics Directional Detectors. 423A/B and 8470 Series Crystal Detectors

Powef meter Input: leveling amplifies with compensalion for HP 432A power metcr included intemally in alt plus-ins except the 86230 B and 86241 A which require the use of an 8404A Leveling Amplifier and the FXXT AM input on the 8620 Maidframe.
Indicator: froni panel indicator lights when RF power level is sef 100 high io permit leveling over entire selected sweep range or when operating in unleveled mode.
Residual AM In 100 kHz bandwidth : $>50 \mathrm{~dB}$ below fundamenial at specilied maximum power.

External AM

Frequency response: lypically dc 10100 kHz unleveled. dc to so x.Hz leveled (nt maximum leveled power).

Inpul Impedance: approximately 5000 ohms.
RF output connector: lype N Female.
Size: 127 H $\times 152 \mathrm{~W} \times 295 \mathrm{~mm} D\left(5^{\prime \prime} \times 6^{\prime \prime} \times 11^{\prime \prime}\right)$.
Welght: net. $2.1 \mathrm{~kg}(5 \mathrm{lb})$. Shipping. 3.2 kg (7 lb).

Optlons
Price
See model number add \$275 add $\$ 400$
002: 70 dB attenuator in 10 dB steps. available in
86220A dud 86235A
004: reas panel RF output
add $\$ 80$
005: A PC-7 RF oulput connector available on 86260A

Upconverter elmulation optlons: oplions are available which guarantee compabibility with the HP Microwave Link Analyzers. For further information on these plug-ins refer to the Telecommunications Test Equipment Section beginning on page 557.

Single band plug-Ins
Refer also to broadband models 88222AN ($0.01-2.4 \mathrm{GHz}$), $86240 \mathrm{NB} / \mathrm{C}(2-8.6 \mathrm{GHz}$), and $86290 \mathrm{~A} / \mathrm{B}(2-8.6 \mathrm{GHz})$

Specificatlons with plug-in installed in 8620C	862204	862308	$\begin{gathered} \text { NEW } \\ 86235 A \end{gathered}$	88241A	$\begin{gathered} \text { NEW } \\ 88242 \mathrm{D} \end{gathered}$	$\stackrel{\text { NEW }}{\text { 88245A }}$	$\underset{862500}{\text { NEW }}$	88260A	$\begin{gathered} \text { MEW } \\ \text { 日8280A } \\ 081 \text { H22 } \end{gathered}$
Frequency range' (GHz):	0.01-1.3	1.4-4.2	1.7-4.3	3.2-6.5	5.9-9.0	5.9-12.4	8.0-12.4	12.4-18.0	17.0-22.0
Frequency accuracy CW mode (MH2): All sweep modes (sweep time >100 ms)(MHz):	$\begin{aligned} & \pm 10 \\ & \pm 15 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & \pm 20 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 30 \end{aligned}$	$\begin{aligned} & \pm 30 \\ & \pm 33 \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & =40 \\ & \therefore 50 \end{aligned}$	$\begin{aligned} & =40 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & =70 \end{aligned}$	$\begin{aligned} & =50 \\ & =70 \end{aligned}$
Residual FM (10 kHz 日W) CW mode (kHz) peak):	<5	<7	<7	<7	<15	<15	<15	<25	<25
Maximum levolad power (mW):	10	>10	>40	>6.3	>10	≥ 50	≥ 10	>10	>10
Power varialion: Internally leveled (dB): Externally leveled (dB) (excluding coupier \& detector variation):	$<=0.5$ internal leveling cal'd oulput std. N/A	$\begin{aligned} & < \pm 1.2 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.8 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.8 \\ & < \pm 0.1 \end{aligned}$	$< \pm 0.5$ $< \pm 0.1$	$\begin{aligned} & < \pm 0.6 \\ & < \pm 0.1 \end{aligned}$	$\begin{aligned} & < \pm 0.5 \\ & <=0.1 \end{aligned}$	$< \pm 0.7$ $<=0.1$	$< \pm 0.1$
Spurious slgnals: (dB below fund. at specilled max power) Harmonics: Nonharmonics:	>25 >50	>20 >60	>20 >60		>30 >60	$\begin{gathered} >17(5.9- \\ 7 \mathrm{GHz} 2) \\ >30(7- \\ 12.4 \mathrm{GHz}) \\ >60 \end{gathered}$	>30 >60	>25 >50	>25 >50
Source YSWH: (50Ω nom, Internally leveled)	<1.3	<1.6	<1.6	<1.6	<1.6	<16	<1.6	<1.6	
External FM: Max deviations (MHz) for modulation frequencies: DC-100 Hz: DC-1 MHz: Sensitivity (nom, MHzM):	$\begin{gathered} =15 \\ \pm 0.5 \\ +3.5 \end{gathered}$	$\begin{gathered} =25 \\ =2 \\ -4 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 5 \end{gathered}$ $-201-6$	$\begin{aligned} & =25 \\ & =2 \\ & -6 \end{aligned}$	$\begin{gathered} \pm 150 \\ \pm 7 \\ -201-6 \end{gathered}$	$\begin{gathered} \pm 150 \\ \pm 7 \\ -20 /-6 \end{gathered}$	$\begin{gathered} \pm 150 \\ =7 \\ -201-6 \end{gathered}$		
AM: Internal square Wave on/oft fatio \& Ext AM sensitivity $\mathrm{T} 0-10 \mathrm{~V}$ (dB): EXT AM: Response compatible with 8755 Mod drive signal:	>35 No	$\begin{aligned} & >25 \\ & \mathrm{No} \end{aligned}$	$\begin{aligned} & >30 \\ & Y_{e s} \end{aligned}$	>25 No	>40 Yes	$\begin{aligned} & >40 \\ & \mathrm{Yes} \end{aligned}$	$\begin{aligned} & >40 \\ & \text { Yes } \end{aligned}$	>25 No	>25 No
Price: Plug-in: Opt 001 (int. let):	$\underset{\text { Incluted }}{\$ 2500}$	$\begin{gathered} \$ 2800 \\ +\$ 390 \end{gathered}$	$\begin{array}{r} \$ 3300 \\ +\$ 550 \end{array}$	$\begin{array}{r} \$ 2500 \\ +\$ 390 \end{array}$	$\begin{aligned} & \$ 2800 \\ & +\$ 450 \end{aligned}$	$\begin{array}{r} \$ 4200 \\ +\$ 500 \end{array}$	$\begin{aligned} & \$ 2900 \\ & +\$ 450 \end{aligned}$	$\begin{array}{r} \$ 3200 \\ +\$ 550 \end{array}$	\$5250

[^27]- Modular construction
- $>40 \mathrm{~mW}$ in 5 -band

86218

The 8621B RF Drawer houses the 86300 series RF Modules. The standard drawer will accept one fundamental oscillator modute in auddition, with the 1.7104 .3 GH , fundamental ascillator module, the standard drawer also accepts the 0 . 1 to 2 GHz hescrodyne module to give 0.1 to 4.3 GHz coverage. The 8621 Option 100 will accept two fundamenal oscillator modules and the heterodyne module. This will allow. for example, 0.1 io 6.5 GHz coverage in one plug-in.

Specifications

8621B
70 dB step attenuator, opt 010
Range: 70 dB in 10 dB steps sel by front pand swith.
Inserton loss: <2.0 dB.
Accuracy: (including frequency response).
For $10 \mathrm{~dB}:<=0.6 \mathrm{~dB}$.
For $>10 \mathrm{~dB}:< \pm 5 \%$ of ultenuation.
Remote control capabilty: 4-line binary logic. open or contact closure to ground (8620A/C Mainframe only, inpul available at rear panel connector.).
Weight: net, $09 \mathrm{~kg}(2 \mathrm{lb})$.
RF power levalling: inicrnal dc-coupled leveling amplifier provided. Internal: selecied by front panel switch: refer to RF module specilicalions.
External:
Crystal input: approximately ± 20 to $\pm 250 \mathrm{mV}$ for specified leveling at rated oupul; for use with positive or negative polanily deicctors such ás 780 Series Directional Detectors. 423A/B and 424 Serics Crystid Detectors; polarily switch provided in RF drawer. Power meter Input: swith in RF drawer selects proper compensation for Models 43 IB/C or $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ power melers.

86300 Series

Indicator: fromı panel indicator lights when RF power fevel is set too high to permit leveling over entire selected sweep range or when operating in unleveled mode.
Frequency relerence output: DC-caupled voliage nominally 1 $\mathrm{V} / \mathrm{GHz}$ is available for referencing or phase locking extemal cquip. ment to the sweeper or for multi-octave operation wish the 8410 B . RF output connector: type N Female.
Size: $127 \mathrm{H} \times 152 \mathrm{~W} \times 295 \mathrm{mmD}\left(S^{\prime} \times 6^{\prime \prime} \times 11 \%{ }^{\circ}\right)$.
Welght: nel, 1.4 kg (3 lb). Shipping. $2.3 \mathrm{~kg}(5 \mathrm{ll})$.

Common specifications

86300 serles
Frequency linearlty: cypically $\pm 1 \%$.
Regldual AM In 100 kHz bandwidit: $>50 \mathrm{~dB}$ below fundamental at

maximum power.

External AM

Frequency response: Iypically de to 100 kHz unleveled. de to 50 kHz leveled (al maximum leveled power).
Input Impedance: approximately 5000 ohns.
Internal leveling: standand on all nodules. Refer to RF module specifications.
Slize: $103 \mathrm{H} \times 92 \mathrm{~W} \times 92 \mathrm{mmD}\left(4^{4} \times 3^{38} / \mathrm{m}^{\prime \prime} \times 3^{3} / \mathrm{s}^{\prime \prime}\right)$.
Welght: net, $1.4 \mathrm{~kg}(3 \mathrm{lb})$. Shipping. $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Option 010 add $.9 \mathrm{~kg}(2 \mathrm{lb})$.
Orderlng intormation Price
$8621 B$ RF Drawer
Opt 004: Rear panel RF output
add $\$ 80$
Opt 010: 70 dB Altenuator
add $\$ 950$
add $\$ 500$

Multiband plug-ins

Specifications with unlt Instalfed in 86218 and 8620C	$86320{ }^{1}$	86331C	86341 C	$86342 C$	88350 C
Srequency range (GHz):	$0.1-2.0$	1.7-4.3	3.2-6.5	5.9-9.0	8.0-12.4
Fraquency Accuracy: CW mode (MHz): All sweep modes (sweeplimes $>100 \mathrm{~ms}$) MHz:	$\begin{aligned} & =15 \\ & =20 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & =25 \end{aligned}$	$\begin{aligned} & =30 \\ & =33 \end{aligned}$	$\begin{aligned} & \pm 35 \\ & \pm 40 \end{aligned}$	$\begin{aligned} & =40 \\ & =50 \end{aligned}$
Residual FM (10 kHz 8W) CW mode (kHz Peak).	<15	<7	<7	<15	<15
Maximum leveled power (dBm):	$>+13$	>16	$>+10$	>+7	$>+6$
Powas variation: Internally leveled Externally leveled (dB) (Excludilit coupler-deteclor or hiermistor variation):	$=0.7$ <0.1	$\begin{aligned} & < \pm 0.8 \\ & <0.1 \end{aligned}$	$\begin{aligned} & < \pm 1 \\ & ==0.1 \end{aligned}$	$=1$ $< \pm 0.1$	$\begin{gathered} \pm 1 \\ <00.1 \end{gathered}$
Spurious slgnals: (dB below fund. al speciflied max power) Harmonics: Nonharmonis:	$\begin{aligned} & >30 @ 10 \mathrm{~d} 8 \mathrm{~m} \\ & >24 @ 13 \mathrm{dBm} \\ & >30 @ 10 \mathrm{dBm} \\ & >24 @ 13 \mathrm{dBm} \end{aligned}$	$\begin{aligned} & >20 \\ & >60 \end{aligned}$	$\begin{gathered} >14(3.2-3.8 \mathrm{GHz}) \\ >25(3.8-6.5 \mathrm{GHz}) \\ >60 \end{gathered}$	$\begin{aligned} & >30 \\ & >60 \end{aligned}$	$\begin{aligned} & >30 \\ & >60 \end{aligned}$
Saurce VSWR: (500 nom, internally leveled)	<1.6	~ 1.6	<2.6	<1.5	<1.5
Extemal FM: Max deviations (MHz) for Modulation frequencies: $\begin{aligned} & 0 \mathrm{C}-100 \mathrm{~Hz} \\ & 0 \mathrm{C}-1 \mathrm{MHz} \\ & 0 \mathrm{C}-2 \mathrm{MHz} \end{aligned}$ Senslitivity: nominal FM mode ($M \mathrm{H}_{2} / \mathrm{V}$): Phase lock mode ($\mathrm{MHz} / \mathrm{V}$):	$\begin{gathered} \pm 75 \\ \pm 5 \\ \pm 2 \\ -20 \\ -6 \end{gathered}$	$\begin{gathered} \pm 75 \\ \pm 5 \\ \pm 2 \\ -20 \\ -6 \end{gathered}$	$\begin{aligned} & \pm 75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$	$\begin{gathered} =75 \\ \pm 5 \\ \pm 2 \\ -20 \\ -5 \end{gathered}$	$\begin{aligned} & =75 \\ & \pm 5 \\ & \pm 2 \\ & -20 \\ & -6 \end{aligned}$
AM: Internal square wave on/off ratio and Ext. AM sensitivity $\mathrm{To}-10 \mathrm{~V}$ (dB)	>15	>40	>25	>40	>40
Price	\$2200	\$2630	\$2480	\$2730	\$2730

1. 8 gh 70 g is a thetrodyne unit which must be used malr 8633 c .

8690 System

The familiar 8690 BWO sweeper famuly offers exceptional value in performance, operation and versatility. With the ability 10 accepl both BWO and solid state plug-ins, the 8690 mainframe allows BWO coverage where necessary, and more reliable, high performance solid state coverage al lower frequencies.

8690B Mainframe specifications

Sweep functions
START/STOP gweep: sweeps from "stan" to "stop" frequency setuing. Both setuings continuously adjustable over entire frequency range.
MARKER swerp: sweeps from "Marker 1" to "Marker 2" frequency selting. Both settíngs continuously adjustable over entire frequency range and accurate to 1% of fill scale for all RF units.

AF swaep: sweeps upward in frequency. centered on CW setting. Width is conlinuously adjustable from zero to 10% of the frequency band and is calibraled in MHz . Accuracy is $\pm 1 \%$ of maximum ΔF plus $\pm 10 \%$ of ΔF being swepl.
CW operation: single-frequency RF outpul selected by START/ CW or MARKER i control, depending on sweep function selected.

Sweep modes

Auto, manual, and riggered sweep modes; sweep indicator lighs during each sweep.
Sweep time: continuously adjuscable in four decade ranges. 0.0110 100 seconds.
Sweep outpul: direct-coupled sawnooth, zeno to approximately +15 V . concurrent with swepl RF oulput. regardless of sweep width or direction

Genera!

Frequency markers: (wo markers independenly adjustable over entire frequency rage accurale 101% of [ul] scalc. Amplitude is adjustable from from panel. A - 5 V iniangular pulse is available as an intensily marker on the rear panel.
Internal AM: square wave modulation continuously adjustable from 950 to 1050 Hz .
External AM: frequency response de 10350 kHz udeveled, dc to 50 kHz leveled.
Blankling: both negative ($-A \mathrm{~V}$) and RF blanking available along with pen lift oulpus.
Weight: nel, 23.9 kg (53 (b). Shipping. 32 kg (7) lb).
Stze: $222 \mathrm{mmH} \times 425 \mathrm{mmW} \times 467 \mathrm{mmD}\left(874^{\prime \prime} \times 16^{\circ} 4^{\prime \prime} \times 18^{4 / m^{\prime \prime}}\right)$.

- Solid state plug-ins
- Both pin and grid leveled BWO plug-ins
- Frequency coverage to 50 GHz

Solid state and BWO plug-ins

Solid stare plug-ins from 400 kHz to 4 GHz are available for the 8690 mainfmone. BWO replacement is both expensive and inconvenient. Solid state plug-ins not only offer high reliability. but also provide low residual FM and good speciral purity. This eapability allows one mainframe to cover high frequency, high power BWO applications. yel facilitate high perfornance, longer life solid statc coverage of lower frequencies. There are two solid state plug-ins. The 8698 B covers 400 kHz to 110 MHz while the 8699 B plug-in thas a 100 MHz to 4 GHz range.

Both grid leveled and pin leveled BWO plug-ins are available covering I to 50 GHz . Grid leveled BWO oscillators achieve power and leveling control by varying bias on the BWO grid. Although some degradation in frequency performance specifications is seen by this method, grid leveling provides an cconomical means of power control and delivers higher power output since there are no components (piv modulators) between BWO and front panel outpul.

PIN leveled BWO plug-ins offer superior frequency stability characteristics. As in all solid state plug-ins, leveling is accomplished utrough use of a pin diode modulator between oscillator and outpu. Use of the pin allows the oscillator to work at constana bias and into a constant impedance load. resulting in very low residual $F M$ and very little frequency pulling. Pin leveling also results in a better source impedance match.

Common specifications: BWO plug-ins

Warranty: all BWO's are unconditionally wartanted for one year. Spurfous slgnals: harmonics, $>20 \mathrm{~dB}$ below CW output, nonharmonics, $>40 \mathrm{~dB}$ below CW output.
Realdual AM: $>40 \mathrm{~dB}$ below CW output.
Magnotic shlelding: all plug-ins except the 8691A/B have shielded BWO's.
Reterence output: dc volcage proportional to frequency ourpur $=40 \mathrm{~V} / \mathrm{oclave}$.
Leveling lndlcator: front panel light indicates unleveled operation.

Power variation

Unleveled: < 10 dB over full band.
Externally leveled: $=0.2 \mathrm{~dB}$ for A units.
± 0.1 de for B units.
Frequency atability with temperature: $=0.01 \% /{ }^{\circ} \mathrm{C}$.
Welght
8691-8892: net, $7.7 \mathrm{~kg}(17 \mathrm{lb})$. Shipping. $11.3 \mathrm{~kg}(25 \mathrm{lb})$.
8692-8697: nel. $5.4 \mathrm{~kg}(12 \mathrm{lb})$. Shipping. 9 kg (20 It).
8698-8898; qel. 5.0 kg (11 fb). Shipping. 8.6 kg (19 (b).

Pin leveled solid state plug－ins

$\begin{gathered} \text { Fequancy } \\ \text { Rsage } \\ \hline \end{gathered}$	$\begin{gathered} \text { Modet } \\ \text { Number } \end{gathered}$	Marimum （eveled Pawer	frequency Aceuracy	Irequency sladilit with		gesidasi MP	int．Leveling Power Yariation	Connector	Pruce
				Temperature	10 da Power Leval Chance				
$\begin{aligned} & 0.4-11 \mathrm{MHz} \\ & 11-110 \mathrm{HHz} \end{aligned}$	86988	$\checkmark 20 \mathrm{~mW}$ $\therefore 70 \mathrm{~mW}$	$\begin{aligned} & \quad-1 \%=50 \mathrm{kHz} \\ & =1 \%=500 \mathrm{kHi} \end{aligned}$	$\begin{aligned} & =0.05 \% 1^{\circ} t \\ & =0.05 \% /^{\circ} t \end{aligned}$		$\therefore 300 \mathrm{HI} 1 \mathrm{~ms}$ <500 Ir mms	$\begin{aligned} & =0.3 \mathrm{~dB} \\ & \pm 0.3 \mathrm{~dB} \end{aligned}$	BNC＇	52200
$\begin{aligned} & 0 \mathrm{I}-2 \mathrm{OHz} \\ & 2-8 \mathrm{ENz} \end{aligned}$		$\therefore \mathrm{C}) \mathrm{mw}$ $>6 \mathrm{~mW}$	$\begin{aligned} & =10 \mathrm{MHz}^{2} \\ & =10 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & =750 \mathrm{kh} /{ }^{\prime} \mathrm{c} \\ & =750 \mathrm{kH} / \mathrm{l} \mathrm{c} \end{aligned}$	$\begin{aligned} & <100 \mathrm{hHz} \\ & <500 \mathrm{NH} \end{aligned}$	$<3 \mathrm{HHz}$ ans $<3 \mathrm{MHI}$ mes	－	Proo N	31850

18698800100 E 750 BNC output．
2 Resion in ith measured with 10 kHz bandwidth．

Grld and pin leveled BWO plug－ins

Sirquercy	Mobel Humber	Power Control	Masimum Lorelea Power	fiequency Ascuracy	$\begin{aligned} & \text { Frg. Siablity } \\ & \text { Win Power } \\ & \text { Leyel Change' } \end{aligned}$	Residual fM Pak ${ }^{2}$	Oplion 001 Ifr．Leveling Powar Varisilon	Connector	Pricts	Dption 00） Im．IEveling Price－Add
10.20 CHz	2681A	GRID	－100 m N	$\pm 1 \%$	$<20 \mathrm{MHz}$	$<30 \mathrm{kHz}$	$=0.18 \mathrm{dg}$	Iype N	\＄3400	\＄360
	86918	PIN	$\rightarrow 70 \mathrm{~mW}$	$=10 \mathrm{MHS}$	$=500 \mathrm{hiH}_{2}$	$<10 \mathrm{HH2}$	－	Typan	\＄3750	－．
$1.2-25 \mathrm{CHz}$	$\begin{gathered} 86914 \\ \text { Cpt. } 200 \end{gathered}$	GRID	$>100 \mathrm{~mW}$	$=135$	$\zeta 30 \mathrm{MHz}$	＜ 30 ktb	－	Troe N	\＄3680	－
	$\begin{gathered} 86928 \\ 0.1 .100 \end{gathered}$	PIN	215 WW		－ 4 Mr：	<2 hlia	－	lypen	$\$ 4230$	－
20.4 .0 cHz	8692\％		$\because 20 \mathrm{~mm}$		10 MHI	$<36 \mathrm{~h} 42$	$\pm 0.48 \mathrm{~B}$	Iype N	53200	\＄350
	8592 B	PJN	$\geq 40 \mathrm{~mW}$	± 20 MH2	$\triangle \mathrm{MHi}$	＜15 k112	－	Iype N	\＄3800	－
3．5—8．756故	$\begin{gathered} 86938 \\ 001.20 t 1 \end{gathered}$	GRID	$=40 \mathrm{~mW}$	$\pm 1 \%$	$<80 \mathrm{MHJ}$	$55_{5} 1 \mathrm{kHz}$	－	Iype N	\＄3500	－
$3 \mathrm{~J}-\mathrm{B}$.	$\begin{gathered} 86938 \\ 0 \mathrm{pL} .100 \end{gathered}$	PIN	$\triangle 5 \mathrm{~mW}$	$=45 \mathrm{MHI}$	$\pm 1 \mathrm{MHz}_{2}$	$\therefore 20 \mathrm{kRI}$	-0408	Type N	\＄3450	8150
4．0－0 ${ }^{\text {a }}$	8693A	GRID	－30 111	$=1 \%$	$=80 \mathrm{WHz}$	5 D kHz	$=0.5 \mathrm{~dB}$	Typen	\＄2700	8380
．	86938	PIN	$>15 \mathrm{~mm}$	$=80 \mathrm{MHs}$	$=1 \mathrm{Mru}$	$<15 \mathrm{~m}_{4}$	$=0.80 \mathrm{~dB}$	Iype N	\＄3100	\＄390
5	86744 OpL 200	GRID	$>25 \mathrm{nW}$	－ 1%	$\leq 160 \mathrm{MHz}$	$<60 \mathrm{kHr}$	$=0.7508$	Pypa k	\＄3055	\＄490
	c694B 0pt． 200	PIN	$\geqslant 15 \mathrm{~mW}$	$\triangle 40 \mathrm{NHI}$	\triangle J MH：	$<20 \times 14$	$=0.75 \mathrm{~dB}$	Yyoen	$\$ 3705$	\＄430
	$\begin{aligned} & 8698 A \\ & 0 p!100 \end{aligned}$	6R10	$>25 \mathrm{~mW}$		$\bigcirc 160 \mathrm{NH}$	cio htr	$\pm 0.75 \mathrm{~d} \mathrm{\theta}$	Type N	53360	\＄490
	86948 Opt． 100	PIN	$>15 \mathrm{~mW}$	$\pm 50 \mathrm{MHz}$	$=1 \mathrm{MHz}$	$<20 \mathrm{Wu}$	$=0.75 \mathrm{~dB}$	Iype N	34090	\＄480
$8.0-1246 \mathrm{~Hz}^{\text {I }}$	8694A		$>50 \mathrm{~mW}$				$\pm 0.75 \mathrm{~dB}$	Tyoe N	53000	$\$ 890$
	36948	PIN	$\rightarrow 30 \mathrm{~mW}$	$\pm 40 \mathrm{Mkz}$	＝1 Mlis	<15 kir	$=0.7548$	Iype N	53650	S480
	8694n Opl 300	GRID			$=150 \mathrm{MHI}$	$<150 \mathrm{kHz}$	－	Type N	S5750	－
	b．54．4．	PIN	$\therefore 5 \mathrm{mH}=$	$\pm 1 \%$	$=1 \mathrm{MHz}$	$\leqslant 50 \mathrm{hHz}$	－	Troe N	80350	－
10－16．5 617	$\begin{gathered} 66195 k \\ 00 \mathrm{l} .100 \end{gathered}$	Evic	325 mWH	$=1 \mathrm{fin}$	［1）$\because 5 \mathrm{fiMz}$	c） 50 kHL	－	flat flange 1or WR－I5WG	Stend	－
12．4－18．06\％	8695A	GRID	$=40 \mathrm{miv}$	$\pm 1 \%$	0．2う CHz_{2}	$<150 \mathrm{kHz}$		UESISU	\＄3200	－
	8695日	PIH	＞ 15 mm				－	UG－419／L	\＄3500	－
18．0－78．5 cha	86968	GRIO	$\therefore 10 \mathrm{~mW}$	－1\％	20， 36 CHz	$\therefore 200 \mathrm{kHz}$	－	U6－595／4	\＄3350	－
26．5－10 G4，	\＄597ג	GR10	． 5 nin	＝1\％	－ 0.5 ＇s gHz	＜ 3.350 khl	－	UG－599／L	8590	－
39－50 6Hr	$\begin{array}{r} 8597 \wedge \\ 0 p 1.1 . \div 0 \\ \hline \end{array}$	GRID	\therefore InW	＝1\％		＜ $450 \mathrm{kH2}$	－	UG－383JU	311，300	－
1．Power iesel ramage specification for B untes typically $100 \mathrm{~B}_{1} \mathrm{~A}$ units 608. 2 Resrual fM measused with 10 ktit liandwne lif．										

Opl 004：rear output 8691－8694，8698－8699
Opt 004：rear oulpul 8695－8697
Opt J54：phase lock inpult

8690B/8706A. 8707A, 8705A

8708A

8705A, 8706A, 8707A Multiband system

Multiband systems 400 kHz 10 50 GHz are availahle using the 8706A control unit plug-in and the 8707A RF unit holder. The 8706A allows pushounton control of RF plug-ins installed in the 8707A. The 8705A muluplexer swiches RF signals up 1012.4 GHz from three KF units and provides an ALC signal for the 86908 leveling circuirs.

Specifications

8705A Multiplexer
Frequency range: dc to 12.4 GHz . Output por $\mathrm{SWR} \equiv 1.67$. Inpur pon SWR $\leqslant 1,35$.
Insertion loss: 3 dB .
Weight: nel, 7.8 kg (17 lb). Shipping, 10 kg (22 lb).
8708A Control plug-In
Compatiblitity: the 8706A controls up to tbree 8707A RF unit holders: Option H 26 for remote band switching of the 8699B.
Weight: net. 7.3 kg (16 lb). Shipping. 11.4 kg (25 lb).
8707A RF Unit Holder
Capability: icceepts up to three 8690 plug-ins.
Sweep functions
Normal: pergits alf 8690 B sweep functions
Preset: allows serewdriver setting of individual star//stop poin1s. Welght: nel. $13.6 \mathrm{~kg}(30 \mathrm{lb})$. Shipping, $16.8 \mathrm{~kg}(37 \mathrm{lb})$.

8709A Phase lock synchronizer

The 8709A synchronizer is a phase comparator designced 10 stabilize the frequency of boih HP BWO and solid state sources by phase lockiog to a reference oscillator. Under these conditions system stability is deternined primarily by the stability of the reference oscillator. Phase lock capability is standard on solid state plug-ins from 0.01 to 18 CH . Order Option J54 for BWO plug-ins. Informiltion on complete phaselocked systums available on request.

Specifications

Input trequency: the locking frequency of the 8709 A is 20 MHz . This signal is obtained by multiplying and mixing the reference oscilator with the microwave signal.
Sensitulity: -65 dBm .
Minlmum output voltage: high level $\pm 12.0 \mathrm{~V}$ dc: low level $=9.0 \mathrm{~V}$ de.
Modulation sensitivity: 8690 BWO Option JSA plug-ins. 0.5 to 6.0
$\mathrm{M} . \mathrm{Hz}_{2} \mathrm{~V} .8620$ solid state plug ins $6.0 \mathrm{M} . \mathrm{H}_{2} / \mathrm{V}$.
Weight: net. 4.5 kg (10 lb). Shipping. $5.3 \mathrm{~kg}(31.6 \mathrm{lb})$.

8404A Power meter leveling amplifier

The 8404A Icveling ampifiner permits the 431B/C or $432 \mathrm{~A} / \mathrm{B} / \mathrm{C}$ power meter to level both the 8620 and 8690 sweeper plug-ins. RF output is leveled to $\pm 0.5 \mathrm{~dB}$ or less when connected to the AM input of the sweeper.

11531A Malnframe test plug-in

The 11531 A test unit plug-in allows complete catibration of the 8690 mainframe, including swecf modes, markers and BWO. All voltages arc selected from a front panel switeb.

Ordering Infarmatlon	Prlce
8404A Power Meler Leveling Amplifier	$\$ 550$
Opt DO1: 4 line BCD level control	add $\$ 210$
8705A Signal Muliplexer de- 12.4 GHz	$\$ 3100$
8706A Control Unit Plug-in	$\$ 1200$
877A RF Udit Holder	$\$ 2650$
8709A Phase-Lock Synchronizer	$\$ 1500$
11531A Maimirame Test Unit Plug-in	$\$ 550$

Average power measurements

At microwave frequencies, power is the best measure of signal amplitude because. unlike vollage and current. power renains constant along a lossless transmission line. For this reason, power meters are almost indispensable for microwave measuremeni. Typical applications include monitoring transmituer power levels, calibrating signal generators, leveling signal sources, and measuring transmission characterisics of unknown devices.
To satisty the requirements of this broad range of applications. Hewlell-Packard has developed a family of general purpose microwave power meters. These power meters use either a diode. thermocouple, or thermistor as the power sensing element. and it is important to understand the menis of each of these sensors before choosing a particular power meler.
Power meters \& sensors
Hewhiti-Packard makes four averagereading power meters. the 436A. 435A. 432 A . and 432B. The 435A and 436A are analog and digital melers, respectively, which are designed 10 operate with HP's line of thermocouple and diode power sensors. The 432A and 432B are analog and digital meters, respectively. which ire designed to operate with HP's line of thermistor power sensors.

Thermocouple power sensors use the latest technology and are genemilly preferred for measuring power hecsuse they exhibit lower SWR and wider dynamic range than previously used the mistor elements. Low SWR is directly responsible for superior accuracy since mismatch errors are lower.
HP thermocouple senson: (8481. 8482, 8483) are available from 100 kHz 20 i 8 GHz and range from $-30 d B \mathrm{~m} 10+33 \mathrm{dBm}$. The model 8484A diode sensor operates with the same meters and extends the input level down to -70 dBm . This sensor uses a Lower-Barrier Schotky diode to achieve exceptional $100 \mathrm{pW}(-70 \mathrm{dBm})$ sensitivity. and low noise and drift. Because the diode is always operated in its square law region (voltage out oc power in), the 8484A can be used 10 measure the trie power of complex as well as CW woveforms.

Thermistor power sensors (478A, 486A series) operaic with the 432A and 432B power melers. They are used whenever a direct $D C$-substitution technique is required since these power meters are based on balanced bridge primciples. In addition. a full line of waveguide thermistor mounts are avalable from 2.61040 GHz .

Applications

Information on viruully all aspects of nyicrowave power mensurement is contained in a comprehensive new application note. The AN 64 serics is intended as the definilive publication for general theory. product orientated how-to deseriptions. and a complece treatment of new. innovative automatic systems.

AN 64-I. Fundamentals of RF \& Mlerowave Power Merosurements, deals with the general sheory of microwave power measurements. II coven information which
does not change rapidly such as basic principles, calibration and rraceability, elc. Future notes will treat more equipmentrelated aspects and mini-system-oriented applications.

AN 196. Automated Meazurements Ustag The 436A Power Meter, describes 5 systems built around the HP-Incerface Bus and the programmable 436A digital power meter. The 5 typical applications are power data logging. measuring 50 dB dynamic power range, signal generator calibration. gain and attenualion measurement, and power sensor calibration: all under computer control. Figure 1 shows a sensor cilioration selup.

All of these applicstion notes and the 1977-78 Coaxial \& Waveguide Calalog are available without charge by simply using Use request cand at the back of this calalog.

Peak power measurement

A frequent requirement in microwave work is the measurement of peak power in a periodic pulse. This may be done by various Indirect techmigues using thermocouples or thermistors. Hewlett-Packard also produces a versatile instrument that conveniendy
measures peak power directly in the 50 MHz 102 GHz frequency range. Model 8900 B utilizes a video comparator technique to bring a known de volage. supplied by the insirument, in a known impedance. to a level which is equal to the pulse being measured. This allows simple measurement of peak pulse power with a basic accuracy of 1.5 dB even when the waverorm is nol rectangular. A custom calibration char increases accuracy 100.6 dB for cridical applications.

Noise flgure measurements

in RF microwave communieations, madar, etc., the weakest signal that can be detected is usually determined by the amount of noise added by the receiving system. From a performance standpoinl. providing an increase in the receiver signal-to-noise ratio by redueing the amount of added noise is more economical than increasing the power of dxtransmilter

The quality of a reeciver or umplifier is expressed as a ligure of merii. or noise ligure. Noise figure is the ratio. expressed in dB . of the actual outpul noise power of the device compared to the noise power which would be available if the device were perfect and merely amplified the thermal noise of the input termination radier than cootributing any noise of ils own.
The Hewlen-Packard system of automatic noise figure measurement depends upon the periodic insertion of a known excess noise power at the ingul of the device under test. Subsequent detection of noise power results in a pulse train of two power levels. The power ratio of these iwo levels contains the desired noise figure information. Hewlett-Packard noise figure meters automatically measure and present this ratio directly in dB of noise ligure.

Noise figure is discussed in detail in Hewlett-Packard A N 57 . Use the enclosed request card. Application Note 57. Nolse Figure Primer, derives noise figures formulas, describes general noise figure measurenents, and discusses accuracy considerations.

Figure 1. System for iransfarring calleration faclor from one 8480 sentes power sensor 10 another.
hp POWER \& NOISE FIGURE METERS

436A Power Meter

The HP Model 436A Power Meter is a general purpose digilal power meter intended for manual and automatic RF and microwave power measurements. It is compatible with the entire series of 8480 power sensors. Depending on which power sensor is used, the 436A can measure power from $-70 \mathrm{dBm}(100 \mathrm{pW}) 10+35 \mathrm{dBm}(+3 \mathrm{~W})$ at frequencies up to 18 GHz .
The logically organized and uncluttered fromt panel. and the convenience or push-button operation and digital display make the 436 A both easy to imerprel and easy to use in any application. The suto ranging capability allows for "hands-off' operation.

The 436A measures cilher absolute or relative power. It displays absolute power in either watts or BBm , while relalive power is displayed in dB .

The 436A Power Meter also fealures optional programmability: toth Hewlet1-Packard Interface Bus (HP-1B) and BCD inierfaces are available. These interfaces allow full remote cominol of all power meter functions (CAL function can be programned to either 100 percent or the CAL factor which bas been manually set on the front panel). I hece options may be added by the user at a later time.

Specifications

Frequency range: 100 kHz to 18 GHz (depending on Power Sensor used).

Power range

Whit 8481A, 8482A or 94B3A sensors: 50 dB with 5 full scale ranges of 10 and $100 \mu \mathrm{~W}$: 1. 10 and 100 mW . The display is aiso calibraled in dBm and dB from -20 dBm to +20 dBm full scale in 10-dB steps.
With 8481H or 8482 H sensors: 45 dB with 5 full-state manges of 1 . 10 and $100 \mathrm{~mW}: 1$ and 1 walts. The display is al so caltitrated in dB m and dB from 0 dBm to +30 dBm full scale in $10-\mathrm{dB}$ steps, and a $5 . \mathrm{dB}$ slep from $+30 \mathrm{dBm} 10+35 \mathrm{dBm}$.
Whin $8484 A$ sensor: $S 0$ dB with S full scale ranges of $1,10,100 \mathrm{nW}$: I. $10 \mu \mathrm{~W}$. The display is alsio calibrated in dBm and dB from - 60 dBm to - 20 dBm full scale in 10 dB steps.

Accuracy

Instrumeniation

Watt mode: $=0.5 \%$ in ranges 1 through $4: \pm 1.0$ in range 5 .
dBm mode: $\pm 0.02 \mathrm{~dB} \pm 0.00 \mathrm{~J} \mathrm{~dB}{ }^{\circ} \mathrm{C}$ in range 1 througls $4: \pm 0.04$ $\mathrm{dB} \pm 0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in range 5 .
d8 (REL) mode: $\pm 0.02 \mathrm{~dB}=0.001 \mathrm{I} \mathrm{dB} /^{\circ} \mathrm{C}$ in ranges 1 through 4: $=0.04 \mathrm{~dB}=0.001 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ in range S .

Zero: automatic. nperated by a lront-panel swith
Zero set: $\pm 0.5 \%$ of full scale un mosi sensitive range, 1ypical. 土1 count on other ranges.
Zero carry over: $=0.2 \%$ of full scale when yeroed on the most sensitive range.
Nolse (typleal at constant temperature over any one-minute Interval):
With $8484 A$ Sensor 20 pW peak.
With 8481A. 8482A. 8483A Sensors: 40 nW penk.
With $8481 \mathrm{H}, 8482 \mathrm{H}$ Sensors: $4 \mu \mathrm{~W}$ peal.

General

Zero drift: $\pm 2 \%$ of Iull scale on most sensitive range (I hour. y ypical al constant temperature).
Response time: (0 to 99% of reading):
Kange $1<10$ scoonds (most sensitive range)
Range ? <l second
Ranges 3 hhough $5<100 \mathrm{msec}$
(Typical. measured al recorder oulpur).
Power reference: internal 50 MHz oncillator with Type N fumale connector on front panel or re:ir panch (Option 003 only).

Power output: 1.0 mW . Factory set to $=0.7$. traceable to the National Busealu or Standards.
Accuracy: -1.2% worst case $(120.9 \% \mathrm{rms})$ for one year $\left(0^{\circ} \mathrm{C}\right.$ to $55^{\circ} \mathrm{C}$).
Cal factor: 16 -position switch normalizes meter reading 10 account for calibration factor. Range 85% to 100,2 in 1% steps.
Cal adjusiment: front-panel adjustment pruvides capability to adjust gain in meter to math power sensor in use.
Recorder oulpul: proportional io indicaled puwer with I voll corresponding so full siale and 0.316 volts in -5 dB ; I k! outpur impedance, BNC bennector.
RF blanking: open collecior TTL: low correyponds so blanking when auto \% ro mode is engaged.
Display: dighal display with four digits. 20% over-range capability on all ranges. A nalog meter: uncalibrated peaking meter to see fast changes.
Power consumption: $100,120,220$, or $240 \mathrm{~V}+5 \%,-111 \%$, 48 to 440 Hz . less than 20 watts fless than 23 with Option 022 or 024).
Welght: ncl. 4.5 kg (10 lh). Shipping. 5.5 kg (12 lb).
Size: $134 \mathrm{H}, 213 \mathrm{~W}, 279 \mathrm{~mm} \mathrm{D}\left(5 /^{n} \times 8^{3} n^{7} \times 11^{\prime}\right)$.
Accessorles furnished: 1.5 m (f) calle for power sensor: 2.3 m (7.5 n) power cable. Main plug shipped to match destination requirements.
Accessories avallable
To rack nrount one 436λ by itself order:
5061.0957 Rack Mount Adapter Kit and accessories

ptions	Pri
002: impul connector placed on rear panel in parallel	add $\$ 2.5$
with fromt	
003: inpur connector and reference oscillator ourpul on reas pianel only	add $\$ 10$
009: 3 m (10 ft) cable for power sensor	add \$30
010: 6.1 m (20 fi) cable for power sensor	add \$55
011: 15.2 mm (50 f) cable for power sensor	add \$105
012: 30.5 m (100 ff) cable for power sensor	add \$155
013: 61 m (200 fi) catle for power senser	add $\$ 260$
022: digitel inpun'oulput fully compatible with HP	add \$40
Interface Bus (HP.18)	
024: digital inpul/output ACD Interface	add \$300
5061-0057 Rack Mount Kit	\$15
436A Pover Meter	\$197

435A Power meter

The 435A Power Meter is an analog power meter, compatible with the entire senies of 8480 power sensors. Depending on which sensor is used, the 425A can measure power from -65 dBm to +35 dBm , full scale, at frequedcies from 100 kHz to 18 GH . This versatile instrument also features $<1 \%$ instrumentation uncenainty. low noise and drift, auto-zero, recorder outpul, oplional battery operation, and long cable oplions (up to 200 It).

11683A Range calibrator

The 11683 A colibrator is specifically designed for use with the 435A and 436A power meters. It allows verification of full-scale meter readings on all ranges, as well as meter tracking. Simply connect the cable between the power meter and calibrator. The CAL ADJ control on the power meter is used to set the meter to full scale on the 1 mW range. The calibrator and meter are then stepped through the other ranges verifying accuracy within $=1 \%$ plus noise and drifi. The II683A also has a polarity switch which tests the Auto-Zero circuil.

Specifications

435A power meter

Frequency range: 100 kHz 1018 GHz (depending on power sensor used).
Power range: (435A calibrated in watis and dB in 5 d.B steps).
With 8481A, 8482A, or 8483A: $-25 \mathrm{dBm}(3 \mu \mathrm{~W}) 10+20 \mathrm{dBm}$ (100 mW) full scale.
With 8481 H or $8482 \mathrm{H}:-5 \mathrm{dBm}(0.3 \mathrm{~mW})$ to +35 dBm (3 W) full scale.
With 8484A: $-65 \mathrm{dBm}(300 \mathrm{pW}) 10-20 \mathrm{dBm}$ (100 W) full scale.
Instrumentalion uncertalnty: $\pm 1 \%$ of full scale on all ranges $\left(0^{\circ}\right.$ to $55^{\circ} \mathrm{C}$).
Zero: automatic. operated by front panel switch.
Zelo carryover: $\pm 0.5 \%$ of full scale when zeroed on the mosi sensilive range.
Power reference: internal 50 MHz oscillator with Type N female connector on front pasel (Option 003 oniy).

Power output: 1.0 mW . Factory set $10 \pm 0.7 \%$ I meeable to the Nayonad Bureau of Standards.
Accuracy: $=1.2 \%$ worst case ($=0,9 \% \mathrm{rms}$) for one year ($0^{\circ} \mathrm{C} 10$ $S 5^{\circ} \mathrm{C}$).
Nolse and drift: (\% of full scale peak on most sensitive range; typical, al constant temperature).

8481A, 8482A, 8483A: < 1.5% : less on higher ranges.
8481H, 8482H; <1.5\%; <2\% of full scale on top range: less on other ronges.
8484A: <5\%: less on higher ranges.

11683A

Response ilme:(0 to $9 \% \%$ of reading. five fime consiants).
Range I (most sensitive range)
10.0 seconds

Range $2 \quad 3.8$ seconds
Range 31.3 seconds
Ranges 4 to 10
500 milliseconds
(Typical, measured al recorder outpul)
Cal factor: 16 -Position switch normalizes meter reading to account for calibration factor or cffective efficiency. Range 85% to 100% in 1\% steps.
Recorder output: proporional to indicated power with I volf corresponding to full scale: $1 \mathrm{k} \Omega$ oulput impedance, BNC connector. RF blanking output: provides a contacl closure to ground when auto-zero mode is engaged.
Cal adf; front panel adjusument provides capability to adjust gain of meter to match power sensor in use.
Power consumption: $1(0), 120.220$ or $240 \mathrm{~V}+5 \%,-10 \%, 48$ io 440 Hz. less than 4 wates (less than 10 watts for option 001 when recharging battery).
Welght: net, $2.6 \mathrm{~kg}(5 \mathrm{lb}, 12 \mathrm{oz})$. Shipping, $4.2 \mathrm{~kg}(9 \mathrm{lb}, 3 \mathrm{oz})$.
Size: $\left.155 \mathrm{H} \times 130 \mathrm{~W} \times 279 \mathrm{mmD}\left(6^{3} / 3^{\prime \prime} \times 5^{1 / \mu^{\prime \prime}} \times \mathrm{J}\right)^{\prime \prime}\right)$.
Accegsortes furnlshed: $1.52 \mathrm{~m}(5 \mathrm{ft})$ cable for the power scnsor: 2.29 m ($71 / 2 \mathrm{ft}$) power cable. Mains plug shipped to match destination requirements.
Accessorles avallable
11076A : carrying case.
5060-8762: rack adapter frame (holds three instruments the size of the $435 \wedge$).
Combining cases
1051A: 286 mm ($/ 1^{1 / 4 ")}$ deep.
1052A: $416 \mathrm{~mm}\left(16^{3} / \mathrm{h}^{\prime \prime}\right)$ deep.
The combining cabes accepl the $1 / 5$-module Hewletl-Packard instruments for bench use or rack mounting. See IOS1A data sheet for details.

11683 A Range calibrator

Callbration functlons: oulpuls corresponding to meter readings of 3. $10,30,100$ and $300 \mu \mathrm{~W}: 1.3,10,30$, and 100 mW .

Callbration uncertainty: $\pm 0.25 \%$ in all ranges.
Power: 115 or $230 \mathrm{~V}=10 \%: 50-400 \mathrm{~Hz}$. less than 2 W .
Welght: net, 1.13 kg (2 lb 8 oz). Shipping. $1.9 \mathrm{~kg}(4 \mathrm{lb} 3 \mathrm{oz}$).
SLue: $88.9 \mathrm{H} \times 133.35 \mathrm{~W} \times 215.9 \mathrm{~mm} D\left(314 \times 51 \mu^{\prime \prime} \times 81 / y^{\prime \prime}\right)$.

Opllons

Price
001: rechargeable buttery installed. provides up 1016
hours of continuous operation
add $\$ 100$
002: inpul connector placed on rear panel in parallel with fronl
add $\$ 25$
003: input connector and reference oscillator output on rear panel only
add $\$ 10$
009: 3.05 m (10 -root) cable for power sensor add $\$ 30$
010: $6.10 \mathrm{~m}(20$ - FO 0 l) cable for power sensor add $\$ 55$
011: 15.24 m (50-foot) eable for power sensor add $\$ 105$
012: 30.48 m (100 -foot) cable for power sensor add $\$ 155$
$013: 60.96 \mathrm{~m}$ (200-foot) cable for power sensor add $\$ 260$
Orderlng Intormation
11683 A Range calibrator $\$ 550$
435A Power meter \$950

8480 Serles power sensors

The 8480 Series semsors are designed for use with the 435A or 436A power meters. They cover a frequency mange of 100 kHz 1018 GHz and a power range of -70 dBm to +35 dBm . These sensors feature rey low SWR which resulis in a significani reduction in ineasurement uncertainty due to mismatch. Each sensor is individually calibrated for CAL FACTOR to allow compensation for power sensor efficiency and mismateh due to sensor SWR. The new model 8484A high sensitivity power sensor offers an extended range capability down to - 70 dBm with exceptional temperature stability. Models 8481H and 8482H have an intemal attenuator to allow measurements to 3 W .

8481A Power sensor

Wide frequency and amplitude range
Measure power from $0.3 \mu \mathrm{~W}$ to 100 mW , full scale, over a frequency range from 10 MHz to 18 GHz with a single power senser.

Low SWR reduces measurement: uncertainty
A silicon monolithic thermocouple is used as the sensing element and its small physical size allows reduction of SWR to <1.10 over the range of 50 MHz io 2 GHz ; <1.18 up 1012.4 GHz ; and <1.28 to 18 GHz . This assures low mismatch uncertainty, usually the larges single source of error in power measurement.

Individually calibrated
Each senser is individually calibrated. traceable to the National Bureau of Standards, and a Cal Factor control on the meter compensates for power sensor efficiency at any frequency. In audition, a precise Automatic Network Analyzer printout at 17 frequencies for Cal Factor and reflection coefficient in magnirude and phase is supplied. This means you can eliminate mismatch uncertainty by calculating the mismatch error.

8481H Power sensor

Higher power version of the 8481A power sensor
Measure power from $30 \mu \mathrm{~W}$ to 3 W , full scale, over a frequency range from 10 MHz . to 18 GHz with a single power sensor.

8482A Power sensor

RF sensor (similar to the 8481A power sensor)
Measure power from 0.3 inW io 100 mW . full scale. over a frequency range from $100 \mathrm{kHz} \operatorname{tas} .2 \mathrm{GHz}$ withasWR <1.20 over the range of 300 kHz to $1 \mathrm{MHz} ;<1.10$ between 1 MHz and 2 GHz : and $<1.30104 \mathrm{GHz}$.

8482H Power sensor

Higher power version of the 8482A power sensor
Measure power from $30 \mu \mathrm{~W}$ to 3 W . full scaje, over a firequency range from 100 kHz to 4.2 GHz with a single power sensor.

8483A Power sensor

75 ohm RF sensor (similar to the 8482A power sensor) Measure 75Ω source power from $0.3 \mu \mathbf{W}$ to 100 mW , full scale. over a frequency range from 100 kHz 102 GHz with a $S W \mathrm{R}<1.18$ over the range of 100 kHz to 2 GHz .

8484A Power sensor

High sensitivity sensar
Measure power from 100 pW to $10 \mu W$ over a frequency range of 10 MHz to 18 GHz with a single power sensor. Furnished with 11708 A 50 MHz Reference Allenuator for precise calibration with I mW Power Meter Reference Oscillatar.

Low nolse and drift

Noise and drift have been reduced to a minimum in this sensor, thus making readings ot low power levels reliable and accurate. Noise and drifi when used with the 435A power meter are typically less than 5% or full scale on the 300 pW range - oniy 15 pW . Noise and drift are even less with the 436A power meter.

8480 Series specifications

Model	$\begin{gathered} \text { frequency } \\ \text { Gange } \\ \text { iGhy } \end{gathered}$	Nominal Impofance	5Wh Masimum (A) flaction Coefilcient	Power Manc	Marimum Power	Olmensions man (in.)	Shipping Wolsht he (lid)	As Connector	Pites
84 bla	$10 \mathrm{MHz-18} \mathrm{CHz}^{\text {che }}$	50 n	1.1) 100481 $50 \mathrm{M} / \mathrm{a}$-2 GH: 1.18(0082) $30 \mathrm{MyI}-50 \mathrm{MHy}$ 2-124 GKL	$\begin{gathered} 03 \mu \mathrm{~W} \\ 10 \\ 100 \mathrm{~mW} \end{gathered}$		$\begin{gathered} 30.38 \times 105 \\ (1!1 c \times 11 / 2 \times 41 / 4) \end{gathered}$	$\begin{aligned} & 0.5 \\ & 11 \end{aligned}$	$\mathbb{F}(\mathrm{m})$	\$425
Option 001			$\begin{aligned} & 1.28(0.123) \\ & 12.4-18 \mathrm{GHI} \end{aligned}$					APC-7	$\begin{aligned} & \text { Add } \\ & \$ 25 \end{aligned}$
$8481 H^{\circ}$	$10 \mathrm{MHz}-18 \mathrm{GHz}$	50s)	$\begin{gathered} 1.2(0.09))^{2} \\ 10 \mathrm{MHz}-8 \mathrm{GHz} \\ 1.3(0.13), \\ 8-12.4 \mathrm{Gikz} \\ 1.5(0.20) \\ 12.4=18 \mathrm{GHz} \end{gathered}$	$\begin{gathered} 30 \mu H \\ 10 \\ 3 \mathrm{~W} \end{gathered}$	3.5 war 100 W Peak $100 \mathrm{H} \mu \mathrm{s}$ (per puise)	$\begin{gathered} 30 \times 3 \mathrm{~B} \times 249 \\ \{1418 \times 11 / 2 \times 596\} \end{gathered}$	0.5 (1)	N(m)	\$550
BA\&2A	100 hte- 4 ? GHı	500	$\begin{gathered} 1.1(0.0 .58) \\ 1 \mathrm{MHz}-2 \mathrm{GHz} \\ 1.2(0.091) \\ 300 \mathrm{kHz}-1 \mathrm{MHz} \\ 1.3(0.13) \\ 2-4.2 \mathrm{GHz} \\ 1.6(0.231) \\ 100-300 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 0.3 \mu \mathrm{~W} \\ 10 \\ 100 \mathrm{~mW} \end{gathered}$	300 mW Av. 15 W Peak 30 w 4s (per pulse)	$\begin{gathered} 30 \times 38 \times 3615 \\ (13 / 10 \times 11 / 6 \times 4 / 6) \end{gathered}$	$\begin{aligned} & 0.5 \\ & \text { (I) } \end{aligned}$	Nimj	\$ 125
8482*	$100 \mathrm{kKt}-4.2 \mathrm{GHz}$	5011	1.2 (0.091), $100 \mathrm{kHz}-4.2 \mathrm{GHz}$	$\begin{gathered} 30 \mu \mathrm{~W} \\ 10 \\ 3 \mathrm{~W} \end{gathered}$	3.5 WAv . I NO W Peak $100 \mathrm{H} \mu \mathrm{s}$. (pet pulse)	$\begin{gathered} 30 \times 38 \times 149 \\ (13 / 16 \pi 11 / 2 \times 51 / \mathrm{m}) \end{gathered}$	0.5 $\{1\}$	N(m)	8553
84834	100 krt-2 GHz	75@	$\begin{gathered} 1.18(0.082), \\ 600 \mathrm{kHz}-2 \mathrm{GHz} \\ 1.8(0.286) \\ 100-600 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 0.3 \mu \mathrm{~W} \\ 10 \\ 100 \mathrm{~mW} \end{gathered}$	300 mHz Av. 10 W Peak $30 \mathrm{~W} \mu \mathrm{~s}$ (oer pulse)	$\begin{gathered} 30 \times 38 \times 105 \\ (1 \times 16 \times 11 / 2 \times 4 / 4!+ \end{gathered}$	$\begin{aligned} & 0.5 \\ & 011 \end{aligned}$	$\begin{aligned} & N\left(n_{1}\right. \\ & 7511 \end{aligned}$	5125
8484A	$10 \mathrm{HHz}-18 \mathrm{OHz}$	50Ω	L. 15 (0.070), $30 \mathrm{MH}:-8 \mathrm{GHz}$ 1.2 (0.051) 4. $\mathrm{CHz}-10 \mathrm{GHz}$ 1.3 (013) $10 \mathrm{GH}=18 \mathrm{GH}$ 1.4 (2.17) $10 \mathrm{MHz}-30 \mathrm{MHs}$	$\begin{gathered} 0.1 \mathrm{nW} \\ 10 \\ 10 \mathrm{nW} \end{gathered}$	200 rmN Rv . 200 miw Peak	$\begin{gathered} 40 \times 50 \times 170 \\ \{14 / 18 \times 2 \times 81 / / \sqrt{2}\} \end{gathered}$	$\begin{aligned} & 0.5 \\ & 11: \end{aligned}$	$N(m)$	5375

"Only specitications histed in this table apply to 848 :b and 8482 t . Wo other specifications are impliad,

Uncertainty of calibration factor data for 8482A and 8483A

fiequancy ($\boldsymbol{H}^{(1 K)}$	sumat Uncartaimies (\%)		Probadia Uncertaintios (\%) ${ }^{2}$	
	84824	8487a	Estas	88834
0.1	1.85	305	1,33	1.79
0.3	1.85	3. 0.5	1.33	1.79
1.0	1.85	3.05	1.33	1.79
3.0	1.85	3.05	1.33	179
10.0	185	305	1.33	1.79
30.0	1.85	3.05	1.33	1.19
50.0	1.45	1.75	1.03	1.07
100.0	2.95	3.25	1.58	1.81
300.0	2.95	3.25	1.58	1.61
1000.0	285	325	1.58	161
2.000 .0	3.45	3.75	1. 92	1.98
4000.0	2.95	-	1.58	-

Uncertainty of calibration factor data for 8481A and 8484A

fiequency (EItb)	Sum or Uncertainiles (風)		Probabla Uncertaintes (4) ${ }^{2}$	
	8481a	64844	84814	84844
1.0	2.95	-	1.513	-
20	3.45	4.70	1.92	2.25
40	2.95	4.36	1.58	1.97
8.6	2.95	4.55	1.58	2.00
4.2	2.85	4.47	1.46	1.91
10.4	2.85	4.42	1.45	1.89
124	2.85	4.31	1.45	1.98
14.0	5.05	1.00	2.95	3.24
15.0	5.45	3.62	3.07	3.40
18.0	5.45	7.15	3.07	3.30

I includes uncertanty al relerence slandard and transfer uncertainty. Directly traceable to NBS.
. Square loot of sum of the individual pacertainties squared (RSS).
bp POWER \& NOISE FIGURE METERS

- High accuracy'
- Automatic zero
- Long cable options
- Analog recorder outputs
- BCD digital output (432B)

432A and 432B Power meters

DC bridge clrcult: Using de instead of the conventional 10 kH 7 , bias current results in three bencfits: 1) No signal emission from the mount 10 disfurb sensituve circuits, 2) meter zeroing is independent of the impedance connected to the RF inpul of the thermistor mount, 3) the instrument is not affected by capacitance changes caused by movement of the thermistor mount cabic.
High accuracy - no thermoelectric error: high accuracy over a wide temperature range is featured on the 472 Power Meters. By measuring the output voltage of the thermistor bridges, and computing the corresponding power. even higher accuracy of $=0.2 \% \approx 0.5$ $\mu \mathbf{W}$ can be oblained.
Accuracy is maintained on even the most sensilive range because the error due to thermoelectric effect is reduced to a negligible level. Callbrated mounts: each thermistor mount is fumished with date stating the Calibration Factor" and Effective Efficiency* ac various frequencies across the operating range. For casy and accurate power measurements. the fromt panel of the 432 contains a calibration factor control, calibrated in 1% steps from 88% to 100%, that compensates for losses in the mount and eliminates the need for calculation.

- "Gahoration facloc" and "Ellectur EHIclency" are ligues of mesit expressing the tatio of the
 by the mounh. lespectively.

Ingtrument type: automatic, self-balancing power meter for use with iemperature-compensated thermistor movi.

Specifleations

Power range

432A: seven ranges with full scale readings of $10,30,100$, and 300
$\mu \mathrm{W}, \mathrm{I}$. 3. and 10 mW : also calibrated in dBm from -20 dBm to +10 dBm full scale in 5 dB steps.
432B: four manges with full scole readings of 10 and $100 \mu \mathrm{~W}$, and I and 10 mW .
Nolse: less than 0.25% of full scale peak.
Response time: al recorder output, 35 ms time constants (typical).
Flno zero: automatic, operated by front panel swilch.
Zero carryover: less than 0.50% of full scale when zeroed on most sensitive range.
RFI: meets all conditions specified in MIL-1-618ID.
Meter
432A: eaur-band suspension, individually calibrated, mirrorbacked scaler. Millivall scale more than $108 \mathrm{~mm}\left(4 / \mathrm{s}^{\prime \prime}\right)$ long.
432B: three digits with one digit overtange. 20% overrange capability on all ranges.
Callbration factor control: 13-position switch normsizes meter reading to account for thermistor mount calibration factor. Range 100% to 88% in 1% steps.
Thermistor mount: extemal temperalure-compensated themistor mounts required for operation (HP 478, 847818. and 486 Serics: mount resistance 100 or 200 ohms).
Recorder output: proportional to indicated power with I volt corrisponding to fulscale. I $k \Omega$ outpul impedance.
BCD output ($8,4,2,1$ code): " 1 " positive. TTL compatibic logic. Operates with HP 505SA Digital Reconder. "Prine." and "Inhibit" lines available. (432B only.)
Bridge outputs (Vrf and Vcomp): direct connections to the thermistor bridges: used in instrument calibration and precision power measurements.
Power consumption
432A: 115 or $230 \mathrm{Vac} \pm 10 \%, 5010400 \mathrm{~Hz}, 21 / 2$ watis. Oplional rechargeable batery provides up 1024 hours continous operation. Aulomalic ballery recharge.
432日: 115 or $230 \mathrm{Vac}=10 \%$, 50 to 400 Hz . 10 watls.

Welght

$432 \mathrm{~A}: \mathrm{net}, 3.1 \mathrm{~kg}(6 \mathrm{lb} \mathrm{l4} \mathrm{oz})$. Shipping, $4.7 \mathrm{~kg}(10 \mathrm{lb} 50 z)$.
432 B : net, $3.1 \mathrm{~kg}(6 \mathrm{lb} 14 \mathrm{oz}$). Shipping. 4.7 kg (10 lb 5 oz).
Slee: $155 \mathrm{H} \times 130 \mathrm{~W} \times 279 \mathrm{mmD}\left(6.1^{\prime \prime} \times 5.1^{*} \times 11^{\prime \prime}\right)$.
Accessorles furnished: 1.52 m (5 ft), cable for Hewlett-Packard remperalure-compensated thermistor mouns: $3.29 \mathrm{~m}(7.5 \mathrm{fl})$ power cable. Mains plug shipped to match destination requirements.
Options
Price
001: rechargeable battery installed, provides up to 24
hours continuous operation (432A onfy)
002: mpur connector placed on rear panel in parallel with front
003: inpul connector on rear panel only
Note: thermistor mount cable impedance is part of the 432 inpul bridge circuit. For cables over 10 feel long. the bridge is matched to specific cable options, so the various cables should not be interchanged.)
009: 3.05 m (IO fi cable for $100-\mathrm{ohm}$ or 200 -ohm 0noum
$010: 6 \mathrm{~m}(20 \mathrm{f}) \mathrm{cable}$ for 100 -ohm or 200 -ohm mount 011: $15 \mathrm{~m}(50 \mathrm{ft}$) cable for 100 -ohm or 200 -ohm mount 012:30 m (200 ft cable for 100 -hm or 200 -ohm mounl $013: 61 \mathrm{~m}(200 \mathrm{ft}$) cable for 100 -ohm or 200 -ohm mount

Ordering information

432A Power meter
432B Power meter

Temperature compensated thermistor mounts

High efficiency and good RF match are characteristic of the HP 478A and 8478 B Coaxial and 486A-Series Waveguide Themistor mounts which, in conjunction with the 432 Power Metor. provide you with high accuracy even in routine power measurements. These thermistor mounls are temperature-compensated for low drift, even in the presence of theronal shocks. permiting measurement of microwave power as low as one microwall. Each mount contains data showing Calibration Factor and Effective Efficiency al six frequencies, directly traceable to the National Bureau of Standards at those frequencies where NBS provides calibration service.

Specifications

$\underset{\text { MP }}{\text { Madel }}$	Fequenoy rance. CHz	Maximum SWh	Operating resistance (ohnse)	Pilce
4784	10 MH to 10 GH2	1. 35.101025 mH 13. $25 \mathrm{MHP}^{2}$ to GH 1.5. $7: 10 \mathrm{GHz}$	200	3225
84788'	10 MHz 10 IB GHI	1.75, 10 to 30 MHz 135,30 to 100 MH 1.1. 0.1101 GHz 1.35. 10124 GHz 1.6. 124 to 18 GHz	200	5350
Q48Fid	3.95105 .85	1.5	100	\$400
J4364	5.30108 .20	1.5	100	3 san
H485A	7.051010 .0	1.5	100	\$400
X4885	8.20 to 124	1.5	100	5755
M 485 A	10.01015 .0	1.5	100	2800
P4B6A	12410180	1.5	100	3315
R486 ${ }^{\text {a }}$	18.01026 .5	2.0	200	\$400
9486.42	26.51040 .0	2.0	200	MSD

[^28]

8900B Peak power calibrator

The HP 8900 B peak power calibrator provides a convenient means for measuring the peak RF power of pulses in the range from 50 to 2000 MHz . The power level is read out directly on the panel meter and is completely independent of repetition rate and pulse width ($>0.25 \mu \mathrm{sec}$).

Specifications

Radio frequency measurement characteristics
Frequency renge: 50 to 2000 MHz .
RF powar range: $10-200 \mathrm{~mW}$ peak full scale (may be readily increased through use of ex lemal attenuators or directional couplers). gF power accuracy: $\pm 1.5 \mathrm{~dB}$ ($\pm 0.6 \mathrm{~dB}$) with custom calibration curve fumished with irsimiment).
RF power precision: 0.1 dB .
RF pulse wicth: $>0.25 \mu \mathrm{~s}$.
RF repatition rate: 1.5 MHz maximum.
RF Impedance: SD ohms.
AF VSWA: <1.25.
Monitor output
Level: >0.2 volt for 20 mW input (nominal).
Impedance: 150 ohms nominal.
Bandwidth: $>7 \mathrm{MHz}$.
Physical characteristics
Size: 156 H. 197 W. $279 \mathrm{~mm} \mathrm{D}\left(6.1^{\prime \prime} \times 7.75^{\prime \prime} \times 11^{\prime \prime}\right)$.
Welght: net, 4.5 kg (10 lb). Shipping. 5.9 kg (13 lb).
Power consumption: 105 to 125 or 210 to 250 voles, 50 to 60 Hz .

8477A Power meter calibrator

The 8477A Calibrator is specifically designed for use with the 432 Power Meter. It allows you to verify full-scale meter readings on all ranges, and meter tracking. Simply connect three cables between the power meter and calibrator; no chans or additional instruments are required.

Specifications

Callbration points: outputs corresponding 10 meter readings of: $0.01,0.03,0.1,0.3,1.0,2.0 .3 .0$, and 10 mW (for mount resistance switch sentings of both 100 and 200 ohms).
Callbration uncentalnty: $\pm 0.2 \%$ on the top five ranges, and $\pm 0.5 \%$ ors the 0.01 and 0.03 mPV ranges from $+30^{\circ} 10+30^{\circ} \mathrm{C}$.
RFI: meets all conditions specified in MIL-I-6181D.
Power: 115 or $230 \mathrm{~V} \pm 10 \%, 50-400 \mathrm{~Hz}$, approximately 2 W .
Welght: net. $2.0 \mathrm{~kg}(4.5 \mathrm{lb})$. Shipping. 2.9 kg (6.25 lb).
Stze: 195 H. $130 \mathrm{~W} .203 \mathrm{~mm} \mathrm{D}\left(6 . \mathrm{I}^{\prime \prime} \times 5 . \mathrm{I}^{\prime \prime} \times 8^{\prime \prime}\right)$.
Ordering information Price
8900B Peak power calibrator
8477A Power meter calibrator

Mlcrowave test equipment product line

Hewlett-Packard offers a complete line of microwave cosxial and waveguide measur-
ing equipment. Measuring systeras can be assembled from this equipment to make accurate reflection and transmission measurements on aber componenis such as filters, mixers, cables, etc.

HP Impedance/SWR measuring techniques ancl capabilities

Hessurement Technique	Coaxhal freq. Mance	Wiveroise Fing. haye	Yyoleal fang	genaks/Costy Meouracy/Spal
Manua\| Sloleud Line	$\begin{aligned} & 500-4000 \mathrm{MHY} \\ & 1-18 \mathrm{GHI} \end{aligned}$	$\begin{gathered} 3 \mathrm{S5-40} \mathrm{GH} \text { ? } \\ (5 \mathrm{Bands}) \end{gathered}$	$30-3588$	Lowes! casa, high accuraty, slow, galat-vy-point
Swepl Slotied line	1.8-18 GH2	-	34 dB	Moderate cosl. high accuracy, good speed, comprelensive
Reflectometer Square-Liw	$\begin{aligned} & 100-4000 \mathrm{MHz} \\ & 2-18 \mathrm{CHz} \end{aligned}$	$\begin{aligned} & 3.95-40 \text { CHz } \\ & \text { (G Rands) } \end{aligned}$	$35-10 \mathrm{~dB}$	Moderate cost, maderate accaracy, fast, comprehans sive
Relleclometer RF-Substitulian	$\begin{aligned} & 100-4000 \mathrm{MHz} \\ & 2-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & \text { 3. } 95-40 \mathrm{GHz} \\ & \text { (6 Eands) } \end{aligned}$	50 dB	Maderate cost, hight accuracy. fasl, requires display slorage
Bridge	$\begin{aligned} & 1-110 \mathrm{MHz} \\ & 40 \mathrm{MHz} 2-18 \mathrm{cHz} \end{aligned}$	-	4088	Mullitaclare, good for coozx. best for low SWR. © dB insertion loss
Cormplef networy analyzed system	$\begin{aligned} & 500 \mathrm{KHz}-\mathrm{J} 30 \mathrm{MHz} \\ & 100 \mathrm{MHZ}-18 \mathrm{GHz} \end{aligned}$	-	$50-6048$	Very expensive, highest atcuraty. corracis for system errors

HP insertion loss measuring techniques and capabilities

Maspmmani Toahnlays	Coyxial Frog. Range	Whyaralda Freq. innio	Typleal Hate	Aenartis/Cort/ Accuracy/Spead
Square-Liv	$10 \mathrm{MH}-18 \mathrm{CH}$	$\begin{aligned} & 2 \mathrm{G}-\mathrm{sog} \mathrm{GHz} \\ & 17 \text { Bands) } \end{aligned}$	5048	Low cosit moderate accurecy, simple. Iast
Af Substilutan	$10 \mathrm{KHz}-18 \mathrm{GHz}$	$\begin{gathered} 26-10 \mathrm{GHL} \\ 17 \text { Banis } \end{gathered}$	$50-80$ d8	Moderale cosh. Mugh accuracy, last, requires olsplay storape
IF Subsillution	$10 \mathrm{MHz}-18 \mathrm{GHz}$	$\begin{aligned} & \text { 2. } \mathrm{G}-18 \mathrm{GHz} \\ & \text { (5 Bands) } \end{aligned}$	30-120 d8	High cosl. very high accuracy, busi tange, moderaito speed
Destitop computer minjㄴysiem	$\begin{aligned} & 100 \mathrm{Wrz}-4 \mathrm{GHz} \\ & 10 \mathrm{MHz}-18 \mathrm{GHz} \end{aligned}$	-	4048	Moaetate cosl. wery hish accoracy, zulomated
Connpleter nefwork amalyer ssstam	$\begin{aligned} & 50 \mathrm{KHz}-1300 \mathrm{MHz} \\ & 100 \mathrm{HHz}-18 \mathrm{GHz} \end{aligned}$	-	110 dB	Very expensive, hignest accuracy. corrects for systum terions

The bulk of microwave measurements made in production lest, maintenance, and cafibration require smplitude information only. These are sometimes referred 10 as scalar measurements.

The vililes to the left summarize HP capabilities in scalar microwave measuremerts. More detailed information is available in the following publications:

AN 183 Microwave Swept Measurement
AN 196 Aulomated Measurements (436A)
1977.78 Coaxial and Waveguide Catalog

Complimentary copies are available from HP offices or you can use the request card in the back of this catalog.

－Flat frequency response
－Low SWR
－Specifications traceable to NBS

8492A，Opt 003

8493A Op1 010

8491A Opt 003

94918 Opt 010
Calibration points

11581A，11582A，11583A attenuator sets

A sel of four Hewletl－Packird attentatorn，3，6， 10 and 20 dB are fumished in a bandsome walnut accessory cane．The 11581A set consists of 8491A attenuators．A set of 34918 attenuators is con－ tained in the 11582 A ．while the 11583 A is comprised of 8492 A at－ tenuators．In addition to the calibration stamping on the bodies of the attenuators．the set includes a cullibration report．The calibration report is certified traceable to de National Bureau or Standands，and iaciudes accuracy of both the allenuation and the reflection coeffi－ cients al selected frequencics．

These set，are ideal for calibration labs or where precise knowl－ edge of attenuation and SWR is desired．

1977－78 Coaxlal \＆Wavegulde Catalog

And Mierowave Measurement Handbook． 84 pates wilh over 350 measurement accessories．Uhe request card at back of this catalog．

Orderlng intormation
Price
11581A 3．6．10． 30 dB 8491 A sel $\$ 290$
$11582 \mathrm{~A} 3.6,10.20 \mathrm{~dB} 8491 \mathrm{~B}$ sel
$11583 \mathrm{~A} 3.6,10.20 \mathrm{~dB} 8492 \mathrm{~A}$ set
$\$ 400$ $\$ 710$

8491A／B，8492A，8493A／B fixed attenuators

Hewlen－Packard coaxial fixed antennators provide precision at－ tenuation，hal frequency response，and how SWR over broat fre－ quency ranges at low prices．Attentiators are available in nominal attenuasions of $3-\mathrm{dB}$ and $6-\mathrm{dB}$ and adso $10-\mathrm{dB}$ increments from 10 dB 1060 dB ．These attenuators are swept－frequency tested to insure meeting specifications al all frequencies．Calibration points are pro－ vided on a nameplate char altached 10 each unis． Ordering example：
When ordering，the connectors，frequency range，and atlenuation value must be specified as shown in the example below．

8491A／B，8492A，8493A／B specifications

	frequency Range BH！	$\begin{gathered} \text { SWR } \\ \text { Maximom } \end{gathered}$	MeximumInplutPower	Anenualan Accuracy									
Model				$\begin{gathered} 368 \\ (0 \text { bito } 0003) \end{gathered}$	$\begin{gathered} 8 \mathrm{~dB} \\ \text { (Option 006) } \end{gathered}$	$\begin{gathered} 10 \text { di } \\ \text { (Oplon 0sos) } \end{gathered}$	$\begin{array}{\|c\|} \hline 2068 \\ \text { (Opilan O20) } \end{array}$	$\begin{array}{\|c\|} \hline 30 \mathrm{~dB} \\ \text { coption } 030) \end{array}$	$\begin{array}{c\|} \hline 40 \mathrm{~dB} \\ \text { COptiog } 0 \text { ator) } \end{array}$	$\begin{gathered} 50 \mathrm{d8} \\ \text { (Option 050 } \end{gathered}$	$\begin{gathered} 6048 \\ \text { (Opilon 080) } \end{gathered}$	Connbetor	$\begin{array}{\|c\|} \hline \text { Prices } \\ \text { (Specily } \\ \text { option) } \end{array}$
$\underbrace{}_{\substack{89814 \\ 3-30 \mathrm{~dB}}}$	de． 12.4	$\begin{aligned} & \text { i. } 2 \mathrm{dt} .8 \mathrm{GHz} \\ & 1.3 \mathrm{G}-12.4 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 2 W_{\text {Pa }} \\ 100 \text { W Pasak } \end{gathered}$	$=0.3 \mathrm{~dB}$	± 0.368	$=0.5 \mathrm{~dB}$	± 0.568	± 188	－	－	－	N（mb）	$\$ 70$
40－80 de				－	－		－		$\because 2.5$ d	－1．240	$=2 d B$		393
$\begin{aligned} & 89918 \\ & 1-30 \end{aligned}$	$0 \mathrm{c}-18$	$\begin{aligned} & 1.2 \cdot \mathrm{dc}-8 \mathrm{GHM} \\ & 1.3: 8 \cdot 12.4 \mathrm{GHz} \\ & 1.5 \cdot 124.18 \mathrm{GHz} \end{aligned}$	2 W AV ． 100 Wi Peak	－0．3 ${ }^{\text {d }}$		二0 5 di	$\begin{gathered} -0581 \\ =10018 \\ 12.4-18 \mathrm{GH} \end{gathered}$	$=1 \mathrm{~dB}$	－	－	－	$N(0,0)$	580
40－60 dB				－	－	－	－	－	± 1.5818	＝ 1.5 fB	$=2 \mathrm{~dB}$		8130
$\begin{aligned} & \text { BABZA } \\ & 3 \$ 0-6 B \end{aligned}$	de． 18	$\begin{aligned} & 1.15 \mathrm{dc}-8 \mathrm{GHz} \\ & 1.25: \mathrm{dc}-12.4 \mathrm{GH} \\ & 1.35: 12.4-18 \mathrm{GNz} \end{aligned}$	2 N Av． 100 W Peak	$=036 \mathrm{~B}$		20.5 dg	$\begin{gathered} 205 d 8 \\ 120 \mathrm{~dB} \\ 124.186 \mathrm{GH} \end{gathered}$	$=180$	－	－	－	APC． 7	可家
40－80 68				－		－	－	－	$\pm 1.5 \mathrm{~dB}$	$\pm 1.5 \mathrm{dg}$	$=2 \mathrm{~dB}$		\＄200
$\begin{gathered} 8998 A \\ 3-20 \end{gathered}$	Ac－124	$\begin{aligned} & 1.2: 6 \mathrm{c} .8 \mathrm{GHz} \\ & 1.3: 8-12.8 \mathrm{GHz} \end{aligned}$	$\begin{gathered} 2 \mathrm{WAy} \\ 100 \mathrm{WPaxh} \end{gathered}$	工 0.368	$=0.3 \mathrm{d日}$	－ 0.58	－0．3 dB	－	－	－	－		S7／5
30.80					－	－	－	$\pm 1 \mathrm{dr}$	－	－	－		500
${ }_{3-2080}^{8-2080}$	dc． 18		3W Av． IOU W Feak	＝0．3 6 d	$\begin{gathered} =0.3 \mathrm{dq} \\ 12.4 .4 \mathrm{~dB} \\ 12.418 \mathrm{GHz} \end{gathered}$	$=0.5 \mathrm{~dB}$	$\begin{gathered} =0.5 d 8 \\ =1.0 d 8 \\ 12.4-186 \mathrm{GMg} \end{gathered}$	－	－	－	－	SMA im， 1	\＄90
3048				－	－	－	－	$=169$	－	－	－		35

MICROWAVE TEST EQUIPMENT
 Coaxial step attenuators
 Models 355 serles, $8494 / 5 / 6$ serles

- Flat frequency response
- Small, compact
- Manual and programmable

355 C

Altenuator sections are inserted and removed by low-iorque cam-actuated contacts. These contacts are gold-plated leaf-springs that ensure long life (over a mullion steps) and high repeatability (typicully 0.03 dB). The G. H, \& K programmable models offer the same high performance as the manual models with the addition of fasl switching solenoids.

The 20 mullisecond maximum switching time is a significant advantage for ausomatic testing and other applications where speed is of prime importance. Once switched, the solenoids are held in place by strong, permanent magnets able 10 withsiand shocks over 10 G 's.

Altenuation programming is done through a 12 -pin connector. For ease of connection 10 the driving circuit, each ottenuator is provided with a five-fool cable assembly that includes the mating connector. By using the HP 59306A Relay Acluator and a power supply as the driver mechanism, the atlenuators are easily integrated into a Hewleti-Packard Interface Bus (H.P-IB) automated system.

Equivalent versions of these attenuators, for incorporation in equipment (i.e., "OEM") are available under HP model numbers 33320, 33221, and 33322. See following page.
How to orcler the 8494/5/6 Series attenuators
To order, basic model number, suffix letter, and connector option must be specified:

Ordering example:

	$01 \quad \|$001 (N.Female) 002 (SMA Female) 003 (APC-7) 004 (APC-3.5 Female)
4 (1 dB step. I) dB max) A (Manual, de-4 GHz)	
6 (10 dB slep, 70 dB max) 8 (Manual, dc- 18 GHz)	
6 (10 dB step, 110 dB max)	D (Manual, dc-26.5 GHz\}
	Q (Programmable. dc-4 GHz)
	H (Programmable. dc-18 GHz)
	K (Programmable, dc-26.5 GHz)

1977-78 Coaxial \& Wavegulde Catalog
And Mierowave Mensurement Handbook. 84 pages with over 350 measurement accessorics. Use request card at back of this catalog.

355 Series， $8494 / 5 / 6$ series speclfications

$\begin{gathered} \text { Madal } \\ \text { 2nd } \\ \text { iswinching } \\ \text { Hoset } \end{gathered}$	Frequency Rang： （6H2）	Incremental aranyalion （d8）	$\begin{gathered} \text { SWA } \\ \text { Mairaum } \\ \text { (30ת Kominal } \end{gathered}$	$\begin{gathered} \text { lasorilon } \\ \text { Loss } \\ (0 \text { os sealng }) \end{gathered}$	Atteraation ficuracy	Pomer Railize Mialmum If	Solenold Valbe Spoud Foun	bimenilont． Smipplng Wojpht	Connector oplican \qquad	Plica
$\begin{aligned} & 35 s \mathrm{C} \\ & (\mathrm{Minve}) \mid \end{aligned}$	dc－1	$16-12$		$\begin{aligned} & 0.11 \mathrm{di} \\ & 1.39 \mathrm{~d} / \mathrm{GHz} \end{aligned}$		0 5 W \％ug 350 W peak 0.6 millian stens	－	$\begin{aligned} & \begin{array}{l} 152 \times 70 \times 67 \mathrm{~mm} \\ (6 \times 2.15 \times 2.6 \mathrm{fm}) \\ 1.5 \mathrm{ki} \\ (3 \mathrm{kj} \end{array} \end{aligned}$	$\begin{aligned} & \text { BNC (1) } \\ & \text { soe } \\ & \text { Hotel } \end{aligned}$	325
355 （Phogram－ тimble）							$\begin{array}{\|c\|} \hline 15-18 \mathrm{y} \\ 65 \mathrm{~ms} \\ 30 \mathrm{~m} \\ \hline \end{array}$			8300
	＊ 6 －1	$10 \text { (0) } 120$		$0.11 \mathrm{~dB}+$ $1.39 \mathrm{~d} / \mathrm{a} / \mathrm{GH} \mathrm{i}$	$\begin{aligned} & =0.3 \mathrm{~dB} 1000 \mathrm{~Hz} \\ & =1.5 \mathrm{~dB} 1090 \mathrm{~dB} \text { and } \\ & =3 \mathrm{~dB} 10120 \mathrm{BB} \\ & \text { (⿴囗⿰丨丨夕刂} 1 \mathrm{GH} \text { : } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~W} \text { oug } \\ & 350 \mathrm{~W} \text { pesk } \\ & 0.6 \\ & \text { million } \\ & \text { steps } \end{aligned}$	－	$\begin{aligned} & 132 \times 70 \times 67 \text { min } \\ & (6 \times 275 \times 26 \mathrm{in}) \\ & \frac{1}{1} 4 \times 8 \mathrm{l}= \\ & (3 \mathrm{bb})^{2} \end{aligned}$	$\begin{aligned} & \text { ENe (} 61 \\ & \text { Sote } \\ & \text { Nole } \end{aligned}$	\＄225
355 f progiam－ mable）							$\begin{gathered} 15-18 \mathrm{y} \\ 265 \mathrm{mes} \\ 3.0 \mathrm{w} \end{gathered}$			$\mathbf{3 8 0}$
$34 \dot{9} 9 \lambda$ （MAnual）	dc－ 4	$\frac{0-11}{168 \text { steps }}$	1.5	$\begin{aligned} & 0.60 \mathrm{~B}+\mathrm{CH} \\ & 0.69 \mathrm{BE} / \mathrm{GHz} \end{aligned}$	$\begin{aligned} & =0.2 \mathrm{~dB}, 1-2 \mathrm{~dB} \\ & =0.3 \mathrm{~dB}, 3-6 \mathrm{dic} \\ & =0.4 \mathrm{AB}, 7-10 \mathrm{~dB} \\ & \pm 0.5 \mathrm{dB.11} \mathrm{~dB} \end{aligned}$	1 W खg 100 W peak $10 \mu \mathrm{~s}$ max 1 million steps	－	$\begin{aligned} & 159 \times 73 \times 43 \mathrm{~mm} \\ & (6.2 \times 2.9 \times 1.7 \mathrm{inf} \\ & 0.9 \mathrm{~kg} \\ & 2(0) \end{aligned}$	$\begin{aligned} & 0011 \\ & 002 \\ & 003 \\ & \text { See } \\ & \text { Note } 2 \end{aligned}$	6450
							$\begin{gathered} 20-30 \mathrm{Y} \\ 20 \mathrm{~ms} \\ 29 \mathrm{~W} \end{gathered}$			8715
84988 ：Nan：all	0 c－18	$\frac{0}{4} 111$	$\begin{aligned} & \text { 1.5. } \mathrm{dc}-8 . \mathrm{GHz}^{2} \\ & 1.6 \mathrm{dc}-12.4 \mathrm{GHz} \\ & 1.9: \mathrm{dc}-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~dB} / \mathrm{B}_{2} \\ & 0.09 \mathrm{~dB}_{2} \mathrm{GH} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~W} \text { avk } \\ & 100 \mathrm{~W} \text { peak } \\ & 10 \mu \mathrm{max} \\ & 10 \text { million } \\ & \text { stops } \end{aligned}$	－	$\begin{aligned} & 159 \times 73 \times 43 \mathrm{~mm} \\ & (6.2 \times 2.9 \times 1.7 \mathrm{mi} \\ & 0.9 \mathrm{~kg} \\ & (2 \mathrm{LD}) \end{aligned}$	001 002 003 See Note 2	3395
8 （Prectam． Tgbly							$\begin{gathered} 20 \ldots 30 \mathrm{y} \\ 20 \mathrm{~ms} \\ 27 \mathrm{w} \end{gathered}$			\＄835
8495A （9 ${ }^{\text {annual）}}$	$d ¢-4$	$10 \mathrm{~d}-70$	1.3	$0.4 i b \rightarrow$ 0．07 d8／6H：	$\begin{aligned} & =1.6 \% \\ & \text { Fo in } \\ & \text { Athen. Serting } \end{aligned}$	1 Wivg 100 W peak $10 \mu 5 \mathrm{max}$. 1 milition steps	－	$\begin{aligned} & 130 \times 73 \times 43 \mathrm{~mm} \\ & 8.1 \times 29 \times 1.7 \mathrm{~mm} \\ & 0.9 \mathrm{~kg} \\ & 6 \mathrm{I}(6) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See } \\ & \text { Sole? } \end{aligned}$	8125
88950 （Program． mable）							$\begin{gathered} 20-30 \mathrm{~V} \\ 20 \mathrm{~ms} \\ 27 \mathrm{~F} \end{gathered}$			550
8495 B （Mancal）	$0 c-18$	$10^{0} \text { ob steus }$	$\begin{aligned} & 1.35 \mathrm{de}-8 \mathrm{GNz} \\ & 15 \mathrm{dc}-124 \mathrm{GHz} \\ & 1.7 \mathrm{dc}-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0 . \Delta \Delta \theta^{-1} \\ & 0.07 \Delta \mathrm{CH} \end{aligned}$	$\begin{aligned} & =3 \%: \mathrm{d}-12.4 \mathrm{OHz} \\ & =4 \% \% \mathrm{dc}-18 \mathrm{GHz} \\ & \% \text { in dif from } \\ & \text { Atten, Setling } \end{aligned}$	1 W avg 100 W peak $10 \mu \mathrm{~s}$ max 1 million steps	－	$\begin{aligned} & 130 \times 73 \times 43 \mathrm{~mm} \\ & (5.1 \times 29 \times 1.7 \mathrm{~m}) \\ & 0.9 \mathrm{~kg} \\ & (\mathrm{i} \mathrm{~m}) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { Sepe } \\ & \text { Sote 2 } \end{aligned}$	34514
84954 （Prograti matela）							$\begin{gathered} 20-30 \mathrm{~V} \\ <20 \mathrm{~ms} \\ 2.7 \mathrm{w} \\ \hline \end{gathered}$			3000
$\begin{aligned} & \text { 84950 } \\ & \text { Manual) } \end{aligned}$	$\mathrm{dc}-26.5$	$10 \begin{gathered} 0-70 \\ \text { dteps } \end{gathered}$	$\begin{aligned} & 1.6=1 ¢-12.4 \mathrm{GHz} \\ & 1.9: 124-18 \mathrm{GHz} \\ & 2.2: 18-26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 05 \mathrm{~dB}+ \\ & 013 \mathrm{dg} \text { ! } \mathrm{CH4} \end{aligned}$		$\begin{aligned} & 1 \mathrm{~W} \text { ag } \\ & 100 \mathrm{~W} \text { peak } \\ & 10 \mathrm{smax} \\ & 1 \text { milliona } \\ & \text { steps } \end{aligned}$	－	$\begin{aligned} & 159 \times 52 \times 43 \mathrm{~mm} \\ & (6.2 \times 21 \times 1.7 \mathrm{~m}) \\ & 0.9 \mathrm{hg} \\ & (2 \mathrm{lb}) \end{aligned}$	Set 2	Tw
8495 K （Frodran－ mablat							$\begin{aligned} & 20.30 \mathrm{~V} \\ & <20 \mathrm{~ms} \\ & 2.7 \mathrm{~W} \end{aligned}$			31080
84gea （Manual）	dc－4	$10 \text { - } 118$	1.5	$0.5 \mathbb{6}$ ． $0.09 \mathrm{ab}^{\prime} \mathrm{GH}$	$\begin{aligned} & 21.6 \% \\ & \% \text { in did from } \end{aligned}$Atten. Seting	1 W ays 100 W peak 10 us max 1 million steps	－	$\begin{aligned} & 159 \times 73 \times 43 \mathrm{~mm} \\ & (6.2 \times 2.9 \times 1.7 \mathrm{~m}) \\ & 0.9 \mathrm{~kg} \\ & (210) \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \\ & \text { See } \\ & \text { Note } 2 \end{aligned}$	W50
84960 （Program． mable）							$\begin{gathered} 20-30 \mathrm{P} \\ <200 \mathrm{~m} \\ 2.7 \mathrm{~W} \end{gathered}$			8713
84963 （Mantal）	dc－18	$\begin{aligned} & 0-110 \\ & 10 \text { si steps } \end{aligned}$	$\begin{aligned} & \text { 1.5. } \mathrm{dc}-\beta \mathrm{GHz} \\ & 1.6 \mathrm{dc}-12 \mathrm{~Hz} \mathrm{GHz} \\ & 1.9: \mathrm{dc}-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~GB}{ }^{\mathrm{L}} \\ & 0 . \mathrm{CF} \mathrm{~dB}^{\mathrm{GH}} \end{aligned}$	$\begin{aligned} & =3 \%: \mathrm{dc}-124 \mathrm{GHz} \\ & +4 \%: \mathrm{dc}-18 \mathrm{GHz} \\ & \% \text { in di from } \\ & \text { Atren. setting } \end{aligned}$	I W avg 100 W peak $10 \mu 5$ max． I millions steps	－	$\begin{aligned} & 159 \times 73 \times 43 \mathrm{~mm} \\ & (6.2 \times 2.3 \times 1.7 \mathrm{~m}) \\ & 0.9 \mathrm{kB} \\ & (2 \mathrm{mi} \end{aligned}$	001 002 003 See See Note z＇	5895
8496 Program． mable）							$\begin{gathered} 20-30 \mathrm{v} \\ <20 \mathrm{~ms} \\ 2.2 \mathrm{w} \end{gathered}$			8935
Note 1： $35 \mathrm{SiC/D/L/f}$ connectot optlons（8NC（I）standard） Option 001 wil Option 005 Thicis Option 007 trarisistor pristeticon				$\begin{aligned} & \text { add } \$ 2 \\ & \text { and } \\ & \text { and } \\ & \text { an } \\ & 50 \end{aligned}$	Oation 001 Nit） Option 093 APC ． Opition CO4 APC－3 5 \｛84950／k onity					

393A, 394A Coaxial variable attenuator 33300 series, 33320 series OEM step attenuators

Models 393A and 394A are high power, variable coaxial altenuators for the 0.5 to 2 GHz range. They use the principle of a variable directional coupler to achieve up to 120 dB range with 200 uat power handling capability.

33000 series step aftenuators provide widcband programmable signad leval control. Magnetic latching solenoids switch individual altenuating elements inloand oul of contace with a 50 -ohm transmission line. C/D models hove separate "indicator contacts" and A/B models have "no indicator concacts." Three digit connector options ($0 X Y$) must be specified. X is the inpul connector, Y is outpul connector, firsi digit is always 0 . Sce lable for option numbers.

33320 serich slep alfenualors are compact versions of the 8.494/5/6 bench attenuators on the previous page and are configured for de393 A, 394A, 33300 serles, 33320 series specifications

Modal	$\begin{aligned} & \text { frog } \\ & \text { gange } \\ & (012) \\ & \hline \end{aligned}$	Mode	Rampe	Remarus	Prise
3934	0.5-1	Manual	5-120 d8 Varlabie	200 W average	81320
3:4A	1-2	Manus	6-120 d8 Voriable	200 W avelage	51250
$\begin{array}{r} 31300 \mathrm{~A} / \mathrm{B} \\ \mathrm{C} / \mathrm{D} \\ \hline \end{array}$	DC-18	Pras.	$\begin{aligned} & 0-70 \text { di } \\ & \text { 1ide steps } \end{aligned}$	$\begin{aligned} & \text { ARC models } \\ & 12-15 Y \end{aligned}$	18825 5886 5858
$\begin{aligned} & 3330! A^{\prime} B \\ & \text { L:D } \end{aligned}$	DC-18	Prog.	$\begin{aligned} & 0-\angle 2 \mathrm{~dB} \\ & 609 \text { steps } \end{aligned}$	$\begin{aligned} & \text { B8D models } \\ & 24-304 \end{aligned}$	+ ${ }_{\text {\% }}^{825}$
$\begin{array}{r} 33304 \mathrm{~A} B \\ \mathrm{CHO} \end{array}$	DC-18	Plog.	$\begin{aligned} & 0-11 \mathrm{~dB} \\ & 1 \mathrm{dE} \mathrm{stevS} \end{aligned}$	connector options available:	${ }_{\$ 1140} 1100$
$\begin{array}{r} 33305 \mathrm{~A} \mathrm{~A} \\ \mathrm{CO} \\ \hline \end{array}$	06. 18	Brog.	$\begin{aligned} & 0-110 \mathrm{~dB} \\ & 10 \text { dB stegs } \end{aligned}$	$0 \cdot \mathrm{M}(5), 1 ; \mathrm{Hm} /$ 2: $7 \mathrm{~mm}(\mathrm{f})$, 3: $7 \mathrm{~mm}(\mathrm{~m})$ 5: SMA(f), 6: SMA (m)	$\begin{aligned} & \sin 10 \\ & \$ 1140 \end{aligned}$
$\underset{B}{333204}$	$\begin{aligned} & \mathrm{CC-d} \\ & 0 C-18 \end{aligned}$	Manual	$\begin{aligned} & \begin{array}{l} 111 \mathrm{nB} \\ 1 \\ 1 \end{array} \mathrm{stepus} \end{aligned}$	Sperifications identical to 8494 seties previous page	$\$ 440$ $\$ 585$
3.3206	$\begin{aligned} & 0 C-4 \\ & 0 C-18 \end{aligned}$	Prog.			$\begin{aligned} & \$ 905 \\ & \$ 825 \\ & \hline \end{aligned}$
$\begin{array}{r} 33321 / 2 \\ 8 \\ 0 \end{array}$	$\begin{aligned} & 0 C-4 \\ & 0 C-10 \\ & 0 C-265 \end{aligned}$	Mansal	$\begin{aligned} & 0-70 \mathrm{~dB} \\ & 10<8 \mathrm{steps} \end{aligned}$	Specilications idenRical to 8495 series previous page. SMA (1) cranectors (APC-3. 5 on Di/k)	[$\begin{aligned} & 315 \\ & 440 \\ & \$ 690\end{aligned}$
$\begin{array}{r} 333216 \\ H \\ k \end{array}$	$\begin{aligned} & 0 C-4 \\ & 0 C-18 \\ & 0 C-26.5 \end{aligned}$	Pios.			
$\begin{array}{r} 33322 \mathrm{~A} \\ \hline \end{array}$	$\begin{aligned} & O C-A \\ & 0 C-18 \end{aligned}$	Manual	$\begin{aligned} & 0-11068 \\ & 10 \mathrm{~dB} \text { steds } \end{aligned}$	Soceifreations IdenLicial to 8496 serines previous page SMA (f) connectors	$\left\{\begin{array}{l}440 \\ 505\end{array}\right.$
33322G	$\begin{aligned} & 0 C-48 \\ & 0 C-18 \end{aligned}$	Prog.			¢ $\begin{gathered}105 \\ 5925\end{gathered}$

signing into microwave systems and insirumens. Manual or electrically-activated versions are svailable. The manual models lake less than 1.5 square inches of panel space. OEM quantity discounts are avielable for 33300 and 33320 series.

375 Series, 382 series waveguide attenuators

Operition of these 382 scries rotary-vane. conimuously variable allenuators depends on a mathematical law, rather than on the resisrivily of the attenuator card. They wre direct-reading and provide accurate atlenuation from 0 to $50 \mathrm{~dB}(60 \mathrm{~dB}$ for S 382() regardess of cemperalure und humidity.

375A series variable flap attenuators consist of a short slotted section of waveguide in which a matched resistive strip is inserted.
1977-78 Coaxial and Waveguide Catalog
And Microwave measurement bandbook. 84 pages with over 350 measurement accessories. Use request card at back of ihis catalog.

375A Series 382 series specifications

Model	5raquaney Qange (anty (6Hz)	Accuracy	$\begin{array}{\|c\|} \hline \text { Anenualion } \\ \text { Ravef } \\ (d B) \end{array}$	Waveluire E Coslyalem flage	Frice	
53820	2.6-3.95	$\begin{aligned} & =1 \% \text { of reading } \\ & \text { or } 01 \text { di } \\ & \text { whichever great } \\ & =2 \% \text { above } 50 \mathrm{~dB} \end{aligned}$	0-60	$\begin{aligned} & \text { WR } 2844 \\ & U G-584 / U \end{aligned}$	\$2600	
6,3824	3.95-5.85	$\begin{aligned} & \pm 2 \% \text { of requing } \\ & \text { of } 0.8 \mathrm{~dB} \\ & \text { whinciever } \mathrm{preate} \end{aligned}$	$0-50$	$\begin{gathered} W R 187 \\ U G-A 07 / 4 \end{gathered}$	31050	
1382A	5.3-8.2	$\begin{aligned} & \geq 2 \% \text { of feading } \\ & \text { wh } 0.1 \text { dB } \\ & \text { whichever greate } \end{aligned}$	0-50	WR 137 UQ $441 / \mathrm{U}$	31550	
H3824	1.05-10.0	$\begin{aligned} & =2 s \% \text { of reading } \\ & \text { or or } 0.108 \text { B } \\ & \text { whicherer greater } \end{aligned}$	$0-50$	H/ 112 UG138/U	\$1550	
$\times 382 \mathrm{~A}$	8.2-12.4	$\begin{aligned} & =2 \% \text { of reading } \\ & \text { or } 10.1 \text { di } \\ & \text { whichever geuturer } \end{aligned}$	0-50	$\begin{gathered} \text { WR } 90 \\ U \approx i-135 / U \end{gathered}$	\$ 645	
P3E2A	124-180	$\begin{gathered} \pm 2 \% \text { of reading } \\ \text { or } 0.1 \text { dB } \\ \text { whichever greater } \\ \hline \end{gathered}$	0-50	$\begin{gathered} \text { WR } 62 \\ \text { IC } 4.4 \% \mathrm{~J} \end{gathered}$	\$850	
k382n	18.0-26.5	$\begin{aligned} & \pm 2 \% \text { of reading } \\ & \text { or } 0.1 \text { din } \\ & \text { whichever greasier } \end{aligned}$	0-50	$\begin{gathered} \text { WR } 42 \\ U G 597 / \mathrm{U} \end{gathered}$	31950	
8382A	$265 . .9013$	$\begin{aligned} & =2 \% \text { of reading } \\ & \text { or } 0.1 \text { d8 } \\ & \text { ymichever greater } \end{aligned}$	0-50	$\begin{gathered} \text { WA } 28 \\ 4 G 59 ; \\| \end{gathered}$	\$1500	
$\times 3758$	- 2-12.4	$\begin{aligned} & \pm 1 \mathrm{~dB} \\ & =2 \mathrm{~dB} \end{aligned}$	0-20	$\begin{aligned} & \text { W8. } 90 \\ & U G .39,1 J \end{aligned}$	\$ 335	
P3754	$12 \cdot 1-18$	$\begin{aligned} & =180 \\ & \pm 208 \end{aligned}$	0-20	$\begin{gathered} W R 62 \\ U \in, 4191 U \\ \hline \end{gathered}$	\$ 400	

－Precision reflection measurements 0.5 to 18 GHz

805C Coaxial slotted Ilne system， 0.5 to 4 GHz

Model BOSC is a complese slotted line system，employing 2 paral－ lel ground planess and a rigid center conductor．This configuration has negligible slot radiation and is less sensitive to probe depth．The probe is tunable from 500 to 4000 MHz ．

817B coaxial swept slotted line system， 1.8 to 18 GHz

817B fully tested system provides comprehensive swept fre－ quency reflection data with the accuracy inherent in slotted fines． 817 B consists of the 816 A line， 809 C carriage，and the 448 B sweep adapter for use with model 11664 A detectors and the 8755 frequency response test set．
805C，817B speciflcations

Madel	Frequaticy Rante（6Hz）	$\begin{gathered} \sin \\ \text { Residual } \end{gathered}$	Cobinesiors	Remats	Price
80SC	0 5－4．0	1.04	$\begin{aligned} & N(n) \\ & N(n) \end{aligned}$	11512A $\mathrm{N}(\mathrm{m})$ short，11511R N（f）short jurnished	\＄1850
8178	1，8－180	I＿06	$\underset{\mathrm{N} \mid \mathrm{fi}}{\mathrm{AFC} \cdot 7}$	$\begin{aligned} & 11512 \mathrm{~A} \text { A(} \mathrm{m}) \\ & \text { short } \\ & \text { n565A AfC-7 } \\ & \text { short } \\ & \text { furnished } \end{aligned}$	\＄1875
$817 B$ Optlons	001．APC－7 commertors on 44AB probes				add 955
	022： $\mathrm{N}(\mathrm{ff})$ and $\mathrm{N}(\mathrm{f})$ connectors on 816 A slotted section				less 115

809C Slotted line carriage

The 809C Cartigge operates with the 816A Coaxial sloued section and four 810B Waveguide sloted sections．It is compatible with the $442 \mathrm{~B}, 444 \mathrm{~A}, 447 \mathrm{~B}$, and 448 B coaxial probes．The carriage has a centimeter scale twh a a vermier reading 100.1 mm ，and provision is made also for mounling a dial gauge if more aceurate probe position readiag is required．

810B Series，816A slotted sections

810B waveguide and 816A coaxial slotted sections are used with the 809 C carriage． 810 B waveguide sections accept the 444 A un－ tuned probe or the 442 B probe plus 440 A tuned detector． 816 A coaxial line accepts the 447 B probe or the 448 B adapter sets．

810日 Series，816A specifications

Modal	frequency Runge（6hy	SWW	W／6－Cosix namét Cana	Remartu	Prive
J810日	5．3－8．2	1.01	$\begin{aligned} & \text { WR } 137 \\ & \text { UGRMIU } \end{aligned}$	Use with 8096 Carriage， 444A of $442 B+440 A$ Probes	3575
H8108	$7.05-10.0$	1．01	$\begin{gathered} \hline \text { WR } 112 \\ \text { UG-13R/U } \end{gathered}$		$4{ }^{1} 25$
K8100	$8.2-124$	1.01	$\begin{gathered} 4890 \\ 46-135 \mathrm{U} \\ \hline \end{gathered}$		356
F8108	12．4－18．0	1.01	$\begin{gathered} \text { WR } 62 \\ 156-4101 \mathrm{~J} \\ \hline \end{gathered}$	809 Carriage ca4d Probe	H25
816A	1．8－18．0	1．02－1．04	$\begin{gathered} \text { Coaxial APC- } 7 \\ N(B) \end{gathered}$	日和C Cartiage 1478 Probe or \＆ 888 Swép Áapter	\＄800
081011			Bolh APC－7		Add $\$ 25$
0 pl 022			$\mathrm{N}(\mathrm{m}) . \mathrm{N}(1)$	11512 s $\mathrm{s}(\mathrm{m})$ Shon II5OA APC－7 Short furmished	$\begin{aligned} & \$ 25 \\ & 1053 \\ & \$ 15 \end{aligned}$

440A，442B，444A，447B，448B

Probes／adapters
440 A is a tunable mount（IN2）crystal not supplied）for 2．4－12．4 GHz ，to be used on the 442 broadband probe． 442 B fits the 809 C carriage and provides sampled RF on a Type N jack．
444A is an unmined probe for $2.6-18 \mathrm{GHz}$ for use with the 809 C carriage or other $\$ / 4$ ，inch（ 19 mm ）mounting hole and the 810 B waveguide sections．447B is simibarly used with the 809 C and the 816A coaxial section for 18 to 18 GHz ．
448 B sweep adepter probe has Type N outputs for use with the 11664 A detectors of the 8755 test set．

1977－78 Coaxial \＆Waveguide Catalog

And Microwave Measurement Handbook． 84 pages with over 350 measurement accessories．Use request cand at back of this catalog．

Ordering information	Price
440A Detector mount	$\$ 225$
442B RF probe	$\$ 150$
444A Untuned probe	$\$ 140$
447B Detector probe	$\$ 215$
448B Sloted line sweep adapier probes $1.8-18 \mathrm{GHz}$	$\$ 475$
809C Slotted line carriage	$\$ 600$

Coaxial single and dual-directional couplers
Models 770 8erles, 790 serles, 11691D, 11692D

- Broadband coverage
- High directivity
- Close tracking

779D Directional coupler

The HP 779D spuns more than two octaves from $\mathrm{J}, 71012.4 \mathrm{GHz}$ with excellent directivity. With increascd coupling factor (eypically 24 dB). the 779 D is useful down to 500 MHz . Upper frequency uscfulness extends to 18 GHz wilh directivity reduced to aboul is dB. Various connector options are avalable.

790 Series directional couplers (octave bands)

The 790 directional couplers are ultra-flat, high directivity couplers which are ideal for power-monitoring applícations in coaxial systems. Output coupling (ratio of output power from main and auxiliay arms) is specified rather than coupling factor. Thus. no correction factor is required to account for insertion losses in the main arm.

11691D Directional coupler

The 11691D is an ultra-wide-band single-directional coupler covering 2 to 18 GHz with high directivily. It is useful as a power monitoring or leveling coupler or used for making reflection measurements. Couplers are preferred over broadband bridges in reflectometer applications in situations where the powes level of the source is limited. or where simultaneous measurement of return loss and inserion loss is desined.
7790, 790 Serles, 116910 specifications

774D-777D Dual-directional couplers (octave bands)

The cconomical 774D-777D couplers cover frequency spreads of more than two-to-one, each centered on one of the imporiant VHF/UHF bands. With their high direclivity, and a mean coupling accuracy of $\pm 0.5 \mathrm{~dB}$ these couplers are ideal for reflectometer applications. Furthermore, the close tracking of the auxiliary arms makes these couplers paricularly useful for reflectometers driven by extemally leveled sweep oscillators such as the HP 8690B and 8620A/B. Power ratings are 50 W average. 500 W peak.

778D, 11692D Dual-directional couplers (mulif-octave bands)

These exira wide frequency couplers are ideal for sweptfrequency reflectometer lesting of broadband coaxial components. 778 D covers 100 MHz to 2 GHz and 11692 D covers 2 to 18 GHz . High directivity and close tracking of the auxiliary ams are fealured. Various connector options are available us shown. Both couplers handie 50 W average power. Peak power: 778D. 500 W : 11692D. 250 W.
774D, 775D, 776D, 777D, 778D, 11692D Specificatlons

Madel	frequency pange (CHI)	Nominal Couplint (018)	Minlmum Coupling Viniatlon (48)	Minlimism Directivity (48)	§WR Primjry Dia Mandum (5011 Man.)	Pilas
7741	0.215-0.450	26	$=1$	40	1.15	8483
1750'	0.450-0.940	20	± 1	40	1.15	\$515
71601	$0.940-1.90$	20	$=1$	10	1.15	445
1770	1.904 .0	20	20.4	30	1.2	\$575
7880	0.30-2.0	20	± 1	$\begin{gathered} 01-1 \mathrm{GHz}=3 \mathrm{~F} \\ 1-2 \mathrm{GH} \mathrm{H}: 32 \end{gathered}$	I.I	(TSN)
116920	2.0-18.0	22	= I mecianart Le hes! pont	$\begin{aligned} & 2.18 \mathrm{GHE} 30 \\ & 5.18 \mathrm{GHz} 26^{\circ} \end{aligned}$	$\begin{gathered} 2.1246 H_{1.1} 3 \\ 12.4-18 \text { GHz } 1.4 \end{gathered}$	\$1800

1740-7710 Siandard connestors
Primsey bine: N(m), N(t)
huxiliary mom, $\mathrm{N}_{1} 1$), N(i)
17és Standard connectors
Primary Line N(m), Nil): Aumiliary Arms. N(I), N(1)
Option 011: Primary Line, APC-7. N()
Option 012: Primary Line, N(m). N(i)
116920 Stanased connectors
Pimary line- N(1), APC-7; Auxiliary Armi N(II. K(I)
Opy 001 Frimary line. N(I), N()
less $\$ 15$
Osi 002. Primary Line, N(f), N(m)
less $\$ 15$

230 dB. 0.1 to 2 EHz, input port.
224 dB with Type N connector on the lest port

MICROWAVE TEST EQUIPMENT
 Coaxial directional detectors and waveguide directional couplers

－Flat frequency response
－Low equivalent source match
－High directivity to $>40 \mathrm{~dB}$
－Low SWA
－Coverage to 40 GHz

7860

780 Series directional detectors

The 780 series detectors are directional couplers with built－in crystal detectors．The couplers bave llat trequency pesponse and good directivity．while the detecrors have good frequency response plus high semsitivity．The configuration of the directional detector reduces the number of ambiguities over the standard system of sepa－ mate coupler and detector and makes possible tighter corselation between main－arm power and detected signal．The dircetional detec－ tor is well suited for sweep oscillator leveling and can also be used to monitor power with a volemeter or oscilloscope．

Flgure 1．Typical 7860 Frequency Response．
780 Serles specificalions

Model	Frequency Range ［ CH_{7} ］	Frequency hasponse	Equivalent ${ }^{2}$ Source Match	Prica
780］ 1	0．96－2 11	$=0.2$	I， 13	9480
7870	2．9－4．1	$=0.3$	1.16	5480
28.5	3．7－8．3	± 0.3	1.25	¢805
7896	8－12．4	± 0.5	1.25	5125

[^29]
Standard connectors

Output：All N（0）
Input：786D－788C．$N(\mathrm{~m}) .789 . \mathrm{N}(\mathrm{f})$

752 Series waveguide directional couplers

The HP 732 Scries couplers are specined to meela wide variely of microwave applications．Every coupler has a minimum directivity of 40 dB over its entire frequency ringe．Each coupler is swept－ frequency tested to ensure that the main guide SWR and directivity specifications are accurate．Performance chatactenstics are unaf－ fected by humidity．temperature，and time，making these units espe－ cially useful in microwave＂slandauds＂measurements．

The 752 couplers are an essenidal par of many waveguide mea． surement systems．Attenuation mesturements．reflectometer selups，power measurements，source leveling and network analysis are just a few areas in which these couplers are med．

752 Serles specifications

Madal	Frequency Range （chzi	Naminal Coupling （d9）	Mean Coupling iccuracy （68）	Maximum Coupling Varlation （dE）	Himbimum Directivity 	Havegulde Flanga	Price
175\％	$5.85-8.2$	3	$=0.4$	$=0.5$	40	WR137 UG－4 $1 / 1 /$	$\$ 760$
175.9	5．85－8．2	10	$=0.4$	± 0.5	40		3760
お丁20	5．85－A．2	20	－0．4	$=0.5$	40		5760
H） 52 A	7．05－100	3	20.4	$=0.5$	40	$\begin{gathered} \text { WR112 } \\ \text { UG-138/6 } \end{gathered}$	352f
H752C	7．05－10．0	10	$=0.4$	$=0.5$	S0		\＄520
H7520	1．05－10．0	20	± 0.4	$=05$	40		\＄1520
X）52A	8． $2-12.4$	3	$=0.4$	$=0.5$	40	$\begin{gathered} \text { WR } 90 \\ \text { UG-135/L } \end{gathered}$	8380
¢752¢	8．2－12．4	10	$\div 0.4$	$=0.5$	40		3390
以边	8．2－12．4	20	$=0.4$	± 05	$\triangle 0$		3390
F3524	124－18．0	3	－0．4	$\because 0.5$	40	$\begin{gathered} \text { WR62 } \\ \text { UG-419/4 } \end{gathered}$	3350
P752C	124－180	10	$=0.1$	$=0.5$	40		3950
P7520	12．4－18．0	20	－04	$=0.5$	40		3350
K752A	180－26．5	3	＝0．）	$=0.5$	40	$\begin{gathered} W P 4 ? \\ 0[.5950 \end{gathered}$	\＄470
Ki52C	180－265	10	$=0.7$	$=0.5$	40		5470
K7520	180－26．5	20	$\underline{0.7}$	－05	40		3510
R7528	26．5－10．0	3	$=0.7$	$=0.5$	40	WR28 UG． 5999 J	5600
R752C	26．5－40．0	10	$=0.7$	$=0.5$	40		\＄500
R7520	$26.5-40.0$	20	$=0.7$	± 0.6	40		3500

Models 423A／B，8470A／B，8471A，8472A，8473B／C，33330日／C

Flat frequency response
High burnout protection

33330 日

8470B Opt 012

84708

423B，8470B，8473B／C，33330B／C Low Barrier

 Schottky（LBS）DetectorsThe low－barrier Schouky（LBS）detectors are a state－of－the－ar addition to the HP family of high perfonnance detectors．Various models provide coverage to 12．4，18．and 26.5 GHz and input con－ nectors are Type N．APC－7．or APC－ 3.5 depending on frequency range．Oupput connector is BNC（f）except for the $33330 \mathrm{~B} / \mathrm{C}$ （SMC）．

Matched pairs（Op1 001）．square low load（Opt 002）．and positive polarrity outpul（Opt 003）are available for most models．
－Low SWR
－Field replaceable detector elements

423A，8470A，8471A，8472A point－contact detectors

These point－contacl detectors have been widely used for many years and provide high performance al an economical price．The 8470 A .8470 A OpI 012，and 8472A provide APC．7．Type N．and SMA connector versions to 18 GHz ．Matched pairs ane available for spplications requiring close detector tracking．and all but the 8472A can be supplied with video loads for optimum conformance to square law．
1977－78 Coaxial \＆Waveguide Catalog
And Microwave Mensurement Handbook． 84 pages with over 350 measurement accessories．Use request card at back of ibis catalog．

Coaxial crystal detector specifications

Model	Frequency Range （EAH）	Fiequency Responso （dB）	5＊ Marimum （ 50 Г1 Non．）	Low Level Sensitivity	Msinimum ｜nput （Peat or lvemes）	Sher－Ierm Haximurn Input （＜1 min．）	0.51001 Malcher Palt \｛ordet 2 unlts ior each pain	Options Ayalisila	Inpul Connector	Plime
423E	$0.01-124$ LBS	$\begin{aligned} & =0.2 \text { equave } \\ & 10.8 \text { GH2 } \\ & =0.3 \text { ovala! } \end{aligned}$	$\begin{aligned} & 1151046 \mathrm{HI} \\ & \therefore 13 \text { to } 12.4 \mathrm{GHI} \end{aligned}$	$.0 .5 \mathrm{gW} /$	200 mm	1 walt	$\begin{aligned} & =0.2 \mathrm{qB} 10 \\ & 12.4 \mathrm{GH} \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \end{aligned}$	N（10）	SISD
4231	0．01－124 Poln！Canlact	$\begin{gathered} =0.2 \text { 2octave } \\ 108 \mathrm{GHz} \\ =0.5 \text { overall } \end{gathered}$	$\begin{aligned} & <1.2 \text { to } 4.5 \mathrm{GHz} \\ & <1.35 \text { to } \mathrm{GHz} \\ & 1.5 \text { to } 124 \mathrm{GHz} \end{aligned}$	$\underset{\mu \mathrm{W}}{>0.4 \mathrm{mVI}}$	100 mW	0.1 watl	$\begin{aligned} & =02 \mathrm{dA} 10 \\ & 8 \mathrm{GHz} \\ & 工 0.3 \mathrm{~dB} 10: 24 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 001 \\ & 002 \\ & 003 \end{aligned}$	$N(m)$	\＄155
84708	$0.01-180$	$\pm 0.2 \text { foctave }$	$<1.15100 \mathrm{GKz}$	$=0.5 \mathrm{mV} /$	200 mW	1 watt	$=0.2 d 810$	001	APC． 7	3730
$\begin{aligned} & 8470 \mathrm{~B} \\ & 0 \mathrm{pl} 012 \end{aligned}$		$\begin{aligned} & \pm 0.3 \text { to } 124 \mathrm{GHL} \\ & =0.6 \text { to } 18 \mathrm{GHz} \end{aligned}$	$<1.41018 \mathrm{GHz}$				$\begin{aligned} = & 0.3 \mathrm{~d} 8 \mathrm{lo} \\ & 18 \mathrm{GHz} \end{aligned}$	003	N （m）	\＄215
8470R	$0.01-18.0$ poini Conla	$\begin{aligned} & =021 \text { octave } \\ & 168 \text { aik } \end{aligned}$	$\begin{aligned} & <12 \mathrm{lo} 4.5 \mathrm{GHz} \\ & : 1.35 \mathrm{Ge} 7 \mathrm{GH} \end{aligned}$	$>0.4 \mathrm{mV} /$	100 mH	0.1 watt	$=0.2 \mathrm{~dB} \mathrm{ID}$	001 002	APE． 7	$\$ 195$
$\begin{gathered} 84704 \\ 0 p 1012 \end{gathered}$		$\begin{aligned} & =0,3 \text { to } 124 \mathrm{GH} \\ & =101010 \mathrm{GHI} \end{aligned}$	$\begin{aligned} & =1.50124 \mathrm{GHz} \\ & =1.71018 \mathrm{ctHz} \end{aligned}$				$\begin{aligned} &=0.30610 \\ & 171 \\ &= 0.604 \% \\ & 18 \mathrm{GHz} \end{aligned}$	003	$N(m)$	5180
8473日	$\begin{gathered} 0.09-180 \\ \text { LBS } \end{gathered}$	$\begin{aligned} & =0.2 \mathrm{dg} \\ & \text { ocidue } 108 \mathrm{GHz} \\ & =0.3 \mathrm{dE} \mathrm{to} \\ & 121 \mathrm{GH} \\ & =06 \mathrm{~dB} \mathrm{Io} \\ & 18 \mathrm{dHz} \end{aligned}$	$\begin{aligned} & =121012.4 \mathrm{GHz} \\ & <1.31018 \mathrm{GHz} \end{aligned}$	$\underset{\mu(W)}{20.5 \mathrm{mV})}$	200 mW	I warl	$\begin{aligned} & =09 \mathrm{~dB} 10 \\ & 12 \mathrm{AHz} \\ & 00.3 \mathrm{dBl} \\ & 18 \mathrm{CHI} \\ & =05 \mathrm{~d} 10 \\ & 26.5 \mathrm{GHI} \end{aligned}$	$\begin{aligned} & 001 \\ & 003 \end{aligned}$	$A P C-3.5$ (m)	\＄235
84730	$\begin{gathered} 0.01-265 \\ L B 5 \end{gathered}$		$\begin{aligned} & <1.2 \text { to } 4 \mathrm{GHz} \\ & <1.5 \text { to }) 8 \mathrm{GHz} \\ & =221026.3 \mathrm{GH} \end{aligned}$	$\begin{aligned} & >05 \mathrm{mVf} \mu^{W H} \\ & 1018 \mathrm{GG} \\ & >018 \mathrm{mV} \\ & 1026.5 \mathrm{GHz} \end{aligned}$	$200 \mathrm{~m} \times$	1 W311	$\begin{aligned} & .02 \mathrm{~GB} \text { 8 } \\ & 124 \mathrm{GH} \\ & 03 \mathrm{~dB} \text { to } \\ & 18 \mathrm{GHI} \\ & -0.9 \mathrm{~dB} 10 \\ & 26.5 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 001 \\ & 0,03 \end{aligned}$	$A P C-3.5$ (m)	5215
8472\％	$0.01-18.0$ Point Conlact	$\begin{gathered} =0.2 \text { logtave } \\ 108 \mathrm{GHz} \\ \therefore 5.51012 .4 \mathrm{GMz} \\ -1.01018 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & -1.21045 \mathrm{GH} \\ & <1.35 \mathrm{IG} 7 \mathrm{GH} \\ & <1.510 .4 \mathrm{HH} \\ & <3.71018 \mathrm{GH} \end{aligned}$	$\underset{\mu \mathrm{N}}{>0.4 \mathrm{~mW}}$	100 mH	0.1 wal1	$\begin{aligned} & =02 \mathrm{~GB} \text { to } \\ & 8 \mathrm{GHz} \\ & -03 \mathrm{~dB} \text { to } \\ & 12 \mathrm{GH} \\ & =0.6 \mathrm{JB} \text { to } \\ & 18 \mathrm{gnz} \end{aligned}$	$\begin{aligned} & 001 \\ & 003 \end{aligned}$	$\begin{gathered} \text { SMA } \\ (m) \end{gathered}$	\＄180
331300	$\begin{gathered} 0.01-180 \\ 185 \end{gathered}$	$\pm 0.6 \mathrm{~dB}$	<1.5	$\underset{\mu \mathrm{H}}{0.5 \mathrm{mV} /}$	$200 \mathrm{mk} \mathrm{\prime}$	1 watt	－ $0.3 \mathrm{d8}$	$\begin{aligned} & 001 \\ & 003 \\ & \hline \end{aligned}$	$\text { APC-3. } 5$ (in)	3205
333300	$\begin{gathered} 01-26.5 \\ 185 \end{gathered}$	$\begin{gathered} =0.5 \mathrm{dg} \\ 1020 \mathrm{GHI} \\ =15 \mathrm{~dB} \text { with } \\ \mathrm{a}-3.5 \mathrm{~dB} \text { slope } \\ 20 \mathrm{te} 25.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & <1.5 \text { to } 18 \mathrm{GHz} \\ & <2.2 \text { to } 255 \mathrm{OHz} \end{aligned}$	$>0.5 \mathrm{mV} / \mu^{\mu H}$ in） 18 Chy Degrates to $0.18 \mathrm{mV} / \mathrm{jH}$ 3126.36 Hz	200 mW	1 wall	$\begin{aligned} & =0.3 \mathrm{~dB} 10 \\ & 18 \mathrm{GH2} \\ & =0.5 \mathrm{dZ} 10 \\ & 20.5 \mathrm{GH2} \end{aligned}$	$\begin{aligned} & 0.01 \\ & 0.3 \end{aligned}$	$\begin{aligned} & \text { APC-3.5 } \end{aligned}$	5280
8471 A	$\begin{aligned} & 100 \mathrm{KHz}_{1} \mathrm{I} 2 \mathrm{Grb} \\ & \text { Pon! Coniact } \end{aligned}$	$\begin{aligned} & =0.6 \mathrm{~dB} \text { (1yplez } 1 \\ & =0.1 / 100 \mathrm{MH2} \end{aligned}$	1.3 （youcan） $50 n$	$\underset{\mu W}{>0.3 S ~ m V!}$	3 Vims	3 Vrns	No	$\begin{aligned} & 004 \\ & 005 \\ & 006 \end{aligned}$	BNC （m）	\＄70

Options
All applicable models
001：matched pair
002：square law load
Models 423A／B．3470A／B．8472A
003：posilive output

Price
add $\$ 20 /$ unit add \＄20／unit

Models 8473B／C．33330B／C
003：positive outpul
Model 847IA
004：positive outpur
005：75 ohon negative outpul
006： 75 ohm positive oulpul
add $\$ 30$
N／C
add $\$ 10$ add $\$ 10$

Models 422A，424A，532A，536A，537A

422 Serles， 424 series crystal detectors

The 422 A and 424 A family of erystal detectors combine high sen－ sitivity with flat írequency response and low SWR to provide waveguide hand coverage from 3.95 to 40 GHz ．They deliver be－ ween 0.3 and 0.4 mV ip．W outpul al low level and handle 100 mW peak input．SWR ranges from 1.25 at S－hand to 3 at R－band．
For reflectometer applications in which boih fat frequency re－ sponse and square－law characteristics are important，these models can be supplied as malched pairs（Option（001）and also with an aptimum square－law load（Oplion 002）．

422 Series， 424 series wavegulde crystal detector specifications

Model	Frequency Range （ GHz ）	Frequency pesponte （dB）	Option 009！ Matahed Pair Trackine （ $\delta B)$	Option 003 Poslifiv： Ouripal	Waveguldo ［quivalent Flange	Prieg
G424A	3．95－5．85	$=0.2$	$-0.2 \mathrm{~dB}$	Yes	WR18T U 5.507 U	\＄250
14238	5．2－8．2	± 0.2	$=02 \mathrm{cb}$	Y_{05}	$\begin{gathered} \text { WF137 } \\ \text { UG-SMJUU } \end{gathered}$	5200
H．ansh	7．05－10．0	± 0.2	$=02 d \mathrm{~B}$	Yes		3 B
K424A	$8.2-12.4$	$=0.3$	$=0.36{ }^{\circ}$	Yes	$\begin{gathered} w n t a \\ U b-135 \pi \end{gathered}$	31 BiJ
M424A	10．0－15．0	$=0.5$	$\pm 0.5 \mathrm{~dB}$	Yes	W975 Cover	370\％
P424A	12.418 .0	－1．5	$=0.5 \mathrm{~dB}$	Yes	$\begin{gathered} \text { WhG' } \\ U G-419 \Omega \end{gathered}$	5220
K4224	18．0－26．2	± 2	310	Ho	$\begin{gathered} \text { WR42 } \\ \text { UG. } 595 \mathrm{LL} \end{gathered}$	\＄575
R122A	26．5－40．0	$=2$	二） dB	No	$\begin{gathered} \text { WR2S } \\ 46-599 / 4 \end{gathered}$	\＄580
All Models－Option 001 Matched Pzir						$\begin{aligned} & \text { Add } \\ & \$ 20 / U n i t \end{aligned}$
Ald Nindols－Oriticr D02 Oplimime Squire－Lsw Load						$\begin{gathered} \text { sed } \\ \text { 3otunis } \end{gathered}$
Not Alf Madela－Option 00as Posisive Outpiat						MLC

532 Serles，536A，537A frequency meters

These direct－reading frequency merers meanate frequanies from 5.301040 GHz in waveguide and from $960 \mathrm{MH} / 1012.4 \mathrm{CiH}$, in coax quickly and aceurately．Their lones scalc length and numcious calibration marks provide high resolntion which is paricularly usc－ ful when measuring frequency differences or small frequency changes．Frequenc＇y is read directly in GHz_{2} so inierpolation or charts are not required．

The insiruncols comprise a special tansmission section with a high Q resunant cavily which is thened by a chuke plunger．A 1－dB or greater dip in output indicate resonanee；vintailly full power is fransmitued off resonance．Overall accuracy of eath frequency meter includes allowance for 0 to 100 percent rclative humidizy and temperature variation from 13 to 33 C ．Except for the J532A．there are no spurious modes or resonances．

1977－78 Coaxial \＆Wavegulde Catalog

And Microwave Measurement Handhook． 84 natge with over 350 measurcment accessories．Use request card al bick of inis catalug．

532 Serles，536A and 537A speclications

Modal	\qquad	Overall Aecuracy （D）	Calibralion Increment （MH2）	W／G－Coax Equivalent ｜ane （Cannecton）	H二小L
535A	$0206-420$	$\begin{aligned} & 0.220 .96 \\ & 1016 H 2 \\ & 0.1711 \text { to } \\ & 4.2642 \end{aligned}$	2	$\begin{gathered} \text { Coax } \\ \text { Iype } \text { (} 0 \text { I } \end{gathered}$	195d
537A	3．7－12．4	0170	10	$\begin{aligned} & \text { Coax } \\ & \text { Type } \mathrm{N} \text { (n) } \end{aligned}$	\＄590
15328	$5.30-8.20$	0065	2	WR137 1J6．44！！	\＄1250
H532A	$7.05-10.0$	0.075	2	WH112 $U\left(\begin{array}{l}-13 B)!\end{array}\right.$	31250
X5328	B．20－12．4	0.080	5	$\begin{aligned} & \text { WR90 } \\ & \text { UG-39:' } \end{aligned}$	5845
P532A	12．4－18．0	0.100	5	$\begin{gathered} W R 62 \\ U G-419 / 4 \end{gathered}$	5635
K532A	18．0－26．5	r． 110	10	$\begin{gathered} \text { WR } 42 \\ \text { UG-595/ } \end{gathered}$	8875
R332h	$25.9-40.0$	0.120	10	$\begin{gathered} \text { Wr28 } \\ 4 \mathrm{t}-599 \mathrm{~L} \end{gathered}$	850

－Precision loads and shorts for measurements to 40
GHz
－New 26．5 GHz coaxial sliding load

905A，907A，911A，911C Coaxial sliding loads
The 905A，907A sad 911A are movable，low reflection 50n，loads for precision measuremenis．The 905A and 907 A are supplied with threc interchangeable connectors．N－male．N－fenvale and APC－7． The 9IIA is supplied with SMA male and female．

The 911 C is a new sliding load designed for 3.5 mm coaxial irans－ mission lines and uses the new APC－3．5 connector．This permits mode．free operation 1026.5 GHz ．The 911C is furnished with inter－ changeable male and female conncclors in a carrying case．

908A，909A Coaxial fixed terminations

The 908A and 909A terminations are low－reflection loads for ter－ minating 50§ couxial systems in their characteristic impedance．
905A，907A，911A，911C spectflcations

$\begin{gathered} \mathrm{HP} \\ \text { Madol } \end{gathered}$	$\begin{aligned} & \text { frosuancy } \\ & \text { 1ange (6Hy) } \end{aligned}$	Load SWR	Power miln！	Congth In．（mm）	shlpping walint	Price
905A	1．8－I日	1.05	$\begin{aligned} & 1 \mathrm{~W} \text { aug. } \\ & 5 \mathrm{KH} \text { g. } \end{aligned}$	$\begin{aligned} & 17.25 \\ & (440) \end{aligned}$	$\begin{gathered} 3 \mathrm{lo} \\ (1.4 \mathrm{~kg}) \end{gathered}$	\＄385
9074	1－18	1．1．1－1．5 CH_{7} ； $1.05,1.5-186 \mathrm{GH}$	I Wave 5 KH	$\begin{aligned} & 30.62 \\ & (778) \end{aligned}$	$\begin{gathered} 9 \mathrm{lb} \\ 4.1 \mathrm{~kg} \\ \hline \end{gathered}$	5730
9114	2－18	$\begin{aligned} & 1.1 .2-4 \mathrm{GHz} \\ & 1.05,4-18 \mathrm{GH} \end{aligned}$	$\begin{aligned} & 1 \mathrm{w} 2 \times 2 \\ & 5 \mathrm{XNPL} \end{aligned}$	$\begin{aligned} & 16.87 \\ & (3801) \end{aligned}$	$\begin{gathered} 3 \mathrm{lb} \\ (2.4 \mathrm{k}) \end{gathered}$	5395
9110	$2-26.5$	$\begin{gathered} 1.21,2-10 \mathrm{GHL} \\ 1.07 .10-26.5 \mathrm{GHz} \end{gathered}$	！W ave	$\begin{array}{r} 10.5 \\ (2851) \end{array}$	$\begin{aligned} & 36 \mathrm{ib} \\ & (1.7 \mathrm{kR}) \end{aligned}$	5720

908A，909A speciflcations

$\stackrel{H P}{\text { Model }}$	Frequeng Ranle（ 6 （ 7 ）	Impdinasa	5wh	Paver otin？	Cathector	Price
908a	de－4	50 dmms	1.05	$\begin{array}{\|ccc\|} \hline 1 / 2 & \mathrm{~W} & \text { gri } \\ 1 \mathrm{~kW} \\ \hline \end{array}$	N male	\＄50
9098	$\mathrm{dc}-18$	50 ohms	$\begin{gathered} 1.05,0-46 \mathrm{Rz} \\ 1.1, \frac{124 \mathrm{GHz}}{1.25,124-18 \mathrm{GHz}} \\ \hline \end{gathered}$	$\begin{aligned} & 3 \mathrm{~W} \text { Jug } \\ & 300 \mathrm{~W} \end{aligned}$	APC－7	3105
909A Opldon 012 and option 013	dc－18	50 ahals	$\begin{aligned} & 1.06,0-46 \mathrm{~Hz}_{2} \\ & 1,11,4-124 \mathrm{GHz} \\ & 1,3,12,4-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 2 \mathrm{H} \text { ave } \\ & 300 \mathrm{Hk} \\ & \hline \mathrm{Dk} \end{aligned}$	OpL． 012 4 malâ Opl 013 N lemale	$\begin{gathered} \text { Subtract } \\ \$ 15 \end{gathered}$

11511A，11512A，11565A Coaxial shorts

These shons are used for establishing measurement planes for known retlection phase and magnitude in 50Ω and 75Ω coakial systems for various connectors．
1977－78 Coaxlal \＆Wavegulde Catalog
And Microwave Measurement Handbook． 84 pages with over 350 measurement accessories．Use request card at back of this catalog．

Ordering Infarmatlon	Price
ILSIIA N－female shor（50 uhm）	\＄20
1250－1531 N －female short（75 ohm）	\＄15
11512A N －male shor（ 50 obm ）	\＄15
1250－1530 N －male short（ 750 hm ）	\＄20
11565A APC－7 short（50 ohm）	\＄50
0960－0054 SMA－female short（50 ohm）	\＄10
0960．0055 SMA－male short（ 50 ohm ）	\＄10

910A／B，914A Waveguide flxed and movable terminations

The $910 \mathrm{~A} / \mathrm{B}$ are fixed terminations for waveguide systems．The $914 \mathrm{~A} / \mathrm{B}$ arc similar 10 the $910 \mathrm{~A} / \mathrm{B}$ ，excepl that its absorptive element is movable and a lockable plunger controls the position of the ele－ ment．

910A／B，914A／B specifications

Model	Froquancy fanga（GHz	5WR	$\begin{aligned} & \text { Powaf } \\ & \text { Aating } \end{aligned}$	Typs	Wiverulde SIR （19N	Pdicos
J9104	5．3－23	1.02	1 mat	fixed	WR137	$\$ 195$
K9108	$705-10.0$	1.02	1 mstt	fixed	WR112	\＄125
x910日	8．2－124	1.015	1 wal	$11 \times \mathrm{ad}$	HR90	\＄135
P9104	12．4－18	1.02	1 Wat	1 Hxed	HR62	\＄110
18144	5．3－8．2	1.01	2 wath	sliding	WR137	5415
H914A	7，85－10．0	1.01	1 wat！	shoulng	WRII2	\＄375
X914日	8．2－124	L01	1 watt	slialng	WR90	5275
P914A	12．4－18	1.01	1／a woll	st才cling	WR62	5275
K9148	18－26．5	1.01	$1 / 2$ watt	statag	WRA？	3450
H9148	76．5－40	1，01	＇1／watt	siforing	WR28	\＄415

920A／B，X923A，X930A Waveguide shorts
 The $920 \mathrm{~A} / \mathrm{B}$ are movable shoms．adjustable through at least half a

 wavelength at the low end of the band．The X 023 A is also a movable shon，but is cidjusiable through aboul fwo wavelengehs al 8.2 GHz ． The X 930 A is a shoring switch．SWR is less than 1.02 in＂open．＂ greates than 125 in＂shor．＂920A／B，X923A，X930A specifications

Mrase）	Trequancy Rasp（GHI）	$\text { Wereiulde } 5 \text { EiA }$	Fies
1920A	5．3－8．2	WR137	5240
H920A	7．05－10．0	HRIL2	1330
x923A	8．2－124	WFSO	S30
P9208	124－18	WR57	3330
K920］	18．0－26．3	WR42	8460
R920年	$265-40.0$	HR28	2425
x830A	82－124	HRSO	SAs 0

- Correct waveguide discontinuities
- Measure microwave frequencies

934A, P932A Harmonlc mixers

These mixers can be used for frequency measurements and phase lock applications from 21018 GHz . Bolh accept stable VHF signals from 100 to 1000 MHz and provide broadband, high sensilivity mixing with microvave signals. 934A handles coaxial inputs from 2 to 12.4 GHz while P932A mixcs signals from 12.4 to 18 GHz in WR 62 waveguide. With 0 dBm inpul signal 934 A provides $1.4 \mathrm{mV} \mathrm{p}-\mathrm{p}$ outpus and P932A 0.4 mV p-p.
1977-78 Coaxial and Waveguide Catalog
And Microwave Méasurement Handbook. 84 pages with over 350 measurement accessories. Use request cand al back of his catalog.

Ordering information	Price
X870A waveguide runer	$\$ 490$
P870A Waveguide luner	$\$ 510$
P932A Waveguide barmonic mixer	$\$ 525$
934A Coaxial hamonic mixer	$\$ 340$

360 Series coaxial low pass filters, 362 Series wavegulde low pass filters

These Hewlett-Packard low-pass filters facilitate microwave measuremens by eliminating undesirable signals (such as harmonics) from the measurement system. Suppression of such sigmals is panicularly important in applications such as broadband reflection and trensmision measurements or slotted line measurements. where harmonics generated by the signal sourec could otherwise inpair measurement accuracy.

X870A, P870A Waveguide slide-screw tuners

Waveguide slide-screw uners are used primarily for correcting discontinuities or for "matching" waveguide systems. X870A covers 8.2-12.4 GHz in WR 90 waveguide and P870A likewlse covers $12.4-18.0 \mathrm{GHz}$ in WR 62 waveguide. Both can correct an SWR of 2010 a value of 1.02 , with a maximum loss of 2 dB .

- Effective elimination of undesirable signals
- Low insertion loss through passband

360 D

360 Series coaxial filter specifications

Madel	$\begin{aligned} & \text { Cut-oti } \\ & \text { Fropueney } \\ & \text { MHz } \end{aligned}$	$\begin{gathered} \text { Insenlon } \\ \text { Loss } \end{gathered}$	Rejection	Imparance	USWR Maximum	Connoctors	Bverall Longth mm (in)	Shipplne Hefoit kg (b)	Price
360A	700		$\begin{aligned} & \text { Gifater } \\ & \text { inan } 50 \mathrm{dx} \\ & \text { at } \mathrm{L} 25 \\ & \text { Inmes } \\ & \text { chel-oH } \\ & \text { irequency } \end{aligned}$	50 n	$\begin{aligned} & \text { 6 } .6 \text { 10 } \\ & \text { with in } \\ & 100 \mathrm{MHz} \\ & \text { of cult- } \mathrm{sil} \end{aligned}$	N (m. 1)	$\begin{gathered} 276 \\ \left(10^{\prime} / 8\right) \end{gathered}$	$\begin{aligned} & 0.5 \\ & (21 \end{aligned}$	\$260
3608	1200			500		H $1 \mathrm{~m}, 13$	$\begin{gathered} 183 \\ \left(7^{\prime} / 32\right) \end{gathered}$	0.9 12	\$225
360 C	2200			50 O	cl 6 mitmin 200 MHL of cul-oft	N (n, 0	${ }_{\left(10^{27 / 52}\right.}^{274}$	$\begin{aligned} & 0.9 \\ & (2) \end{aligned}$	\$160
3600	3100			$50 \cap$	$\begin{aligned} & -\overline{1.610} \\ & \text { withan } \\ & 300 \mathrm{MHz} \\ & \text { ol cut-0if } \end{aligned}$	$N(m, 1)$	$\begin{aligned} & 187 \\ & \{7 \% 6\} \end{aligned}$	$\begin{aligned} & 0.45 \\ & (11) \end{aligned}$	\$150

362 Serles waveguide low pass filter specifications

Model	$\begin{gathered} \text { Passdana } \\ \text { 日H2 } \end{gathered}$	Slophand 6H:	Passiband Inserlion Lds	STopbend Rojertan	SWR Masmum	Wruaquido SLie	Equbalent Manda	Lenth ma (in)	Salpping Woleht 4I (id)	Price
X3624	8.2-12.4	16-37.5	<168	At leas: 40 dB	1.5	WR 90	UG39,	${ }_{511 / 28}^{136}$	$\begin{aligned} & 0.9 \\ & 12 \end{aligned}$	\$700
M362A	10.8-15 5	19-47			1.5	HR 75	Cowor		$\begin{aligned} & 0,9 \\ & 2 \end{aligned}$	5600
P362A	124-18.0	23-58			1.5	WR 62	U6-4) ${ }^{\text {du }}$	(311/14)	$\begin{gathered} 0.37 \\ (1301) \end{gathered}$	\$720
K36241	120-25.5	31-80			1.5	WR 42	U6-595/J	$\begin{gathered} 84 \\ \left(2^{1}(2)\right. \end{gathered}$	$\begin{gathered} 0.15 \\ (5.307) \\ \hline \end{gathered}$	\$595
R3624	$26.5-400$	$4 \mathrm{~T}-120$	$<2 d B$	$>35 \mathrm{~dB}$	1.8	WR 28	UG-599/U	$\stackrel{41}{\left(1^{>} / 30\right)}$	$\begin{gathered} 0.11 \\ (400.0 \end{gathered}$	\$525
										3120

Coaxial switches

Models 8761A/B, 333118/C

33311B/C Coaxial switch

The 333118/C are high isolation, siogle pole, double-throw conxial switches with excellent characteristics. They are designed for use in S0 ohm systems and the ungated port is automatically terninated internally with 50 ohms. thus eliminating the need for thrie-switch (rees. This feature makes them particularly useful in systems which require low SWR on their lines at all times. The switches are controllod by latching solenoids and switching current is automatically cut off when swiching is completed. The 333IIC urilizes the new APC-3.5 connector which is SMA compatible and extends the operating frequency range to 26.5 GHz .

33311B/C Speciflcations

Frequency Range:

333118: dc to 18 GHz .
33311G: de to 26.5 GHz .
SWA (50 ohm characteristic impedance)
333118: <1.25. de to 12.4 GHz : $5,12.41018 \mathrm{GHz}$.
33311G: <l.3. dc $1010 \mathrm{GHz}:<1.5$, 10 to $16 \mathrm{GHz}:<2.3$. 16 to 26.5 GHz .

Ineertion Loss

339118: $<0.25 \mathrm{~dB}$. de to $2 \mathrm{GHz}:<0.5 \mathrm{~dB} .2$ to 18 GHz .
$33311 \mathrm{C}:<0.25 \mathrm{~dB}$, dc $102 \mathrm{GHz} ;<0.5 \mathrm{~dB} .2$ to $10 \mathrm{GHz}:<0.8 \mathrm{~dB}$. 10 to $16 \mathrm{GHz}:<1.4 \mathrm{~dB}, 16$ to 26.5 GHz .
leclation
33311B: $>90 \mathrm{~dB}$, dc to 18 GHz .
$33311 \mathrm{C}:>90 \mathrm{~dB}$ to $12.4 \mathrm{GHz}:>85 \mathrm{~dB}$. 12.4 to $18 \mathrm{GHz}:>50 \mathrm{~dB}$. 181026.5 GHz .

MF Connectors
333118: (3) SMA female.
33311C: (3) APC-3.5 (emale (SMA comparible).
Power: 1 W average, 100 W peak ($10 \mu \mathrm{sec}$ duration).
Bolenold voltage (dc of pulsed): 24 volts. Diode protecicd to reduce vollage transients.
Swithing speod: $<30 \mathrm{~ms}$ (including seteling time).
Llfe: >1,000,000 switchings.
Slze: $54^{\prime \prime} \times 53^{\prime \prime} \times 14 \mathrm{mmD}\left(2.13^{\prime \prime} \times 2.13^{\prime \prime} \times 0.56^{\prime \prime}\right)$ excluding
connectors and solenoid terminals.
Weight: net, $88 \mathrm{gm}(3.1 \mathrm{oz})$. Shipping, $220 \mathrm{gm}(8 \mathrm{oz})$.
Options: 011. 5 -voli solenoid voltage (only on 3331IB).

8761A/B Coaxial switch

The 8781 is a single-pole, double-Ihrow coaxial switch with low standing-wave ratio. low inserion loss, and excellent isolation from de to 18 GHz . Mechanically. the switch is a break-before-make lype controlled by a latehing solensid. Any of seven coaxial connectors. or a 50 -chm termination. may be specified for each port.
8761A/日 Speciflcatlons
Characierigtic Impedence: 50 ohms .
Frequency range: dc to 18 GHz .

Standing-wave ratlo

Srepuancy	SWR		
	7-mm	H	
$\begin{aligned} & \mathrm{dc}-12.4 \mathrm{GHz} \\ & \mathrm{dc}-1 \mathrm{H} \mathrm{Gz} \end{aligned}$	$\begin{aligned} & 115(1201 \\ & 1.20 \div 1.35) \end{aligned}$	$\begin{aligned} & 1.20(1.25) \\ & \hline .25(1.30) \end{aligned}$	$\begin{aligned} & 1.20<(1) 30) \\ & 1.35(135) \end{aligned}$
SWh in parentheses apples to switch witn bulli-ln terminxilon,			

Intertion lose: $<0.5 \mathrm{~dB}$, dc to $12.4 \mathrm{GHz}:<0.8 \mathrm{~dB}$. dc to 18 GHz . Isolation: $>50 \mathrm{~dB}$. dc to 12.4 GHz ; $>45 \mathrm{~dB}$, dc 1018 GHz .
Power: IO W average. 5 kW peak; built-in temination rated at 2 W average. 100 W peak.
Switchling energy: 1.5 W for 20 ms (permanent magnel fatching).
Solenold voltages (de or pulsed): (2 $1015 \mathrm{~V}, 8761 \mathrm{~A}$: 24 to 30 V . 8761 B .
Bwtiching epeed: 351050 ms (including selding time).
Llfe: > $8,000,000$ swichings.
Dimensions: $41 \times 38 \times 38 \mathrm{~mm}(1.6 \times 1.5 \times 1.5 \mathrm{in}$) excluding connectors and solenoid terminals.
Welght: net, 140 to 220 gm (5108 oz). Shipping, 220 to 300 gm (8 to 11 oz).
How to order 87E1A/B swliches
Specify solenoid voltage and connectors (ineluding built-in $50-0 \mathrm{hm}$ lerminasion) by the alphabelic sutfix on the switch model number and the appropriate three-digit option number.

$\begin{gathered} \text { amion } \\ \text { Cose } \end{gathered}$	Connector Type	$\begin{aligned} & \text { Oplion } \\ & \hline \text { code } \end{aligned}$	Connmelor Typh
0	$\mathrm{N}(0)$	4	APC-7 for UT-250 Ccox
1	$N(m)$	5	Sma it
2	AEC 7 whtheaned sleave	6	SMA (m)
3	APC.-2 n/Coupiling nul	7	$50 \cap$ Termination

Orderlng information
Prlce
8761N/8 order must include option number
8761A/B Coaxial Switch (quantity 1-9)
$\$ 195$
8761A/B Coaxial Switch (quantity (0-24)
876LA/B Coaxial Switch with 50 -ohm termination add $\$ 35$
33311 B Cosxial Switch (quantiry 1-9)
33311 B Coaxial Switch (quarsiry $10-24$)
\$36s
33311 C Coaxial Switch (quanuity 1-9)
33311C Coaxial Switch (quanlity 10-24)
$\$ 525$
$\$ 485$

 24) Bu!sn paysu!m!

 כinseaw sat! ssedpueq e jo Ke|ds!p V - Kjsnoauennus! piep ssol

 * วपा 2!!

ssaf untai pue uolmiasu! snoeuejnu!s

suôneondde feo!dKı

 -

ge 001 ol dn wois

 'smossk kin

 भqude3 mans

męsर̌s lse」 asuodsay Kouenbela SScL8

 aбued Kouenbert zHD s'9己 of ZHW OL .

SIS
515
515
sis
5 IS
$51 \$$
SZS
0 0．s
$961 \$$
$041 \$$
${ }^{-301}{ }^{d}$
purg－y virsil purg－${ }^{\text {P VLSSII }}$ pueged versil pueg－X VSESII porg－h vissil pored remil preg－O viesil preis apinizaen votsil

 иоןฉешлоди би！леряо

Crizs	$\begin{aligned} & \$ Q 111 \\ & 50^{\prime} 0 \end{aligned}$	$\begin{aligned} & \left.(\%)_{e} \times 8\right) \\ & 61 \times 001 \end{aligned}$	गโЕШว ‘ய山 ！ $\angle \mathrm{Od}$	1＇1	マで－50	190911
OLCS	$\begin{gathered} \hline \text { (20 O1) } \\ 8200 \end{gathered}$		ग！래히 때 ℓ 	111	121－30	7985（1）
Eild		（Ui）Dum suajsupula	5 mazavoug	Ems	$\begin{gathered} \text { gig } \\ \text { giverg } \\ \text { hutinid } \end{gathered}$	IOpe W $d H$

Sels	（70 s）${ }^{\text {8 }} 001$		bthest
9818	（20 c） 800^{1}	JRE VINS O3 $1-3 \mathrm{dy}$	VESTI
9015		गew M Ol＜－3dy	－Sts511
965	20 bi 8015	P｜CWe）N0）＜Jdy	VDZSII
aspld	1910品8uldav5	volscins an	1010\％di

01：	MNSEEF－0 QZ 8 先		$\begin{gathered} \pi \cap 8 E-3 n \\ Q Z y M \end{gathered}$	－	$000-92$	491511
0118	$\begin{gathered} 0 / 5 \operatorname{s}-50 \\ 2 \nabla \Delta m \end{gathered}$		$\begin{gathered} n / 5 z b-9 n \\ z\rangle \mathrm{g} \mu \end{gathered}$	－	$598 \sim 081$	YSIS11
S15	$\begin{gathered} \text { nisgs-9n } \\ 26 \text { gin } \end{gathered}$		$\begin{aligned} & 1800 \\ & 1589 \end{aligned}$	50＇1	022081	V663HN
5015	$\begin{gathered} \text { n/6[b-9n } \\ 29 \text { 8ы } \end{gathered}$		$\begin{aligned} & \operatorname{sing} \\ & \text { IS } 8 \mathrm{~A} \end{aligned}$	S0＇1	081－051	WRSLN
\＄115	$\begin{gathered} 0 / 61 \% 90 \\ 2944 \end{gathered}$		$\begin{aligned} & 563 \\ & S L \\ & d m \end{aligned}$	$90^{\circ} 1$	031－02l	82623W
0s15	$\begin{aligned} & \pi / 6[J 0 \\ & 068 M \end{aligned}$		$\begin{aligned} & \text { snog } \\ & \text { S } \angle \mathrm{ym} \end{aligned}$	90.1	P $21-0.01$	28620w
5015	$\begin{gathered} 1 / \sigma E \cdot J \cap \\ 06 \mathrm{~d} \end{gathered}$		$\begin{aligned} & \text { n/1S-5n } \\ & 28184 \end{aligned}$	50＇1	001－2＇8	E262314
asud	$\begin{gathered} \text { ofilu } \\ \text { ons } 0 / \mathrm{m} \end{gathered}$	01	$\begin{gathered} \text { osurid } \\ 0 \eta 59 / 4 \end{gathered}$	45	（2Ag） －Iuty（xupabas	$\begin{gathered} 1000 \% \\ \mathrm{dH} \end{gathered}$

915						
5715	610	$21-9.10$	2989	081－72］	¢2＇I	9182d
5015	$6 E$	$1-300$	O68M	－71－028	S2＇I	9182x
51.5	68	M日ued N	O6HM	－21－029	52.1	VIEXX
983	15		21184	001－90＇s	\＄2．1	Y18Z4
㖸	TV	Fjeva］ 1	LE18M	028－0E．5	，521	V1821
9115	U6pl	gelmey N	18184	585－565	S2＇1	V1825
5115	Es	｜rumy ${ }^{\text {\％}}$	Tezan	$55^{\prime \prime} \mathrm{E}-0 \mathrm{~A}^{\prime} 2$	S21	V1825
ล31．${ }^{\text {d }}$		mpausoj IETROS			8 ms	IBPOM dH

suolresplseds e／vi．8z

sdap｜04
әріnбәлвм＇puels apinбәлем sepas 0tSil

2HD 81－9p ：Rouenbes swч\％ 05 ： ：

UO！SUəぬx Dull dV VL9SLL＇V99SLL

 ase reidepe panins $\forall 88511$ כ

 шй－0s jo ио！
s．ajdepe xeos

siądepe әр！n6әлем

siojdepe әp！nБәлем of xe05 日／VL8Z
$\forall 90911$

 seu！l die＇spueŋs ep！n6элем＇sıəдdepr

Amplifier gain compression

The abilitity io make absolute power measurements along with nomalized ratio measurements is very useful for amplifier characterization. The ton right setup can measure amplifier gain, gain flatness, output power. and gain compression. all on a swept frequency basis. The pholo displays the amplifier gatin compression and output Fower over the $6-8 \mathrm{GHz}$ range of the amplifier. The 8750 A inpu mints memory mode provides the important ability to compare differences between the small signal gain response with successively compressed gain responses. Once the gain is compressed 1 dB al any irequency the outpul power indicaled by the B detection is the oulpul nower for I dB gain compression.

Expanded dynamic range

Each detector channel of the 8755 has a 60 dB dynamic mange. By using the lower right setup. the dynamic range for each channel is added together to make a 100 dB dynamic range meakurement on a lowpass filler. The AC processing system of the 8755 allows the delector to reject the broadband noise from the amplifier providing up 1030 dB more dynamic mange than would be possible with a DC type detection system. In addition, the full 100 dB dynamic range can be viewed on the CRT display by selecling the 5 and 10 dB per division resolution buttons together. giving $15 \mathrm{~dB} / \mathrm{d}$ ivision. The amplifier gain variations enter into the measurement as frequency response common to both calibration and measurement traces. The 8750 A Storage-Normalizer input minus memory mode displays the difference between the calibration and measurement traces thus climinating the effects of frequency response.

11666A Retlectometer Bridge

Reflection measurements covering from 40 MHz to 18 GHz with one coupling device can be made with the Model 11666 A Reflectometer Bridge. Operation of this type of coupling device is based on principles of the resistive Wheatstone Bridge extended to microwave frequencies. When three bridge arms are 50Ω, the voltage across comers of the bridge is directly proportional to the rellection coefficient of the device connected in the fourth arm. Equivalent directivity is then a measure of how well the bridge circuit is balanced with a 50Ω termination connected. (1deally his would create a voltage null representing infinite rerurn loss.) The high equivalent directivity achievable over wide bandwidths makes the bridge configuration atractive.
The 11666A is completely dedicated to the 8759: two Scholteky diode detectors (which sample the incident and reflected signals for ratioing by the 8755) are incorporated as an integral part of the bridge unit. The cffective extemal leveling achieved by ratioing thus isulates the measurement porn from source/bridge input mismatch. With the addition of an external 11664A detector. (wo simultancous ratio measurements of insertion and recum loss can be made. Smals size combined with its wide frequency range and high direclivily make the II666A ideal for production use.
Spectiflcatlons 11566A (connected to we 8755B Analyzer) Frequency Range: 40 MHz to 18 GHz .

Frequency Irackling

(between incident and rellected ams): (between incideot and test port, including $\pm 0.5 \mathrm{~dB}$ from II664A Detector).																		

Nominal couplling: 6-dB incident arm. 9-dB reflected amm. $9-\mathrm{dB}$ transmission loss.
Input SWR: 1.8.

Maximum Input power: +15 dBm .
Connectors: Type N-Female on inpul and oulput. APC-7 Optional.
Dimenslons: $69.9 \mathrm{mmH} \times 69.9 \mathrm{mmW} \times 46.6 \mathrm{mmD}\left(2.75^{\prime \prime} \times 2.75^{\prime \prime}\right.$ $\times 1.83^{\prime \prime}$). Cable length, $1219 \mathrm{mon}\left(48^{\prime \prime}\right)$.
Welght: net, $0.7 \mathrm{~kg}(1,5 \mathrm{lb})$. Sbipping. $2.26 \mathrm{~kg}(5.13 \mathrm{lb})$.
Accessories iurnished: IIS12A shor, Type N-Male (11565A shor, APC-7 with Opi 002 and 003).
11667A Power splitter
The 11667A Power Splitter is recommended when making ivideband transmission measurements using the 8755 Tese Set. This iworesistor type splitler provides excellent oulput SWR at the auxiliary anm when used for source leveling or ratio meisurement applicalions. The 0.25 dB tracking belwcen output arm over a frequency range from de to 18 GHz allows wideband measurements to be made with a minimum of unceraincy.
Frequency range: dc to 18 GHz .
Impedance: 50Ω.
Inpul SWR:
Equlvalent output SWR:

$\mathrm{dc}-4 \mathrm{GHz}$	$\mathrm{dc} . \mathrm{BGHz}$	$\mathrm{dc}-18 \mathrm{GHz}$
$\leqslant 1.15$	$\leqslant 1.35$	$\leqslant 1.45$
1.10	1.20	1.33

Ieveling or ratio
measurement
$\begin{array}{cccc}\begin{array}{c}\text { Output tracklng: (between } \\ \text { oulpul i mis) }\end{array} & 0.15 & 0.20 & 0.95\end{array}$
Insertion loss: 6 dB nominal (input to either output).
Maximum Input power: +27 dBm .
Connectors: Type N fernale on all ports.

Weight: ner. 0.06 kg (2 oz). Shipping 0.22 kg (8 or).
Other signa! separation devices
Many other signal separation devices are available from HP for use with the 8755 . Coaxial couplers from. I to is GHz are available with the 770 series, the 790 series. the 11692 . Higher directivity $75 ?$ series waveguide couplers ean also be used with the 87555 with the addition of appropriate 281 series waveguide to coax adaptors.
11665 M Modulator
Function: absorblive on-off modulator designed for and powered by the 87598 plug-in.

$\begin{aligned} & \text { Frequency } \\ & \text { Range } \end{aligned}$	$\begin{aligned} & \text { Relurn Loss } \\ & \text { On and OH } \end{aligned}$	$\begin{gathered} \text { Inctifion goss } \\ \text { On OH: } \end{gathered}$	
$\begin{gathered} 15-40 \mathrm{MHz} \\ 80 \mathrm{MHz}-4 \mathrm{GHz} \\ 4-8 \mathrm{GHz} \\ 8-12.4 \mathrm{GH} . \\ 12-4-18 \mathrm{GH} \\ \hline \end{gathered}$	$\begin{aligned} & \geqslant 10 \mathrm{~dB} \\ & \geqslant 15 \mathrm{~dB} \\ & \geqslant 12 \mathrm{~dB} \\ & >8 \mathrm{~dB} \\ & 38 \mathrm{~dB} \end{aligned}$	$\begin{array}{r} \leqslant 7.0 \mathrm{~dB} \\ \leqslant 3.2 \mathrm{~dB} \\ \leqslant 3.8 \mathrm{~dB} \\ \leqslant 4.3 \mathrm{~dB} \\ \leqslant 5.0 \mathrm{~dB} \end{array}$	$\begin{aligned} & \geqslant 35 \mathrm{~dB} \\ & \geqslant 35 \mathrm{~dB} \\ & \geqslant 40 \mathrm{~dB} \\ & \geqslant 45 \mathrm{~dB} \\ & \geqslant 45 \mathrm{~dB} \end{aligned}$

Modulator drive feedtrough: $\leqslant 8 \mathrm{mV}$ (pcak) at 27.8 kHz al eilher port when powcred by the 8755 B . Reduced $10 \leqslant 1 \mathrm{mV}$ (peak) using the 11668A. (See 11668A High Pass Filer).
Drive current: nominally +50 mA in ON condition. -50 mA Off condiuion.
Weight: net. $0.17 \mathrm{~kg}(6 \mathrm{oz})$. Shipping, $0.9 \mathrm{~kg}(2 \mathrm{lb})$.

OZIS
0098
$5 \angle 5 \mathrm{ppe}$
D／N
525s
J／N
S\＄\＄ppe
stz\＄
$561 \$$
$5 \varsigma \$$
SLS Ppe
oss ppe
J／N
$0012 \$$
00928
00 y \＄
$0591 \$$
05918
szs ppe
asis
J／N
sc\＄ppe
$005 \$$
0081 \＄
$05+15 \mathrm{ssa}$ ！
00S\＄ppe
$0091 \$ \mathrm{ppe}$

$0595 \$$ － $31 \mu_{\mathrm{d}}$

 151！！ds $13 \bmod 2 \mathrm{HO} 81$ DO $\forall 69911$ indino pue indu！2peuar N ad $K_{\perp} ; Z 001 d 0$ indino pur indu！$L-J d \forall: 600$ ido 1 1014 ssed yitu ZHW OS V899II

 L－JdV indino re indul ：EDO do L LOdr indino＇ρ tewogn indus ：200 ido

 रejdsip yous aneols viligi Keldsip lauqto＇zatriols Li81
Kejds！p you uכaros puepueis 81008 Selds！p adoos jou！qes uvars zide7 LZ81
（2HD 5．92

 jolspuuos L－JdV：L00 ido
conarop zHO 81 ZHW OI VESGII

 Jorennpou 2HD 81 ZHW SI 859911 ijuo u！－anld las isaj asses
JэT！ 1018！npow 859911 sppr：： 8001 do

 uorssia sunow yory ：LOO ddo Jos 1se」 moldwoj S¢\＄L8
＇Kjoluedas pass！aq pinous wolsks

 －Isว 12 pun

 stigluov بग！

 suondo Scs
＇s（！

 Lezlfeuson－e6e101S $\forall 0$ GL8 Men

gp s＇8

Esol unied dolsela

esuodsed Ksuenbe」」 2 Z Н

 sindino jopioses

syun keldsia
 －Jole｜ncon 859911

 u－6nld GgsL8

 14610 M
（ ${ }_{\mu} 8 / \mathrm{cl2} \times$ ， $1 / \mathrm{c} 91 \times{ }^{65} / 26$ ）
Q w山
$\cdot\left({ }^{4} / \varepsilon 12 \times{ }_{4}^{25} / 5\right.$

9zis

8．O＿כeuvos p．epuels

 ＇sindu！suryoeja pus soysum

 s10013ก

 －$V 05$ ：subpedul

 шgP $01+$ molă sןəィə vo！jeaq！

：Kjeunjse дu®山esngeew oney

（）uemesnga日ш offer）esuodsed Aouenbes』

 ebues juəwesnesew
山อ2sfs sssLe
suopeonljoads

 ＇WgP LZ＋indu｜山nw｜X日W

QPが过	g $\mathrm{S}^{*} 1=$	\％HO 8i－21
日P外	时0゙1	ZHO ${ }^{\text {\％－}} 8$
GP 91＝	gp 013	zHO 8－ZHW OOI
gP $21=$	日P5\％3	${ }^{2} \mathrm{HW} 001-05$
8807	8807	
unnjey	पopleau｜	

ZHO g1 os ZHW 05：oBuB』 Kovenbedy

 －sod siuzazad pire $\lambda^{\text {w }}$ ）ol

rəll」 ssed L6！H 甘9891．

 ＇zHO O＇E1＇$\forall 98911$
：ZHS 5．6＇VS89ll＇2HO 8．9＇Vb89II ：ZHD t＇＇V6891I：ZHD
 ＇suawan nseam Jolvasap pueqpeorq

HX Jelly ssed mot 甘g \＆L．

The Hewletl-Packard Model 4ISE SWR meter is it low noise, tuned amplificr-voltmeter calibrated in JB and SWR for use with square law deieclars. It is an extremely useful inserument for measuring SWR, attenuation, and watin directly from metered scales, or as a tuned amplifier for driving an X-Y recorder when making RF substitution measurements. The 4 ISE responds to a standard tuned firequency of 1060 Hz . This frequency is front panel adjustable over a rarge of $7 / 4$ for exact matching to the intemal kHz modulation of the signel source being used. Anplifies bandwidth is also adjustable from 15 io 130 Hz . The nimrow bandwidth allows maximum sensilivity at CW frequencies while the wider bandwidthe enable swepl tests 10 be displayed on an oscilloscope or X-Y recorder.

A precision 60 JB alfenuator with an accuracy of $0.05 \mathrm{~dB} / 10 \mathrm{~dB}$ assuras high accuracy in making substitution measurements. An expand-oflset feature allows any 2 dB range to be expanded to full scale for maximum resolution. Linearily is $\pm 0.02 \mathrm{~dB}$ on expanded manges and is limited only by meter resulution on normal scales. This performance. topether with the inherently low noine figure, allows maximunn nteasurement range with excepmonad resolution and linearity.

The Model 415E operaies with either erystal or bolometer delecIors. Boih high and low-impedance inpuls are available for erystal detectors. Precise bias currents of 4.5 and 8.7 mA (200 2) are available for operation with bolometers as selected at the front panel. This bias is peak limited for positive bolomeler protection.

Both ac and dc oulputs located on the rear panel allow use of the $415 E$ as a high-gain cuned amplifier or for $X-Y$ recorder operalion. In adaition, the $415 E$ can be operated with an interaally mounted battery pack (option 001) for completely ponable use.

Specifications

Senshivity: $0.15 \mu \mathrm{~V}$ ems for [ull-scale deflection al maximuns bandwidh (I $\mu \mathrm{V}$ rons on high impedence cryslal input).
Nolse: al leist 9.5 d b below fill scale at med sensitivity and 130 Hz trandwidth with input terminated in 100 or 5000 I: noise figure less than 4 dB .
Range: 70 dB in 10 and $2-\mathrm{dB}$ steps.
Accuracy: $\pm 0.05 \mathrm{~dB} / 10 \mathrm{~dB}$ step: maximum cumulative error be-

Iween any two 10 dB steps, $=0.10 \mathrm{~dB}$; maximum cumwative ertor between iny two 2 dB steps, $=0.05 \mathrm{~dB}$: lineitrity, $\pm 0.02 \mathrm{~dB}$ on expand seales. determined by inherent meter resolution on nomal scales.
Input: unbiased low and high impelante crysca) ($50-200$ and 3500 10.000) oftimum source inipedance respectively for low noise): bitsed crystal (I V into I k Ω): low ind high cument bolometer (4.5 and $8.7 \mathrm{miA} \pm$ ar iato $200[3$, posilive bolometer proteclion; input connecior, BNC female.
Input frequency: 1000 Hz adiustable 7er: olher [requencies beiween 400 and 2500 Hz available on special order.
Bandwidth: variable, $15-130 \mathrm{~Hz}$: typically less than 0.5 dB change in gain from minimum 10 maximum bandwidth.
Recorder output: 0-I V de into an open circuit from 1000Ω source impedance for ungrounded recorders; oulpul connector, BNC female.
Ampllifer output: $0 \cdot 0.3 \mathrm{~V}$ rms (Nomi). $0-0.8 \mathrm{~V} \mathrm{rms}$ (Expand) into at lasil 10.000Ω for ungrounded equipment: output conncetor, dual binana jacks.
Meler scales: calibraled for square-law detcctors: SWR: 1 - 4, 3.2 - 10 (Nom): 1 - 1.25 (Expand). dB: 0 - 10 (Norm): $0-2.0$ (Expard): battery: charge state.
Meter movement: taut-hand suspension. individually calibrated mirtor-backed scales: expanded dR and SWR scales greater than $108 \mathrm{~mm}\left(41 / 1^{\prime \prime}\right)$ long.
RFl: conducted and radiated leakage limits are below those specified in MIL.1.618ID.
Power: II5-330 V $\pm 10 \%, 50-400 \mathrm{~Hz}$, I W: optional rechangcable battery provides up 1036 hr continuuus operation.

Welght: net $4 \mathrm{~kg}(9 \mathrm{lb})$. Shipping $5.8 \mathrm{~kg}(13 \mathrm{lb})$.
Ordering Informatlon
Price

415E SWR meter

$\$ 800$
Opt 001; rechurgeable batiery installed add $\$ 105$
Opt 002: rcar panel input connector in parallel with front panel conaecior
add $\$ 25$

Why network analysis?

Characterizing the behavior of linear networks then will be slimulated by arbitrary signals and interiaecd with a variety of other networks is a fundamental problem in both synthesis and test processes. Firr example. the engineer designing a multicamponcme netwark must predict with some certainty the final network performance from his knowledge of the individual components. Similarly, a production manager must know allowable tolerances on the products he manulactures and whether the final products meet the specified tolerances. Neiwork analysis offers a solution to these problems ahrough complete description of linear network behavior in the frequency domain.
Nelivork analysis accomplishes the descriplion of both active and passive network by creating a data model of such component paramelers as impedanees and transfer functinns. However. these parameters not only vary at a function of frequency but are also complex variables in thal they have both magnitude and plase. Until the advent of the modem network analyzer. phase was díficult 10 measure at CW frequencies and often involved laborious calculations: these measurements were aecomplished by convemional oscilloscopes at lower îrequencies and slotted lines at microwave frequencies. However, swept network analyzers new measure amplitude and phase (the total complex quantity) as a Tunction of frequency with less difficully than conventional CW measurements. Impedance and transfer funcrions can then be conveniently displayed on a swept CRT, X-Y recorder, or computer controlled peripherals such as a
prinier and/or a ploter. HP computers also combine with network analyzers to give new levels of speed and accuracy in swept measurement that could only be attained previously by long calculations al CW frequencies.
Thus. network analysis satisfies the engincering nced to characterize the behavior of lincar networks quickly, accurately, and completety over broad frequency ranges. In design stuations, this minimzes the time required to rest new designs and components, allowing more time to be spent on the design itself. Likewise, production lest times may be minimized while reducing the uncerrainties sumounding the cest.

What is network analysis?

Networt analysis is the process of creating a data model of transter and/or impedance characteristics of a linear network through sine wave testing over the frequency range of interest. All network analyzers in the HP product line operate according to this definition.

Creating a data model is importane in that aclual circuil performance often varies considerably from the performance predicted by calculations. This oceurs becanse the perfect circuit element doesn'I exist and because some of the electrical characteristics of a circuil may vary with frequency.

Al frequencies above 1 MHz lumped elements actually become "circuiss" consisting of the basic elements plus parasities like siray capacitance, lead inductance. and unknown absorpive losses. Since parasitics depend on the individual device and its construction they are almost impossible to pre-
dicl. Above I GHz component geomelries are comparable to a signal wavelength. inlensifying the variance in circuit hechavior due to device construction. Furtber. lumped-element circuit theory is useless at these irequencies and distributed-element (or transmission-line) parameters are required to completely characterize a circuit.

Figure y . 2 GHz to 18 GHz measurement of magnitude and phase in a single sweep

Data models of beth transfer and impedance functíns must be oblained to completely describe the linear behavior of a circuit under lest. At lower frequencies, h, y. and z-parameters are examples of transfer and/orimpedance funclions used in network description: at higher frequencies, S-parameters are used to characterize inpui-outpu\} impedances and iransfer functions. Therefore, a network analyzer musi measure some form of a circuit's transfer and impedance functions to achieve its objective of complete nelwork characteriza. (ion.

Figure 2. input impedance of microcircuit amplifier is read directly with Smith Chart Overlay for Polar Display

Network analysis is kimited to the definizisn of linear networks. Since linearily constrinns networks scimulsted by a sine wave to produce a sine wave output. sine wave testing is an ideal method for characterizing linear network's amplitude and phase responses as a function of frequency. In nonlinear measurements phase is often meaningless and amplitude has be be delined with respeci to individual frequeney components. For nonlinear measurements see sections on spectrum analyzers and wave analyzers.

Network analyzers

Hewlett Packard Network Analyzurs are instrumenis that measure transfer and/or impedance funclions of linear networks ibrough sine wave testing. A network analyzer system accomplishes these measurentents by configuring its various components around the device under 1est. The first requirement of the measurement sys. tem is a sine wave signal source to stimulate the device under test. Since transfer and impedance functions are ratios of various voluages and currents, a means of separating the appropriate signals from the measurement ports of the device under test is required. Finally, the network analyzer ilselr musi deteet the separated signals, form the desired signal mios, and display the results.

Signal sources and signal

separation

In the general case. any sine wave source meeting the network analyzer's specificalions can be used to stimulate the device under test. For CW measurements a simple oscillator may suffice; for greater CW frequency accuracy a signal generator or synthesizer may also be desirable. If the analyzer is capable of swept measurements, great cconomics in time can be achieved by stimulating the device under tesi with a sweep oscillator or swecping synthesizer. This allows quick ind easy characterization of devices over broad frequency ranges. Some network analysers will operate only with a companion source which both stimulates the device under test and acts as the aralyzer's internal oscillator.

At low frequencies it is not parlìcularly difficult to separate the appropriate voltages and currents required for transfer and irmpedance function measurements. Signal separation is merely the process of establishing the proper shorts, opens. and conneclions at the measurement prorts of the device
under test. As frequencies increasc. the problem of signal separation usually involves iraveling waves on transmission lines and becomes comespondingly mare difficuls. Hewlett Packard manufactures tess sets (ofien called "ramsducers") applicable for separating the appropriate raveling waves in a variety of high frequency measurements.

Broadband and narrowband detection

After the desired signals have becn obtained from the test set (or transducer) they must be detected by the network analyzer: HP network analyzers cinn use noe of two detection methods. Broadband detection accepts the full frequency speetrum of the input signat white narrowband detection involves tuned recivers which conven CW or swept RF signats to a constant IF signal. There are certain advantages to each deteclien scheme.

Broadband detection reduces instrument cost by eliminating the IF section required b) narrowband analyzers but sacrifices noise and hamoonic rejection. However. noise is not a factor in many applications. and circiul measurement techniqies, using filters. can eliminate hamonic signals that would otherwise preclude accurate measurements. Broadband systems are generally source independent while some narrowhand systems require companion tracking sources. Finally, broadband systems can make measurements where the input and output signals are not of the same frequency, as in the measurement of the insertion loss of mixers and frequency doublers. Narrowband systems cannot make these measurements. sitive low noise detection of the constant IF possible. This allows increased accuracy and dynamic range for frequency selective measurements (as compared to broadband syslenis) and high resolution ihrough IF substitution using precision IF altenuators. Source dependent narrowband syslems utilize a companion lracting soarce not only io stimulaie the device under tesi but also to produce a signal oflsel from the RF by a fixed frequency for tuning the analyzer's constant IF.

Slgnal processing and display
Once ine RF has been detected. the nelwork analyzer must process the detected signals and display the measured gnantitics. All HP nelwork analyzers are multichannel receivers utilizing a reference channel and al least one test chanmel: absolute signal levels in the channels. relative signal levels (ratios) belween the channels, or relative phase difference between channels can be measured depeoding on the analyzer. Using these measured quantities, it is possible to either display direcily or compule the amplitude and phase of transfer or impedance funclions.

Amplitude measurentents fall into two categories, relative and abselure: absolute measurements involve the exact signal level
in each ehannel while relative measurements involve the ratios of the twe signal channels. Absolute measurements are usually' expressed in voluge (dBV) or in power (dBm). The units dEV are derived hy taking the log ralio of an unknown signal in volis to a one volt reference. Similarly, dBm is the log ratio of unknown signal power to a one millivart reference.

Relative ratio measurements are usually made in dB which is the log ratio of an unknown signal (Test Channel) with a chosen reference signal (Reference Channel). This allows the full dynamic range of the instrumentation to be used in measuring varia. hions of both hiyh and low level circuit responses. For example, 0 dB implies the two signal levels bave a ratio of unity while $=20$ dB implies a $10: 1$ voltage rahio berween tho signals.

Figure 3. Simultaneous measurement of transmission response and passband reflection coulficient

All nerwork analyzer phase measurements are relative measurements with the reference chammel signal considered to have zero phase. The analyzer then measures the phase diference of the lest chatanel with respect to the reference channel.

Measurement results at CW frequencies may be displayed on analog meters. LEDs or computer concrolled printers. Swepl frequency measurentents of amplitude and phase may be displayed versus frequency on CRTs or $\mathrm{X}-\mathrm{Y}$ plonters. The addition of digital storage and nommalization to network analyzer CRT's assures Hicker-fiee traces and removal of frequeney response errors for fast, real-lime displays of test device responses varsus frequency.

Figure 4. Autornatic aliernate sweep for colncident measurement IIlter passband and skirs

Low frequency network analysis

Nectworks operating al frequencies below 10 MHz are generally characterized by meusuring the gain and phase changes through the network and the associated input and ontpul impedance: b. y, and z-parameters as well as other lumpedcomponent models are typical analytical and computational tools used to represent these measurements. The first derivative of phase with respect to frequency. group delay. is an important measurement of distortion in communication systems. Hewlett-Packard produces a broad line of instrumentation capable of measuring all of these parameters.

Figure 5. Two independent techniques for measuring filter phase distortion

Phase information complements amplipude data in the measurement of low frequency parameters because it is more sensitive so nelwork behavior and because it is a required componment of complex impedance and transfer functions. For instance. phase is more sensitive than amplitude in determining the frequency of network resonances (poles) and anti-resonances (zeroes). This is because the phase shift of a network transfer function is exactly zero at the frequency of resonance. Phase information is :Ilan vial in circuil design. paricularly toop design, where phase margins are critical.

Figure 8. Direct Measurement of Group Delay with digital readout at marker

Plase data are also required to measure delay distortion or gronp delay of network. Delay distortion necurs when different frequency components of a complex waveform experience nonlinear plase shifs as they are transmilted through a network. Group delay is a measure of this distortion and is defined as:

$$
T g=\frac{d \Theta}{d \omega}
$$

There are several lechniques for measuring group delay: the most common techniques are phase slope, amplitude modulation. frequency modutation. and frequency deviation. Most HP network analyzers can make measurements with al least one of these rechniques whik several analyzers measure and display group delay directly. Choice of a group delay measurement technique is dependent on the particular device under test and the resolution required

Figure 7. Simultaneous measurement of transistor S-parameters
An altemative method for measuring phase distortion is deviation from lincar phase or differential phase. Deviations from linear plase can be measured by introducing enough electrical length in the network analayzer's reference channel to linearize a device's phase shift. Once this has been accomplished it is possible to obscrve any variatrons in phase shilt linearity al high resolution. Since group delay is the derivative of phase ($(\mathrm{\theta} / \mathrm{f} \omega$). nonlinearities in phase skift correspond direcily to changes in a device"s group delay. Introduction of electrical length in the measurement channel may be accomplished by phesically adding eable. or il may be accomplished electronically on some network analyzers.

High frequency network analysis

Total voltage and current along a transmission line begin to vary periodically with distince as frequency increases. Consequently. it hecomes difficult to establish the required shorts and opens in the correct measurement plane to determine low frequency parameters. Transmiscion-line theory explains the variations in total vollage and corrent at high frequencies through forward and reverse iraveling waves. Thus. traveling waves are the logical variables to measure al bigher frequencies.

Figure 8. S-parameter model for a twoport linear network

Scallering parameters or 5 -paranmeters were developed to characterize linear networks at high frequencies. S-pammeters define the ration of reflected and transmitted Iraveling waves mecasured at the network ports. S_{1} is the complex reflection cocfficent al port I and is the ralio of $\mathrm{Er}, / \mathrm{Ei}$, if $\mathrm{E}: i \mathrm{i}=0$ (port 2 terminated in its characteris. tic impedances. S_{n}, is the complex imnsmission coefficieat from por 1 to pon 2. F. $\mathrm{r}_{2} /$ $E i_{1}$, if $E i_{9}=n \Gamma_{1}$, and Γr_{2} are nurmalized volapes (volange divided by the squatic rood of the characleristic mpedance) and represent the amplitude and phase of the iraveling waves. By reversing the pors and terminating pori I in its characteristic impedance. S_{wz} and S_{18} can be similarly defined. From these definitions. the following equalions can be derived:

$$
\begin{aligned}
& E r_{1}=S_{1} E_{1} i_{1}+S_{12} E i_{2} \\
& E r_{3}=S_{8,}, E i_{1}+S_{22} E i_{2}
\end{aligned}
$$

where incident signals act as independent variables detemining the signals leaving the network. The definition of an S-parameter can be aasily extended to multiport net. work: measurcment is also easily accompleshed by terminating additional ports in iheir charucteristic inspedances. Thus. S-parameten completely describe linear network behavior in the same manner an low ficquency parameters.
S-parameters offer numerous advantages to the microwave engineer because they are hoch easy to use and easy to measure. They are cacy to measure because the device is terminated in its charicteristic impedance which is accurate al high recuuencics, allows swept broadband frequency measurement without tuning. entances the stability of active devices, and permits a test sel up to be used for different duvices. The design process is simplified becalise S-parameter's are direcdy applicable to how graply analysis. HP network analyzers and the apmropriate lest sels will measire and directly display S_{21} or S_{12} as gain or allenuation and S_{11} or S_{0} as reflection coefficient. relurn luss or impedance. Also. S-parameter may to directly related to h, y. and z-parameters through algebrac transformations.
With the increased utilization of mierowave frequencies in a broad specirum of isplications. S-parameter measurement, have become more imporank and more generatly used in designing both active and passive networks. Hewlen-Packard has leveloped a scrics of lutorials for measurement and design with S-paramcters: Application Notes 117-1. 117-2, 154, video lapes \# 800586 and \#800600 deal with general S-parameter techniques. Further aids include vpecial S-paranleter design seminars and a sel of calculator rwigrams "Microwave Circuit Design PA ${ }^{\cdots}$ for computationally dided design.

Additional capabilities

The compulational capabrities of a digral computer can complement the network analyzer's versalility ihrough simplíying and speeding measurements. data prucessing. and accuracy enhancement. HewlettPackard has integrated network analyzers
into compuler systems and now offers some analyzers that may be casily interfaced with HP deskiop computers through the Hewleti-Packard Interface Bus.

Precision design work and important manufgeluring tolerances demand highly accurate measurements, but more errors in nerwork measurements are complex quantitics that vary as a function of frequency. making manual error correction prohibitive. However, the computer cin make great contributions to measurcment confidence by quickly and easily performing the complex mathematics for sophisticated error correslion.

Aside from new levels of accuracy. computer coniroiled network analysers can be programmed to sel up and nake many measurements automatically. The measurement process is further accelerated by the computer's abiliny to store. iransform, summarize. and oulpul data in a variety of formals on a number of peripherals. These capabibities make the computer conirolled network analyzer ideal for both compulalionally aided design or automalic production testing.

Network Analyzer Product Line

Hewletl-Packard offers a complete line of network analyzers capable of measurements through the 1 Hz to 40 GHz frequency range. Furlker information and detailed specifications on individual network analyzens are availablc on the following pages (see matrix for specific page numbers).

3575A

The 3575A measures Phase and Amplitude or Gain. With the 3575A, the complete response picture is available al a reasonable cost from a single instrument. over an 80 dB range. from I Hz 1013 MHz . The 3575A uses a broadband measurement lechnique, which is attractive because the measurement is not constrained by internal tracking source or dedicated external device. The 3575 A is not dependent on the wave shape. thus measurements can be made on a variety of waveforms such as triangle and square waves.

3040A/3042A

The 3040 A is a network analysis system capable or measuring amplitude and phasc to 13 MHz . Group delay is an optional capability. The system consisis of a synthesizer signal source and a two-channel tracking detector. Measurement applications include filter design and production. amplifies testing. delay measurements on communications devices. and measurements on any linear tevo-port device.
The 3042 A is a fully automatic sysiem which uses the HP 9825A Deskrop Computer as a computing controller. The memnry. computational power and decisionmaking power of the computing controller extend the measurement solutions to complex networks in the lab or rapid production line testing. Accuracy can be improved by subracting system errors from the measurements by using the memory and aleebrate powers of the computer and supplied sohware.

8407A

The 84007A network analyzer tracks the 8601A generator/sweeper (or the 8690 B' 8698 B sweeper) from 100 kHz 10110 MHz . Measurement capabilitics include:

1) Transmission (gain, loss, phase shift) and reflection (relum less. impedance) measured quickly and easily in either Son or $75 n$ by sweeping over the frequency range of interest
2) Complex impedance $[Z], \theta$ or $R=j X$ over the wide impedance range 0.1Ω to $>10 \mathrm{k} \Omega$.
3) Voltage and cument transfer functions.
4) High impedance in-eircuit probing.

A rectangular and polar dixplay and various CRT overlay's permit direct readings of parameters of interest as frequency is swepl. Applications are detailed in Application Notes 121-1, 121-2. A videotape " 8407 Network Aralyzer System," \#800475. is also available.

8405

The 8405A vector volimeter is a dualchannel RF millivolemeter and phasemeter. It reads the absolute volcages on either of two channels and simultaneously determines the phase relationship between them. CW measurements can be made over the frequency range I MHz to I GHz .

Besides its use as a volimeter, applications of the 8405A include:
b) Transmission measurements (gain, loss. phase shift and re(um loss) in SOR systems.
2) Group dclay and amplitude modulation index.
3) in-circuil probing.

4 S-paramelers in 50Ω syslems.
Application Notes 77.), 77-3, 77-4, and 91 are available for more detail on the above measurements.

8505A/8507A

The 8505A Network Analyzer provides neasurement capability from 500 kHz 101.3 GHz . Three RF input pors, each with 100 dB of dynamic range, make possible simultaneous network measurements of reflection and transmission paramcters. Two independent yet identical display channels are cach capable of displaying magnilude, phase. deviation from lincar phase and group delay of either the transmission or reflection claracteristics of an RF Network. These parameters can be displayed in rectangular, in pokir coordinates or both formals al the same time. The Swept Source, which is an incegral part of the asalyzer, offers extreme frequency ficxibility inrough seven diferent modes of operation.

The $8.507 \mathrm{~A} / \mathrm{B}$ is an Automatic Network Analyzer using the 8505 A with HP . IB interface and either the HP 9825A or HP 9830 B Desktop Computer as a controller. The "Learg" mode of operation extenus the tradilional automatic operation to a new level of operator convenience. Accuracy
enhancement. formating of dala, and the speed and ease with which data con accomulated and summarized are all network measusemont coniributions made by the 8507A/B.

84108/8409A

The 8410B network analyzer system measures the transmission and reflection characteristics of line:rr networks in the form of gain, attenuation phrise shift, reflection coefficient, normalized impedance and S-parameters in the frequency range of 110 MHz 1040 GHz .

Harmonic frequency conversion of the RF to a constant IF is accomplished by the 84IIA Harmonic Frequency Converter from 110 MHz to 12.4 GHz . he 8411 A Op. tions 018 operates from 110 MHz to 18 GHz . In the frequency ranges $18-26.5 \mathrm{GHz}$ (K-bind) and $26.5-40 \mathrm{GHz}$ (R-band). the K8747A and R8747A Refection/ Trambmission Test units use crystal mixers and a local oscillator to heterodyne the sig. nals down into the range of the 84108) 8411 A . In this manner, waveguide components can be measured from 18 10 40 GHz .
The 84108 is a ratiometer using both reference and test signal inputs: consequently, the sweeper output must the divided into channels. This is accomplished by a "Test Ser" whose other major function can be to provide the switchigg required for making transmission and reflection measurements with minimum or no changes in the neasurement selup. Hewlent-Packard offers a total of twelve different test sets covering various frequency ranges and switching functions.
Another major instrument required in the 8410 measurement system is a unit for the detection and display of the IF ampheude and phase. Three plug-in ठisplays (for the S410B mainframe) are avaitable for this purposs: a phase-gain indicator with meter readouts for CW meusurements: a phasegain display for displaying log amplitudic and phase versus frequency: and a polar display for displaying amplitude and phase in polar coordinates.
The 8410 B is capatble of swept measurements over multi-octave bands through 18 GHz . Between I8 GHzand 40 GHz 2 GHz windows may be vicwed. Mcasurements of more than 60 dB of atlenuation and 40 dB of pain are possible.
The HP 8409A Scmi-Autonatic Nelwork Analyzer System is a practical solution to the nesed for aulomatic error-corrccted RF and microwave network measurements using a simple and coonomical contiguraion. It is a complete measurement system, consisting of the programmable 8620 C Sweeper. The 8410B Nelwork Analyzer Sys1 cm . and the 9825A Deskiop Computer. It brings the major advantages in accuracy, speed, data collection, and operating convenience at a modest cost increase over the manual network analyzer system. Further information is available in Application Notes 117-1. 117-2. 22I and in videotape \#800473.

8540 Serles

The 8540 series system (100 MHz to 18 GHz) couples the network analyzers' abilicy to completcly characterize a linear network with the computer's ability to completely seup a measurement, store data, and solve complex mathematics. As a result, the au-
lomaled systern offers these advantges: increased speed of measurecoent; increased accuracy through sophisticated errorcorrection techniques; ease of operation: and a variable data output format (alphanumeric or graphic with hardcopy. cassette or CRT presentations).

Data can also be made readily accessible 10 computer aided design programs to assist designer in evaluating overall network perfommance based on component measuremenl data.

NETWORK ANALYZER PRODUCT LINE SUMMARY

Model	frequenoy Rango	Source	Measurement Capabnitues
3575A Gain Phaso Meter Pagi 438	$1 \mathrm{~Hz}-13 \mathrm{MHz}$	None	Gain Phase and Amplitude Low Frequency Analysis
3040A Manual Network Analyear Pape 435	$50 \mathrm{~Hz}-13 \mathrm{MHz}$	$\begin{gathered} 3320 \mathrm{~A} / \mathrm{B} \text { or } \\ 3330 \mathrm{~A} / \mathrm{B} \end{gathered}$	Amplitude and Phasa Option Groud Delay Gain or Loss Linear Frequency Sweap
3042A Automatlc Network Analyner Page 436	$50 \mathrm{~Hz}-13 \mathrm{MHz}$	33308 Synthesizer	5825A or 9830 Besklod Compuiter Contuol Complex Network Analysis Decision Making Abllity Computation Capability
8407A Natwork Analyzer Pago 448	$100 \mathrm{KHz}-110 \mathrm{MHz}$	```8601A Generator/ Sweeger 86908/86986 Sweep Osclilator```	fiansfay functions, impadance in $500,75 \Omega$ Systems Complex Impedance 0.1Ω to $>10 \mathrm{k} \Omega$ High Impedance In-Citcuit Probing S-Darameters ln $50 \Omega, 750$ systems
8405A Vector Volmeter Page 450	$\begin{aligned} & \text { I } \mathrm{MHz}^{2}-1 \mathrm{GHz} \\ & \text { (CW) } \end{aligned}$	32008 Oscillator. VH5 Sigral Cenerators, 608E (VHF), 612A (UMF) 8654 (JH7), and $8640 \mathrm{~A} / \mathrm{B}$	Volimeter Transler functions. Imoedance in 50 n systems Group Delay, Amplitudo Modulation Index S-0arameters fin 50Ω systems
8505A Af Nentork Analyzar Page 440	$500 \mathrm{kHz}-1.3 \mathrm{GHz}$	Swept Sourca Included	Complex Iranster functions-Gain/Loss or S-parameters Complex Impedance- Γ, Retum Loss, $\mathrm{R} \pm \mathrm{jX}$ Distortion-Groud Delay, Deviation Irom Unear Phasa Digital Readout of Dasa while sweaping Frequency Counter included HP-IB with Learn Mode
8507A/B Automatic RF Network Analyzer Page 448	$500 \mathrm{kHz}-1.3 \mathrm{GHz}$	Swepl Source Included	9830B or 9825A Derkiog Computer with 8505A HP-18 with Learn Made Automatic Measuramenls whth Dsia Formating Accuracy lmproved Measurements
8410 B Network Analyzer Page 451	$110 \mathrm{MHz}-406 \mathrm{Kz}$	8520 or 8650 Sarles Sweep Oscillators	Transmission/Rellection Characleristics, S-Parameters 50 nCoax Measurements 110 MHz 1018 GHz Waveguide Measurements 8.2 GHz io 40 GHz Cominuous Mulloctave Measurements with 8620 Series Sweepers OC Blas ior Semiconductor Measurements
8409A Semi-Automatle Natwork Analyzer Pago 45\%	$110 \mathrm{MHz}-18 \mathrm{GHz}$	$8620 C$ Series Sweep Dscillalors	Semi-Automatic Transmission/Reflection Measurements full Error Correction in Reflection Moasurements 84108 Network Analyzer Systen 9825A Desktop Computer
85820 Automatic Network Aralyzer Page 877	$100 \mathrm{MHz}-18 \mathrm{CHz}$	8620 or 8690 Series Sweep Oscillators	Automatic Measurements of Transmission/Refleciion Characteristics Full Error Correction Virtually Ho Programming Required Versatile Output: 28 Parameter Rlphanumeric or Graphic; Rardcopy Casserte or Cathode-Ray Tube

- High resolution digital amplitude and phase measurements
- 100 dB dynamic range
- Precision digital sweep capability
- Narrow band analysis
- Optional group delay and limit tesi
- Full digital control via HP-IB

3040A Network Analyzer

Description

The 3040A Network Anadyzer is designed 10 meet the deniand for precine and fast characterization of boub active and passive linear tws-port devices. The Nerwork Andy/er is a new, prwerful bench system that makes digital amplitude, phase and group delay response measurements over a 50 Hz 10 I 3 MHz frequency range. It uses the 3330B Automatic Synthesiuer with leveled numpitand digital sweep capability to generale the locial oscillator signad for the 3570A Tracking Receiver and 10 provide the stimulus to the device under teat.
This system effcetively combines the wide dynamic range and the high aecurscy of the 3570 A Tracking Receiver with the high revolu. lion, and stabilicy of the 33308 Synthesizer, giving the design. production and Q.A. engineers working at audio. video and RF firequencies the precision, converience and high information content of swept-frcquency response measurements. but with the point by point aceuracy of synthesized incremental iswquency sweeps.

Residual FM, often a sorious limitation to the frequency resolufion of swept frequency measurements, is very low ($\ll 1 \mathrm{~Hz}$) in the 3040A Syslem, alowing accurate natrow band sweeps.

The 3570A Analyzer (Tracking Receiver) has iwo identical channels for fist, high nccuracy "B-A" measurements of gain or insertion loss of iwo-por devices and to measure the phane shife between input and output pork. It can also funclion as a limit comparator to detennine how closely the gain and phase response of a device matches that of a reference.

Both the passband and the stopband of a device can be examined in detail becouse the 3570A Analyzer hay boch a wide amplitude range of $120 \mathrm{~dB}(1 \mu \mathrm{~V}$ to 1 V) and a high revislution display $(0.0) \mathrm{dB}$ incremenss). The digital readout also displays phase readings with 0.01° resolution.

Beyond the basic amplitude and phase measurements. the 3040A oners several atiomatic features not found in more conventional network analyzers.

One is Digital Offsel: Values of amplinde and/or phase measured on a refercnce device ate stored in the insirument's memory at the push of a bulton. Future measurements can then be displayed relalive to the stored values. This could be used, for axample, to quickly find the -3 dB passband limits of a filter or amplifier.

Another fearure is Group Delay: As the synthesizer is stepped in froquency. the analyzer's internal digital processor calculates group delay from wo phase thilt measurements as $\mathrm{Td}=\Delta \phi / 360 \Delta \mathrm{~s}$ scc.

A third one is Limit Test: High and low limits can be entered as digital words from an extemal controller, for example, a paper tape. The analyzer can be set to stop or output a marker when a limit is reached. This capability is useful for example to preciscly find the center frequency of a resonant circuit by slopping at the 0° phase reading.

The 3040A Network Analyzer introduces precision, convenience and built-in "intelligence" to the problem of cbaracterizing the behivior of linear networks on the bench.

Description

The 3042A Automatic Network Analyzer is a highly powerful. fully automatic computer controlled system that is denigned to meel the demand for precision. speed, automation, simplc operation and low cost in the area of fully characterizing active or passive linear two-por devices.

The 3042 A system uniquely integrates the

- wide dynamic range and high resolution of the 3570 A Network Analyzer (iracking receiver)
- accuracy and high stability of the 3330 B Synthesizer and
- The power computation. data processing and sman periphema control capabilitics of the 9825A Compuling Controller
into a superior systems performance that results in a unique set of contributions to solve the problem of characterizing the behavior of Imear iwo-port over the wide frequency range of 50 Hz to 13 MHz :
- Amplifude, phase and group delay measurement
- Wide amplitude range and high resolution
- Speed and precision in measurements
- Simplicity and flexibility in operation
- Data analysis and presentation of resulis
- Simple programming and powerful oulput
- Accuracy enhancement and decision making
- Ful automation and substanitial reduction in costs

```
- Full automation and low cost
- Speed and precision in measurements
* Accuracy enhancement
- Data analysis and presentation of results
- Simplicity and flexibility in operation
- HP-1B systems interfacing
- 9825A Computing Controller
```

The 3042A is a fully automatic two-channcl Network Analyzer Syslem that provides digital amplitude. phase and group delay measurements, on line data analysis, data reduction and decision making capathility plus formaned graphic or tabular representation of resulis or Jata storage for further processing al a later time.

Environments such as production, quality assurance and the laboratory are now provided with the capability of extending prectsion network analysis to applications that were previously impractical because of the lengit of time it took to make the necessary measurements.
Productlon applications
In production applications the 3042A substantially reduces the time and cost of making a range of simple or complicated tests on all types of components, for example. crystals. amplifiers, filters and uther analog devices. The system can run through a long series of lesis uil a device, checking performance al all specified points and deliver a simple pass/fail answer.

However, automatically compiled test data provides excellent production stalistics for improved production control. more precise scheduling and accurate production cost analysis.

Testing programs with buill-ia operator instructions minimize the requirements for highly trained technicians as well as training costs. Furthernore, uniform test procedures may casily be established. The 3042's impact in the production environment can be directly traced to a substantial increase in total production tbroughput while at the same lime increasing the number of test parameters. resuluing in grealer produci conidence and lower production cost.

Quallty assurance applicatlons

In qualry assurance applicalions the 3042A not only significanily reduces the cost of lest equipment necessary to assure a comprehensive product testing job, but the system's inherent flexible RP-1B interface structure allows the system configuration 10 be casily changed by either simple sofiware modifications or hardware addjlions. Adapling the 3042A System to an application, which may require a programmable power supply or contact closure 10 drive the device under tesi, becomes as simple as connecting the additional instruments via the standard HP-IB connector, loading a different program from the computing controller's casselte and running it. Skillud technicians may be relieved from repelitive yee demanding tasks and placed in positions that maximíze the use of their knowledge and skills. The 3042 A provides relable and repeatable results. Various parameters may be tested in greater detail and in less time, ressulting in greater product confidence and quality but lower warmanty costs.

Automatically compiled test 山ta provides excelleni quality assurance statistics which can easily be presented in any formatted graphic or tabular form by an optional plotter or line printer.

Laboratory applicattong

In laboratory applications. engineers gain greater insight into theis circuil design due to the speed and ease with which data can be accumulated and summarized with the 3042A. The casy-10-use calculator programming formal allows easy-to-write. customized programs which solve specialized measurement problems in a fraction of the time required to manually perform and evaluate the same measurements or to write a corresponding computer program. In addition the accuracy enhancement software fumished with the 3042A System significantly increases the accuracy of the system seven times over that of a single channel measurement (threc times over a "B-A" measurement). by judiciously combining the capabilities of the instruments and the controller.

System control and interface

The 3042A Automatic Network Analyzer incorporates the new 9825A Computing Controller as systems controlles. operator interface and data processor. The 9825A offers the power and speed of much larger computers but features a high level progmmming langauge and editing capabitities that allow nearly instant use of the system with minimal effor.

System-operator interface is greatly simplitied through the 9825A's alphanumenic display and lypewriter-like keyboard.

Eisy prograrmability which requires minimal training. versatike ediling copability for reducing programming time, immediate feedback on error, made due to improper instructions, availability of large user menory for Jengthy program or data storage. cantridge convenience for permanent storage of pragrams or data and nexibilily for ingul and outpul functions are fealures offered by the 9825 A controller.

Summary

The 3042A Automatic Network Amalyzer provides a complete solution 10 production, quality assurance and laboratory applicacions al audio, video and RF frequencies with accurate. reliable. repeanole and fast results plus the high information content that automatic gain-phase-delay measurements can give.

Specifications 3040A and 3042A systems

Sources (Channel Λ \& B outpurs are isolated and electrically idencical)

Frequency

Aange: 0.1 to 13.000 .999 .9 Hz .
Fesolution: 0.1 Hz (9 digits).

Amplliude

Range: +13.44 io $-86.55 \mathrm{dBm}(50 \Omega)$.
$+11.68: 10-88.31 \mathrm{dBm}$ (75Ω option).
Resolution: 0.01 dB .
Accuracy
Leveled frequency response (10 kHz reference)"

10 Hz	$-13.4 \mathrm{dram}$
20.054 48	$-16.556 \mathrm{Bm}$
$=0.1$ d8	-36 $55 \mathrm{d8m}$
$=0.268$	-65 55 dim
± 0.408	-85.55 d8m

-Add 05 dB for ieveling sumtch in oH pasicion.
Attenuator: (10 kHz reference, $25^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$) $\pm 0.2 \mathrm{~dB} / 10 \mathrm{~dB}$ step of ancenuation down from maximum oulpul.
Absolute: $\left(10 \mathrm{kH}\right.$. maximum outpul, $\left.25^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right)=0.45 \mathrm{~dB}$
Stablilty: ($24 \mathrm{hr}, 2^{\circ} \mathrm{C}=1^{\circ} \mathrm{C}$): $\pm 0.01 \mathrm{~dB}$.
Impedance: 50 or 75Ω (optional) $=2 \%$.
Recelvers (Channel A \& B inputs are clectrically idenical and both luned precisely to the signd source's (requency)
Frequency
Range: 50 Hz to 13 MHz .
Resolutlon: 0.1 Hz .
Selectlvity: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$ and 3 kHz bandwidths ($60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidths. 20: 1).
Amplltude: (Output is in dB relative to $1 \mathrm{~V}, 0 \mathrm{dBm}$ or 0.1 V . cortesponding lo the position of the "Max/Rel Inpul Voliage" switch.) Measurement range: I V mis to $1 \mu \mathrm{~V}$ rms.
Dynamle range: 0 to - 100 dB (using A or B amplílude function), -100 dB to +100 dB (using $B-A$ amplifude function).
Resolution: 0.01 dB .
Accuracy: ($25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$): Accuracy of the 3042A is enhanced with software supplied with the system over the 50 Hz to 10 MHz and over the rop 20 dB of the dynamic range as shown below.
Frequency response: A or B "Amplitude Function" $\pm 0.5 \mathrm{~dB}$: $B-A$ "Amplitude Function" $\approx 0 . I d B$; using Accuracy Enhancemen Sofiware $\pm 0.03 \mathrm{~dB}$ furnished with 3042 system.

Linearity: (A or B amplitude function)
$010-20 \mathrm{~dB}$
$-2010-80 \mathrm{~dB}$
$-8010-50 \mathrm{~dB}$$\quad\left\{\begin{array}{l}=0.2 \mathrm{~dB} \\ =006 \mathrm{~dB} \text { wilh Accuragy Enhancement } \\ =05 \mathrm{~dB} \\ =1.3 \mathrm{~dB}\end{array}\right.$

Stabllity ($8 \mathrm{hr}, 2^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$ alter 3 hr. warmup)

$100 \mathrm{~Hz} 8$$3 \mathrm{kq} 8 \mathrm{~m}$				$=0.02 d B I^{\prime \prime} \mathrm{C}$
	$\pm 0.05 \mathrm{~dB}$	- 0.08 d日	Hot specified	
10 Hz BW	$\pm 0.08 \mathrm{de}$. 21515 dg	Not specified	-0.05 $48 / \mathrm{C}$

Phase (Phase reference is channef A)
Range: - 179.3° to 179.5° (display recyeles).
Resolution: 0.01°.
Accuracy: $\left(25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\right)$.
Frequency response (Channel at 0 dB)

Amplltude response Channcl B within 6 dB of Channell A

For channels at different levels (specification determination by lowest inpui).

088	-20 18		- 60.18	-80 d8		$-100 \mathrm{~dB}$
	$=1.3^{1}$	$=1.5{ }^{\circ}$		-3.50	No Spect	

Linearlty: $\pm 0.2^{\text {² }}$ (Channel B within 6 dB of Channel A).
Input Impedance: I $M \cap=2 \%$ shunted by $<30 \mathrm{pF}$.
General
Programmabllity: all conlrols, except power swilches are programmable using the HP-IB formal.
Ultra-high accuracy: the 3040/42A syntems can be coupled with an external device such as a calihrated allenuator to provide relative measurements whose amplitude accuracy is limited to the amplitude stability of the receiver and source and the accuracy of the extemal device.

3040A Options

The basic 3040ג sytem options are listed beiow. For more information refer 10 the $3040 / 3042 \mathrm{~A}$ data shees.
(Order Opt I10 or III and Opi I20 or \{2 I)
110: Siandard S0S 3570A $\$ 6890$
111: Standard 75@ 3570A \$6890
112: Delay/Limil TesuOffset (Hardware) $\$ 470$
113: Cable and Load Kit
120: Standard S0 亿 3330B
$\$ 7455$
121: Standard 75S 3330B $\$ 7455$

3042 A Options

The basic 3042^ system options are listed below. For more information refer to the 3040/3042A diata sheet.
$\begin{array}{lr}\text { 200: } 50 \Omega \text { Sylen } & \mathrm{N} / \mathrm{C} \\ \text { 201: } 7 \leq \Omega \text { Sysiem } & \mathrm{N} / \mathrm{C} \\ \text { 204: } 1201 \mathrm{~B} \text { Oscilloscope } & \$ 2670\end{array}$

The 3042A system is fully integrated, tested, verified and specificd as a system. It is supplied with complete sonware and documentation.
3042A Automatic Network Analyzer
\$24,775
Consisting of: 3330B Synthesizer. 3570A Nelwork Analyzer. 9825 A Calculator. 6.8 k bytes memory, ROMs. Interface and Jocumentation, S6" Rack.

3575A Option 001 dual penel meters

Description

The HP 3575A Gain-Phase Meter is a versatile lwo-channel analyzer which can measure and display the absolute amplitude level or amplitude mio of signals present at the inpuls. In addition, the 3575 A can measure the phate relationship of the two signals. This analyzer is a broadband delector which is easy 10 use because no frequency luning is required.

Since a dedicated tracking source is not required to operate with the 3575A. a wide selection of stimuli is possible. This tlexibility couplal with a variety of possible amplizude, gain and phase outpuls, (LED display, analog oulpurs, and optional BCD) give you a wide choice of cost/results Iradeoffs. For example. you may wish to manually plot your ociwork response dala on a Bode diagram in whith case a low cost sine wave oscillator slimulus may be used. For cisier, quicker resulis you may select a sweeping oscillator and an $x-y$ plotter and let the instruments plot your response. You may use a calculator or computer to control a programmable stimulus source and the 3575A to provide automatic measuremenis. Here you have a wide range of computation and output possibililies.
Phase
The phase relationship of two signals is indicated over a range of ± 192 degrees with 0.1 degree resolation. A unique logic circuit (pa(ent) design allows the 3575 A to make stable phase measurements in Ihe presence of noise. This feature minimizes the error to leiss than two degrees for a signad-ro-noise ralio of 30 dB . One of three band limiting filsers may be selecied 10 get further noiso rejection.

The 3575 A is also capsble of measuring the phase relationsbip of a variely of waveforms such as square wirben and lifangle waves. Even harmonic and in-phase odd hamonic components of these signals cause no phase measurement error. For oul-of-phase edd harmonic signal-to-harmonic matios of 40 dB , measurement errors are less than 0.6 degree as shown in Figure 1

Amplifude

The amplitude of either channel or the ratio of the two can be measured over an 80 dB dynamic range and 100 dB measurement range. Resolution is 0.1 JB . Resulis are displayed in dBV for channel ampliude and dB for ratio measurements. Digil blanking and channel overoad annunciators will tum on if the maximum allow. able signal level at either channel inpul is exceeded.

Readout

The standard three-digit LED display may be selected by the operator to indicate the amplitude of channel A or B or gain or phase. A second three-digit LED display is optionally available for simulaneous display of amplitude and phase rcadings. Lighted annunciators idenify the measurcmed funclion, unils and remote status.

Programmable

「wo prognamable options bolh offer full control of froni panel functions and BCD output of information (amplitude. ratio or phasc) contained in both digital displays. The two oplions give the user a choice of negative true or positive true oulputs.

Appilcations

The 3575A can solve network aralysis problems in the I Hz to 13 MHz frequency mange where complex measurements (gain or phase or beth) are required. A fow of the many measurements it can make are: gain and phase response of feedback sysiems, envelope delay and retum loss of itansmission lines. complex impedance of components, and insenion loss of mixers and tiequency doublers. Bode plots and Nichols chans are useful gmphical cools for analyzing many of these responie data.

Figure 1. Worst case error from odd harmonics.

Specifications

Phase accuracy*

Condllons Temperalyie $25^{\circ} \mathrm{C}=16^{\circ} \mathrm{C}$: frequency lange switch on lowest applicable ranged Anslog Output 3ccu:acy (tear yanel).
Input algnal range: $200 \mu \mathrm{~V}$ rims to 20 V rms.

Harmonic rejection

Even harmonles: no error.
Odd hamonles: (in phase) no error.
Odd hamontes: (out of phase) 0.57° worst case error when total add harmonic distorion is 40 dB below the fundamentas.
Nolse tolerance: 2° error for a $10 \mathrm{kHz}, 1 \mathrm{~V}$ sine wave on one channel. One volt sine wave added to Gaussian noise (bimited to a 1 MHz bandwidit and 30 dB S/N ratio) on the other channel. The 100 Hz to I MHz frequency range was used.

Olsplay

Range: $\pm 180^{\circ}$ with 12° of overrange.
Resolution: 0.1°.
Panel meter aceuracy: ± 3 counts (0.3 degrees, $0.3 \mathrm{~dB} / \mathrm{dBV}$). The panel meter error must be added to the phase and amplitude errors to obtain the display error.
Inputs
Impedance: $1 \mathrm{M} \Omega 30 \mathrm{pF}$.
Protection: $\pm 50 \mathrm{~V}$ de, 25 V rms.
Response time to achieve $\mathbf{9 0 \%}$ of final reading

Frequatry Ranch	Mme
	205
10 HL 10100 kHz	21
100 Hz 101 NH	0.2 s
1 LHz to 15 MHz	20 ms

Rear terminal inputs are available as a special (3575A-C09). Digital (Opt. ©02). 0, +5 ground true. Twelve lines to fully proeram all functions.
Outputs

Analog

Phase; $10 \mathrm{mV} / \mathrm{degree}$.
Amplitude: $10 \mathrm{mV} / \mathrm{dB}$ or dBV .
Output impedance: $1 \mathrm{k} \Omega$
Digltal (Opt 002): $0,+5 \vee$ ground true. 31 output lines (1-2-4-8 $B C D)$.

Digital readout: $31 / 2$ digits with sign and annunciators. Four readings per second, fixed.
Amplitude accuracy ${ }^{-}$

-Conditions: Iemperdiure. $25^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}$, accuraty applies to nte V and iatio messurements with the same frequency on both channels; for ratio measurements, tre lewest level channe! determimes accuracy: analog output accuracy (rear panel).
Amplitude functions: $A \mathrm{dBV}, \mathrm{B}$ dBV or B / A dB.
Amplltude relerence: ($A \mathrm{dBV}, \mathrm{B} d \mathrm{BV}$) $1 \mathrm{~V} \mathrm{rms}=0 \mathrm{dBV}$.

Dlsplay

Range: A dBV, $\mathrm{B} \mathrm{dBV}:-74 \mathrm{dBV} 10+26 \mathrm{~dB}$ (in iwo ranges). $\mathrm{B} / \mathrm{AdB}$: -100 to +100 dB . (Both input signals must be within the range of 0.2 mV rms to $20 \vee \mathrm{rms}$).
Pesolution: $0.1 \mathrm{dBV}, 0.1 \mathrm{~dB}$.

Optlons

001 Dual panel meters: HP's 3575A Op1 ∞ I is equipped with wo digital readouts and two enalog outpuls for simulaneous amplitude and phase readings. This option has no additional measurement capabiliry over the standard instrument.
Dual analog oupputs: rear panel BNC conmectors provide de outpus voltages that comespond to the respective panel meter readings.
002/003 Programmable: 3575A Opt 002 and Opt 003 are equipped with dual panel mesers and duat analog outputs (same as Opt OO1) plus BCD outputs and complete resiote control capability. Opt 002 has negative true output levels and OpI 003 has positive true output levels. BCD information from the 3575A (Opt 002) can be read by the 9800 series HP Calculators with appropriate interfacing.
908: Rack Flange Kit.

General

Power: $115 \mathrm{~V} / 230 \mathrm{~V} \pm 10 \%$, 48 Hz to 60 Hz . 40 VA .
Welght: net. $8.3 \mathrm{~kg}(18.4 \mathrm{lb})$. Shipping, $11.3 \mathrm{~kg}(25.8 \mathrm{lb})$.
Slze: $88 \mathrm{H} \times 425 \mathrm{~W} \times 337 \mathrm{~mm} \mathrm{D}\left(3^{14} / \mathrm{sz}^{\prime \prime} \times 16^{3} / 4^{\prime \prime} \times 13^{1 / 4}\right)$.
Accessorles fumlehed: extender boards, line cable and 50 -pin connector (Opt 002 and 003 only).

Options	Prlce
001: Dual Readout	add $\$ \$ 25$
002: Progranmable (nepative true oulput Icvels)	add $\$ 930$
00s: Programmable (positive Irae output levels)	add $\$ 930$
908: Rack Flange Kit	add $\$ 10$
910: Extra Produci Manual	add $\$ 23$

3575A Galn/Phase Meter
$\$ 3050$

RF network analzyer, 500 kHz to 1.3 GHz

Model 8505A

- 100 dB of dynamic range
- Digital readout of data with analog display
- Direct group delay and deviation from linear phase
- High performance sweep oscillator
- Complete family of 50Ω and 75Ω test sets
- Digital storage and normalization

8505A

The HP 8505A is a high performance RF nelwork analyzer operating over the 500 kHz to 1.3 Gr Hz frequency ange. It uccurately and easily measurex complex impedance. iransfer functions and group delay of coaxial components and semiconductors. Becinte both magnitude and phase are measured, it is possible 10 completely chamecterize the linear behavior of either active of passive nerworks.

Since magnitude and phase onn be measured and dinplayed over 100 dB of dynamic range ($-1010-110 \mathrm{dBm}$) it is a simple process for the 8505 a 10 measure transmission loss of high rejection devices such as filters or gain and retum loss of small sigmal devices like amplifiers. Distonion paramcters like group delay, deviation from linear phase. and deviation from constami amplitude are measured in an equally straight-forward manner. Group delay is measured and displatyed directly 10 resolutions of 1 ns per major division using a new lincar $F M$ measurement technique. A unique new electrical line stretcher compensates for the linear phase shith of the device under test so that phase non-linearilies may be examined at high resolution (${ }^{\circ}$ per major division). Amplitude deviations with frequency can be similaty observed to renblutions 0.1 dB per major division widn clear. crisp erace slability, In addinion, it is possible to read oul amplitude. phase and dealy digitally while sweeping at any one of fire continuously variable markers with resolinions of 0.01 dB. 0.1°. and 0.1 ns respectively.

Many of the 8505A's high performance features and operating conveniences are derived from the fict that is a completely miegnated system ineluding beth the sweep oscillator and receiver. The basic instrument also includes a built-in frequency counter. polar and rectangular displays on the same CRT, the new electronie line stretcher. group delay measurement. and frequency selecsive digital reading of amplitude, phase and delay while sweeping. The frequencs coumter with resolutions up to 100 Hz adds further precision to the measurements by allowing frequency as well as amplitude. phase and delny to be read out al any of the five matiken. The 8505A is fully programmable in a stmightforward fashion using the Hewleit-Packard Interface Bus (Opl (0)). Two rully configurcd calculator-based automatic nctwork analyzers sysems, the 8507A and 8507 B are offered (see pisge 446).

Companion instruments include the 11850 A Three Way Power Splitter for high resolution tmasmission and Iransmission comparison metsurements, the 8502A Jransmision/Reflection Bridge for simultaneous transmission and rellection measurements. and the 8503A S-parameler Test Sel for complute characierization of iwo por devices in a bingle test set-ilp. The 850 IA Siorage Numadizer adds digital storage, normulization, signal averaging and grophics to 850s A measurements.

8505A Specifications

Source

Frequency characteristlcs

Frequency range： 500 kHz to 1.3 GHz in three ranges： 500 kHz $1013 \mathrm{MHz}, 500 \mathrm{kHz}$ to 130 MHz and 510 kHz 101.3 GHz ． Swept trequency accuracy：$\pm 1 \%$ of mage for linear sweep． CW irequency accuracy：$\dot{=} 2$ counts \div lime－base accuracy， Frequency atabllity：belter than $\pm 0.01 \%$ of reading $\pm 0.01 \%$ of「requency range over 10 minutes after wirm－up．
Frequency counter oharacterlstles：frequency counter measure ments are made at any one of five continuously variable marker positions without interrupting the swept RF signal

Resolution（least significant digle）

grequency Range（MG）	0． 51013	0.510130	0.5 to 1300
10 ms 5 wep limi	10 kHz	100 kHz	1 MAR
100 ms Sweep time	1 hti	10 kNz	100 kb
1 s．econd Sweep sime	100 Hz	$1 \mathrm{HHz}^{2}$	10 kHz

Counter accuracy：± 2 counts \pm ime－hase accuracy．
Marker frequency accuracy：$=0.002 \%$ of scan width $=$ counter accuracy．
Tlme base accuracy： $\pm 5 \mathrm{ppm}=1 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \pm 3 \mathrm{ppm} / 90$ days
Output characteristics
Output power range：$+10 \mathrm{dBm} 10-72 \mathrm{dBm}$ ．
Attenuator accuracy：$\pm 1.5 \mathrm{~dB}$ over 70 dB range．
Vernier accuracy：$=1 \mathrm{~dB}$
Leveling：$\pm 0.5 \mathrm{~dB}$ from $500 \mathrm{kH} \geqslant 101.3 \mathrm{GHz}$
（mpedance： $5011: \geqslant 16 \mathrm{~dB}$ return loss at -10 dBm outpul leve） （ <1.38 SWR）
Restdual FM

frequency Range（MHA）	0.51413	0.510130	0.5101300
Residual EM	20 W mis	200112 mms	2 kHy ms
Hinndmalt	20 HL_{2} ） $\mathrm{kH} \mathrm{H}_{2}$	$20 \mathrm{~Hz}-1 \mathrm{kfiz}$	$20 \mathrm{~Hz}-10 \mathrm{kHz}$

Harmonics：$>25 \mathrm{~dB}$ below main sienal at +10 dBm oulpur level Sub－harmonics and spurivus signads：below -50 dBm at +10 dBm output level
General characteristics
Sweep modes：Linear Full，Log Full．Stan／Stop 1．Stan／Stop 2. Altemate，$C W \pm \triangle F$ ，and $C W$ ．
Swaep times： 10 ms to 100 s in decade ranges．
Trlgger modes：guto．line symc．．single scan or extemal syme． RF Output connector：Type N Female

Recelver
Frequency range： 500 kHz 101.3 GHz
Input characterisilics
Input ehannels：thrce channels（ R, A ，and B ）with 100 dB dynamic range．
Damage level：+20 dBm or 350 V dc．
Nolse（ 10 kHz BW ：－ 110 dBm from 10 to 1300 MHz － 100 dBm from 0.5 to 10 mHz ．
Impedence： $50 \Omega: \geq 20 \mathrm{~dB}$ relum loss（ $<1.22 \mathrm{SWR}$ ）．Typically $>26 \mathrm{~dB}$ remurn loss（ <1.11 SWR）．
Magnilude characterlstics
Absolute frequency response（A．日，R）：$=1.5 \mathrm{~dB}$
Raflo frequency response（ $\wedge / R . B / R$ ）：$=0.3 \mathrm{~dB}$ from 0.5 MHz ． 101.3 GHz ．

Dyпamic accuracy：$\pm 0.01 \mathrm{~dB} / \mathrm{dB}$ from -20 to $-40 \mathrm{dBm}: \pm 0.2$ dB Гrom -10 10 $-50 \mathrm{dBm}:=0.5 \mathrm{~dB}$ from $-5010-70 \mathrm{dBm}: \pm 1.0$ dB from -70 to -90 dBm ：$\pm 2.0 \mathrm{~dB}$ from -90 10－ 100 dBm ：$=4.0$

Crosstalk error Ilmits：$>100 \mathrm{~dB}$ isolation between inpuls．

Reference offset accuracy：$\pm 0.02 \mathrm{~dB} \simeq 0.003 \mathrm{~dB} / \mathrm{dB}$ of offsel Marker measurement resolutlon： 0.01 dib over any $<10 \mathrm{~dB}$ range： 0.1 dB over any $\geqslant 10 \mathrm{~dB}$ range．
CRT Display resolutlon： 0.1 dB to $20 \mathrm{~dB} / \mathrm{division}$ in $1.2,5$ se－ quener．
Phase characterlstics
Frequency response：$\pm 3^{\circ}$ from 500 kHz to $750 \mathrm{MHz}: \pm 5^{\circ}$ from 750 MHz 10 1.3 GHz ．
Range：$\pm 180^{\circ}$ ．
Accuracy：$\pm 0.01^{\circ} /$ degree for $\pm 170^{\circ}:=0.01^{\circ} /$ degree $\pm 0.5^{\circ}$ for $\pm 180^{\circ}$ ．
Dynamic accuracy（in 10 kHz Bandwidth）：$\pm 0.02 \% \mathrm{~dB}$ from -20 to
$-40 \mathrm{dBm}: \pm 0.5^{\circ}$ from -10 10－50 dBm；$\pm 1^{\circ}$ from -50 ： $0-70$ $\mathrm{dBm}: \pm 3^{\circ}$ from $-70 \mathrm{to}-90 \mathrm{JBm}$ ．
Crosstalk：see amplitude crosstalk specification．
Aeference offset accuracy：$\pm 0.5 \%$ of offser．
Marker measurement resolution： 0.1 over $<100^{\circ}$ range and 1° for $\geqslant 100^{\circ}$ range．
CRT daplay eesolutlon： 1° to 180° per division in 8 steps．
Polar Characteristics：Frequency，Response，Dynamic Response． Reference Offsel and Marker Measurement specifications are the same as magnitude and phase characteristics．

CAT display accuracy：actual value is within less than 3 mm circle of the displayed value．
Tracking between d日 olfset controls and polar full swlich positions：$\leqslant 0.2 \mathrm{~dB}$ ．
Full scale magnitude range： 1 to 0.01 in a $1,0.5,0.2$ sequence． Delay characterlitics

Frequency response：\pm I ns from 500 kHz to 1.3 GHz ．
Delay accuracy ${ }^{1}: \pm 3 \%$ of reading ± 3 units（Units $=1$ ns for 0.5 to 1300 MHz range， 10 ns for 0.510130 MHz range，and 100 ns for 0.5 to $13 \mathrm{MH} \%$ range．）．
th unlis may be calleratad out with the coonection

Range resolulion and aperature

fresuency Rampa（MAX）	0.51013	0.510130	0.5801300
Range	$01880 \mu \mathrm{~s}$	D 18 \％$\mu \mathrm{s}$	0 to 800 ms
reasolution CRT： Marker： Marker conet limited Range	$\begin{aligned} & 100 \mathrm{~ns} \\ & 100 \mathrm{~ns} \\ & 10 \mathrm{~ns} \\ & (<1 \mu \mathrm{sl}) \end{aligned}$	$\begin{aligned} & 10 \mathrm{~ns} \\ & 10 \mathrm{~ns} \\ & 1 \mathrm{~ns} \\ & (\leqslant 100 \mathrm{~ns}) \end{aligned}$	$\begin{gathered} 1 \mathrm{~ns} \\ 1 \mathrm{~ns} \\ 0.1 \mathrm{~ns} \\ (\mathrm{c} 10 \mathrm{~ns}) \end{gathered}$
Aperture ${ }^{\text {a }}$	7 kH	20 ¢H2	200 kHz

Reference offat accuracy：$=0.2$ unils $\pm 0.3 \%$ of offsel． Electrical lengithef．plane extension characteristlcs Callbrated electrical length range and resolution：${ }^{2}$

Fropuency Rance（MIG）		0.31013	0.5 to 130	0.5101300
Ranro	KI	$=19.9 \mathrm{~m}$	21.94 m	土19．90m
	$\times 10$	$=100 \mathrm{~m}$	$\leq 10 \mathrm{~m}$	$\pm 1 \mathrm{~m}$
Resolution		10 cm	1 cm	0.1 cm
	$\times 10$	1 m	10 cm	1 cm

Callbrated electrical length accuracy：$=3 \%$ of reading $\pm 1 \%$ of range．
LInear phase substitution（degrees／scan）Range：$=1700^{\circ} \mathrm{per}$ scar with 0° ofsel．
$\frac{=1.4 \mathrm{~km}}{\text { scan width }(\mathrm{MHz})}$ or $\frac{=4.7 \mu \mathrm{~s}}{\text { scan width }(\mathrm{MHz})}$
Linear phase substitution resolution： 10°
Llinear phase substifution accuracy：$\pm 3 \%$ of reading $=10^{\circ} /$ scan
Phase compenisation Ilnearly：$<0.2 \%$ of phase slope insened．
General Characteristics
RF Input connectors：sype N Female
Display bandwldth：selectable $1 F$ bandwidths of 10 kHz and 1 kHz A video filler position is also provided．
CRT overlays：Smith Charts（3．16，1．0．5．0．2， 0.1 full scale），Log Chars（ 10 MHz ）． 100 MHz and 1000 MHz ）．
CRT photography：HP 197A Opt 006 camera or HP 197A with 10375 A Bezel Adapler required to fir 8505A display．A CRT illumi－ nation control is provided．
Auxlliary outputs
Channel 1 and 2 outputs； $0.25 \mathrm{~V} /$ display division．
Sweep output： $0.25 \mathrm{~V} /$ display division．
Pen lift：DC coupled， 200 mA current sink
Programming
Opl 00）of the 8505A provides a remote programming interface using the Hewlelt－Packard Interface Bus with Leam Mode．
Power：selection of $100,120,200$ or $240 \mathrm{~V}+5 \%-10 \%$ ． 501060 Hz
approximately 275 wats．
Size： $279 \mathrm{H} \times 426 \mathrm{~W} \times 553 \mathrm{mmD}\left(11^{\prime \prime} \times 16^{3} / \mathrm{c}^{\prime \prime} \times 21^{1 / h^{\prime \prime}}\right)$ ．

8505A Opt 005 Specifications（Phase－Lock Operation）

Source

Frequency characteristics
Modes（8505A）： CW and $\mathrm{CW}=\triangle \mathrm{F}$ only．
Range and Resolutlon（8505A and B680C／86602B／866328）：
the lotal frequency range is I to 1300 MHz with a CW resolution of ） Hz （set on the 8660 C ）．The maximum $\pm \Delta F$ and $=\Delta \mathrm{F}$ resolu－ tion is 1.3 kHz and 1 Hz from ． 5 to $13 \mathrm{MHz}, 13 \mathrm{kHz}$ and 10 Hz from ．s to 130 MHz ，and 130 kHz and 100 Hz from .5 to 1300 MHz ．

Range and Resolution（8505A and 8640B Opt 002）：（Total Frequency Range： 0.5 to 1024 MHz ）．

	```$640 frequency Rangts (MLE)```	850SA Prequency fance（MRz）		
		Q 5－13	$0.5-100$	0．5－1300
CW Rasolislan （Sen on 60400）	$\begin{gathered} 05-1 \\ 1-13 \\ 16-128 \\ 128-1024 \end{gathered}$	$\begin{gathered} 0.1 * 2 \\ 1 \text { 䐆 } \end{gathered}$	10 Hz	$\begin{gathered} 10 \mathrm{~Hz} \\ 100 \mathrm{~Hz} \end{gathered}$
$=d r$ Ausolution ［ Sel on 0505 a ］	all freq． Renges	1 Hz	10 Hz	100 Hs
Man $二 厶 力$	$\begin{aligned} & 0.5-8 \\ & 8-16 \\ & 16-1024 \end{aligned}$	$\begin{aligned} & 1.3 \mathrm{kHz} \\ & 3.3 \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 13 \mathrm{kHz} \\ & 13 \mathrm{kHz} \end{aligned}$	130 kHz

Typlcal syatem residual FN：the Residual FM of a phase－locked
8505A approaches that of the $8660 \mathrm{C} / 86502 \mathrm{~B} / 86632 \mathrm{~B}$ or 8640 B ．

## Output characterlstice

Power oulput，harmonics．spurious oulputs，RF phase noise，etc． are determined by the 8660 C with 86602 B and 86632 B or the 8640 B ．

## Recelver

Mngnitude and phase characteristics are unchanged with the excep－ tion of the dynamic range specification．

## Delay characieristics

Accuracy：$=3 \%$ of reading $=3$ uaits．One unit is equal to the maximum resolution per major division for the frequency range of measuremeni．
Range，resolution and aperature：（ $8680 \mathrm{C} / 86602 \mathrm{~B} / 86632 \mathrm{~B}$ or 868408）
（6505A Indicated unlts $\times 1000$ ）

	0.505 frequency Rsige（MHz）		
	Q．5－13	0． $6-130$	0．5－1800
Ajnge	$0-80 \mathrm{~ms}$	$0-8$ ns	$0-800 \mu s$
Resolution   CAI 8 Digital Marke＇   0 Dibl Harke wikn   Dgiay Switet Seriling	$\begin{array}{r} 100 \mathrm{\mu s} \\ 10 \mathrm{\mu s} \\ <1 \mathrm{~ms} \end{array}$	$\begin{array}{r} 10 \mu s \\ 1 \mu \mathrm{~s} \\ \times 100 \mu \mathrm{~s} \end{array}$	$\begin{array}{r} 3 \mu s \\ 100 \mathrm{~ns} \\ \times 10 \mu s \end{array}$
Apmatura＇	$1.5 \mathrm{kH}_{2}$	2.0 kHz	4.0 ktt

## Elactrical length characterlstica

Accuracy：$\pm 3 \%$ of reading $\pm 3 \%$ of range．
Callbrated electrical length，range，and resolution：$(8660 \mathrm{C}$ ） $86602 \mathrm{~B} / 86632 \mathrm{~B}$ or 8640）：（8505A digital readouts $\times 1000$ ）give electrical length 1000 times langer and resolution divided by 1000.

## General characteristics

## RF Inputs

L．O．drive Input level： $10 \mathrm{dBm} \pm 2 \mathrm{~dB}$（Rear panel $B N C$ ）．
RF drive Input level： $0 \mathrm{dBm} \pm 2 \mathrm{~dB}$（Rear panel BNC）．
Tuneable FM ouput：$\pm 1.3 \mathrm{~V}$ maximum（rear panel BNC with outpul level conirclled by $=\Delta \mathrm{F}$ concrol on（ront panct of 8505 A ）． $\pm 1.3 \mathrm{~V}$ output is oblaned independent of the frequency range switch seationg．
Cap（ure range of phase－lock loop： $100 \mathrm{kHz}(0.5-13 \mathrm{MHz}$ Range）： 400 KHz （ $0.5-130 \mathrm{MHz}$ Range）： 4 MHz （ $0.5-1300 \mathrm{MHz}$ Range）．
Standard／phase－lock operallon：rear panel switch can disable all phase－lock circuitry when using the instrument in its standard（non phase－lock operating mode．

Wernlet provides conlinutus adpustment of electrical length，Calibrated Gectical Lenglh Unearlyy $\mathbf{H}_{0}=0.7 \% \times 121(\mathrm{MHD}-1$（melies）．


8501A

## HP=IB

## Description

The 8501A high performance Storage-Normalizer is a dedicated accessory that extends the measurement capability of your HP 8505A RF Network Analyzer ( $500 \mathrm{kHz} 10 \quad 1.3 \mathrm{GHz}$ ). Flícker frec displays with digital storage and CRT annotation of major conirol seltings provide convenient easy documentation. Using normalization. frequency response errors are simply removed. In addition the 8501 A can average signals to dramatically improve signal-io-noise ratios and magnify the display for high nccuracy measurements. With a desktop computing controller. computer graphics capability is added to the 8505A for displaying corrected data, operator messages, or computer programs.

## 8501A Specifications

## Display

Rectangular displays
Horkontal memory resolution: two display channels, 500 points per channel ( $0.2 \%$ of futl scale, 0.24 mm ).
Vertical Memory Resolutlon: 500 points displayed full scate (0.2\% of full seale) plus a $50 \%$ overrange ( 250 points) both above and below full screen.

## Polar displays

Resolution: two display shanncls, 250 poinis per polar display ( $0.2 \%$ or full scale, 0.2 mm in $X$ and $Y$ ).
Olsplay traching: visual offsets between direct 8505 A and stored displays are approximately $=1 / 2$ CRT minor division ( $\pm 1 \mathrm{~mm}$ ).
Horlzontal Input sweep times: 100 sec max $/ 10 \mathrm{~ms}$ min.
Converslon tlme: 10 ms max for $500 \pm 2$ dala points ( 20 per point.
Dlsplay refresh time: nominally 20 ms depending upon information displaycd.
LIne generator: a line gencration lechnique is used to connect points on a CRT display, yielding a smooth contineous trace.
Markers: all five markers are also available in the digital display mode.

## Output

Auxlliary outpuls XYZ: (BNC icmale condectors on rear panel).
$X$ - 1 V full sereen, $83 \mathrm{mV} /$ div ( 12 div).
Y-I V full screen. $100 \mathrm{mV} / \mathrm{div}$ ( 10 div).
Z- -1 volt Blanks display, +2 voli unblanks display. (Signal comparible for all HP CRT displays such as 1332, 1304, or 1310.
Offeets: The X, Y, and polar display oflisets can be adjusted over a $\pm 10 \%$ range of screen by means of potentioneters on the rear panel of the 850 LA .
Labelling Interiace: all major control seltings of the 8505A and 8503A and phase-lock indication are displayed on the CRT.

HP-l日 Interlace
HP-IB Interface capablities
Remote programming
Learn mode: this feature provides the ability so ourput the current instrument state to a computing controtler.
Input data: data for graphics or other purposes can be sent to the 8501 A at a rate of:
ASCII mode: 600 points per second.
Blnary mode: 10000 points per second.
Output data: data can be read from the 8501A at a rate of: ASCII mode: 800 points per second. Binary mode: 9000 points per second.
Graphles: data for graphics can be read into the 8501A and viewed in two rypes of displays:
Text displaye: 22 lines of test with 54 characters per line can be displayed on the CRT.
Vector displays: limes can be drawn of the display belween any two points with a resolution of 432 poinis in $x$ and 360 points in $y$ (nominal).
General
Display controls
Storege Off: the 8501A is bypassed so the display retums to nommal analog operation.
Storage On: toms on dighally stored display.
Starage Hold: the current dimplay is not updaled and is frozen for CRT photography or further analysis.
Erase: display and memory arc erased.
Labels: switches all display labeling on or off.
Magnifler: expands the display by a factor of $1,2,5$, or 10 .
Processing functions (Channel 1 and 2)
Input OH: display of charnel 1 (2) is blanked.
Input On: channel 1 (2) measurement is displayed.
Input Mem: the difference between the channel I (2) measurement and the stored memory content is displayed (normalization).
Mamory Store: the current measurement is stored in memery.
Memory Vlew: the stored memory content is dísplayed.
Averaging; the data averaging furction for chanoel i (2) is swizched on or off.
Averaging Factor: the degree of averaging is selectable from 2, 4,
8. . to 256. The current averaged trace is ahways displayed and updated at the sweep rate.
Local: returns the 8501 A control to the front panel from remote HP-1B control.
Includes: HP-IB cable and the processor interconnect cable.
Accessorles: the 11864A Accessory Kil provibes the lateling interface boards and conntetors for the 8505A. 8505A Opl 007 has thesc boards and connectors installed.
Power: selection of 100. 120. 220, or $240 \mathrm{~V}+5 \%-10 \%$. 50 to 60 Hz and $<140$ VA ( $<140$ watis).
Slee: $90 \mathrm{H} \times 426 \mathrm{~W} \times 53 \mathrm{mmD}\left(3 / 2^{\prime \prime} \times 16^{3 \prime} \times 21^{\prime \prime}\right)$.
Weight: net. $12.25 \mathrm{~kg}(27 \mathrm{lb})$. Shipping, $14 \mathrm{~kg}(31 \mathrm{lb})$.


11851 A

8502A $50 \Omega$ Transmission/Reflection Test Set 8502B $75 \Omega$ Transmission/Reflectlon Test Set
Frequency range: 500 kHz to 1.3 GHz .
Impedance: 8502A. 50S: 8502B 7S $\Omega$.
Directluity: $\geq 50 \mathrm{~dB}$.
Frequency response
Transmission: $\leqslant=0.8 \mathrm{~dB}$ and $\leqslant \pm 8^{\circ}$.
Reflectlon: $\leqslant=1.5 \mathrm{~dB}$ and $\leqslant \approx 15^{\circ}$ from $0.5-1300 \mathrm{MHz}: \leqslant=10^{\circ}$ from $2-1300 \mathrm{MHz}$.
port match
Test port: $\geqslant 26 \mathrm{~dB}$ retum loss from $2-1300 \mathrm{MHz}$ ( $\geqslant 24 \mathrm{~dB}$ for 8502 B ) $: \geq 20 \mathrm{~dB}$ ritum loss from $0.5-2 \mathrm{M.Hz}$ ( $\geq 18 \mathrm{~dB}$ Yor 8502 B ).
Tegt port open/shart ratlo: $\pm 0.75 \mathrm{~dB}$ and $=6^{\circ}$ from $2-1000 \mathrm{MHz}$ ( $=0.9 \mathrm{~dB}$ and $=7.5^{\circ}$ for 8502 B ): $\pm 0.9 \mathrm{~dB}$ and $\pm 7.5^{\circ}$ from $1000-$ $1300 \mathrm{MHz} ;=1.25 \mathrm{~dB}$ and $\pm 10^{\circ}$ from $0.5-2 \mathrm{MHz}$.
Reference and reffection ports : $\geq 25 \mathrm{~dB}$ retum loss from 2-1000
$\mathrm{MHz}: \geqslant 23 \mathrm{~dB}$ retur loss from $0.5-1300 \mathrm{MHz}$.
Ingul pont: $\geqslant 23$ dB rélum loss.
Nominal Insertion loss:
Input to Tost Port: $13 \mathrm{~dB}(8502 \mathrm{~A})$, 19 dB (8502B).
input to Reference Port: $19 \mathrm{~dB}(8502 \mathrm{~A})$. 19 dB (8502B).
Input to Rellection Port: 19 dB ( 8502 A ). 31 dB ( 8502 B ).
Maximum operating level: +20 dBm .
Damage level: I walt CW.
RF Attenuator range: 0 to 70 dB in 10-dB steps.
Connectors test port: $50 \Omega$ Type N Female for 8502 A and $75 \Omega$

Type $N$ Female for 85028 ; all other RF ports $50 \cap$ Type $N$ Female: Bias input, BNC Female.
DC Blas Input: $\pm 30 \mathrm{~V} \mathrm{dc}$ and $=200 \mathrm{~mA}$.
Includes: 8502B includes 50n/75 minimum loss pad.
Recommended accessory: 11851A RF Cable Kit for eiher 8502A or 8502 B .

Size: $61.5 \mathrm{H} \times 101 \mathrm{~W} \times 204 \mathrm{mmD}\left(2^{3} / \mathrm{cos}^{\prime \prime} \times 77^{\prime \prime} \times 8^{\mu}\right)$.
Welght: net. $1.7 \mathrm{~kg}\left(3^{1 / 4} \mathrm{lb}\right)$. Shipping, $3.1 \mathrm{~kg}(7 \mathrm{lb})$.
8503A 50 ? S-Parameter Test Set
8503B 75 S S-Parameter Test Set
Frequency range: 500 kHz to 1.3 GHz
Impedance: 8503A. 50 2 : 8503B, $75 \Omega$,
Directivity: $\geqslant 40 \mathrm{~dB}$ :-
Frequency response
Transmission $\left(\mathcal{S}_{12}, S_{21}\right)$ : $\pm 1 \mathrm{~dB} . \pm 12^{\circ}$ from $0.5-1300 \mathrm{MHz}$.
Reflection $\left(S_{11}, S_{24}\right):=2 \mathrm{~dB},=20^{\circ}$ from $0.5-1300 \mathrm{MHz}=15^{\circ}$ from $2-1300 \mathrm{MHz}$.
Port mateh
Test ports 1 and 2: $\geqslant 26 \mathrm{~dB}$ relurn lass from $2-1300 \mathrm{MHz}(\geqslant 24$ dB for 8503 B ) $\geqslant 20 \mathrm{~dB}$ retum loss from $0.5-2 \mathrm{MHz}$ ( $\geqslant 18 \mathrm{~dB}$ for 8503B).
Test port 1 and 2 Open/Short Ratlo: $\leqslant \pm 0.75 \mathrm{~dB}$ and $\pm 6^{\circ}$ from $2-1000 \mathrm{MHz}\left(=0.9 \mathrm{~dB}\right.$ and $\approx 7.5^{\circ}$ for 8503 B$): \leqslant \pm 0.9 \mathrm{~dB}$ and $\pm 7.5^{\circ}$ from $1000-1300 \mathrm{MHz}:=1.25 \mathrm{~dB}$ and $=10^{\circ}$ from $0.5-2 \mathrm{MHz}$,
Poterence and return ports: $\geqslant 23 \mathrm{~dB}$ return loss from 2-1000 $\mathrm{MHz}: \geqslant 20 \mathrm{~dB}$ reum loss from $0.5-2 \mathrm{MHz}$ and $1000-1300 \mathrm{MHz}$. RF Input port: 20 dB retum loss from $0.5-1300 \mathrm{MHz}$.
Maximum operating level: +20 dBm :
Damage level: I watt CW.
Connectors: lest ports, $50 \Omega$ APC. 7 for 8503 A and $75 \Omega$ Type-N Female for 8503B; all other RF conneclors, $50 \Omega$ Type-N Female; Bias inputs BNC Female.
DC Blas input: $\pm 30 \mathrm{~V}$ dc, $\pm 200 \mathrm{~mA}$.
Includes: four 19 cm ( $7.5^{\prime \prime}$ ) cables for connection to 3505A.
Recommended accessory; 11857A $50 \Omega$ Tesi Porl Exicnsion Cables or $11857 \mathrm{~B} / \mathrm{C} 75 \Omega$ Tesi Pon Extension Cables.
Programming: Opt 001 allows programming via HP-IB.
Power: $100,120.220$, or $240 \mathrm{~V} \pm 5 \%-10 \%$, 50 or 60 Hz . Approx. 10 wats ( 15 watts for 8503 B ).

Welght: nel, $9.1 \mathrm{~kg}(20 \mathrm{lb})$. Shipping, $11.3 \mathrm{~kg}(25 \mathrm{lb})$.

## Accessories

11850A 50 ת Power Splitter
11850日 $75 \Omega$ Power Splltter
Froquoncy range: $D C$ to 1.3 GHz .
Impedance: $11850 \mathrm{~A} .50 \Omega$; $18850 \mathrm{~B}, 75 \Omega$.
Tracking between any two output ports: $\leqslant 0.1 \mathrm{~dB}$ and $\leqslant 1.5^{\text {a }}$.
Equlvalent source match (ratlo or leveling): $\geqslant 32 \mathrm{~dB}$ relum loss ( $\leqslant 1.05$ SWR).
Input port match: $\geqslant 20 \mathrm{~dB}$ relum loss.
Nomlnal Insertion loss: 9.54 dB for $11850 \mathrm{~A}: 7.78 \mathrm{~dB}$ for 11850 B .
Frequency response absolute: Input to Output $\leqslant 0.2 \mathrm{~dB}$.
Maximum operating level: +30 dBm .
Burn-out level: $\geq 1$ watt CW.
Connectors: 11850 A . $50 \Omega$ Type N female: 11850 B , three outputs 75 fI Type N female. RF input $50 \Omega$ Type N female.
Recommended accessary: 11851 A RF Cable Ki1.
Includes: 11850B includes three (3) 50n/75 $\Omega$ Minimum Loss Pads Size: $46 \mathrm{H} \times 67 \mathrm{~W} \times 67 \mathrm{~mm} \mathrm{D}\left(1^{5} / \mathrm{m}^{\prime \prime} \times 2^{98 / 8^{8}} \times 2 \mathrm{2m} / \mathrm{x}^{\prime \prime}\right)$.
Welght: net, $1.8 \mathrm{~kg}(4 \mathrm{lb}$ ). Shipping. 3.1 kg ( 7 lb ).
11851A RF Cable Kit
General: four 61 cm ( 24 in .) shiekded $50 \Omega$ cables, phase matched io $4^{\circ}$ al 1.3 GHz . Connectors are Type N Male. Recommended for use with 8502A/B Transmission/Reflection Test Set and $11850 \mathrm{~A} / \mathrm{B}$ Power Splitter.

Welght：net． 0.91 kg （ 2 lb ）．Shipping． 1.36 kg （ 3 （b）．
11852A 50 $2 / 75 \Omega$ Minimum Loss Pad
General：the 11852A is a low SWR minimum loss pad required for transmission measurements on $75 \Omega$ devices with $8505 A$ receiver （50＠）．
Frequency range： DC to 1.3 GHz ．
Insertion loss： 5.7 dB ．
Return loss：$\geq 30 \mathrm{~dB}$（ $\leqslant 1.06$ SWR）．
Fatness：$=0.1 \mathrm{~dB}$ from DC to 1.3 GHz ．
Maximum Input power： 250 mW （ +24 dBm ．
Connactors：50 0 Type $N$ female and 75亿 Typo $N$ male．
Size： $14 \mathrm{D} \times 70 \mathrm{~mm}$ L（ ${ }^{4146 "} \times 2 \%^{3}$ ）．
Weight：net， $0.11 \mathrm{~kg}(4 \mathrm{uz})$ ．Shipping， $0.26 \mathrm{~kg}(9 \mathrm{oz})$ ．

## 11853A 50』 Type N Accessory Klt

General：the II853A fumishes the RF components required for measurement of devices with 50 Type $N$ Conneclors using the 11850A，8502A or 8503A（8503A also requires the 85032A）．Kit contains a Type $N$ Female shon，a Type $N$ Male shon，two Type $N$ Male barrels，iwo Type $N$ Fennle barrels iñd storage case．
Welght：net， 0.91 kg （2 lb），Shipping， 1.36 kg （3 lb）．
11854 A 50S BNC Accessory Klt
General：the II854A fumishes the RF components required for measurement of devices with $50 \Omega$ Type $N$ Connectors using the 11850A．8502A，or 8503A（8503A also requires the 85032A）．Kit contains two Type $N$ Male to BNC Female adapters，rwo Type N Male to BNC Malc adapters，two Type N Female 10 BNC Fcmale adapters，iwo Type $N$ Fimale to BNC Male adapters，a BNC Male short and storage case．

Welght；nci．， $1.13 \mathrm{~kg}(21 / 2 \mathrm{lb})$ ．Shipping． $1.59 \mathrm{~kg}(3 \mathrm{l} / 2 \mathrm{lb})$ ．
ji855A 75S Type N Accessory KIt
General：the 11855 A provides the RF connecting hardware gener－ ally required for measurement of devices with $75 \Omega$ Type $N$ connec tors using the 8502 B ．I 1850 B or $8503 \mathrm{~B} \mathrm{Kit} \mathrm{contains} \mathrm{iwo} 75 \Omega \mathrm{Type} \mathrm{N}$ Male barrels，iwo $75 \Omega$ Type N Female barteis，a $75 \Omega$ Type $N$ Male shon．a $75 \Omega$ Type $N$ Female shon，a $75 \Omega$ Type $N$ Male termination， and storage case．
Welght：net， 0.91 kg （2 lb）．Shipping， 1.36 kg （3 lb）．
11856A 75』 BNC Accessory Klt
General：thel 856A provides the RF connecting hardware generally required for measurement of devices with $75 \Omega$ BNC connectors using the 8502B，I 1850 B or 8503 B ．Kit contains iwo Type N Male to BNC Female adapters，two Type N Male to BNC Male adapters， two Type N Female to BNC Femade adaplers．two Type N Female to BNC Male adapters，a BNC Male short，a $75 \Omega$ BNC Male 1ermi－ nation，and storage case．
Welght：net． $0.9 \mathrm{jkg}(2 \mathrm{lb})$ ．Shipping． 1.36 kg （ 3 lb ）．

## 11857A $50 \Omega$ APC－7 Test Port Extension Ciables

General：iwo precision $61 \mathrm{~cm}\left(24\right.$ in．）cables，phose matched $104^{\circ}$ at 1.3 GHz for use with 8503A S－parameter test set．Connectors are $50 \Omega$ APC－7．
Weight：net． 0.9 lkg （2 lb）．Shipping． 1.36 kg （3 lb）．
11857日 $75 \Omega$ Type $N$ Test Port Extenslon Cables
General：lwo precision $61 \mathrm{~cm}\left(24 \mathrm{in}\right.$ ．）cables，phase matched $104^{\circ}$ al 1.3 GHz for use with 8503B S－parameter test set．One cable has $75 \Omega$ Typc $N$ Male connectors on both ends：the other has one Type $N$

Male and one Type N Female connector．
Welght：net， $0.91 \mathrm{~kg}(2 \mathrm{lb})$ ．Shipping． 1.36 kg （ 3 lb ）．
11857C 75 § GR 900 Test Part．Extension Cables
General：two precision $61 \mathrm{~cm}\left(24\right.$ in．）cables，phase matched $104^{\circ} \mathrm{at}$ 1.3 GHz for use with 8503 B S－parameter test set．Connectors are $75 \Omega$ Type N Male and $75 \Omega$ GR 900.
Welght：net， $0,91 \mathrm{~kg}(2 \mathrm{lb}$ ）．Shipping， $1.36 \mathrm{~kg}(3 \mathrm{lb})$ ．
11858A Transistor fixture adapter
General：the 11858A adapts the 11600B and 11602B transistor Fix－ \｛ures（verical test port configuration）to the 8503A S－parameterticst sel．Connectors ure APC－7．
Welght：net， 0.91 kg （2 b ）．Shipping， 1.36 kg （3（b）．

Orderlng Inlormation	Price
8505A RF Nelwork Analyzer	\＄24，500
Opt 001：HP－IB	\＄2，950
Opt 005：Phase Lock	\＄1．000
Opt 007：Labeling Interface	\＄600
Opt 907：Front Handle Kit	\＄40
Opl 908：Rack Flange Kit	\＄30
Opt 909：Rack Flange／Front Hundte Kit	\＄60
Opt 910：Extra Manual	\＄50
8503A 50，S－Parameler Tesi Sel	\＄4，000
Opt 001：HP－18	\＄400
Opt 907：Front Hundle Kit	\＄20
Opt 908：Rack Flange Kiı	\＄15
Opt 909：Rack Mount Flange／Front HandleKii	\＄20
Opl 910：Exira Manuals	\＄10
8503B 75n S－parameter Test Sel	54，000
Opt 001 ：HP－1B	\＄400
Opt 907：Front Handle Kit	\＄20
Opl 908：Rack Flange Kir	\＄15
Opl 909：Rack Mount Flange／Fronl HandleKil	\＄20
Opt 910：Extm Minual	\＄10
850］A Storage Nommalizer	\＄5，300
Opt 907：Front Handle Kis	\＄20
Opt 908：Rack Mounling Kit	\＄15
Opt 909：Rack Mounting／Front Handle Kil	\＄20
85024 50＾Transmission／Reflection Test Sel	\＄1，850
Opt 910：Exira Manual	\＄6
8502B $75 \Omega$ Transmission／Reflection Test Sel	\＄1，850
Opt 910：Extra Manual	\＄6
11850A $50 \Omega$ Power Splitier	\＄475
118508 75，Power Splitter	\＄475
11851A RF Cable Klı	\＄350
11852A $50 \Omega$ to $75 \Omega$ Minimum Loss Pad	\＄851
11853A 50，Type N Accessory Kii	\＄135
11B64A 50ת BNC Accessory Kit	\＄13s
$11855 A$ 75＠Type N Accessory Kit	\＄154i
11856A 75＠BNC Accessory Kil	\＄210
$11857 \mathrm{~A} 50 \Omega$ APC． 7 Test Port Extension Cables	\＄550
$11857875 \Omega$ Type N Test Port Extension Cables	\＄550
11857C 75，GR 900 Test Port Extension Cables	\＄650
11858A Transistor Fixture Adapler	\＄450
11864 A Labeling lnerface Kit	\＄600

## NETWORK ANALYZERS

Automatic network analyzer, 500 kHz to 1.3 GHz Modeis 85u7a/日

- Improve productivity in lab and factory
- Accuracy enhancement
- Ease of operation via HP-IB
- 9830B or 9825A Desktop Computer
- New learn mode



## Description

The 8507A/B is a desktop computer system based on the 8505A RF Network Analyzer. The 8507A utilizes the 98308 BASIC language deskiop computer while the 8507 B system uses the faster 9825A. The synergism of these easy-to-use deskiop computers with the "most programmable network analyzer yel designed" provides a powcrful RF network measurement tool for both lab and production uses.
Cost effective solutions
In laboratory applications. engineens gain geeater circuit insight duc to the speed and case with which dala can be accumulated and summarized with he $8507 \mathrm{~A} / \mathrm{B}$. With just a few hours trainıng, engineers with no previous programming experience have been able 10 write customized programs which solve specialized measurement problems. In production applications, the 8507A/B dramatically reduces the lime and cost of maxing complicalod limit lests on all types of components. Testing programs with build-in operator insinuctions can minimize training cost and assure uniform iest procedures.
Simplicity and flexibility of HP-I日
Confuguration of the standard $8507 \mathrm{~A} / \mathrm{B}$ or your own customized system is a simple matter since it is programmed via the HewlettPackand Interface Bus (HP-IB). For instance, your RF measurcment application niay require a programmable power supply for transistor biasing or a digital volimeter. Merely choose an instrument from the already large but still growing lise of $\mathrm{HP}-1 \mathrm{~B}$ interiaceable instruments and add is to your $8507 \mathrm{~A} / \mathrm{B}$ using universal HP-IB cables.

Geting stantod making measurements is equally easy since the 8507A/B comes complete with programs for system verification, aocuracy enhancement and measurement applications. The system verification programs provide you with a fast operational check of the network analyzer, the desktop conputer, and all system interfaces. However, one of the major conributions of the $8507 \mathrm{~A} / \mathrm{B}$ is is case of operation and programming using the HP.IB with Learn Mode.

## Learn mode operation

The "Learn" mode of operation extends tratitional automatic operation to a new level of operator convenience. A single key strake can eause the desktop computer io accept (leann) a data srring from the network analyzer which detines all of the manually set fron pawel control seltings. Once swed in the deskeop computer (or permanenly recorded) this data string ean then be used to tuiomatically retum the nerwork analyzer to its exact original test conditions...all without the operalor ever writing a single program line!

Programmability features

1) Unique "marker mode" operation provides a real time swept display at the same time data (frequency or displayed parameters) is being logged.

So you can store data at a limited number of frequencies and still be sure you haven' 1 missed a glitch.
2) Human-c ngineered HP-(B coding does away with complex code lables. To program a function, jusi type its name (shorened to first letter if you like) and switch position number (numbered I io N lef to right).


## 8507A/B Callbration Kits

85031A Verification and APC-7 Callbration Kit
Lacluded with 8507A/B. Contains Precision APC-7 Lad, APC-7 Shorr. and two verificuion slandards.
85032A Type N Callbration Klt
For use with $8507 \mathrm{~A} / \mathrm{B}$. Contains 2 APC- 7 to N-Male Adapters, 2 APC- 7 to N-Female Adaplers. I N-Male Load, I N.Female Loud, I N.Female Shon, and 1 N -Male Shorr. 85033A SMA Callbration KIt

For use with 8507 A B. Comains 2 APC. 7 to SMA.Male Adapters, 2 APC-7 to SMA-Femate Adapers, I SMA-Male Load. I SMA.Female Load, 1 SMA-Female Shor, and I SMA-Male Shor.

New 65036A 75ת Type N Calibruion Kit
For use with the 8507A/B Opi E75 75贝 Aulomaric Nerwork Analyzer Contains ! Type N Male Termination, I Type N Female Termination, I Type N Male Shor, I Type N Female Shon, I Type N Male Barrel, and I Type $N$ Female Barrel.

## Accuracy enhancement

Each $8507 \mathrm{~A} / \mathrm{B}$ system is supplied with a program that permits frequency Iracking, mismatch. and directivity errors to be characterized by applying known standards. These stored system errors are then removed from the measurement of the unknown to provide a degree of accuracy exceeding that possible with the standard 8505A.

## An example

The plots on the left show the result of sofiware accuracy enhancement. Curve $A$ depicts raw measurements on s 50 dB relum loss temination at the end of a six-fool RG 214 cable-a typical application problem in testing in temperature chambers. Curve B shows the results after calibrating at the end of the cable-a 25 dB improvement.
Data In the form you need
With these desktop computers, it is a simple matter to obtain customized printed or plotted oulputs. Or you may want to store data on tape for later analysis. Data can be andazzed or statisticnlly summarized directly, bypassing the laborious and error-prone task of manually recording and re-entering data. Data reformating such as converting returt loss to SWR or s-parameters to $y$-parameters is easily donc.

## 8507 A/B Automatic Network Analyzer

General-includes:

- 8505A Nenvork Analyzer with HP-1B interíace
- 8503A S-Parameter Test Set with HP-1B interface
- APC- 7 Calibration Kir ( 85031 A ). Systens Table, \& Cables
- System Assembly and checkoul

8507A also includes:

- 9830 B Deskiop Computer (16K byte memory and Siring Variables ROM) with 9866A Prinser. Cradle. and HP-IB interiace including extended 1/O ROM.
- 85030A Applications Pac-three cassettc programs for system verification, ascuracy enhancement and basic measurements.
8507日 also Includes:
- 9825A Desktop Computer (23K byte memory) with String-Advanced Programming and Ploter-General 1/O-Extended 1/O ROMS and 9866B Princer. cradle and interiace, and HP-IB interiace.
- 85030B Applications Pac-carridge with three programs for syslem verification, accuracy enhancement and basic measurements.
Powar: 115 or $230 \mathrm{~V} 50-60 \mathrm{~Hz}, 750 \mathrm{VA}$.
Welght: net $227 \mathrm{~kg}(500 \mathrm{lb})$. Sbipping, $272 \mathrm{~kg}(600 \mathrm{lb})$.
Ordering Information
8507A Automatic Netivork Analyzer
Price
Opt 002: Delete Systems Table
Opt 003: Delete 9830B Calculator
Opt 004: 30 K byle memory
Opt 005: Phase lock
85010A Basic Measurements Program PAC for 8501A
and $9830 \mathrm{~A} / \mathrm{B}$
85030 A Applications Pac sonware 8507A
$\$ 47,805$
less $\$ 600$
less $\$ 12,745$
add $\$ 3,200$
add $\$ 1.000$
$\$ 50$
$\$ 250$

85078 Automatic Network Analyzer
Opt 002: Delete Systems Table
Opt 003: Delete 9825A Calculator
Opt 006: Phase lock
Opt 006: 8501A N surements Program PAC.
85010B Basic Mcasurements Program PAC for $8501 \wedge$
and 9825 A
85030B Applications Pac soflware 850\%B
85031 A Verification/APC-7 Calibration Kit
85032A N Calibration Kit $\$ 775$
85033A SMA Calibration Kil $\$ 400$
85036A $75 \Omega$ Type $N$ Calibration Kit
\$49,875
less $\$ 600$
less $\$ 14,815$
add \$1,000 add $\$ 5,900$

85036A 75 $\mathbf{~ T y p e ~} \mathrm{N}$ Calibration Kit

## Model 8407 system

- Complete swept characterization of linear networks
- Modular system flexibility
- $50 \Omega$ and $75 \Omega$ measurements
- Digital storage


Swep1 measurements for either designing or testing are made with ease ty HP's veratile 8407 Nelwork Analyzer System. Since phase as well us magnitude is measurnd by a Network Analyzer, the behavior ol both aclive and passive linear nctworks can be completely characterized from 100 kHz to 110 MHz by swepi measurement.

Measurements of gain, loss, phase shifi (compure group delay). relum loss, and complex reflection coefficient are all possible in either $50 \Omega$ or $75 \Omega$ systems. These measurements allow the linear behavior of the networks under test to be completely characterized by their complex S-Parameters. Swept complex impedance $|Z|$ and $\theta($ for $\mathrm{Z} \mid$ from $0.1 \cap$ to $>10 \mathrm{k} \Omega$ ) as well as voltage and current transfer functions are alvo measured quickly and easily by the $\mathbf{8 4 0 7}$ system. Typical linear networks designed and tested with the 8407 are filters, amplifiers. allenuators, antennas. delectors, cables, and recording heads.

Much of the 8407 's versatility stems from its modular consiruction which allows the system to perform a variety of measurements or be economically tailored to one application. The basic instruments of the 8407 system are: The HP 8407A Network Analyzer. one of two REQUIRED sources (HP 8601A Sweeper/Generalor or HP 8690B/8698B Swcep Oscillator), choice of (wo plug-in displays (HP 8412A Phase-Magnitude Display or HP 8414A Polar Display), an oplional digital marker (HP 8600A) and one of four transducers (HP 11652 A .11654 A .11655 A . or 112 IA ) depending on the measurement. Becauve ibe 8407A is a tracking receiver, ithe HP 8601 A and HP $8690 \mathrm{~B} / 8698 \mathrm{~B}$ are the only sources providing the VTO output required 10 operate the network analyzer. Thus, an operating system musi be conligured with one of the required sources. the network analyzer. a display and one or more of the Iransducers depending on the device under test and the network parameters desired.

## Specifications 8407A

General: 8407 A is a two input tracking receiver, using both inpuls (reference and test channels) to form their magnitude tatio and phase difference before routing to display.
Frequency range: $0.1-110 \mathrm{MHz}$.
Impedance: S0Il. Option 008: 755. VSWR $<1.08$.
Dynamic range: $\boldsymbol{q}_{0} \mathrm{~dB}$
Test Input: DIRECT -10 10 -90 dBm signal range. AT. TENUATED, +20 to -50 dBm signal range. Damage level +26 dBm/50 V dc.
Relerence Input: DIRECT level required, $-1010-60 \mathrm{dBm}$ ATTENUATED level required +20 so - 20 dBm . Damăge level $\div 26$ $\mathrm{dBm} / 50 \vee \mathrm{dc}$.
Amplitude accuracy: FREQUENCY RESPONSE $\pm 0.2 \mathrm{~dB}$ for DIRECT input (tes! input :-60 dBm). $0.1-110 \mathrm{MHz}:=0.05 \mathrm{~dB}$ over any 10 MHz portion: nity be calibrated out. Typically $=0.05$ dB for DIRECT inputs (REFERENCE level of - 10 dBm ). DISPLAY REFERENCE, <0 $0 \leq \mathrm{dB} / 1 \mathrm{~dB}$ stcp, total emor $\leqslant 0$.) dB: $<0.1 \mathrm{~dB} / \mathrm{dB}$ wep, lotal crror $\leqslant 0.25 \mathrm{~dB}$. ATTENUATED INPUTS. $40 d B=0.5 \mathrm{~dB}$. REFERENCE CHANNEL GAIN CONTROL. 20 dB and 4$) \mathrm{dB}$ steps $=0.5 \mathrm{~dB} /$ step. CROSST ALK. $>0.03 \mathrm{~dB}$ when lest/ref - - 4 1 dB to $=4 \mathrm{~dB}$ when lest $/ \mathrm{ref}=-80 \mathrm{~dB}$.
Phase accuracy: FREQUENCY RESPONSE, $=5^{\circ}$ for DIRECT inpul (test input $>-60 \mathrm{dBm}), 0.1$ to $110 \mathrm{MHz}:=20$ over any 20 MHz portion. may be calibrated out. Typically $\pm 2^{\circ}$ from 1. 110 MHz for DIRECT inpus (REFERENCE level of -10 dBm ). DISPLAY REFERENCE, <0.5 ${ }^{\circ} 10 \mathrm{~dB}$ step; total error $<3^{\circ}$. ATTENUATED inpuls, $\pm 2^{\circ}$ from DIRECT inputs. REFERENCE CHANNEL GAIN CONTROL. $\pm 2^{\circ} /$ step. CROSSTALK. $<0.3^{\circ}$ when tesi/ ref $=-40^{\circ}$ to $<11^{\circ}$ when test/ref $=-80 \mathrm{~dB}$.
Power: 65 watls. $50-50 \mathrm{~Hz}$. $115 / 230 \pm 10 \% \mathrm{Vac}$.
Waight: nct, $14.6 \mathrm{~kg}(32 \mathrm{lb})$. Shipping. 17.8 kg ( 39 lb ).
8412A
General: plug-in PHASE-MAGNITUDE CRT Display. Displays magnitude and/or phase vs. frequency.
Amplifude accuracy: display. $0.08 \mathrm{~dB} / \mathrm{dB}$ from midscreen. Rear outpur: $0.03 \mathrm{~dB} / \mathrm{dB}$ variation from 0 voll ourpur.
Phase Accuracy: DISPLAY, $0.065^{\circ} /$ degree from mudscreen. PHASE OFFSET, $0.3^{\circ} 30^{\circ}$ step. $\leqslant 3^{\circ}$ for $360^{\circ}$ change positive or negative direction. VS DISPL 1 YED AMPLITUDE, $<1^{a} / 10 \mathrm{~dB}$ : lota) $<6^{\circ}$ over 80 dB range.
Rear panel inputs: sweeping. $\$ 15 \mathrm{~V} \mathrm{dc}$. Blanking. -4 V dchlanks CRT. $Z$ axis (marker). 5 V dc intensifies and +5 V dc blanks race.
Power: 23 watts. supplied by 8407 A .
Welght: nel. $7.8 \mathrm{~kg}(17 \mathrm{lb})$. Shipping. $10 \mathrm{~kg}(22 \mathrm{lb})$.


## New 8750A

General: the 8750A Storage-Nomalizer provides digitally stored and normalized CRT displays when used with the 8412 A PhaseMagnitude Display. Mcasurements are fasler. easier, and more accurate when the 8750A is employed because the CRT is ficker-free and fiequency response errors are eliminated. The 8750A is not compatible with the 8414A Polar Display
Power: selection of 100. 120. 220, or $240 \mathrm{~V}+5 \%-10 \%$. 48 10 440 Hz and $\leqslant 20$ VA ( $\leqslant 20$ waths).
Welght: net. 2.72 kg ( 6 Jbs ). Shipping. $5.0 \mathrm{~kg}(1 / \mathrm{lbs})$. Detailed Specifications on Page 450.

## 8414A

General: normalized POLAR coordinate display with magnitude calibration in 0.2 of full scale gradations. Full scalc is determined by DISPLAY REFERENCE on 8407A: phase catibration is in $10^{\circ}$ increments over $360^{\circ}$ mage. Smith Chan overlays available.
Accuracy: all errors in amplitude and phase due to display are contained within a circle of 3 mm aboul measurement pount.
Rear panel inputs: blanking, -4 to - 10 V de blanks CRT. Marker. intensified trace with -4 to - 10 V de
Rear panel outputs: horizontal and verical both $=2.5 \mathrm{~V}$ for full scale deflection.
Power: 35 walls. supplied by 8407A
Weight: net, $5.9 \mathrm{~kg}(13 \mathrm{lb})$ Shipping, 8.0 kg ( 18 fb ).
Delailod speciricalions on page 454 .


8601A
General: GENERATOR/SWEEPER operating in either CW or SWEPT modes. Swcep modes are full, variable slop irequency, and symmerrical 〈up to 10 MHz . Fealurcs very low residual FM, spurious. harmonics, and drift. 8601A provides the VTO signal required 10 operafe the 8407 A .
Frequency: $0.1-110 \mathrm{MHz}$ in two sweep ranges. $0.1-11 \mathrm{MHz}$ and I-IIOMHz.
Impedance: 50日, OpIion 008 : $75 \Omega$. VSWR $<1.2$.
Accuracy: $1 \%$ of frequency, $0.5 \%$ linearity, and $2 \%$ of sweep width. Callbraled output: $=0.25 \mathrm{JB}$ fanness over full range. output accu. racy $\pm 1 \mathrm{dBm}$ from $+1010-130 \mathrm{dBm}$.
Auxillary output: sweep oul, blanking (for $\$ 412$ and 8414), VTO (required by 8407 A$)$. and aux iliary oulput ( $0.1-11 \mathrm{MHz}$ both ranges) for 8600 counter/digital markes.

Dctailed specifications on page 384.

## 8600A

General: DIGITAL MARKER used with 860IA gencrator/ sweeper to provide five conlinuously variable maxers on a display whire reading out the frequency of any one marker. Six digit display. Mapkers/accuracy: 5 markers accurate nil desired frequency $=$ ( $0.05 \%$ sweep widh +sweep siability).
Counter frequency range: $0.1-15 \mathrm{MHz}$ (automalically scales up by ien when 8601 A on $0.1-110 \mathrm{MHz}$ range).

Detailad specifications on page 384.

## 11652A

General: REFLECTION-TRANSMISSION KT containing power splitier, 8721A DIRECTIONAL BRIDGE, precision termination. calibrating short, three BNC adapters. and four malched, low-leakige cables for both Iransmission :Ind reflection measurements. All $50 \Omega$ BNC connectors. Option 008 $75 \Omega$.
Dlrectlonal bridge: 8721A: 6 dB inserion losis and 6 dB coupled to auxiliary am. Frequency response $\pm 0.5 \mathrm{~dB}(0.1-110 \mathrm{MHz})$. Direclivily $>40 \mathrm{~dB}$ (1 to 110 MHz ). Load pon return loss $>30 \mathrm{~dB}$ ( $\rho<0.03$ ). Max input power $+20 \mathrm{dBm} .50 \Omega$, Oplion 008: $75 \Omega$.
Power spifter: 6 dB through each arm. Max input power +20 dBm . $50 \Omega$.
$50 \Omega$ temination: reium loss $>43 \mathrm{~dB}$.
Wolght: net, 0.7 kg ( 1.5 lb ). Shipping, 1.2 kg ( 2.5 lb ).

## 11654A

General: passive probe kil for measunng cument and voltage Irsnsfer functions and accurate complex impedance below 11 MHz con-
tains u pair each of six resistive divider probes (1:1, 5:1. 10: 1. 20:1. $50: 1,100: 1$ ), current probes and a varicty of adaplers.
Welght: net. 0.9 kg (2 lb). Shipping, 1.4 kg (3 lb).

## 11655A

General: swept or CW impedance probe mounting direcdy to 8407 A . Mount contains intemal ealibrator, $100 \Omega \pm 0.5 \%$ and $0^{3} \pm 2^{\circ}$ : parasities capacitances are calibralod out: and simple chars are available for calculabing out residual resistances. Contains componenl adapler. probe to BNC adapler, probe to type $N$ adapier, and various ground assemblies.
Frequency: $0.5-110 \mathrm{MHz}$ (usible io 0.1 MHz ).
Measurement range: amplinde, $0.1 \Omega$ to $>10 \mathrm{k} \cap$; phase. $0^{\circ} \pm 90^{\circ}$ CW accuracy: ampliude $\pm 5 \% ; \pm 5^{\circ}$ for $|Z|>3.1611$.
Swept accuracy: Iypically $\pm 5 \%$ in amplitude ( $3-110 \mathrm{MHz}$ ). $\pm 5^{\circ}$ in phase ( $5-110 \mathrm{MHz}$; accwacy decreases below 3 MHz . Note ull accuracy specs valid only for proper inpul levels and calibration.
Max external voltage to probe: $30 \mathrm{Vdc}, 5 \mathrm{~V} \mathrm{~ms}$.
Welght: net, 0.9 kg ( 2 lb ). Shipping, 2.7 kg ( 6 lb ).

## 11658A

General: $50 \Omega$ to $75 \Omega$ matching resistor formatching the $50 \Omega$ of the 8407A to a $75 \Omega$ environment. Two 11658 A's ate very useful for freugent $50 \Omega$ to $75 \Omega$ changes. The 11658 A 's mount directly on the from pune, of 8407A. FREQUENCY, $0.1-110 \mathrm{MHz}$, JNSER. TION LOSS, 3.3 dB . RETURN LOSS, $>40 \mathrm{~dB}$. CONNEC. TORS. $50 \Omega$ ENC male and $75 \Omega$ BNC female.

## Nel welght: 28 g (l oz).

## 1121A

General: $1: 1$ active probe for making measurements without disturbing circuitry and measuning voltage transferfunctions in systems different from $50 \Omega .10: 1$ and $100: 1$ dividers and $B N C$ adapler also furnished.
Frequency response: $\pm 0.5 \mathrm{~dB}$ and $\pm 2 \%$ from $0.1-110 \mathrm{MHz}$ with a bandwidth ( 3 dB ) of 1 kHz to $>500 \mathrm{MHz}$ and gain $0 \mathrm{~dB} \pm \mathrm{I} \mathrm{dB}$.
Input Impedance: $100 \mathrm{k} \Omega$, shunt capacitance of 3 PF al 100 MHz . With 10 : I or 100 : I divider, $1 \mathrm{M} \Omega$, shonl capacitance I PF at 100 MHz.
Output Impedance: $50 \Omega$ nominal.
Maximum Input: 300 mV mus, $\pm 80 \mathrm{~V}$ dc; with $10 ; 1$ divíder. 3 V $\mathrm{mms} .=350 \mathrm{~V}$ dc: wilh $100: 1$ divider, 30 V ms, $\pm 350 \mathrm{~V}$ de.
Power: supplied by 8407A through PROBE PWR jacks.
Weight: net, 0.7 kg (t.5 Jb). Shipping, 1.2 kg ( 2.5 lb ).
B5426A
General: bias insertion network providing $D C$ bissing to devices under test on RF transmission lines. Operaing frequency range is $0.1-500 \mathrm{MHz}$ with inserion loss $<0.4 \mathrm{~dB}$ and relums loss $>28 \mathrm{~dB}$. Max biasing current of 750 mA and max biasing vollage of 70 V . Connectors are BNC for DC biasing and APC- 7 for RF.
Welght: nes, 0.5 kg ( 1 lb ). Shipping, 0.8 kg ( 1.7 lb ).

## 85428B

General: $50 \Omega$ to $75 \Omega$ minimum loss pad. Pad operates from $0.1-110$ MHz with an inscrion loss of 5.7 dB and VSWR $<1.05$. Connectors are $50 \Omega$ BNC male and $75 \Omega$ BNC female.
Welght: nel. 0.1 kg ( 2 oz ). Shipping. $0.2 \mathrm{~kg}(6 \mathrm{oz})$.
Ordertng information Price
8407A Network Analyzer $\$ 4500$
Opt 008: $75 \Omega$ input
add $\$ 115$
8412A Phase Magnitude Display
$\$ 2200$
8750A Storage-Normalizer $\$ 1450$
84l4A Polar Display $\quad \$ 2000$
8601A Sweeper/Generalor \$3000
Opt 008: 75ת ourpul
add $\$ 50$
86001 Digital Marker
$\$ 1500$
11652 A Rellection/Transmission Kil (50 ) \$475

## Opf 008: 75R

add \$60
11654A Passive Probe Kil
11655A Impedance Probe Ki1
$\$ 1500$
11658A Matching Resistor
flzla AC Probe Kit
$\$ 40$
85426 Bias Insenion Network
85428B Minimum Loss Pad
$\$ 550$
8721A Direclional Bridge (50 )
Opl 008: $75 \Omega$


The 8403A Vector Voltmeter measures voltage vectors described by both magnitude and phase. This capability makes the 8405A a unique instrument for about any design and test application in the frequescy range 1 to 1000 MHz .

In addition to absolute voltage measurements, capabisities include inserion loss and group delay of passband-ifiters and other transmission devices, gain and phase margin of amplifiers, complex impedance of mixers, antennas, matching the electrical lengths of cables, s -parameters of iransistors, ampliude modulation index. RF distortion measurements and in-circuit probing.
The 840SA achieves this measurement versatility through its two-channel capability enabling voleage magnitude measurements in either channel, thus allowing ratio measurements, and phase difference measurements berween the two channels. Gain or loss in excess of 90 dB and phase measurements with $0.1^{\circ}$ resolution over a $360^{\circ}$ phase range are possible.
Accurecy is achieved through the 1 kHz bandwidith catailing response only to the furdamental frequency of the input sigral. Aiso, phase-locked coherent sampling to translate I to 1000 MHz RF signals to 20 kHz IF signals enables accurate detection of voltage magnitude and phase. Automatic phase-locked ruming makes it possible to select the one of 21 overlapping oclave ranges which contains the input signal frequency by simply rotating a switch.

## Specifications

Frequency range: 1 MHz to 1 GHz in 21 overlapping oclave bands; tuning automatic within eacb band.
Isolation between channels: I $10.300 \mathrm{MHz},>100 \mathrm{~dB}: 300$ to 1.000 $\mathrm{MHz}>80 \mathrm{~dB}$.
Maximum Input: ac, 2 V peak: $\mathrm{dc},=50 \mathrm{~V}$.
Input impedance (nominal): 0.1 Mn shunted by $2.5 \mathrm{pF} ; 1 \mathrm{M} \Omega$ shurted by $2_{\mathrm{p}} \mathrm{F}$ when 11576A 10:1 Divider is used; $0.1 \mathrm{M} \Omega$ shunted by 5 pF when r0216A Isolator is used. AC coupled.

Voltage range (rms)

Chamnel	$1-10 \mathrm{MHz}$	$10-500 \mathrm{mHz}$	$500-1000 \mathrm{mHz}$
A	$1.5 \mathrm{mV}-1.0 \mathrm{~V}$	$300 \mu \mathrm{~V}-1.0 \mathrm{~V}$	$500 \mu \mathrm{~V}-1.0 \mathrm{~V}$
B	$<20 \mu \mathrm{~V}-1.0 \mathrm{~V}$	$-20 \mu \mathrm{Y}-\mathrm{LOV}$	$<20 \mu \mathrm{~V}-1.0 \mathrm{~V}$

Voltmeter ranges: $100 \mu \mathrm{~V}$ to 1 V tms fill seale in 10 dB steps. Voltage ratlo aecuracy: $1-200 \mathrm{MHz}, 0.2 \mathrm{~dB}$ for -60100 dB ranges and 0.5 dB for -70 dB to +10 dB ranges; $200-1000 \mathrm{MHz}, 0.2 \mathrm{~dB}$ for -60 to -10 dB ranges. 0.5 dB for -70 dB 100 dB ranges and 1.5 dB for +10 dB range.
Phase range: $360^{\circ}$ indicated on zero-center meter with end-scale ranges of $\pm 180^{\circ} .=60^{\circ}, \pm 18^{\circ}$, and $=6^{\circ}$.
Phase resolution: $0.1^{\circ}$ at any phase angle.
Phase meler offaet: $=180^{\circ}$ in $10^{\circ}$ steps.
Phase accuracy: $\pm 1.5^{\circ}$ (equal volage Channel $A$ and $B$ ).
Accessorles furnished: two 11576A 10:1 Dividers. two 10216A 1solators. two 10218A BNC Adapters, six ground clips for 11576A or 10216A: six replacement probe tips.
Bandwidth: 1 kHz .
Power: 115 or $230 \mathrm{~V} \pm 1098,90$ to $400 \mathrm{~Hz}, 35 \mathrm{~W}$.
Welght: лet, 13.9 kg ( 3 l fb ). Shipping, 16.3 kg ( 36 lb ).
SIze: $177 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{mmD}\left(7^{+\prime} \times 16^{3} / 4^{\prime \prime} \times 183 / \mathbf{s}^{\prime \prime}\right)$.
11570A Accessory kit
$50 \cap$ TEE: 11536 A: for monitoring signals on $50 \Omega$ Iransmission lines without terminating line, Kil contains two with type N RF filtings. $50 \Omega$ Powar splitter: 11549 A : all connectors Type N female.
$50 \Omega$ termination: 908 A : for terminatiog $50 \Omega$ coaxial systems in their characterisuic impedance.
Shorting plug: IISI2A: Shoring Plug. Type $N$ male.
Orderlng Information Price

8405A Vertor Vollimeter
$\$ 3750$
Opt 002: linear dB scale
11570 A Accessory Kle (measurement in $50 \Omega$ systerns only)

[^30]

8410 Opl 400


841050 pl 500

All 84105 Systems measure tramsmission and reflection parameters of coaxial or semiconduetor components in the form of gain. attenuation, phase, reflection coefficient or impedance. Fach option has been configured and fully specified for making general measurements within a frequency range or for pushbution S-pirameter measurements on seniconductor devices in a varicty of package styles. The 8410 S Systems enable dic opernor to view a real time CRT display over coctave or mullioetave bands witha dymamie range of $60 \mathrm{~d} k$ amplitude and $360^{\circ}$ phase. Multioctive, contimeus net-
work measurements over the frequency range of 21018 GHz are possible when the 8410 B is used with the HP $8620 / 86290$ Sweep Oscillator.

The 84105 Systems upper frequency limit for coaxial and semiconductor measurements is 12.4 GHz : however, indiviủual instmments may be ordered that will expand conaial measurement eapability to 18 GH . (option 018 inslruments) and waveguide meastremenls from 8.2 GHz to 40 GHz ( 8747 A series).

8410 Network Analyzer Systems Table

CGTEAAL PURPL	ASURDALM	All 84105 Systems Inctude the rollowine Instrumand  											
Trequency Range	Opthon Mo	Hoasuremenl Port cantruration	d743A	6745A	8746A	8)178	116000	116028	11806A	11604 A	11605A	11650	Price
$01110 \%$ 9\%2	1110	Codxlal (APC-1)		$x$						$x$		$x$	\$13,685
0.11 8012 647	310	Coayal (aPC. 7)	$x$	X						X	$\underline{ }$	$x$	\$24,295
$21012.4 \mathrm{GHz}^{2}$	$210^{\circ}$		X								X	久	\$17.645
SEAICONOUCTOA CHARACIERIZATON													
0.11 た 2 GHz	400	50281072 Packages		$x$		$x$	$x$						815, 765
0.11102 GHI	401	T05'r0:2 Pachajes		$x$		$x$		X					\$19,765
05701246 Hz	500	rojl Parkugo			$x$	$x$			$x$				\$22,415
0.5 to 124 GHz	501	HPAC 200 Packa ${ }^{\text {E }}$ E			$x$	$x$			$\chi$				529,413

[^31]
## Specifications

8410 Common Performance Speciflcations
Function: all systems measure iransmission and reflection paramelers on a swept-frequency or CW basis with readout of altenuation. gain, phase shift, refleclion coefficient, relum loss. impedance, depending on display unit.
Transmisalon measurement (using 8412A): accuracy curves show overall system uncerrainty as a funetion of the amplitude and phase value. Sources of error included are IF gain conırol, display accuracy, phase offsel, system noise and cross-lalk. System Erequency responses is specified separately and is not included in accuracy curves.
Amplitude accuracy ( 80 dB dynamle range)
IF gain control: 69 dB in 10 dB and I dB steps.
$=0.1 \mathrm{~dB} / 10 \mathrm{~dB} 7$ $\qquad$ $\pm 0.2 \mathrm{~dB}$ maximum comulative
$\pm 0.05 \mathrm{~dB} / 1 \mathrm{~dB}]$
from midscreen.
phase acouracy
Phase oftset: $0.3^{\circ} / 20^{\circ}$ step; maximum $3^{\circ}$ for $360^{\circ}$ change.
Display: $0.065^{\circ} /$ degree from midscreen.
Connectors: RF Input, Type N female stainless steel; Measurement Pors, APC-7 precision 7 -mm connectors.



## 8410S Opt 100/110 specifications

Function: the 8410 S option $100 / 110$ measurement systems give all four S-parameters for a two-pon network with pushbution ease over the frequency range of 110 MHz 102 GHz . A choice in $\log$ display units is made by selecting Option 100 (8413A display) or Option 110 (8412A display).

Frequency range: 0.11 to 2.0 GHz .
RF Input: 20 dB range belween -21 dBm and +7 dBm .
Source reflection coetflcient: $\leqslant 0.09,0,11-2.0 \mathrm{GHz}$.
Termination reslection coefficient: $\leqslant 0.11,100-200 \mathrm{MHz}: \leqslant 0.09$. $200-2000 \mathrm{MHz}$.
Dlectlvity: $>36 \mathrm{~dB} 0.1 \mathrm{I}-1.0 \mathrm{GHz}:>32 \mathrm{~dB} 1.0-2.0 \mathrm{GHz}$.
Insertion loss, RF Input to test port: 4 dB nominal.
Frequency response
Transmisslon: rypically $< \pm 0.35 \mathrm{~dB}$ ampliude and $< \pm 3^{\circ}$ phase.
Reflection: rypically $<=0.09$ magniude and $=5^{a}$ phase with a short on the test port.
Transmission measurement accuracy: (see Common Performanee Specifications).
Reflectlon messurement accuracy (using 8414A): sources of error included in the accuracy equations are directivity, source match, and polar display accuracy.
Magnitude accuracy:
$\rho_{\mu}= \pm\left(0.015+0.03 \rho_{L}+0.06\right.$ I $\left.^{2}\right) 0.11-1.0 \mathrm{GHz}$.
$\rho_{u}= \pm\left(0.025+0.03 p_{i}+0.06 \rho^{1}{ }^{2}\right) 1.0-2.0 \mathrm{GHz}$.
$\rho_{u}=$ magnilude uncerainiy.
$p_{L}=$ measured reflection coefficient magnitude.


Phase accurecy:
$\Phi_{u}=\sin ^{-1} \rho_{\mathrm{u}} / \rho \rho_{\mathrm{s}} \operatorname{lor} \Phi_{u}<90^{\circ}$.
$\phi_{4}=$ phase uncertainty.


See 8410S Network Analyzer Systems Table for price and Instrument breakdown.
84105 Opt 200/210 speciflcations
Function: The 8410 S Option $200 / 210$ measurement systems cover a frequency ange of 2 to 12.4 GHz . With just one simple selup and calibration both transmission and reflection measurements are easily made by pushing a bution. A choice in log display units is made by selecting Option 200 ( 8413 A display) or Option 210 (8412A display). Frequency range: 2.0 to 12.4 GHz .
RF Input: 20 dB range between -14 dBm and +14 dBm .
Source rellectlon coetficient: $\leqslant 0.09 .2-8 \mathrm{GHz}: \leqslant 0.13 .8-12.4$ GHz .
Terminallon reflection coeffeiont: $\leqslant 0.09 .2-8 \mathrm{GHz} \leqslant 0.13$. 8-12.4 GHz.
Direcilitity: $\geqslant 30 \mathrm{~dB}, 2-12.4 \mathrm{GHz}$.
Insertion loss, RF Input to test port: 20 dB nominal.

## Frequency response

Transmission: rypically $< \pm 0.5 \mathrm{~dB}$ ampliude and $< \pm 5^{\circ}$ phase. Reflection: typically $< \pm 0.09$ magnitude and $< \pm 6^{\circ}$ phase, with a shorn on the unk nown port.

Transmission measurement accuracy: (see Common Periormance Specifications).
Reflection measurement accuracy (using 8414A): sources of crror included in the accuracy equalions are directivity. source malch, and polar display accuracy.

## Magnitude accuracy

$\rho_{4}==\left(0.0316+0.03 \rho_{\mathrm{L}}+0.09 \rho_{L^{2}}{ }^{2}\right) 2-8 \mathrm{GHz}$.
$p_{u}= \pm\left(0.0316+0.03 p_{L}+0.13 \rho_{L^{2}}\right) 8-12.4 \mathrm{GHz}$.
$p_{u}=$ magnitude unceriainty.
$\rho_{u}=$ measured rellection coeflicient magnitude.


## Phase accuracy:

$\Phi_{4}=\sin ^{-1} \rho_{u} / \rho_{L}$ for $\Phi_{16}<\approx 90^{\circ}$.
$\Phi_{u}=$ phase uncertainty.


See 8410 S Network Analyzer Systems Table for price and Instrument breakdown.
84105 Dpt $300 / 310$ specilicatlons
Functlon: The B4IOS Option 300/310 measurement systems encompass both the $8410 S$ Opision 110 and 210 system specifications and flexibility. The two RF iransducer units cover the frequency range of 110 MHz io 12.4 GHz and bouh offer calibrated line seretchers for extending the reference plane. Coaxial rotary joints and air-lines mounted on the front of the transducer units allow easy connections to the test device. A choice in log display units is made by selecting elluer Option 300 ( 8413 A display) or Option 310 ( 8412 A display).
Sea 84105 Network Analyzer System Table for price and Instrument breakdown.
84105 Opi 400/401 specifications
Functlon: The 8410 S Option $400 / 410 \mathrm{~S}$-parameter measurement system provides two pon $S$-parameters for semiconductors in TO-18/TO-72 (Option 400) or TO-5/TO- 12 (Option 40 I) packages, A short circuit Temination and a 50 ohm through section are included with each type fixture for reference plane calibration.
Frequency range: 0.11 to 2.0 GHz .
Transistor dc blas ablection: front punel slide switches establish proper de biasiag for bouh Bi-polar and FET iransistors. The voluge and current controls operate independently and are conlinuously adjustable over a current range of 0 to 500 m A and a voltage range of 0 to 30 Vdc .
AF Input; 20 dB range between $-21 \mathrm{dBm} 10+7 \mathrm{dBm}$.
Incldent power at device under test: +3 dBm to -25 dBm .
Source reflectlon coefilclent
Opt 400: Iypically -0.062 .
Opt 401; typically -0.067 .

Temination reflectlon coefflcient
Opt 400: typically $<0.11$. 100 to 200 MHz . $<0.09 .0 .2102 .0 \mathrm{GHz}$.
Opt 401 : typically $<0.14$. 100 to 200 MHz .
Directivity
Opt 400: typically <31 dB, 0.11 to 1.0 GHz .
$<29 \mathrm{~dB}, 1.0$ to 2.0 GHz .
Opt 401: typically $<28 \mathrm{~dB} .0 .11$ to 1.0 GHz . $<27 \mathrm{~dB} .1 .0$ to 2.0 GHz .
Frequency response
Transmisslon: typically $<=0.35 \mathrm{~dB}, \pm 3^{\circ}$.
Pellection: typically $< \pm .5 \mathrm{~dB}, \pm 5^{\circ}$.
Transmission measurement accuracy: (see Common Performance Specifications).
Reflection measurement accuracy (using 8414A): sources of error included in the accuracy equations are directivity and source match.

## Magnlitude accuracy

Opl 400:
$\rho_{\mathrm{E}}=: \pm\left(0.029+0.048 \rho_{\mathrm{L}}+0.06 \rho_{\mathrm{L}}{ }^{2}\right) 0.11101 \mathrm{GHz}$.
$p_{u}= \pm\left(0.035+0.051 \rho_{L_{L}}+0.062 \rho_{L_{2}^{*}}\right) 1.0102 .0 \mathrm{GHz}$.
Opt 401:
$\rho_{u}==\left(0.038+0.054 \rho_{s}+0.067 \rho_{2}{ }^{2}\right) 1.0$ to 2.0 GHz .
$\rho_{u}=$ magnitude uncerainty.
$\mu_{L}=$ measured reflection corfficient magnilude.
Phase accuracy:
$\Phi_{u}=\sin ^{-1} \rho_{u} / \rho_{L}$ for $\Phi_{u}<90^{\circ}$.
$巾_{\mathrm{n}}=$ phase uncertainty.
See 6410 S Network Analyzer Systems Table for price and Instrument breakdown.
8410S Opt $500 / 501$ speclílcatlons
Function: The 8410S Option 500/501 S-parameter mensurement systems provide the capability of biasing and measuring all four S-paramoters of strip-line transistors in the TO-51 (Option 500). HPAC-200 (Oprion 501) packages. A short circuit termination and a 50 -ohm through section are included with each fixture for reference plane calibration.
Frequency range: 0.5 to 12.4 GHz .
Translstor de blas selectlon; front panel slide switches establish proper de biasing for both Bi-polar and FET transistors. The volrage and current controls operate independently and are conlinuously adjustable over a current range of 0 to 500 mA and a range of 0 to 30 $V \mathrm{dc}$.
AF input: 20 dB range belween -7 and +13 dBm .
Incldent power at device under test: -27 dBm to -7 dBm with INCIDENT AITENUATION set to 0 dB .
Incldent attenuallon range; 0 to 70 dB in 10 dB steps
Source raflection cosflident: (typically) $<0.13 .0 .5$ to 8.0 GHz : $\pm 0.14,8.0$ to 12.4 GHz .
Temination reflection coetficlent; (rypically) <0.13, 0.5 to 8.0 $\mathrm{GFz}: \pm 0.14,8.0$ to 12.4 GHz .
Directivity: $>28 \mathrm{~dB}, \mathrm{Q} .5$ to $4.0 \mathrm{GHz} ;>23 \mathrm{~dB}, 4$ to 12.4 GHz .
Frequency response: (typically) $<1.0 \mathrm{~dB}, \pm$ stegres; 0.05 to 4.0 $\mathrm{GHz}:<-1.5 \mathrm{~dB},-5$ degrees, 4.0 to $8.0 \mathrm{GHz}:<2.5 \mathrm{~dB} .45$ degreen, 8.01012 .4 GHz .

Transmission measurement accuracy: (sce Common Performance Specifications).
Reflection measurement accuracy: sources of error included in the accuracy equation are directivity and source match.
Magaltude accuracy:
$\rho_{\mathrm{u}}==\left(0.04+0.08 \rho_{\mathrm{L}}+0.13 \rho_{\mathrm{L}}{ }^{2}\right) 0.5$ to 4.0 GHz .
$p_{\mathrm{L}}= \pm\left(0.07+0.09 \rho_{L}+0.135 \rho_{L}{ }^{8}\right) 4.0108 .0 \mathrm{GHz}$.
$\rho_{u}= \pm\left(0.074+0.098 \rho_{1 .}+0.14 \rho_{L^{2}}\right) 8.01012 .4 \mathrm{GHz}$.
$\rho_{u}=$ magnitude uncerainly.
$\rho_{\mathrm{L}}=$ measured reflection coefficient magnitude.
Phase accuracy:
$D_{u}=\sin ^{-1} \rho_{u} / \rho_{L}$ for $D_{u}<90^{\circ}$.
$\Phi_{u}=$ phase uncertaigty.
See 8410 S Network Analyzer Systems Table for prlce and instrument breakdown.


8750A


8418A


8412A


0413A


B414A

## Specifications

8410日／8411A Network Analyzer
Function：8411A converts RF signals to IF signals for processing in 8410 B mainframe． 8410 B is the maniname for display plug－in units． Mainframe includes uning circuits（octave bands or multioctave bands when used with HP 8630／86290 sweep oscillator），IF amplifiers and precision IF attenuator．
8410日 Irequancy range： 0.11 to 18 GHz ．
8411 A frequency range： 0.11 to 12.4 GHz ．
Opt 018： 0.11 to 18 GHz ．
8411A Input limpedance： 50 ohms nominal．SWR＜ $1,5,0.11$ to 8.0 GHz ：$<2.0,8.0$ to 12.4 GHz ：Iypically increases to a $10: 1 \mathrm{SWR}$ ， 12.4 to 18 GHz ．

Channel is olation：$>65 \mathrm{~dB}, 0.1$ to $6 \mathrm{GHz}:>60 \mathrm{~dB}, 6$ to 12.4 GHz ： $>50 \mathrm{~dB}$ ． 12.4 to 18 GHz ．

## Amplitude

Reference channel：-16 to $-26 \mathrm{dBm}, 0.111018 \mathrm{GHz} ;-16$ 10 -36
$\mathrm{dBm}, 0.11$ to 12.4 GHz ．
Test channel：-10 to -78 dBm fram 0.11 to $12.4 \mathrm{GHz}:-10$ to -68 dBm from 12.4 10 18 GHz ．
Maximum RF Input to elther channel： 50 mW ．
IF galn control： 69 dB range in 10 dB and 1 dB steps with a maximum cumulative error of $=0.2 \mathrm{~dB}$ ．
Phase
Phase range： 0 to $360^{\circ}$ ．
Control：vernier control $\leqslant 90^{\circ}$ ．
Connectors（ 8411 A ）：APC－7．
Power： 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 50-60 \mathrm{~Hz} .70$ wats（includes 8411 A ）．
Welght
8410B：nct ， $14,9 \mathrm{~kg}$（33 Jb）．Shipping， 18.5 kg （41 lb）．
8411A：nel， 3.2 kg （7 lb）．Shipping， 4.5 kg （ 10 lb ）．
Slae
8410B： $191 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{~mm} \mathrm{D}\left(71 \%^{*} \times 16^{3 / 4^{\prime \prime} \times 187^{*}}\right)$ ．
0411A： $67 \times 238 \mathrm{~W} \times 143 \mathrm{mmD}\left(2^{3 / h^{\prime \prime}} \times 9^{\prime \prime} \times 5 \mathrm{si} \mathrm{s}^{\mathrm{N}}\right)$ exclusive of connectors and cable．
8412A Phase－Magnitude Display
Functlon：plug in CRT display unit for 8410B．Displays relative amplitude in dB and／or relative phase in degrees belween reference and test channel inputs versus frequency．
Ampiltude
Range： 80 dB display range with selectable resolutions of 10．2．5， 1 and $0.25 \mathrm{~dB} / \mathrm{d}^{2} \mathrm{vision}$ ．
Accuracy； $0.08 \mathrm{~dB} / \mathrm{dB}$ from midsereen．

Phase
Range：$=180^{\circ}$ display range with selectable resolutions of 90.45. 10 ．and $1^{\circ} /$ division．
Accuracy： $0.065^{\circ}$／degree from midscreen．
Phase offset： $0.3^{n}, 20^{\circ}$ step cumulative $<3^{\circ}$ ．
Power： 23 watis supplied By mainlirame．
Welght：nct． $7.8 \mathrm{~kg}(17 \mathrm{lb})$ ．Shipping， $10 \mathrm{~kg}(22 \mathrm{lb})$.
Dimenslons： $152 \mathrm{H} \times 186 \mathrm{~W} \times 395 \mathrm{mmD}\left(6^{1} \times 75 / \times 9^{\prime \prime} \times 15 \% / 10^{11}\right)$ excluding front panel knobs．
New 日750A Slorage－Normalizer
General；the 8750A Slorage－Nomalizer provides digitally stored and normalized CRT displays when used with the 8412A Phase Nagnitude Display．Measurements are faster，eavier and more ac－ curate when the 8750A is employed bectusc the CRT is nicker－free and frequeney response crors are eliminated．The 8750 A is not comparible will the 8414 A Polar Display．
Power：selection of 100 ， 120,220 ．or $240 \mathrm{~V}+5 \%-10 \%$ ． 4810440 Hz and $\leqslant 20 \mathrm{VA} \leqslant 20$ walts）．
Welght：net， 2.72 kg （ 6 lbs ）．Shípping， 5.0 kg （ 1 l lbs ）．
Delailed sperifications on page 459.
8413A Phase－Gain Indicator
Functlon：plug－in meter display unit for gd IUB．Displays relarive amptitude in dB beween refierence and test channcl inpuls or rela－ five phase in degrees．Pushbution selection of meter function and range．
Amplitude
Range：$=30, \pm 10$, and $=3 \mathrm{~dB}$ fult scale．
Accuracy：$\pm 3 \%$ of end scale．
Log output： 50 millivolts per dB up to 60 dB total．
Phase
Range：$=180, \pm 60,=6$ degree，full scale．
Accuracy：$=2 \%$ of end scalle．
Output： 10 millivoles per degrec．
Phase ofset：$\pm 180$ degrees in 10 degree steps．
Accuracy：$=0.2^{\circ}+0.3^{\circ} / 10^{\circ}$ step），cumulative $<2^{\circ}$ ．
Power：additional 15 walls supplied by 8410 B
Welght：net， 4.9 kg （ 11 lb ）．Shipping， 6.7 kg （ 15 lb ），
Slze：is2 $\mathrm{H} \times 186^{\mathrm{W}} \times 395 \mathrm{mmD}\left(6^{\prime \prime} \times 7^{1 / 32^{\prime \prime}} \times 15 / 1 \mathrm{~s}^{\prime \prime}\right)$ ．
8414A Polar Display
Function：plug－in CRT display unlt for 8410 B ．Displays amplitude and phase data in polar coordimates on $S$－in．cathode ray lube．
Aange：normalized polar coordinale display；magnitude calibration $20 \%$ of full scale per division．Scale factor is a tunction of IF selting on $\$ 4$ 10B．Phase calibrated in 10 －degree increments over 360 －degree range．
Accuracy：ertor circle on CRT $=3 \mathrm{~mm}$ ．
Power：addilional 35 walls supplied by 8410 B ．
Welght：net， 5.8 kg （ 13 lb ）．Shipping $8.1 \mathrm{~kg}(18 \mathrm{lb})$ ．
Size： $152 \mathrm{H} \times 186 \mathrm{~W} \times 395 \mathrm{mmD}\left(6^{4} \times 7^{9} / 2^{*} \times 15 \mathrm{~m} / \mathrm{n}^{\mathrm{N}}\right)$ excluding front panel knobs．
841日A Auxiliary Power Supply
Functlon：the 8418．power supply unit provides powerfor opera1－ ing of the $8412 \mathrm{~A}, 8413 \mathrm{~A}$ or the 8414 A display units．Used in con－ junction with the 8410 B Network Analyzer．it provides the capnbil－ ty of viewing amplitude and phase readout in both rectangular and polar coordinates simultancously．Option IHO adds a remotely pru－ grammable 0－70 dB IF altenuator required for autoranging in semi－ automatic applications．
Welght：net， 11.2 kg （ 25 lb ）．Shipping， $19.7 \mathrm{~kg}(44 \mathrm{lb})$.
Size： $177 \mathrm{H} \times 483 \mathrm{~W} \times 450 \mathrm{mmD}\left(6^{51 / 32^{4}} \times 19^{7} \times 17^{1 / \mathrm{s}^{\text {¹ }}}\right)$ ．
Ordering information Price
8410 B mainfracuc
Opt 908：Rack Flange Kit
84IIA Frequency Converter
Opt 018； 0.11 1o 18 GHz
8412a Phase－Magnitude Display
8413A Phase－Gain Display
8414A Polar Display
8418A Auxiliary Power Supply
Opt H01：Programmabie 0－70 dB IF Allenuator
8750A Storage－Nomalizer
$\$ 3750$
add $\$ 10$
$\$ 3100$
add \＄500
$\$ 2200$
$\$ 1750$
$\$ 2000$
$\$ 1600$
add $\$ 2000$
$\$ 1450$


8745A S-Parameter Test Set
Function: wideband RF power splitter and rellectometer with catibrated line streicher. Pushbutton operated for cither transmission or reflection measurements with nelwark analyzer.
Frequency range: 100 MHz to 2 GHz .
Impedance: 50 ohms nominal.
Source reflection coedifilent: $\leqslant 0.057,0.11$ to 2.0 GHz .
Termination reflection coefflelent: $<0.10,300$ to 200 MHz : $<0.063,200 \mathrm{MHz} 102.0 \mathrm{GHz}$.
Directivity: $\geq 36 \mathrm{~dB}$, below $1 \mathrm{GHz} ; \geq 32 \mathrm{~dB}, 1102 \mathrm{GHz}$.
Reference plane extension; 0 to is cm for reflection; 0 to 30 cm for transmission.
Maximum RF power: 2 watts.
Connectora: RF inpul, type N female: all other connectors APC-7.
Rear panel programming and blas inputs
Opt 001; output connectors type N female.
Power: 115 or 120 V ac $=10 \%, 50$ to $400 \mathrm{~Hz}, 40$ watts.
Welght: net, 15.4 kg ( $34 \% \mathrm{lb}$ ). Shipping, $18.0 \mathrm{~kg}(40 \mathrm{lb})$.
Size: $140 \mathrm{H} \times 425 \mathrm{~W} \times 654 \mathrm{mmD}\left(51 / \mathrm{m}^{\prime \prime} \times 16 \% 4^{\prime \prime} \times 25 \%{ }^{\prime \prime}\right)$.

11604A Universal Extension
Function: mounts on from of 8745 A ; connects to device under tesl. Rotary air-lines and rolary joints connect to any two port geometry.
Frequency range: de to 2 GHz .
Impedance: 50 ohms nominal.
Reflection coetfictent: 0.035 .
Ace. Included: semi-rigid coax. cable, HP Pari \#11604-20021.
Weight: nct, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, 2.2 kg ( 5 lb ).
Slze: $127 \mathrm{H} \times 32 \mathrm{~W} \times 267 \mathrm{mmD}\left(5^{\prime \prime} \times 1^{1 / 4^{\circ}} \times 10^{1 / 2^{*}}\right)$.
13000日/11602日 Transistor Fistures
Functlon: mounts in front of 8745A S-parameter test set; holds devices for $S$-parameter measurements in a 50 -ohm, coax circuit. Both fixures provide bias for bipolar transistors and FETs. Other devices also fit the fixture (tunnel diodes, etc.).

## Tranalstor base patterns

Model 116008: accepts TO-18/TO-72 packages.
Model 11602B: accepis TO-5/TO-12 packages.
Callbration references: short circuit termination and a 50 -ohm Lhrough-section.
Frequency ranges: de to 2 GHz .
Impedance: 50 ohm nonxinal.
Aeflection coefficlent: $<0.05,100) \mathrm{MHz}$ io $1.0 \mathrm{GHz} ;<0.09,1.010$ 2 GHz .
Connectors: hybrid APC-7: Option 001, lype N fermale.
Welght: net $1.5 \mathrm{~kg}\left(2^{3 / \mathrm{m}} \mathrm{Ib}\right)$. Shipping, $1.8 \mathrm{~kg}(4 \mathrm{lb})$.
Size: $152 \mathrm{H} \times 44 \mathrm{~W} \times 229 \mathrm{mmD}\left(6^{\prime \prime} \times 1^{13 / 4^{n}} \times 9^{\prime \prime}\right)$.
8743A Reflection/Transmisslon Test Untt
Functlon: wideband RF power splitter and renlectometer with calibrated line stretcher. Pushbutton operided for either transmission or reflection measurement with network analyzer.
Frequency range: 2 to 12.4 GHz . (Opt 018: 2 10 18 Ghz ).
Impedance: 50 ohms nominal.
Source reflection coefficlent: $\leqslant 0.09,2.0$ to $8.0 \mathrm{GHz} ; \leqslant 0.13,8.0$ to 12.4 GHz: $<0.2 .12 .4$ to 18 GHz .
Tormination reflection coefficient: $=0.13$ in reflection mode, 2.0 to 12.4 GHz : $\leqslant 0.2$ in transmission mode, 2.0 to 12.4 GHz : typically $<0.2,12.4$ to 18 GHz .
Diecelivity: $\geqslant 30 \mathrm{~dB}, 2.0$ to $12.4 \mathrm{GHz}: \geq 18 \mathrm{~dB}, 12.41018 \mathrm{GHz}$.
Relerence plane extenston: 0 to 15 csi for renection: 0 to 30 cm for transmission.
Connectors: RF input, lype N femalc; all other connectors APC-7.
Power: 115 or $230 \mathrm{~V} \mathrm{ac} \pm 10 \%, 50-400 \mathrm{~Hz}, 15 \mathrm{~W}$.
Welght: net, $12.1 \mathrm{~kg}(29 \mathrm{lb})$. Shipping, 15.3 kg ( 34 lb ).


## 11605 Flexible Arm

Function: Mounts on front of 8743A; conneets to device under test. Rotary air-lines and rotary joints comect to any two-port geometry. Frequency range: de to 12.4 GHz . (Opi U18, 2 to 18 GHz ).
Impedance: 50 ohms nominal. Reflection coeflicient of ports: s0.11. de to R.4.

Opt 018: $=0.23,2.0$ to $12.4 \mathrm{GHz} ; \leqslant 0.31,12.4$ to 18 GHz .
Connectors: APC. 7 .
Welght: net, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping, $2.7 \mathrm{~kg}(6 \mathrm{lb})$.
Length: $257 \mathrm{~mm}\left(10^{2} / \mathrm{m}^{\circ}\right)$ closed; $648 \mathrm{~mm}\left(25^{1} / 4^{*}\right)$ extended.
Ordering Information Price
8745A Test Sel $\$ 5000$
Opt 001: Type N Test Port Comectors N/C
Opt 908: Rack Flange Kit add $\$ 10$
11604A Universal Arm
116008/11602B Transistor Fixtures
$\$ 1450$
Opt 001: Type $N$ Fenrale Connectors
$\$ 850$
8743A Reflection/Transmission Test Unit
Opt 018: 0.11 to 18 GHz
less $\$ 30$
$\$ 4500$
Opt 908: Rack Flange Kit
11605A Flexible Am
Opt 018: 0.11 to 18 GHz
add $\$ 10$
$\$ 1100$
add $\$ 525$


87178


8740A


8741A


8742A

## 8746日 S-Parameter Test Set

Function: wideband RF power divider and reffectometer with calibrated stretcher and a sclectable $0-70 \mathrm{~dB}$ incident signal attenuator. Provides intemal bias tests for completely characterizing two por active devices.
Frequency range: 0.5 to 12.4 GHz .
Source and termination reflection coefficlent: $\leqslant 0.13$.
Directivity: $\geqslant 30 \mathrm{~dB} .0 .5$ to $4.0 \mathrm{GHz}: \geqslant 26 \mathrm{~dB} .4 .0$ to 12.4 GHz .
Incident attenuation: $0-70 \mathrm{~dB}$ in 10 dB steps $\pm 5 \%$.
Reference plane axtension: adds $0-15 \mathrm{~cm}$ ( 30 cm in transmission pa(h).
Remote programming: ground closure to 36 Pin connector.
Transistor blasing: via 36 Pin connector.
Gonnectors: input type $N$ femule test ports APC-7.
Opt 001: provides 10 dB higher power level al the test port.
Power: 115 or $230 \mathrm{~V}=10 \%$, 48 to 440 Hz , 110 VA max. Weight: ne1, $16.1 \mathrm{~kg}(35 \mathrm{lb})$. Shipping. $19.1 \mathrm{~kg}(42 \mathrm{lb})$. Slye: $140 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{mmD}\left(S^{1 / 2^{\prime \prime}} \times 16^{9 / 1^{n}} \times 1.8^{\pi} / \pi^{\prime \prime}\right)$.
11608A Transitor fixture
Function: provides the capabiitity of complesely characterizing stripline transistors in either the TO-51 or HPAC. 300 patikage stylen. For special package styles. a through-line microstrin and boll-in grounding strucure machineable by cuslomer is itwailable.

Frequency range: de to 12.4 GHz .
Faflection coefficlent: $<0.05$. de to $4 \mathrm{GHz}:<0.07$. 4.0 to 8.0 GHz : $<110.8$ to 12.4 GHz .
Package styles
Opt 001: Customer machineable.
Opt 002: TO-51 (0.250" dià.).
Opt 003: HPAC-200 (0.205" dias).
Callbration references: options 002 and 003 only, shor circuit rermination and a 50 -ohm through-section.
Connectors: APC-7 Hybrid (Option 100 Lype N female).
Welght: nct. $0.9 \mathrm{~kg}(2 \mathrm{lb})$, Shipping. $1.4 \mathrm{~kg}(3 \mathrm{lb})$
Size: $25 \mathrm{H} \times 143 \mathrm{~W} \times 89 \mathrm{mmD}\left(1^{11} \times 55^{5} \%^{\prime \prime} \times 31 / 2^{\prime \prime}\right)$.
8717 Translstor Bias Supply
Function: for manuai or pregrammable transistor lesting. It is particularly useful with the 11600 B . 11602 B . and 11608 A Transistor Fixfures. The 87178 hat iwo meters for independendy monitoring current and vollage on any of the three leads of a transistor under eest. Bias connections are conveniently selected for all transistor configufations with a front panel switch. Special circuitry protects sensitive devices from excessive curient transients which commonly occur in less sophisticaled supplies.
Voltage ranges: $1,3,10,30,100 \mathrm{~V}$.
Current ranges: $0.1,0.3,1,3,10.30,100,300.1000 \mathrm{~mA}$.
Accuracy: $4<$ or full scale for both current and voliage.
Option DD1: programmable D/A converter.
Welght: ret, $9.0 \mathrm{~kg}(20 \mathrm{lb})$. Shipping, $11.0 \mathrm{~kg}(25 \mathrm{lb})$.
Slze: $86 \mathrm{H} \times 425 \mathrm{~W} \times 336 \mathrm{mmD}\left(3^{3} \mathrm{fs}^{\prime \prime} \times 16^{3} 4^{\prime \prime} \times 13^{1 / \mathrm{m}^{\prime \prime}}\right)$.
8740A Transmission Test Unit
Function: RF power splitter and calibrated line stretcher for transmission mensurement with network analyzer.
Frequency range: dc to 12.4 GHz .
Output reflectlon coefficlent: $<0.07$. dc to $7 \mathrm{GHz}:<0.11 .7 .0$ to 12.4 GHz .

Connectors: RF input, type N female: oulpul. APC-7 (OpI 001 type $N$ female).
Reforence plane extension: electrical, 0 to 10 cm ; mechanical $1-10 \mathrm{~cm}$.
Welght: net. $7.1 \mathrm{~kg}(16 \mathrm{lb})$. Shipping, 9.4 kg ( 31 lb ).
SIze: $152 \mathrm{H} \times 186 \mathrm{~W} \times 410 \mathrm{mmD}\left(6^{\circ} \times 7^{1 / 22^{\circ}} \times 16^{2 / 14^{\prime \prime}}\right)$.
Aecommended accessory: 11587A accessory kil.
8741A and 8742A Reflection Test Units
Function: wideband reflectometer, phase-balanced for swept or single frequency impedance lests with 8410 B . Calbirated adjustable reference plane.
Frequency range: $0.11-2.0 \mathrm{GHz}(8741 \mathrm{~A}) ; 2.0-12.4 \mathrm{GHz}(8742 \mathrm{~A})$. Dlrectlvity: $\geqslant 36 \mathrm{~dB} 0.11-1 \mathrm{GHz}, \geqslant 32 \mathrm{~dB}$ I-2 GHz (8741A): $\geq 30$ dB 2-12.4 GHz (8742A).
Connectors: RF input, yype $N$ remale: all others APC-7.
Reterence plane extenslon: ( $1-15 \mathrm{~cm}$.
Accessorles furnished: $11565 \mathrm{~A}, \mathrm{APC}-7$ shon.
Welght: net. 6.7 kg ( 15 lb ). Shipping. 8.9 kg ( 20 fb ).
Slze: $152 \mathrm{H} \times 186 \mathrm{~W} \times 410 \mathrm{mmD}\left(6^{\prime \prime} \times 7^{98 / 92^{\prime \prime}} \times 16^{3 / 1 n^{\prime \prime}}\right)$.
Recommended accessory: I1S87A Accessory Kil
Orderinginformation Price
8746B Test Unit
Opt 001: Type iN Test Pon Connectors N/C
Opl 908: Rack Flange Kit add \$10
11608 A Transistor Fixture (must specify Option 00).
002. or 003)

Opt 001: Customer Machinenble
Opl 002: TO.51
Opt 003: HPAC-20)
Opt 100: Type $N$ Fumale Conneciors
5800

8717B Transistor Bias Supply
Opt 001: Programmablc D/A Conventer
Opt 900: Rack Flange Kit add \$670

8740A Tmasmission Test Sel
8741A Reflection Test Sel
$\$ 3300$
8742.A Reflection Test Sel
$\$ 3300$


X8747A and P8747A


11609A


11589A and 11590A


11599A


11607A

X, P8747A Reflection/Transmission Test Units
Functlon: waveguide setup for measuring reflection and transmission parameters of waveguide devices with the network analyzer. Frequency range: X8747A: 8.2-12.4 GHz: P8747A: 12.4-18 GHz .

## K, 9 日747A Reflection/Transmission Test Unlts

Function: waveguide sefup for measuring reflection and transmission pammeters of waveguide devices with the network analyzer; down-converts with built-in misers to the frequency range of the 8411 A.
Frequency range: $\mathrm{K} 8747 \mathrm{~A}: 18-26.5 \mathrm{GHz}: \mathrm{R} 8747 \mathrm{~A}: 26.5-40 \mathrm{GHz}$.

11597A Accessory Kit
Function: accessories normally used for iransmission and reffection lests with the 8740 A, 8741A. and 8742A.
Weight: net. $1.34 \mathrm{~kg}(3 / \mathrm{b})$. Shipping. $2.23 \mathrm{~kg}(5 \mathrm{lb})$.

11650A Accessory KIt
Function: accessories normally used for transmission and reflection lests with the 8745 A and 8743 A .
Weight: nel , 1.34 kg ( 3 lb ). Shipping. $2.23 \mathrm{~kg}(5 \mathrm{lb})$.

11809 A Caīle Kit
Function: interconnecting cables normally required for setwork measurements using the 8410 network anslyzer.
Welght: net. 0.9 kg (2 7b). Shipping, 1.36 kg (3 lb).

11589A and 11590A Bias Networks
Function: auxiliary units for use with the 136008. 11602B and 11608A transistor fixtures. These bias networks provide de bias to the center conduetor of a coaxial line while blocking the de bias from the input RF circuit.
Frequency range: $11589 \mathrm{~A}-0.1$ to $3.0 \mathrm{GHz}: 11590 \mathrm{~A}-1.01012 .4$ GHz .
Connectors: BNC for de biasing: type N female for RF (Option 001 : APC-7).
Welght: net, $0.3 \mathrm{~kg}(9 \mathrm{oz})$. Shipping. $0.5 \mathrm{~kg}(1 \mathrm{lb})$.
Dimensions: $29 \mathrm{H} \times 76 \mathrm{~W} \times 114 \mathrm{mmD}\left(1^{3 / h^{\prime \prime}} \times 3^{\prime \prime} \times 4 / \mathrm{z}^{\prime \prime}\right)$.
11599a Quick Connect Adapter
Function: quickly connects and disconnects the 8745A and the iransistor fixtures ar 11604A universal extension.
Welght: nct, $397 \mathrm{gm}(1402)$. Shipping. $652 \mathrm{gm}(2 \mathrm{lb})$.
Dimensions: $127 \mathrm{H} \times 76 \mathrm{~W} \times 108 \mathrm{mmD}\left(5^{\prime \prime} \times 3^{4} \times 4^{1 / y^{\prime \prime}}\right)$.
11607A Small Signal Adapter
Function: used with the 8745 A $S$-parameter test sel. The incident signal levels to the lest device are reduced to the -20 to -40 dBm range.
Welght: net. $4.1 \mathrm{~kg}\left(4^{4} / \mathrm{lb}\right)$. Shipping, 4.5 kg ( 10 lb ).
Dimenslons: $60 \mathrm{H} \times 413 \mathrm{~W} \times 244 \mathrm{mmD}\left(2^{3 / 4^{4}} \times 16^{1 / 4} \times 9^{\circ} / \mathrm{s}^{\prime \prime}\right)$.
Ordering information Price
X8747A Waveguide Test Set $\$ 3100$
P9747A Waveguide Test Sel $\$ 3250$
K8747A Waveguide Test Sel $\$ 9000$
R8747A Waveguide Test Set \$9500
11587A Accessory Kit \$1140
11650 Accessory Kil $\$ 880$
i1609A Cable Kit \$115
11589A Bias Network $\$ 350$
Opt 001: APC-7 Connectors add $\$ 30$
11590A Bias Network $\$ 400$
Opl 001: APC-7 Connectors add $\$ 30$
11599A Quick Connect Adapter \$175
11607 a Small Signal Adapler $\$ 800$

# Semi-automatic network analyzer, 110 MHz to 18 GHz Model 8409A 

- Economical automated microwave measurement
- 9825A desktop computer
- Accuracy enhancement



## Description

The HP 8409A Network Analyzer system is a practical solution to the need for autnmated error-correctod RF and microwive network measurements using a simple and economical configuration. It's a complete neaturement system. comprised of a programmable source. network analyzer, and compiring controller. The 8409 A brings major advanages in accuracy. speed, and operating convenience at a modest cost increase compared to a manual nerwork analyzer.
The 8409A consists of standard HP instruments and is delivered with accuracy enhancement software, calibration standards, and all necessary cables for hook-up and imorediate use. Transmission and reflection characteristics are measured in two ranges. 0.11 to 2 GHz using the 8745A S-Parameter Test Sel and 86222B sweeper plug-in, and 21018 GHz using the 8743A Reflecsion/Transmission Test Unit and 86290B sweeper plug-in. Switching between the two frequency ranges is easily accomplished by changing both the test set and sweeper plug-in.
Accuracy entrancement soltware extends measurement capability to tests not possible or extremely difficult and time consuming using a manual system. Vector error terms are measured and stored using a precision sliding load, a short, a shiclded open, and a through connection to quantify direclivity, source match, ind tracking ertors al each frequency. These systematic errors int removed during the measurement sequence as the analyzer tunes back to each calibration frequency, measures the device response, and performs the error correction computation.

## 8409A Automatic Network Analyzer system components

Basic configuration includes:
Nelwork analyzer
8410 B Nerwork Analyzer
8411A Opt 018 Harmonic Frequency Conventer

8412A Phase-Magnitude Display 8418A Opt H01 Auxiliary Power Supply 8414A Polar Display
Test sets
8745A 5-Parameter Test Set (0.1):02 GHz)
11857A Test Port Extension Cables
8743A Opt 018 Reflection/Transmission Test Sel (2 10 18 GHz )
11605 A Opt 018 Flexible Arm (2 to 18 GHz )
Source
8620C Opt 011 Swecp Oscillator Majnframe with HP-IB interface
86222B (.01 to 2.4 GHz )
86290 B ( 2 to 18.6 GHz )
HP-l日 accessorles
59313A Analog.to-Digital Converter
59306A Relay Acluator
Controller
9825 A Opt 002 Desk Top Computer (with 23 K bytes memorys with Siring-Advanced ProgTamming ROM. 9872 A Plotter-General and Extended I/O ROM and HP-IB Inlerface.
98608 Thermal Printer with cradle
9872A Digita Plotter
Type N to SMA callbratlon nccessories, software. system cables and integration
Ordering Information
8409A Automatic Network Analyzer
Opt 001: (2 1018 GHz ) deletes. I) to 2 GHz test set and sweeper plug-in.

- Digital storage and normalization
- Simple CRT photos and $x-y$ recordings
- Use with HP network and spectrum analyzers


With HP's versatile 8750A Storage-Normalizer, you can make your network analyzer or spectrun analyzer measurements faster, easier, and more accurately through the simpie addition of digitat storage and normalization. This useful instrument accessory is directly compatible via a single interiace cable with the following recently produced or appropriately modified Hewlet1-Pachard insimuments; the 8755 Frequency Response Test Sel, the 8407A/ 8412 A , the $8410 / 8412 \mathrm{~A}$, and the 8505 A Network Analyzers, and $8557 \mathrm{~A}, 8558 \mathrm{~B}$, and the 8565 A Spectram Analyzers. A special $1 / 0$ Adapter (ope 001 or opt (002) is available for interfacing instruments dike lan Series Spectrum, Analyzens) that are not directly compatible with the 87s0A. An exsermal oscillescope can then be used for digitally stored and normalized displays. The 8750A is not compatible with the 8414 A Polar Display or the polar mede of 8505 A .
In network analyzer applications, digital storage afways yields a flicker-free display of the complete device response, facilitating easy adjustment of test deviecs under slow sweep conditions. Measurmentaccuracy is also improved since frequency response errors can be automatically removed through digital normalization. This effectively eliminates the need to manually recond calitration races on a CRT or $x-y$ recorder and allows high resolution measurements of attenuator, amplifier, or filter passband flamess,

In spectrum analyzer applications, the 8750 A 's digital storage feature simplifies many difficult tests requiring slow scan times such as high resolution modulation measurements. Drifi test are also easy since two traces, a stored reference and the current inpus, can be displayed simultaneously.
Hand copy documentation can be obtsined quickly and easily since data can be frozen on the CRT for straight forward CRT pholography or outputted to an $x-y$ recorder at a constamt 30 second sweep rate.

## Specifications

Dlsplay
Horizontal memory resolution: iwo display channels, 256 poinis per chamnel ( $0.4 \%$ of fult scale, 8 bit word).
Vertical Memory Resolution: 512 points displayed full scale ( $0.2 \%$ of full scale. 10 bit word) plus a $50 \%$ overrange ( 256 points) both above and below full screen.
Horlzontal Input sweep rates: 100 sec max. $/ 10 \mathrm{~ms} \mathrm{~min}$.
Display reiresh rate: 6 ms .
Video detection
Network analyzer: Average Detection ( 20 kHz ).
Spectrum analyzer: Peak Detection.

## Inputioutput

AJO Horizontal Input
Network analyzer: 0 to 10 V nominal. Offset $\pm 0.5 \mathrm{~V}$ and Gain
Adjust 6 to is V .

Spectrum analyzers: $\pm 5 \mathrm{~V}$ nominal. Offset $=0.5 \mathrm{~V}$ and Gain Adjust $=4.4510=5.5 \mathrm{~V}$.
A/D Vertical input
Network analyzer: $\pm 0.8 \mathrm{~V}$ min and $\pm 2.25 \mathrm{~V}$ max. with contimuous gain adjusiment. Offset $\pm 0.3 \mathrm{~V}$.
Spectrum analyzer: 0 to 0.8 V or $0 t 0-0.8 \mathrm{~V}$. Offset $\pm 0.1 \mathrm{~V}$ and Gain Adjust $\pm 10 \%$.
D/A Horizontal output
Netwark analyzer: gain adjustment from 1 to 3 V peak. Offsel adjustment allows $\pm\{5 \mathrm{~V}$ or 0 to 3 V sweep oniput.
Spectrum analyzer: 0 to 3 V nominal. Offset $=5 \mathrm{~V}$ and Gain Adjustment from 0.7 to 3.5 V .
D/A Vertical output
Network analyzer: same as Verical Input with $\pm 10 \%$ adjustment range.
Spectrum analyzer: same as Vertical Input with $\pm 10 \%$ adjustment range.
X-Y Recorder outpuls
Horlzontal range and accuracy: $0 \pm 20 \mathrm{mV}$ to i V nominal, settible within $\pm 3 \%$ of full scale. BNC female output (rear panel). Verteal range and accurscy: $=4 \mathrm{~V}=3 \%$ BNC female output (rear panel).
Sweep time: 30 sec per displayed irace.
Ponlit valtage: 20 V maximum.
Penlift sinking current: 50 mA maximum.
Penlift output: BNC female (rear panel with open collector driver.)

## Controls

Select: LED display indicates Netwark or Spectrum Analyzer operation depending on the plug-in interface card. Two rear panel plug-in internace cards are provided to accomodate the different network and spectrum analyzer performance requirements. Internal storage is provided for the interlace card that is nol in use.
Network analyzer: two keys activate front panel controls for adjustment of either channel 1 or 2 displays.
Spectrum analyzer: two keys allaw the storing, viewing, and manipulation of up to two display traces ( $A$ and $B$ ).

## Dlsplay

Input: initiales digital storage.
Input-Mem (Input minus Mem): Stored Reference trace is subtracted from input data (normalization) and the differeoce displayed directly.
Hold: freezes display for CRT photos or further analysis.
Reterence memory
Store input: current input trace is stored as Reference for future normalization (lnput-Mem).
Recall: displays stored Reference trace.
Bypass: bypasses 8750 A so display is returoed to conventiodal analog operation.
$\mathrm{X}-\mathrm{Y}$ Plot: initiates X-Y plots. Dita and pen lift are outputted through rear panel BNC connecters.
Display adjust: Gain and Position potentiometers for adjustment of D/A outputs to CRT display requirements (see D/A Outpuls).

## General

Power: selection 100, 120, 220, or $240 \mathrm{~V}+5 \%-10 \%$. 48 to 440 Hz and $<20 \mathrm{VA}$ ( $<20$ wats).
Slze: $102 \mathrm{H} \times 212 \mathrm{~W} \times 280 \mathrm{~mm} \mathrm{D}\left(4^{\prime \prime} \times 8.4^{\prime \prime} \times 11.2^{\prime \prime}\right)$.
Welght: net. 2.72 kg ( 61 lhs ). Shipping, 5.0 kg ( 11 lbs ).
$\begin{array}{ll}\text { Ordering intormation } & \text { Price } \\ 8750 \mathrm{~A} \text { Storage-Normalizer } & \$ 1450\end{array}$
8750A Storage-Normalizer
Opt 001: BNC Interface Adapter (Deletes direct interface cable)
Opt 002; BNC Interface Adapler (Retains direct interface cable) N/C
$\$ 125$


Analysis or signals in the frequency domain is an important measurement concept which is widely used for providing electrical and physical system performance information. Several examples will illustrate some important applications where signal analyzer's are useful.

The vibrational pattems of structures (aircrafl. automobiles. bridges. elc.) musl be known to prediet behavior in dynamic operating environments. Noise and vibration levels are of vitul concem to the manwiaclurers and users of routing machinery and automobile and aircraft engines. Resonant modes and many other parameters may be measured with the HP Fourier Analyzer.

A need for signal andysis in fluid now signature idenification applications has emerged in recent years. Parlicles carried in a flowing fluid may be identified and quantified by observing its speciral response to ultasonic stimulation.
In the fields of telecommunications, the specirum and wave analyzers provide vilal operalional performance verification of mulliptex systems. Unwanted signals such as carrier leak signals, out-of-band noise, and cross modulated signals must be identified. Sysiem gain. loss, and pílor cone measurements must also be made. These measurements are discussed in more detall in the Telecommunications Tesı Equipment sec-

Lion of this cataloy.
Dopper Radar ranging systems require pure, stable CW signals for accurate determintion of vehicle distance and movemenl. The phase noise of these $C W$ signals limits the distance. acccuracy, and resolution measuring capabilities of the syslem. Phase noise is an imporiani parameter the spectrum analyer can effectively displas.

Finally, in the general field of electronics, chere are three primary uses for the signal analyzer. First, the analyzer is used to identiry and measure signals which result from non-linear effects in the process of amplification, filtering, and mixing. Second, the purity of signal sources is commonly observed. Third. the signal analyzer with a companion unacting generator is used as a network aralyzer for frequency response measurements of filters. amplifiers, and many other types of networks.

This scetion discusses the definition and use of four type of instruments for frequency response vignal analyis: spectrum analyzers, digital Fourier analyzers, wave analyzers, and distorion analyzers.

Each of these instruments measures the magnitude of CW signals through a specific bandwidth. just the same as a luned volimeter. But each measurement technique is dif. ferent. The specoum analyzer is a swept receiver that provides a visual display of
amplitude versus frequency. It shows on a single display how energy is distribuied as a function of frequency, displaying the absolute value of Fourier components of a given waveform. The Fourier analyzer uses digital sampling and transfommation lechniques 10 form a Fourier specirum display that has phase as well as amplinude infumation. The wave analyzer is the true tuned volimeter. showing on a meter the real time amplitude of the energy in a specific frequency window which is tunable over a specific frequency range. The distortion analyzer performs an almosi reciprocal function to that of the wave analyzer. It collectively measures the energy outside a specific bandwidth, luning out the fundamental signal and displaying the encrgy of the harmonics and olber dis. tortion products on a meter.

Figure I shows a gruphical representation of the way the three analyzerv view a simple CW signal and one harmonic. The time domain scan of the CW signal is presented in 1.a. $A(t)$ is the complex voltage waveform as it would be viewed on an oscilloscope. The dashed lines refresent the vector components of the sigad: $A(t)$, the fundamental and $A(t)$, the second harmonic. I.n l.b. the spectrum analyzer displays the frequency spectrum showing both vector components and their amplitude relalionship. Specenm and ysis is useful from 5 Hz to over 40 GHz .


Figure 1a. Waveiorm


Figure ib. Spectrum and Fourler analyzers


Figure ic. Wave analyzer


Figure 1d. Distortion analyzer
The Fourier Analyzer displays both the amplirude and phase components of each frequency' so that aceurate amplitude and phase relationships can be observed. Because the Fourier Analyzer uses digital techniques to extract frequency information rather than swept Glter techniques, it can display the complete spectrum of a signal in just the time it takes to analyze the lowest frequency component. Hewlert-Packard Fourier Analysis is presently practical in the range of DC to 100 kHz . The wave analyzer in Figare I.c. measures the amplitude and frequency of the signal in the frequency window to which it is tuned. This window cas be moved to measure the smplitude of the second hamonic. thereby making a precise comparison with the fundamental. This
lechsique is practical from 10 Hz to above 18 MHz .
The distorion analyzer as pictured in Figure 1.d. rejects the fundamental to which it has been tuned and measures the energy everywhere else within the instrument's frequency spectrum. Distartion- is a percentage or in $d B$ down from the fundamental-is displayed direely on a meter. HewlersPackard distortion amalyzers cover 5 Hz to 600 kHz .

The following section considers cach instrument technique, showing the particulas sirength and flexibility of each.

## Spectrum analyzer

To display useful information about a frequency scan, a spectrum analyzer musi be sensitive. frequency stable, free of spurious responses over a wide band, and have calibrated accuracy in the CRT display. The examples which follow best demonstrate the wide variery of infomation which can be measured on the spectrum analyzer. analyzer.

## Heasurements with the spectrum

 analyzerCW slgnal: the mosi basic spectrum analysis measurement is the single CW signal.


Piclured is a -30 dBm signal ar 60 MHz . The zerofrequency indicator is at the farleft graticule.
Spectral purty of a CW slgnsl: one very important oscillator signal measorement is speciral purity. This 70 Mz carrier has power line related sidebands ( $\pm 60 \mathrm{~Hz}$ ) which are 65 dB down.

Such sidebands may result from power supply ripple. The $50 \mathrm{~Hz} /$ division spectrum analyzer scan and the 10 Hz a nalyzer bandwith provide the high degree of resolution required to see these sidebands.


Frequency conversion products: the specinum analyzer is well suited for frequency conversion measurements such as the output of a balanced mixer as shown.


With the 50 MHz tocil oscillitor input at 0 dBm and a 5 MHz , $=\mathbf{3 0} \mathrm{dBm}$ mixer signal. two sidebands at 43 MHz and 55 MHz result. The sidebands are -36 dBm , giving the mixer a 6 dB conversion loss. Other information easily extracted from this spectrum analyer display is the 60 dB local oscillator isolation and the $5 \mathrm{MF} / 2$ signal has 41 dB isolation. Second order distortion products at 40 and 60 MHz are 40 dB below the desired mixer outpuls.
Amplitude modulation; percent amplitude modulation is often more easily measured

with the spectum analyzer than it is with the oscilloscope. This is especially true for low level modulation.

With the oscilloscope time display, percent modulation, $M$. is measured as a ratio of the signal's dimensions: $M=100 \cdot\{6-2\}$ $(6+2)=50 \%$. In the spectrum analyzer display, whose vertical calibration is $10 \mathrm{~dB} /$ division, the carrier and sidebands differ by 12 dB . the voltages in the sidebands are $1 / 1$ that of the carrier and again, $M=50 \%$. At the same time the second and third harmonic distortion of Jre sidebands can be measured al 28 and 44 dB respectively.
Frequency modulalion: information transmitied by FM can be thoroughly characterized by the spectrum analyzer.


Low deviation FM is applied to a 60 MHz carrier in the first phots. The deviation tras been adjusted for the second carrier null (M $=5.52$ ). The sidebands spacing is 10 kHz , the modulation frequency: therefore, $\Delta f$ peak $=5.52 \times 10 \mathrm{kHz}=55.2 \mathrm{kHz}$.

The second photo is an example of high devialion FM. The transmission bandwidth is 2.5 MHz .
Pulsed CW power: by viewing the spectra of a repetitive RF pulse on the spectntm analyzer, pulse width average and peak power. occupied band width, and duty cycle can be delermined.


From the spectral output shown the polse's complete characteristics are determined: 6.3 GHz RF at 0 dBm , pulsed at 50 kHz rale. The pulse widut is $1.3 \mu \mathrm{~s}$.
Nolse: spectrum analysis is effective in measuring impulse noise, random noise, comier to noise ratio. and amplifjer noise figure.
Phase nolse: the shor term frequency flucruations of a sine wave source can be measured directly as phase modulation sidebands. Hewlett-Packard spectrum analyzers with natrow resolution and synthesized intemal frequency sources can make many phase noise measurements direedy. Bandwidth corrections, andyzer corrections, data averaging and sewp calibration factors call be accounted for by Hewlett-Packard Automatic Spectrum Analyzers. All instrumen control. data
transfer and data reduction can be handled by easy-to-write sofiware.
Frequency response: using a racking signal source and a spectrum analyzer the frequency response of filters can be displayed with ease.


In this case. an audio filter used in a communications system is being measured. Since the input reference level to the filter is -13 dBV . the insertion loss at 2.4 kHz is 4 dB. Extremely high $Q$ devices can be measured with lbis system

## Spectrum anglyzer capabillties

To be usefus in making measurements in the frequeney domain, the amalyzer must he capable of making quantitative measurements. Specifically, an analyzer must:
I. make absolute frequency measurements
2. make absolute amplitude measurements
3. operate over a large amplitude dynamic range
4. have high resolmiont of frequency and amplitude
5. have high senwibity
6. provide means of observing, preserving, and recording its output in a convenient and rapid manner by using variable persisience, digital slorage and idaptive sweep.
Hewlen-Packard spectrum analyzers excel in these six measures of performance.

Let us consider each of these performance standards in greater detail.
Absolute frequency measurements: Frequency readout accuracy depends upod the tuning and readoul techniques employed, as well as the stability of the spectrum analyzer's frequency reference. The absolute frequency accuracy read off the slide-mle type of frequency dial is opproximately $1 \%$ of full scale. Symthesized local ascillators allow accuracies $10+4 \mathrm{~Hz}$ at 1500 MHz in narrow frequency spans. When the spectrum analyzer is used in conjunction with a trackige generator (a source whose frequency is the same as the analyzer (uning freguency) accuracy much better thañ $1 \%$ can be achieved by counting the generator output.
Absolute amplitude measurements: All Hewlett-Pachard specinum analyzers are absolutely calibrated for amplitude mensurements. This means the spectrum analyzer indicutes to the user what the log/ reference level or linear sensitivity is regardless of control settings. Either a warning light or CRT message indicates an uncalibrated condition, making operation of the analyzer easy and foolproof.
Dynamic range: the dynamic range of a spectrom analyzer is defined as the difference between the inpur signal level and the
average noise level or distortion products whichever is greater. Hence, dymamic range can be either distortion limited, noise limited or display limited.
Frequency and amplitude resolution: frequency resolution is the ability of the analyzer to separate signals closely spaced in frequency. The frequency resolution of an analyzer is a function of three factors: 1) minimum IF bandwidth, 2) IF filter shape (actor, 3) spectrum analyzer slability.

The minimum IF bandwideh ranges down to 1 Hz on Hewlett-Packard spectrum snalyzers.

One way to define IF Filter shape factor is the ratio of 60 dB bandwidth to 3 dB bandwidth. Filter shape factor specifies the selectivity of the IF filter. Hewlelt-Packard spectrum analyzers heve IF fuler shape faczors as low as 11:1.

Analyzer frequency stability also limits resolution. The residual FM (shon term stability) should be less than the narrowest IF bandwidth. If not, the signal would drift in and out of the IF pass band. HewlettPackard analyzers have excellent stability. The residual FM ranges from $<1 \mathrm{~Hz}$ at low frequency, to $<100 \mathrm{~Hz}$ al microwave frequencies, enabling the measurement of moise sidebands. The slabilization circuivy is completely automatic and foolproof. No signal recentering, phase-tock loop, manual search. or checkigg is required.

Amplitude resolution is a function of the vertical scale calibration. Hewlels-Packard analyzers offer bolh $\log$ calibration for observing large amplitude variations (10, 2 and I dB/div) and linear calibration for observing small amplitude vaniations.
Sensiflylty: sensitivity is a measure of an analyzer's ability to delect small signals, and is often defined as the point where the signal level is equal to the noise level or $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$ $=2$. Since noise level decreases as the bandwidth is decreased. sensituvity is a func. lion of bandwidth. The masimum attainable seasitivity ranges from $-150 \mathrm{dBm} 10-1.25$ dBm with Hewlett-Packand analyzers.
Variable persistenoe, digltal storage, and adaptlve sweep; high resolution and sensitivity boith require narrow bandwidas and consequenlly slow sweep rales. Becalse of these slow sweeps. variable persiszence is virtually indispensable in providing a bright. stejuly, flicker-free trace. (In effect, variable persistence allows one to vary the length of time a trace remains on the CRT.)
The digital storage feanre on HewlerPackard analyzers covering audio to micro. wave frequency ranges make measurements and CRT photography simple. It gives the CRT displays a dot matrix connected by line generators for an unbroken and uniform inrensity scan.

On low frequency analyzers, adaptive sweep speeds measurement times. On the very slow sweef limes required when using the 1 Hz bandwidth adaptive sweep allows the scan to sweep rapidly when oo signals occur. At signals above a preset level the sweep is slowed for an accurate measure. ment. The measurement time savings can be greater than 20:I.

## Tracking preselector

The only way to simultancously avoid spurious, multiple, harmonic and image responses, is to filter the RF signal through a tracking preselector. This is an electronically tuned bandpass filter that automatically tracks the analyzer's muning. A preselector improves the sparious-free range of the analyzer from less than 70 dB to 100 dB .

## Traching generator

A tracking generator expands the measurement capability of the spectrum analyzer by providing a signal source which tracks the tuning frequency of the analyzer. The source/receiver combination can be used to measure insention loss, frequency response, return loss and precision frequency count.
It helps make bese addiuional measurements with increased distortion-free dynamic range. sensitivity and selectivity. The tracking generator is also an excellent stable sweeping generator. The residual FM ranges from $\pm 1 \mathrm{~Hz}$ for low frequency Iracking generators to $=400 \mathrm{~Hz}$ for microwave tracking generators.

## Frequency stabllity analysis

Freguency stability and speciral puriry are important parameters when characterizing precision frequency sources. Long term stability or frequency drift duc to aging or temperature effects is generally measured with a precision frequency counter such as the HP 5345A; random fluctuations in frequency or phase slability can be measured in the time domain with an electronic coumter and the Allan Variance rechnique. Measurement dimenstoos for this method are mis Fractional Frequency Deviation in pars per milion for various averaging (gate) times.

Another technique for estimating random nuccuations is by measuring phase spectral density in the frequency domain. The gost commonly used dimensions for this meitsurement is the single sideband signal-tophase ooise ratio expressed in dBc (dB below the arrier) at various offect frequencies from the carrier. The most common method of making this measurement is to mix two signals together and feed the outpue into lower frequency wave analyzer or spectrum andyzer. The technique works well for offset frequencies far away enough from the carrier to be compatible with the bandwidhs of the analyzer.

For offsel frequencies close to the carrier, (eg. below 100 Hz ) the bandwidths of analog analyerer become large in comparison to the frequencies being measured. As 1 Hz is approached, measurements become extremely difficult.

An automatic system for making phase noise measurements very close to the carrier is the HP 5390A Frequency Stability Analyzer which is based upon a high performance electronic counter and a programmable calculator. The counter is ideally suited 10 make measurements in the time domain. and the calculator can transform the data into the frequency domain. This technique allows measurements to be made
from 0.01 Hz away from the carrier out to 10 kHz . Sensitivities greater than - 150 dBe can rypically be obtained at a 1 Hz offset on carriers ranging from 500 kHz to 18 GHz . For a more complete description of this automated technique refer to the 5390A Frequency Stability Analyzer on page 502.

## Automatic spectrum analyzers

The measurement capability of a spectrum andyzer can be gready enhanced by allowing a desktop compuer to control instrument functions and record frequency and ampliude infornation. Data can be gathered and processed into a vaniely of formats at a very rapid rate. Through compreheosive self-calibration. sutomatic speeinm analysis offers amplitude accuracy of $u p$ to $\pm 0.2 \mathrm{~dB}$ with 0.02 dB resolution. User cost savings are realized through faster measurements, lower operator skill requiremeats. and unateaded operation capablity.

Funher discussion of compurer. based automatic spectrum analysis can be found on page 483 and 577 .

## Fourier analyzers

Fourier analysis is one of a variety of digital signal analysis tecbniques that allow analysis of signals that cannol be adequately measured by "rraditional" instrumentation. Among these are: Random signals or signals obscured by noise. joint properties or relationships of iwo or more signals, statistical properties of signals, or very low-frequeacy signals (below 20 Hz ).

The basis for Fourier analysis lies in the fuct that time domain signals may be represented as a number of individual frequency components in the frequency domain. The Fourier transform calculates the amplitude and phase coelficients of each componenl frequency.

The fundamental sleps involved are shown in Figure 2. One or more analog inpues are fist sampled at regular intervals. $\Delta 1$. then digitized and stored in memory. The desired function (i.e., power spectrum. transfer function. etc.) is then computed by the processing unit and stored in memory. The contents of memory can then be viewed on a CRT display, ploted, or processed further-based on the user's specific requirements.

## Advantages

The digital nanure of Fourier analysis insures high aceuracy, stability and essentially
no low-frequency limits. Siuce the transform provides all frequency lines from DC to some maximum frequency at the same time. a great time savings is obluined over analog swepl techniques.
This is especially advancageous when analyzing low frequency signals which require lone tine periods or when extremely high resolution is desired.

One lechnique used by the Fowier Analyzer to obtain very high resolution is Band Selectable Fourier Analy'sis (BSFA). U'sing BSFA, a 100 Hz band centered about 25 kHz can be analyzed witb 0.2 Hz resolution.
The Fourier Analyzer accepts multiple inputs. With simultaneous sampling, the refationship between two or more signals may be calculated, such as the input and oupul of a mechanical. electrical, or acoustic system. This flexibility, as well as the ability to compute many different statistical functions and output the dala in a variety of formals. result in an extremely cost effocive. gencra-purpose analyzer.

Equally important, the Fourier Analyzer is easy to use. It can be operated without special programmiog and contains a buill-in calibrated CRT display for easy interpretation of resules.

These advaneages have opened up several new applications for Fourier analysis, many of them in fields which are not traditional users of digital insitumentation.

## Appllcations

The vervatility and perfomance of the Fourier Analyzer make it ao ideal 100 for a variecy of applications. Mechanical engineers, electrical engineers. geophysicisis and bio-medical reseanchers are applying its advanced digital analysis eapability io a brosd spectrum of problems. Power spectrum analysis, ensemble averaging, cross spectum measurements, transfer function measurements, and correlation are fundameatal measurement 'echniques. Alhough the use or source of the data may differ. these analyses form the basis for understanding and solving complex dynamic problems.

Applications for Fourier anasysis cover a broad range of areas. Rotating machinery analysis, stucnural dymamics, vibration con(rol, elecuromechanical systems analysis. and scoustic studies, are just a fen of the areas where these advanced techniques are being applied.


Figure 2. Basic Fourier Analyzer

## Correlator. spectrum dlsplay

Correlation analysis may be hought of as the time domain equivalent of spectrom analysis. 11 is particularly useful for the recovery of periodic signals buried in noise (without requiring a synchronizing signal), the measurement detrys in signal transmis. sion path. and the identification of the sime response of linear systems.

Correlation is the product of two signals expressed as a function of a time delay between them. In computing the cross correlation between two signals, one signal is delayed relative to the other by a known variable amount. For each value of relative delay the sigmals are multiplied toge ther and the average product represents the correlation, or simularity for the panicular delay. A peak value in a cross correlation of random signals indicates that for that delay value there is a high degree of similarity between the signals. Such information can be useful in determining propagation times of radom phenomens.
Aulocorrelation is a special case in which a signal is delayed relative to itself. At zero detay, a signal is of course identical to itself and the correlation value is merely a measure of the mean square voliage of the signal. At increasing values of delay the autocomelation function can reveal the exislence of small periodic components in a large random signal. Such a measurement finds application in acousties, infrasound analysis, radio astronomy, and many other rields.
Since the correlation function and the power spectond are Fourier Iransform pairs, the addition of a spectrum display turns a comelator into a powerivl frequency and time domain measuring instrument. An autocorrelalion function measured by the correlator can be transformed by the specrum display into the auto power spectrum of the input signal. Similarly. a crosscomelation function may be transfomed into the corresponding cross power specirum.

The simultaneous display of time domain functions and their corresponding spectra. coupled with the features of digital signal analysis mentioned above give the correlator and spectrum display some unique adrantages as an economical signal analyzer.

## Wave analyzer

Wave analyzers are known by several dif. ferent oames: frequency selective voltmeter. carrier frequency volmeter, and selecuive level meter. These names describe the instrument's function mither well.

As mentioned in the introduction to this section a wave analyzer can be thought of as a finite bandwidth window filler which can he tuned throughoul a paricular frequency range.

Signals will be selectively measured as they are framed by the frequency window. Thus, for a paricular signal. the wave analyzer can indicate is frequency (window posilion) and amplitude. Amplitude is read on an analog meter: frequency is read on either a mechanimal or electronic readoul.

The uses of wave analyzers can be


Figure 3. Wave analyzer tunable filter
calegorized into threc broad areas: 1) amplifude measurement of a single component of a complex frequency system. 2) amplitude measurement in the presence of noise and interiering signals and, 3) measurement of signal energy appearing in a specified. well defined bandwidth.

## Wave analyzer considerations

Frequency characterlatics
Range: should be selected with the future in mind as well as present requirements.
Accuracy and resolution: should be cansistent with available bandwidths. Narrow bandwidths require frequency dial accuracy 10 place the narrow wiodow in the proper position for measurement. Accuracy of instrumeats with selectable bandwidths is determined by the basic center frequency accuracy of the IF bandwidth filters in addition to the local oscillator frequency accuracy. Accuracy is usually specified as a fixed frequency error at any point on the dial. thus meaning poorer percentage accuracy as the fow Grequency sellings.
Readout: usually a frequency dial but newer instruments use a frequency counter whose accuracy and ease of use outweighs the increased cost.
Stabillty: Erequency stability is imporan when using narrow bandwidus and for long term signal monitoring. Stability is best achieved with automatic frequency control (AFC). AFC loeks the local oscillator to the incoming sigoal and eliminates any relative drift between the two. It serves as a tuning aid to pull the signal within the passband. eliminating peaking the frequency concrol. The AFC always nunes within the passband. improving accuracy on repetitive measurements.
Sweep: some instruments are equipped wilh sweep to allow use as a spectrum analyzer. Readout is a CRT or X.Y recorder.

## Amplltude characterlstlcs

Aange: the amplitude range is determined by the inpul atienuator and the internal noise of the instrument. Sensitivity is defined as the lowest measurable signal equal to the noise level for a unity signal-10-noise ratio (oflen called tangential sensitivity).

Sensitivity will vary wilh bandwidth and input impedance.
Dynamic range: defined as the dB ratio of the largest and smallest signals that can be simulaneously accommodated without causing an error in the measurement.
AHenualors: the amplitude range switch is an attenuator in the input and IF stages. InIermodulation distonion is lowes! when the inpul amplifier has the minimum signal applied and the IF gain is greasest. Conversely the intemal noise. important when makiog sensitive measurements, is lowest with maximum input signal and lowest LF gain. The two attenuator insiruments allow this rransfer of gain berween inpul and IF to be accomplished easily.
Accuracy: amplinude accuracy is a function of frequency, inpul altenuator response, IF allenuator performance, calibration oscillator stability and accuracy, and meter tracking. Often speciñications are expanded to scparately describe each contributor.
Readout: amplitude readout is usually a meter calibrated in dB and/or volis. Linear voltage meters are used to allow the user to see down inso the noise at the bottom of the scale. Digital readouts are not used because of their slow reaponse and the difficulty of deriving rate-of-change information from a sequence of numbers. This is imporiant since the readout is used as a tuniag indicator to show presence of a signal in the passband and when it has reached a peak. Expanded scale meters allowing expansion of any 1 or $\underline{2} \mathrm{~dB}$ portion of the scale into a full scale presencation allow resolution of input level changes of a few hundredtes of a dB . This is useful when the wave analyzer is used as a seasitive indicator in bridge or comparison measurements. The expanded scale meter is included in some instruments and is an optional accessory on others.

## Input characterlstics

Impedance: may be high impedance bridging input or teminating impedance to match standard transmission lines. High frequency measurements require matched systems to avoid enor-producing slandiag waves on interconnceting cables. The measure of impedance accuracy is usually retum loss or reflection coefficient ( $\mathrm{RL}=20 \mathrm{log} \rho$ ). In low frequency instoments, percenl accuracy is used. High inpur impedance instruments are usually poorer in frequency and noisc performance and are usually low frequency instruments. High impedance at high frequencies is accomplished by using a bridging probe to place the impedance at the point of measurement. The probe may be active with unity gain or passive with $20-30$ dB insertion loss.
Input arrangement: inpul may be balanced 10 ground or unbalanced. Communications system usage typically requires balanced input. Standard 600 and $135 / 150 \Omega$ balanced inpuls are limited in frequency to less than 1 MHz and $124 \Omega$ balanced to less than 10 MHz in most instruments. The impedance may be balanced to ground with the center point grounded or may be completely isolated from ground. Unbalinced inputs do not have frequency range limitations.

## Network snalysis application

Frequency response festing：with its BFO ourpul．the wave analyzer is paricu－ larly useful for measuring fither and amplifier irequency responses．If a noich filter is being measured，for example．a narrow band measuremeot like that provided by a wave analyzerisessential for obtaining acceptable accuracy．A broadband technique will lead to some misleading iesults．Fur example．a norch inter may be driven with a tlat oscil． lator and the respoase measured with a broadtwind volumeter．The noth filier will reject the oscillalor｀s fundamental tone．but pass its harmonics which are in the volt－


Figure 4．Only signal detected by wave analyzer．For example，the notch of a llter can be accurately measured to its tull depth．
mecer＇s meanurement lange．＇I hus，an ertor results．If the voltmeter wese frequency sclective．like a wivic ：und het．the has－ monics would be reiceled and the true level of the notch would be measured．Accurale and fast measurements can be made becuuse Hewlell－Packard wave analyeres Irack and derect unly the BFO frequency．

## Distortion analyzers

Hasmonic distortion is one of nany types of distortion created in communications equipment and audio and ulerasonic sound systems．Nonlincar elements in amplifiers cause harmonic related frequencies from a pure tone stimulas to be creited at the oul－ pill．Hence， 10 a listencr，a poor reproduc－ tion quality becomes appareat．The colal of these frequency components present in a signal．in addtion to the fundamental fre－ quency can be measured quickly and esmily with Hewlett－Packard distortion andyzers．

The ratio of these frequency components to the amplimede of the fundamental is the rotal harmonic distortion（THD）as defined by the following equation（I）：

$$
T H D=\frac{\sqrt{\sum(\text { hamunics })^{2}}}{\text { fundimental }}
$$

The Hewlen－Packiand disturion analyzer consists of a narrow band rejection filter and broadband detector．Before the fundamental is rejected．the analyzer finst measures the
smplitude of ilse fumdamental．all the har－ monic components，and muse．Then the rejection filler is employed to remove the fundamental．The ratio of the two measure－ ments is an approximation of equation（I） above and is defined by the following cqua－ lion（2）：

$$
\begin{aligned}
& \text { THD }= \\
& \sqrt{\sum\left[(h a r m o n i c s)^{2}+(\text { noise })^{2}\right)}
\end{aligned}
$$

$\sqrt{\Sigma\left[(\text { fundamental })^{2}+(\text { harmonics })^{2}+(\text { noise })^{2}\right]}$
An approximation error of $1 / 2 \%$ can be ex－ pected for true THD levels of $10 \%$ ．How－ ever，distomion levels as high as $104 \%$ are seldom encountered in mosi meanurement situations．The harmonic consent of the stimulus sourse musi not be more than a third of ibe distorlion expected to be caused by the system under cest．

## True harmonic distortion

## measurements

The Hewlett－Packand calculator con－ irolled automatic spectrum inalyzer pro－ vides the user a rapid means of measuring inue harmonic dislurtion levels．The funda－ mental and its harmonic componenes are rapidly measured one at a time and the dis－ tortion is computed by applying equation （1）．In production test simitions，disiortion calculations can be slored on tape for future reference and／or plolted for hard copy needs．Also，limit lesting can be applied．

Signal analyzers selection guide
Spectrum analyzers

Frequancy FanRe	Amplitude Casitration Rance	日andwidth		Madel Dascription	Companion instrumems	Paqe
		Hin	Mar			
$5 \mathrm{~Hz}-50 \mathrm{l} \mathrm{kHz}^{2}$	$-15010 \cdot 3048 \mathrm{~m}$	1 Hz	300 Hz	358゙）${ }_{\text {a }}$ Spectrum Analgzel		476
$20 \mathrm{~Hz}-300 \mathrm{hHz}$	$-13010+10$ d8m	10 Hz	10 kMi	8556A Tuning Sectlon Plus－in（see Note ）		＋92
10 $\mathrm{Hz}-13 \mathrm{tht}$	$-140100 \mathrm{dBm}$	3 Hz	10 kHz	3044N／45A Spectrum Analyzet		473
$1 \mathrm{kHz}-110 \mathrm{MHz}$	-130 10－10 48 m	10 Hz	300 xHz	85STE Tunine Section Plug－ln（sew Nota 1）	84d3A Tracking Gunerator （ $100 \mathrm{KHz}-110 \mathrm{MH}$ ）／Counte！	40：
$10 \mathrm{KHz}-350 \mathrm{MHz}$	$-12010+2086 \mathrm{~m}$	I XH／	3 3＋140	855） A spectrum inalyzen Pluz－In（Ses Nots 3	8750：Storage－Normalizer	486
$100 \mathrm{hHz}-1250 \mathrm{MHL}$	-122 do－10 40\％	100 Hz	$300 \times 12$	Plug－In（Sce Note i）	8444：Iracking Generator （ $500 \mathrm{KHz}-1250 \mathrm{MHz}$ ）	いい「
100 kH：－1500 MHs	$-11510=30 \mathrm{dEm}$	I KHz	3 MH	3558B Spectium Anitiyzer Plug．In（See Nole 2）	3751 a Storape Nomalier 8SA4A Opt． 058 Tizcking Generator（ $500 \mathrm{hHz}-1300 \mathrm{MHz}$	188
100 H ： 1500 MHz	－137 dВп： 1030 66m	10 Hz	3 M ${ }^{\text {b }}$	S560A Spactrum Analozer and g58IA Autoinatic Spectrum Analyze：	3444A Opl H59 Tracking Oenenator $1500 \mathrm{kKL}-1500 \mathrm{MHz}$	$\begin{aligned} & 478 \\ & 183 \end{aligned}$
$10 \mathrm{MHz}-10 \mathrm{GHz}$	124 4 Brn 10：30 dem	100 H	3 MHz	856SA Specirum Malyza	A750A Stoespe－Normalizet 3：4sA Opt． 058 Trsching Generztor（10－1300 MH2	484
$10 \mathrm{MHz}-40 \mathrm{CH} 2$	$-130 \mathrm{k}-10080$	100 Hz	300 kHz	855SA Tuning Saction Fluz－In（Sen Note 1）	gassas Tracking Generzar （10 MHz－1300 MHz ） 8sd 58 Automatic Presolector （ $10 \mathrm{MHz}-18 \mathrm{aHz}$ ）	498
$0.01 \mathrm{~Hz}-10 \mathrm{kHz}$ offsel from cariler $500 \mathrm{kHz}-18 \mathrm{GHz}$ carties iange	$\begin{gathered} -150 \mathrm{dBc} \\ \mathrm{~min} \end{gathered}$	$\cdot 100 \mu \mathrm{~Hz}$	10 kry	5390R frequancy Stability Analyzet	59309A Digital Clack	502


NDIL 2 ．ibr use in oschiloscope maniframes 18DTR．1817if and 1 E2J

Digital Slgnal Anatyzers

FiequencyRange	Amplitiuge Calíbration gange	Aesolution Polnts		Modol Deseription	functions Areliable	Pige
		M/n	Max			
$\begin{aligned} & \text { DC-100 WHZ } \\ & \text { (Cen tiote 1) } \end{aligned}$	$\begin{array}{r} 7 \text { steps trem } \\ =0.125 \text { ta }=8 \mathrm{y} \end{array}$	32.	2048	5451 Fourner Analyzer	Power spectrum Transfer function Coherence Convolution	504
OC-? ${ }^{\text {W W }}$ W2	$\begin{gathered} 7 \text { steps from } \\ +0.10_{0}=10 \mathrm{~V} \end{gathered}$	256	$\begin{gathered} 32.009 \\ \text { (See Nole } 2 \text { ) } \end{gathered}$	SA20A Digital Signal Analyze	Time Average Linear Spectrum Auto Spectrum liansfer Function Coherence Function Histogram Correlation Impulse Response	505
0.1-25 k		$\begin{aligned} & 256 \mathrm{Fs} \\ & 1 / 28 \mathrm{IF} \end{aligned}$	$102485$ $512 \mathrm{if}$	54254 Digliai vibration Contrá System [Atialyals Mase)	Power Sprectrum (PS) Iranster Function (T) Iransient Capture Shock Response Spectrum	504
DC-2cis $\mathrm{lHz}_{2}$	40 mv 10 ¢ $V 1 \mathrm{~ms}$	100	100	3y2la Correlator	Correlation (Auto and Ctoss)   Probabifity Densityr   Probability Integyal	506
(1.005 250 kft	40 mV10 A VITA	100	100	Spectrum display	Real and Complex   Fourber lransorm of 3721A dala	506

NOTE I: Standare iange is DC to 50 kHz , expandabte with options to 100 kHr .
NOIE 2. Equivalent number of points using Band Solactable Analysis.

Distortion analyzer

Frequency Range	$\begin{gathered} \text { Huldo } \\ \text { Hulling } \end{gathered}$	HI-Pass flllor	LO-Pass fller	$\begin{gathered} \text { ah } \\ \text { Delecelar } \\ \hline \end{gathered}$	Bear Reducilon Tunlag	Model No.	Pagt
					-	33 LA	488
$\mathrm{SH}_{2}$				$\bullet$	-	$332 A$	468
10			*	*	4	332 NOPI HOS	468
300 kHz	${ }^{1}$	$\bullet$				$333 \wedge$	458
	-	$\bullet$		-		334 A	488
	-		*	-		3384 OPI H05	4 ¢ิ
10 Hz to 100 kHz	*	-				4333A	487

Wave analyzers

FronulancyRange	Selecitye   Bancpass	Dynamto Range		Fieq. Readouts	5ype ol finuts	Iype of Dutputs	Modes af Aperailon	Made!   Number	Pate
		$4050 \mid u l a$	Rejative						
15 Hz to $50 \mathrm{4Hz}$	3 Hz   10 Hz 30 Hz 100 Hz $300 \mathrm{H:}$	$\begin{aligned} & 0 \text { luv-300 Y } \\ & \text { lull scate } \end{aligned}$	> 858 d	soptace   d/gital	Bamana incks	rec 3 V full scale, with pen lift   efo, Local Oscillator, timing loudspeaker, and headiohone lack	ArC, normis. BFO	$\begin{aligned} & 3581 \mathrm{~A} \\ & 35616 \end{aligned}$	$\begin{aligned} & 472 \\ & 532 \end{aligned}$
1 kHz to 18 MHz 18 a angax	60 Hz or optional 150 Hz 2300 Hz 3100 Kz	$\begin{array}{r} -12010 \\ +2368 \mathrm{~m} \end{array}$	272 dg	3 placa decade counter	$75 \Omega$ accepts WECO 35 h 3241 accepts WECO 4O8A   1350 accepts WKCO 305A   External frequency standard	Recorder: I Y do full scale : kS sourbe Aux: 1 MHz (1 Vp-pt $30 \mathrm{MHz}(40-70 \mathrm{mV})$ 7TIE LO: $(30-48 \mathrm{MHL}) 60$ to 90 mV ms Audio: $\rightarrow 1348 \mathrm{mln}$ In 0 600n	AM, beat LSB, USB	$\begin{aligned} & 31201 \\ & 33200 \end{aligned}$	550
1 kHz to 18 MH 18 rasges or I kAtz to 22 MHz 18 ranges ${ }^{\circ}$		$200 \mathrm{mV}-3.2 \mathrm{~V}$ tuli' scale or   $-12010+23 \mathrm{dBm}$ $130 \operatorname{co}+13 \mathrm{dBm}$ $(6000 \mathrm{onM}$	>72 dB	7 -piace decade cosinter	BNC \& probe 11530A bridged. terminated balanced or uribslanced    imbalunced"   8NC inpult 50n yntalanced	rec: 1 V dc full scale 1 kn source   auk: $1 \mathrm{MHz}(1 \mathrm{Y} \mathrm{D}-\mathrm{D})$   30 MHer (40-70 mV) :ms   L0: ( $30-88$ Mita) 60 to 90 mVims   audio: $>0.5$ into 10 kn   313 A : Track or luned 751 unbalanced, -99.9 to   $+10 \mathrm{dBm}(0 \mathrm{pt} \mathrm{001}, 50 \mathrm{O}$ unbalanced outpit)	AFC, AM, bPal LSB, USE	$\begin{aligned} & 312 \mathrm{~B} \\ & 313 \mathrm{~A} \end{aligned}$	470

-3128/3134 Opt HOI (ALA)78 houl unbzlanced); 312e/313A Opt HOS (BNC Input 560 unhaianced),

- Ultra low distortion: 0.01\% full scale
- Frequency range: 10 Hz to 100 kHz .
- Automatic tuning



## Description

Hewict1-Packard Model 4,333A Distonion Analyzer measures total hamonic distortion down to $0.01 \%$ full scale at 41 spot frequencies between 10 Hz and 100 kHz ; harmonics arc indicated up to 600 kHz .
Automatic fundamental nulling reduces critical manual nulling operations where only course tuning of the frequency vernier ( $18 \%$ of spot frequency) to less than 36 of set level reference is required.

A 1 kHz high-pass fiter which may be activated by a fromt panel switch is available for reducing the effects of ham components below 400 Hz .

A high sensitivity voltmeter mode offers 13 ranges in 10 dB steps: range is from $100 \mu \mathrm{~V}$ to 100 V ms full scale. The bandwidth is 10 Hz to 600 kHz for the $300 \mu \mathrm{~V}$ to 100 V ranges and 10 Hz to 200 kHz for the $100 \mu \mathrm{~V}$ range. Meter indication is proportional to the average value of the sine wave and calibrated in ims volts/\%; dB scale is calibrated dBV.

## Specifications, Model 4333A

Distortion measurement ranges: nine ranges. $0.01 \%$ to $100 \%$ full scalc.
Frequency rainge for distortion measurement: frequency vernier and muluplier controls 41 spot frequencies (not including overlapping points) for choosing between 10 Hz throngh 100 kHz in a 1.1 .5 . 2, 3, 4, 5, 6, 7, 8.9. 10 sequence. Any set frequency is variable up le $\pm 9 \%$ with frequency vernier.

## Distortion measurement accuracy

Harmonic measurement accuracy (full acale)

Rangel/aruaty	439\%	50\%
100\%-0.03\%	IC $\mathrm{Hz}-400 \mathrm{OHz}$	$10 \mathrm{~Hz}-600 \mathrm{kHz}$
0.01\%	$10 \mathrm{~Hz}-100 \mathrm{~N} \mathrm{H}_{2}$	$10 \mathrm{~Hz}-200 \mathrm{kHz}$

## Elimimatlon characterigtics

## Fundamental relection:

$>100 \mathrm{~dB}, 10 \mathrm{~Hz}$ to 10 kHz (mulliplier X10. X100. XI K). $>95 \mathrm{~dB}, 10 \mathrm{kHz}$ to 100 kHz (multiplier X 10 K ).
Second harmonle accuracy: better than $+0 .-0.6 \mathrm{~dB}, 10 \mathrm{~Hz} 10$ 100 kHz .
Distortion introduced by Instrument: $<-95 \mathrm{~dB}(0.0018 \%)$ from 10 H 2 to 10 kHz (multiplier $\times 10, \times 100, \times 1 \mathrm{~K}$ ).
$<-90 \mathrm{~dB}(0.0032 \%)$ from 10 kHz to 30 kH . (multiplier X10 K).
$<-85 \mathrm{~dB}(0.0056 \%$ ) from 40 kHz to 100 kHz (multiplier $\times 10 \mathrm{~K}$ ). Input

Impedance: $100 \mathrm{k} \Omega=5 \%$ shunted by $<80 \mathrm{pF}$.
Single ended. low side chassis ground.
input level for diatortion measurement: for $100 \%$ ( 0 dB ) set level 1.0 V rms to 130 V ms . Minimum input for auto nulling is 0.1 V rms.
Voltmeter range: $100 \mu \mathrm{~V}$ to 100 V ms full scale (13 ranges) 10 dB per range.
Frequency range for voltage measurement
10 Hz to 800 kHz : $(300 \mu \mathrm{~V}-100 \mathrm{~V}$ range $)$.
10 Hz to 200 kHz ; ( $100 \mu \mathrm{~V}$ range).
Voltmeter accurecy

Rasage/accuidcy	$\pm 2 \%$	$=5 \%$
100 pv		$10 \mathrm{HL} 10200{ }^{\text {H }} \mathrm{Hz}$
$300 \mu^{4} \mathrm{P}$ Io 100 V	20 HI 隹3C8 $\mathrm{kHz}^{2}$	10 HI T0 600 WHI

[^32]

333A

## Description

Hewletl-Packard's models 331A, 332A. 333A and 334A Distortion Analyers measure total distontion down to $0.1 \%$ ful) siale at any frequency leetwcen 5 Hz to 600 kHz ; harmonica are indicaled up 103 MHz . Thene instrumente measure noise as low as 50 microvoles nnd measure voltages over a wide range of level and frequency. Refer to table below for avgilable models and features.

Modal No.	Auto Nulling	H2-P1sis Shlies	LSPIss Filter	$\underset{\text { Detector }}{\sin }$
3314				
332A				K
3324 Opt H05			X	X
3338	X	X		
3341	$\underline{x}$	X		X
3342 OpI. H0S	K		$x$	X

Option 00I. for each model. fealures VU meter characleristics conforming to FCC requirements.

## 331A Specifications

Distortion measurement range: any fundamenal frequency. 5 Hz 10600 kHz . Distonion levels of $0.1 \%-100 \%$ are measured full scale in 7 ranges.
Distortion measurement accuracy
Harmonic mesesurement accursoy (full acale)
Pundamentsi inpor Loss than 30 Y

Anng	=3\%	二 $6 \%$	$\pm 12 \%$
1010\% $-0.30 \%$	$10 \mathrm{Hz-1} \mathrm{MHI}_{1}$	$10 \mathrm{~Hz}-3 \mathrm{NHz}$	
$0 \mathrm{i}=0$	$30 \mathrm{~Hz}-300 \mathrm{kriz}$	$20 \mathrm{~Hz}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHL}$

furcamental inpule Bresior Than 30 V

Renge	$=3 \%$	- $6 \%$	$=10 \%$
100\%-0 3\%	$10 \mathrm{~Hz}-300 \mathrm{khz}$	$10 \mathrm{Hr}-500 \mathrm{kHz}$	$10 \mathrm{~Hz}-3 \mathrm{Mit}$
0.1\%	$30 \mathrm{~Hz}-3 \hat{L} \mathrm{C} \mathrm{k} \mathrm{Hz}$	$20 \mathrm{~Hz}-500 \mathrm{hHz}$	$10 \mathrm{~Hz}-1.2 \mathrm{MHz}$

Ellmination characteristics: fundamental rejection $>80 \mathrm{~dB}$. Seco ond harmonic accuracy for a fundamental of 5 to 20 Hz : betrer than $+1 \mathrm{~dB} ; 20 \mathrm{~Hz}$ to 20 kHz : beuer than $\pm 0.6 \mathrm{~dB} ; 20 \mathrm{kHz}$ to 100 kHz : beller than - 1 da: 100 kHz 10300 kHz : belleer than $-2 \mathrm{~dB}: 300 \mathrm{kHz}$ 10600 kHz : belter than -3 dB .
Distortion intraduced by instrument: $>-70 \mathrm{~dB}(0.03 \%)$ from 5 Hz 10200 kHz . $>-64 \mathrm{~dB}(0.06 \%)$ from 200 kHz to 600 kHz . Metes indication is proporional to average value of a sine wave.
Frequency callbratlon accuracy; better than $=5 \%$ from 5 Hz to 300 kHz . Better than $\pm 10 \%$ from 30010600 xHz .
Inpul impedance: distortion mode: I $\mathrm{M} \Omega=50 \%$ shunted by $<70 \mathrm{pF}$ ( $10 \mathrm{M} \Omega$ shumted by $<10 \mathrm{pF}$ with HP 10001 A 10:I divider probes). Voltmeter mode: $\mathrm{IM} \Omega \pm 5 \%$ shunied $\mathrm{by} \ll 35 \mathrm{pF}$ I to 300 V rms; I $\mathrm{M} \Omega \pm 5 \%$ shurled by $<70 \mathrm{pF} .300 \mu \mathrm{~V}$ io 0.3 V rms.

Input level for distortion measuraments: 0.3 V rms for $100 \%$ set level or 0.245 V for 0 dB set level (up to 300 V may be allenuated to sel level reference).
DC isolatton: signal ground mas' be $\pm 400 \mathrm{~V}$ ds from extemal chassis.
Voltmeter range: $\mathbf{3 0 0} \mu \mathrm{V}$ to 300 V rms full scale ( 13 ranges) $10 đ \mathrm{~B}$ per range.
Voltmeter accuracy: (usirng front panel inpul terminals)

Range	$=2 \%$	$=5 \%$
$300 \mu \mathrm{~V}$	$30 \mathrm{~Hz}-300 \% \mathrm{~Hz}_{1}$	$20 \mathrm{~Hz}-500 \mathrm{kNz}$
$1 \pi \mathrm{nV}-30 \mathrm{~V}$	$10 \mathrm{~Hz}-1 \mathrm{MHz}$	$5 \mathrm{~Hz}-3 \mathrm{MHz}$
$100 \mathrm{~V}-300 \mathrm{Y}$	$10 \mathrm{~Hz}-300 \mathrm{aH}:$	$5 \mathrm{~Hz}-500 \mathrm{kHz}$

Nolse measurements: voltmeter residual noise on the $300 \mu \mathrm{~V}$ range: $<25 \mu \mathrm{~V}$ rms, when terminated in 600 (shielded) ohms, $<30$ $\mu \mathrm{V}$ rms ierminated with a shielded $100 \mathrm{k} \Omega$ resistor.
Output: $0.1 \pm 0.0) \mathrm{V}$ rms open circuil and $0.05=0.005 \mathrm{~V}$ rms into? $\mathrm{k} \Omega$ for full scale meter deflection.
Output Impedance: $2 \mathrm{k} \Omega$.
Power supply: IIS or $230 \mathrm{~V} \pm 10 \%$. 50 to 66 Hz , approximately 4 VA,

## 332A Speclfications

Same as Model 33)A except as indicated below:
AM detector: high impedance DC restoring peak detector with semi-conductor diode operates from 550 kHz to greater than 65 MHz . Broadband input, no tuniog is required.
Maximum input: 40 V p-p AC or 40 V peak transient.
Disiortion Introduced by detector: carmer frequency: 550 kHz $1.6 \mathrm{MHz}:<50 \mathrm{~dB}(0.3 \%)$ for $3-8 \mathrm{~V}$ rins carriers modulated $30 \% \cdot 1.6$ MHz-65 MHz: $<40$ dB (1\%) for 3-8 V rms cartiers moduiated
 24ti 1065 Mit for carties moülated $30 \%$

## 333A Speciflcations

Sume as Model 331A except as indicated below:
Automatle nulling mode: set level: at least 0.2 V rms
Frequency renges: XI, manual null luned to less than $3 \%$ of set level: total irequency hold-in $\pm 0.5 \%$ abous tme manual null. $\times 10$ through X 10 k . manus null tuned to less than $10 \%$ of set level; total frequency hold-in $=1 \%$ about true manual null.
Automatic null aceuracy: 5 Hz to 100 Hz : meter reading within 0 $10+3 \mathrm{~dB}$ of manual null. 100 Hz to 600 kHz : metcr reading within 0 $10+1.5 \mathrm{~dB}$ of manual null.
High-pase fllter: 3 dB point al 400 Hz with 18 dB per octave roll off. 60 Hz rejection 40 dB . Normally used with fundamental frequencies greater than 1 kHz .
Powar supply: same as Model 331A.

## 334A Specificatlons

Same as Model 333A except includes AM Detector described under Model 332A:

## General

DImenslons: $426 \mathrm{~mm} \mathrm{~W} \times 126 \mathrm{mmH} \times 337 \mathrm{mmD}\left(16.75^{\prime \prime} \times \mathrm{s}^{\prime} \times\right.$ $13.25^{\prime \prime}$ ).
Welght; net, $7.98 \mathrm{~kg}(17.75 \mathrm{lb})$. Shipping. 10.35 kg ( 23 lb ). Ordering instructions

Prlce
Option 001, indicaling meter has VU characteristics conforming to FCC requirements for AM/FM and TV broadcasting
add \$23
H05-332A (meets FCC requirements)
add $\$ 129$
H05.334A (meets FCC requirements) add \$105
331A Distonion Analyzer
$\$ 1100$
332A Distortion Analyzer
$\$ 1150$
333A Distortion Analyzer
334A Distorion Analyzer
$\$ 1250$
\$1300

- Ultra low distortion measurements
- Built-in low distortion oscillator
- Automatic
- True RMS detection



## 339 A

## Description

Hewlett-Packard's new Model 339A Distorion Measurement Set is an ukra low distorion measuring system complete with total harmonic distorion (THD) analyzer, ive-rms volimeter, and sinewave oscilletor. This small, lightweight bench measurement set allows you 10 make THD distortion measurements as low as $0.0018 \%$ over a 10 Hz to 110 kHz frequency band including harmonics 10330 kHz.

## Fast and easy THD measurements

For fast and easy THD measurements the builu-in tracking oscillator in HP's 339A saves test time becaute you tune one instrument instead of two. Frequency and level measurements are easy to do widh HP's 339A's volmeter. which offers you a 1 mV 10300 V dynamic range. The Relative Level mode has been included to further simplify frequency response measurements. Jusisct a 0 dBm reference at any frequency from 10 Hz 10110 kHz . Gain measure. ments can be read directly from the easy-to-read meter.
Operation simplicity
Aulomatic frequency uning and ser-level featores allows you to make rapid, error iree THD measurements. The 139A's built-in 1 meking oscilintor eliminates the need to find the fundamental frequency find tune the andyzer for a nall. Jusl select your oscillator frequency and the rest is automatic. Automatic sel-level saves time by automatically setting 0 dB ( $100 \%$ ) reference in the distortion measuring mode. Front panel directional indicators light when the input range secting is improper insuring accurate and repeatable measuremenis. Automatic set-level also greatly simplifics measurements where distontion as a function of level (SINAD, for example) is desired. Without this feature, measurements are very time consuning and tedious.

When an extemal stimulus is used, analyzer tuning is simplified by directional indicator lights for reaching the fundamental null quickly and easily.

## FCC requirements

The FCC required features for brandeast Iesling are included in the 339A. They include an AM deteclor, 30 kHz low pass filter, and switchable VU meter ballistics.

## Other features

Hum and noise fitters, a high level monitor oulpul for furtier hamonic analysis, and floating inpul are standard features on the model 339A.
i. Wethod for mezsering lecalver sens.tivity perlormance.

## Tentatlve Specifications

## Distortion mode

Fundamental frequency range: $10 \mathrm{Hz-I} 10 \mathrm{kHz}$.
Distorlion meas urement range: 0.0 l\% full scale to 100 ec full scale ( -80 dB 100 dB ) in 9 ranges.
Detaction and meter Indeatlon: ine rms delection for waveforms with crest factor $\leqslant 3$.
Fundemental rejection: 10 Hz to $20 \mathrm{kHz}:>100 \mathrm{~dB}: 20 \mathrm{kHz}$ to 50 $\mathrm{kHz}:>90 \mathrm{~dB}: 50 \mathrm{kH} 210110 \mathrm{kHz}:=-86 \mathrm{~dB}$.
Distortion Introduced by Instrument; (input 51 V rms ): 10 Hz to $20 \mathrm{kHz}:<-95 \mathrm{~dB}: 20 \mathrm{kHz} 1030 \mathrm{kHz}:<-90 \mathrm{~dB}: 30 \mathrm{kHz} 1050 \mathrm{kHz}:$ $<-89 \mathrm{~dB}: 50 \mathrm{kHz}$ to $110 \mathrm{kHz}:<-70 \mathrm{~dB}$.
Resldual nolse: (fuddamental frequency setring $<20 \mathrm{kHz}, 80 \mathrm{kHz}$ F̄ler in, source resistance $\leqslant 1 \mathrm{~K} \Omega$ shielded): -92 dB referenced to I V.

Input level: 30 mV to 300 V ma ( 100 mV range minimum).
Input Impedance: $100 \mathrm{k} \Omega=1 \%$ shunted by $<100{ }_{p} \mathrm{~F}$ input High to Low.
DC Isolation: mpul law may be floated 30 V de .
Auto set level: 10 at capture range.
Auto null: intemal oscillator: fully antomatic; external sine wave source: pull range > one leats significant digit.

## Voitmeter mode

Vollmeter range: I mV rms full scale 10.300 V ms fuil scale.
Frequency range: 10 Hz to 110 kHz .
Accuracy (\% of range setting): 20 Hz to $20 \mathrm{kHz}:=2 \% ; 10 \mathrm{~Hz} 10$ $110 \mathrm{kHz}=4 \%$.
Relatlve input level: voltage rangc. frequency range. accuracy specifications, are the same as in Volimeter Mode.

## Oscillator

Frequency range: 10 Hz to 110 kHz ,
Output level: vatiable from $<1 \mathrm{mV}$ to $>3 \mathrm{~V}$ mos into $600 \Omega$ load with $70 \mathrm{~dB} / \mathrm{slep}$ LEVEL conlrol and 10 dB VERNIER adjustment. Frequenoy securacy: $=2 \%$ of sclected frequency (with FREQUENCY VERNIER in CAL position).
Level Ilatness: 20 Hz to $20 \mathrm{kHz}_{2} \leqslant=0.1 \mathrm{~dB}: 10 \mathrm{~Hz}$ to 110 kHz : $\leqslant=0.2 \mathrm{~dB}$.
Dlatortlon ( $\geqslant 600 \mathrm{n}$ load, $\leqslant 3 \mathrm{~V}$ outpuf): 10 Hz to $20 \mathrm{kHz}:<-95$ $\mathrm{dB}(0.0018 \%)$ THD: 20 kHz to $30 \mathrm{kHz}:<-85 \mathrm{~dB}(0.0056 \%)$ THD: 30 kHz 10 $50 \mathrm{kHz}:<-80 \mathrm{~dB}(0.01 \%)$ THD; 50 kHz to 110 kHz : $<-70 \mathrm{~dB}(0.032 \%)$ THD.
Output resistance: $600 \Omega=5 c \%$.
Input Hiters: Low Pass Filters: $30 \mathrm{kHz}-3 \mathrm{dE}$ point al 30 kHz with 50 dBjecade rolloff: $80 \mathrm{kHz}-3 \mathrm{~dB}$ point at 80 kHz with 60 dB decade rolloft: High Pass Filler; $400 \mathrm{~Hz}-3 \mathrm{~dB}$ point al 400 Hz with 60 dB /decade rolloff.

## AM detecior

## Frequency range

Carriep frequencies: 550 kHz 101.6 MHz .
Modulstion trequenoles: $\mathbf{2 0} \mathrm{Hz}$ to 20 kHz .
Input level
Maximum: 60 V peak.
Modulaflon signal level: 2 V rms minimum. 10 V rms maximum. General
Power: $100 / 120 / 220 / 240 \mathrm{~V} \div 5 \%,-10 \% 48 \mathrm{~Hz} 1066 \mathrm{~Hz}$ line operalion. 200 mA maximum.
Sle e: $146 \mathrm{H} \times 426 \mathrm{~W} \times 442 \mathrm{~mm} D\left(5.75^{\circ} \times 16.75^{\circ} \times 17.4^{\prime \prime}\right)$.
Welght: nel 8.2 kg ( 18 Ibs ). Shipping 11.3 kg ( 25 lbs ).
339A Distontion Measurement Set
$\$ 1900$


## Description

Hewlet-Packard Model 312B/313A is a frequency selective voltmeter/Iracking oscillator operating in the frequency range of commmercially available carricr and radio systeros. The set is capable of making transmission and noise measurements. A 312D is available with special features for telecommunications applications. Sce page 300 .

HP's 312B uses a frequency synthesizer for tuning that is automaticaliy phase locked in I MHz steps. Tuning between lock points is indicated on a 7 -place digital readour with 10 Hz plus time-base accuracy. Coupled with this digital indication of unambiguous frequency is an automatic luning aid known as automatic frequency control (AFC). The AFC will antomatically fine tune frequency to the ceuter of the sel's passband, and automatically correct any relstive frequency drift between the set and the signal being measured. Long term monitoring of signals is possible without periodic seadjustment. High frequency accuracy coupled with AFC gives elcar. instantaneous tuning and eliminates the need to search for signals.
laput and IF attenuators allow a maximum of dynamic range without concern for overloading the set. Attenuators can be easily set for minimum distorion or noise performance. Attenuator seluings are indicated clearly on a lighted annunciator which, when
added to meter indication, gives a fast indication of inpul level. Ans accessory expanded sealc meter alows 0.02 dB resolution of inpu level for high resolution readines.
The instrument is equipped with both balarced and unbalanced inputs to fit measuring sithations without the seed for external accessory transformers. A wide selection of input impedances. cither bridging or terminated, is provided along with provisions for an accessory high impedance. balanced bridging probe to reduce measurement errors. The set always indicates directly in dBm or volts at any impedance, eliminaling lime consuming calculations or conversion charis.

Three selectable bandwidiths are provided for all measurement siluations. A narrow 200 Hz bandwidth is used for highly selective measurements, a 1000 Hz bandwidth for general measurements, and a 3100 Hz bandwidth for noise measurements.

Demodulation of upper or lower sideband channels with an audio output is provided for monitoring noise, Iraffic. or tones in any channel. The accurate digital frequency readoul requires only a quick reference to the system frequency charts to determine frequency for perfect deroodulation. In this respect. Model 312B can be thoughe of as a single-channel, uneable. multiplex, receive terminal.
erence to the system frequency charls to determine frequency for perfect demodulation. In this respect, Madel 312B ean be thought of as a single-channel, tuneable, multiplex. receive terminal.

HP's Model 313A Tracking Oscillator provides an accurate, Dat output at the frequency to which the 3I2B is tuned for fiequency response measurements. Outpul frequency is quickly ind tilsily sel by the digital luning indicator on the stlective voltmeter.

Outpul level is casily set by a 3-digit presentation with 0.1 dB resolvition. Output level is also casily read and remains constant with changes in frequency requiring no lime consuming reselting of level at each new frequency.

A buid-in meter provides an expanded scate display of the 312B's meler indication with 0.02 dB resolntion of input level.

## 312B Specifications

## Tuning characteristics

Freqwency rañees $1 \mathrm{k} \mathrm{H}_{\mathrm{z}}$ to 18 MHz in 18 overlapping bands. 200 kHz overlap belween bands.
Frequency accuracy: $=10 \mathrm{~Hz}+$ lime base accuracy. Frequency indicated on in-line digital readout with $\pm 10 \mathrm{~Hz}$ resolution.

## Selectivity

Eandwidin $\mathrm{H}_{2}$	$\begin{gathered} 3 \mathrm{~dB} \\ \mathrm{BW} \end{gathered}$	${ }_{8}^{50}$
$200 \times 4$	$200 \mathrm{~Hz}=100 \%$	$426 \mathrm{~K} 2 \sim 10 \%$
1000 Hz	$1 \mathrm{kHz}=10 \%$	2135 Hz - $: 00 \%$,
3100 Hz	$3100 \% 2010 \%$	6200 H- $10 \%$

## Amplitude characteristics <br> Amplitude measurement range

$50 \Omega$ to $150 \Omega$ : -120 dBm to +23 dBm .
$600 \Omega$ : $-130 \mathrm{dBm} 10+13 \mathrm{dBm}$.
Voltage: 200 mV full scale to 3.2 V ( 50 n reference).

## Amplitude accuracy

Freguency response (bridging inpul with extemal termination of $50 \Omega \pm 1 \%$.
$1 \mathrm{kHz} 1010 \mathrm{kHz}: \pm 0.5 \mathrm{~dB}$ ( $5 \%$ of reading).
10 kHz to $10 \mathrm{MHz}_{\mathrm{i}}=0.2 \mathrm{~dB}$ ( $2 \%$ of reading).
10 MHz to $18 \mathrm{MHz}:=0.5 \mathrm{~dB}$ ( $5 \%$ of reading).
Matching Impedance: $50 \Omega, 60 \Omega, 75 \Omega, 1242.135 \Omega .150 \Omega$ or $600 \Omega$. balanced or unbalanced on 312B.

## Distortion

Harmonleally related, $1 \mathbf{k H z}$ to $1 \mathrm{MHz}>55 \mathrm{~dB}$ below zero reference. 1 MHz to $18 \mathrm{MHz}: \geq 65 \mathrm{~dB}$ below zero reference. Residual response.
Nolse Floor: <-120 dBm in 1 kHz Bondwidth und $7 \mathrm{~S} \Omega$ input.

## Receiver characteristic:s

## Recelver mode outputs

AM: diode-demodulated sudio.
Beat: beat frequency audio centered al $f_{0}$.
LSB: produci-demodolated audic, carrier reimented at $\Gamma_{v}+1.8$
kHz.
USB: product-demodulated audio, carrier reinsered at $f_{i n}-1.8$ ${ }_{k} \mathrm{~Hz}$.
Audlo output level: $>0.5 \mathrm{~V}$ rms into $10 \mathrm{k} \Omega$ with full-scale meler deflection.
Recorder outpul level: IV $\mathbf{x} 0.1 \mathrm{~V}$ with full-scale meter deflection actoss open circuit.
Power: 115 V or $230 \mathrm{~V}=10 \%, 48 \mathrm{~Hz}$ to $68 \mathrm{~Hz},<100 \mathrm{VA}$.

Welght: nct. 20.7 kg ( 46 lb ).

## 313A Specificallons

Frequancy range
As tracking oscillator: 10 kHz to is MHz .
As signal source: 10 kHz io is MHz in one band, conlinuous luning.
Frequency accuracy
As tracking osclilator: $35 \mathrm{~Hz} \pm 4 \mathrm{~Hz}$ above 312 B tuning.
As signal source
10 kHz to $2 \mathrm{MHz}: \pm 1 \%$ of mix dal selling.
2 MHz to $\mathrm{MHz}: \pm 3 \%$ of max dial setting.
8 MHz to $\mathbf{2 2 ~ M H z}: \pm 5 \%$ of max dial setting.
Frequency stability
As slgnal source: shorn-tern ( 5 min ) drifi $<1 \mathrm{kHz}$ in stable environment afler warmup.
Frequency response: $=0.1 \mathrm{~dB}, 10 \mathrm{kHz}$ to 18 MHz .
Amplitude stabillty: $\pm 0.1$ aB for 90 days $\left(0^{\circ} 1055^{\circ} \mathrm{C}\right.$ ).
Maximum output: 0 dBm or $+10 \mathrm{dBn} \pm 0.1 \mathrm{~dB}$. selectable al front pancl.
Output attenuator: 3 -seetion altenuator provides 0 dB to 99.9 dB atrenuation in 0.1 dB steps.
Aftenuator accuracy
0.9 dB section ( 0.1 dB steps) : $\pm 0.012 \mathrm{~dB}$.

9 dB section (1 dB steps): $\pm 0.1 \mathrm{~dB}$.
90 dB section ( 10 dB steps): 20.1 dB to $50 \mathrm{~dB},=0.2 \mathrm{~dB} 1090 \mathrm{~dB}$.
Output Impedance: $75 \Omega$ unbalanced. ( $50 \Omega$ option:01)
Harmonic digtortion: more than 34 dB below fundamental.
Recorder output: $=0.3 \mathrm{~V}$ for folls-scale deflection. Output impedance I $\mathrm{k} \Omega$, BNC female connector.
Power: 115 V or $230 \mathrm{~V} \pm 10 \%, 48 \mathrm{H} 21065 \mathrm{~Hz}_{3}<35 \mathrm{~V} \lambda$.

Welght: bel, $11.3 \mathrm{~kg}(25 \mathrm{lb})$.
3125 Optlons Price
001: catrier rejection notches inserted at $\mathrm{r}_{\mathrm{i}}=2 \mathrm{kH2}$ add $\$ 114$
H01: Frequency ringe 1 kHz to 22 MHz in 22 over. add $\$ 320$
lapping bands
Mater callbratlon: dBm only (75! reference).
Input impedance: $75 \Omega$ or tritging ( $10 \mathrm{k} \Omega$ ).
input connector: equivalent to WECO-477B.
H10: same as H0l-312B except uses BNC connec- add $\$ 350$
lars
H05: same as H01-312B except uses 50 n reference add $\$ 320$ and $B N C$ connectors. Calibrated in volts and dBm
H55: -50 Hz bandwidth sulbstitited for 200 Hz
add $\$ 200$
bandwidth: -313 sho modified so that the offsel
frequency is is $\mathrm{Hz} \pm 2 \mathrm{~Hz}$
H16: speaker included so opemtor can hear restored add $\$ 295$ audio outpul
312B Accessories
11530A Probe: provides a high impedance inpul al the end of a flexible four-fool cable
11530A Specilications
Amplitude range: $<1 \mu \mathrm{~V}$ to 3 V
Amplliude accuracy: (probe and divider only): $\pm 0.5 \mathrm{~dB}$
Furnlahed: 1:1, 10: I, 100:1 divider heads
Ordering information
312B Selectise Voltmeter
$\$ 5300$
313A Tracking Oscillator \$2145


## Description

Hewlett-Packard's 3581A Wave Analyzer resolves and measures the amplitude and frequency of speciral compogents. This insinment offers accurate amplimude and good frequency resolution in the form of a porlable, easy to use measuring tool. Since not all sienals originate from a stable frequency source, the 3581 A incorporates an AFC circuit which locks to a difting signal for stable, accurate measurements.

HP's 358 IA has other important fealures that are necessary when making measurements of small voltages from transducers and harmanic signals. Its 30 nV sensitivity becomes important for these measurements. Battery operation or balanced input option can be used to reduce the line related interference common in low level measurements so only the real spectrom is measured.

Digital readout of tuned frequency is located above the analog meter. It has been grouped whith the meter for ease of reading. Resojution of the digital readoul is: Hz for any frequercy between is Hz and 50 kHz . Readous is updated five times per second so delay between tuoing and reading is minimized.

Four meter scales are used to provide a wide range of displays. Two scales are used for linear voltage readings. Two log scales provide either a 90 dB or 10 dB display. In any case, the large meter with its mirror backing can present readings in dBV or dBan or volts. A meter was specifieally chosen for amplitude display rather than digital readout because it is easier to peak a meter reading and because it's much easier to gel a feel for noise or other amplitude variations by watching the metcr. The same vollage used to drive the meter is also available on the rear pancl for driving $X-Y$ recorders,

## Specifications*

Frequency characterlstles
Range: 15 Hz to 50 kHz .
Diepley: 5 digil LED reauout.
Recolution: 1 Hz .
Accuracy; $=3 \mathrm{~Hz}$.
Typleal stablilty: $\pm 10 \mathrm{~Hz} / \mathrm{hr}$ afier I hour and $=5 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
Automatle frequency control (AFC) hold-ln range: $\pm 800 \mathrm{~Hz}$.

```
Amplitude characteristles
Instrument range
 Unear: 30 V to 100nV full scale.
 Log: +30 dBm or dBV to -150 dBm or dBV.
Ampiliude accuracy: Log Linear
 Frequency response. 15 Hz-50 kHz =0.4 dB = % %
```

Dynamle range: $>80 \mathrm{~dB}$.
Nolas aldobands: greater than 70 dB below CW signal. 10 bandwidits away from signal.
Spurlous responeas: $>80$ dB below inpul reference level.

## Sweep characteristics

Scan width: 50 Hz to 50 kHz . These scans can be adjusted to coves a group of frequencies within the overall instrumenl range.
3weep orror llght: this LED indicates a sweep that is too fast to capture full response. When the light is on, response will be lower than it should be.
External trigger: a shon to ground stops the normal sweep. Opening the short then enables a sweep.

## Input characteristics

Impedance: i $\mathrm{M} \Omega, 30 \mathrm{pF}$.
Maximum input lovel: 100 V ms . $=100 \mathrm{~V} \mathrm{dc}$.

## Output characterlstics

Traoking generator output: (also known as BFO or tracking oscillator on(put).
Range: 0 to 2 V mins.
Frequency response: $=3 \% 15 \mathrm{~Hz}$ to 50 kHz .
$\mathrm{X}-\mathrm{Y}$ recordor analog outputs
Vertical: 0 10 $+5 \vee=2.5 \%$.
Horlzontal: $010+5 \mathrm{~V}=2.5 \%$.
impedance: I k $\Omega$.
Pen ilth: contact closure to ground during sweep.
Restored output: acts as a narrow band amplifier.

## General

Power requirements: $100 \mathrm{~V} .120 \mathrm{~V}, 220 \mathrm{~V}$, or $240 \mathrm{~V}+5 \%-10 \%$, 48 Hz to 440 Hz .10 VA typical.
Dimanalona: $412.8 \mathrm{~mm} \mathrm{H} \times 203.2 \mathrm{mmW} \times 285.8 \mathrm{mmD}\left(161 / \mathrm{s}^{n} \times 8^{n}\right.$ $\times 11^{1 / 4}$ ".
Welght: 11.5 kg ( 23 lb ). OpI 001: 13.5 kB ( 30 lb ).
Optlons
001: Interval battery 12 hours from full charge. Internal battery is protected from deep discharge by an auiomatic turnoff. Useful life of this battery is over 100 eycles.
910: Extra set manuals
Idd $\$ 20$
3581A Wave Analyzer
$\$ 3325$

dadicaled beldeommunlailon virslon of tha MP 3581 A wayo andyed.

# SIGNAL ANALYZERS <br> Automatic spectrum analyzers from 10 Hz to 13 MHz <br> Models 3044A/3045A 

## 3044A

- High accuracy and resolution digital amplitude measurements
- Synthesizer frequency accuracy and stability
- Wide amplitude range of 150 dB
- Narrow band analysis
- Full digital control via HP-IB


## 3045A

- Full automation and low cost
- Speed and precision in measurements
- Data analysis and presentation of results
- Simplicity and flexibility in operation
- HP-IB systems interfacing flexibility
- 9825A Computing Controller

3045 System with Option 204 (HP Model 1201 Oscilloscope)

## Description

## 3044A Spectrum analyzer

Meeting the demand for precise frequency and amplitude measurernents in the 10 Hz to 13 MHz region, the 3044 A is a spectrum analyzer with tracking gencrator. This system uses a synthesizer with leveled outpot and sweep capability to generate the local oscillator sigual for the analyzer and the tracking generator output. This allows fast, extremely accurate "tuning" with the use of frequency up-down keys or keyboard entry of center frequency. The inpul impedance is front-panel switch selectable to 50n, $75 n$, and $1 \mathrm{M} \Omega$. The uniss of the digital display are also front-pancl selectable to $\mathrm{dBm}, \mathrm{dB} V$ and dB relative to a user-entered offsel. Digital display of amplifude and frequency gives an unambiguous, high-resolution readout commensuratc with the wide dynamic range and high aceuracy of this analyzer.

## 3045A Automatic spectrum analyzer

While the 3044A is an excellent stand-alone spectrum analyzer. the capabilities are gready improved with the addition of the 9825A Controller, which forms the 3045A system.
The 9825A Controller allows program and data storage on its fast lape cassette. The lape cassette, short calculation limes and buf-
fered inpur/outpur speed allow repeated, automated lests which can greatly reduce production ind quality-assurance test times. Also the scope of possible measurements greaty increase with the 3045A Sysicm. Logarithmic sweeps and limit lests are only two examples. The calculator also allows daca manipulation and presentation in units familiar to the system operator in graphic or tabular form. (A plotter and line printar are system's options.)

Because the uner maty not be familiar with HPL (the language of the 9825A Controller) or cven with programming. a compiler is furnished with the 3045.A System. The compiler allows the calculator to converse in terms underslood by the test engineer. like stan and slop frequencies, plot resulis, and compare with limits. It also accepts and outputs in units of $\mathrm{Hz}, \mathrm{kHz}, \mathrm{MHz}$, dBm and dBV. The compiler enables the execution of sophisticated tests. like intermodulation distortion measurements, with only a few minutes of initial "programming" time. It can also record the test parameters. which can then be used repeatedly, as in a production environment. The compïcr's versatility and ease of use make the full power of the 3045A Spectrum Analyjer readily available to the user.
The 3045A Auromatic Spectrum Analyzer system is Fully integrated. lested. verified and specified as a system. $\mathbf{I} 1$ is supplied with complete software and documencation.

## Applications

## Sideband analysis

This is a more traditional spectrum analysis problcm using HP's $3045 A$ and 12018 Oscilloscope. Figure 3 is a piclure or the spectrum. The carrier frequency was supposed to be at 10.7 MHz . Therefore, the synthesizer was set up with a 10.7 MHz center frequency and a $=500 \mathrm{~Hz}$ sweep about the center frequency. From the picture, it is apparent that the carrier frequency is about where it should be. It is possible 10 move the center frequency in 0.1 Hz steps with the step butons and loxk for the peak responses to more accurately identify the carrier frequency.

Using the 3 Hz resolution bandwidth, 60 Hz spurious responses are revealed. Noise products atso appear very close to the cartier. Here the wide dynamic range of the systern exposes the responses that are more than 70 dB below the cartier.

## Distortion measurements

The spectum analyzer system can be very powerful for characterizing the complete response of amplifiers. Gain, noise, spurious distorion and frequency tesponse ean all be done with one selup. This example of distortion measurement is one par of the total characterization that can be done.

Distortion of audio frequencies as they pass through amplifiers is measured by several methods. Total harmonic distortion is found by measuring the harmonic output assuming a pure sinewave input. Here again the 3045A offers benefits through calculation power. After the user enters the fundamental frequency. the calculator lakes over and makes measurements at the appropriate frequencies and calculates the percenlage distortion. Figure 2 shows the type of user-oriented printout that is posisible using the 9825, A Controller and the 9866A Printer. The other ealculators have built-in printers which could give the same rype of primisul.

Intermodulacion distorion can similarly be measured as pan of the same systern provided the sources are available.

Modulation measurements
Both AM and FM modulation show up very well in the frequency domain. Figure 4 shows a typical wide band FM signal. This measurement could be made with the same serup as Figure 2. A more sophisticated measurement was made using the 3045 A . The calculator is used 10 program the instaments for measurements al the carrier and sideband frequencies. From the data, the modulation index was calculated to be 1.53 with a calculator Bessel aigorithm. This is a good example of using the 3045A to make measurements that are not easy with a simple spectrum analyzer.


Figure 1. This bandpass filter was characlerized using a 3044A system and an $x-y$ recorder. By expending the $Y$-axls so only 5 d8 are covered, the rlpple and 3 dB points are very easy to idenility.


TOTAL HARIONIC DISTORTION EELUALS -42.85 DB
GR 4.72
PERDENT
Figure 2. Using a 3045A system, an ampllfier can be completely characterized for total harmonic olstortion as well as intermodulation distortion, nolse, spurlous, írequency response and gain.


Figure 3. A 3044A was used 10 analyze close in spurious and nolse of a 10.7 MHz cartier. The sweep covers 1 kHz around the carrler.


Figure 4. Wideband FM modulation with a 5.3 MHz carrier.

## Telemery

One of the most powerful applications for the spectrum analyzer is in monitoring frequency multiplexed telemeery or alarm systems.

The operating system may have many channels at differeat levels. When sporious signats appear or channels drop out, it is difficult to see them on a CRT. This is done by staring the spectrum of the system whed it is runoing properly. Figure Sa shows a part of such a telemetry system. Then subsequent specesums are sublracted from the normal spectrum. Channels that drop ont or lose gain will appear as negative points as shown in Pigure 50. Spurjous signals that were nol present before will uppear as points above the noise level. Rather than looking over the entire spectrum for problems, the system shows them graphically with enough frequency accuracy so the channel with problems can be quickly identified.


Figure $\mathbf{5 a}$. This represents a portion of a frequency multiplexed system operating normally. Nolice that not all channels are operating at the same lovel.


Figure 5b. The difference between a normal system and one that has problems is immediately apparent. One of the chaninels has dropped out.

## 3044A/3045A Specifications

Frequency spechilications
Frequency range: 10 Hz to 13 MHz .
Scan width: any desired scan is possible in 10. 100 or 1000 steps of frequency increments as small as 0.1 Hz and with 0.1 Hz resolution. The 3045A is additionally capable of taking any number of sleps with direct calculator control of the sweep.

## Resolution

Bandwldthe: 3 Hz to 10 kHz in a $1,3,10$ sequeace.
Bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidth ratios $\leqslant 1: 1$.
Stabilly
Long term: $=1 \times 10^{-\pi / d a y .}$

$$
\pm 1 \times 10^{-7} \text { month } .
$$

Temperature: $20^{\circ} 1030^{\circ} \mathrm{C}:=1 \times 10^{-H / a} \mathrm{C}$ of $5^{\circ} \mathrm{C}$ frequency.
Phase nolse: $<50 \mathrm{~dB}$ below CW signal in a 30 kHz band around signal.
Amplltade specilications
Absolute ampilitude callbration range: -130 dBm to +20 dBm ( 50 or 75 n ). $-140 \mathrm{dBV} 10+10 \mathrm{dBV}$.
Digital ampitude readout: $\pm 199.99 \mathrm{~dB}$ with 0.01 dB resolution.

## Dynamic range

Average nolse level: - 127 dBV in I kHz resolution bandwidth. Smoothing (video flter): provides smoothing with a bandwidit of lanth the cesolution bandwidth on all but the 3 Hz and 10 Hz bandpridths.
Spurious responses: $>70 \mathrm{~dB}$ below input range setting
Olistortion responses: $>80 \mathrm{~dB}$ below inpul signal at input range seiting level.
Power-line related responses: 70 dB below input range on +10 dBV through -40 dBV ranges: 60 dB on -50 dBV : 50 dB on -60 dBV ranges.
Ampiltude accuracy
Frequency response: $\pm 0.25 \mathrm{~dB}(250 \mathrm{kHz}$ reference)
Input range: $\pm 0.05 \mathrm{~dB} /$ siep, $=0.15 \mathrm{~dB}$ total accumulation.
Log Ilnearity: 0 to $-30 \mathrm{JB} \geq 0.1 \mathrm{~dB}$.

$$
\begin{aligned}
& -3010-60 \mathrm{~dB} \pm 0.25 \mathrm{~dB} . \\
& -6010-80 \mathrm{~dB}=0.75 \mathrm{~dB} .
\end{aligned}
$$

Slablity: (8 hr-, $25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$, after I hr. warmup)


Tracking generator ( 3330 B output)
Frequency range: 0.1 to 13000999.9 Hz .
Frequency resolution: 0.1 Hz ( 9 digits).
Amplitude range: $\div 13.4410-86.55 \mathrm{dBm}(50 \Omega)$.

$$
+11.68 \text { to- } 88.31 \mathrm{dBm} \text { ( } 75 \Omega \text { oplion). }
$$

## Amplitude accuracy

Leveled trequency response ( 10 kH 2 reference)*

*Add 0.5 te for leveling switch in aff position.
Altenuator ( 10 kHz reference, $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ) : $\pm 0.02 \mathrm{~dB} / 10 \mathrm{~dB}$ step of attenuation from maximum output.
Absolute accuracy: $\pm 0.05 \mathrm{~dB}$ at 10 kHz and $+13.44 \mathrm{dBm}\left(25^{\circ} \mathrm{C}\right.$ $\pm 5^{\circ} \mathrm{C}$ ).
Amplitude stablity $\left.\left(24 \mathrm{hr}, 25^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right): \pm 0.0\right\} \mathrm{dB}$.
Genergl
Input limpedance: $50 \Omega, 75 \Omega>30 \mathrm{~dB}$ retum loss.
$1 \mathrm{M} \Omega=5 \%$ shumted by 30 pF .
Maximum input level: +20 dBm .
Programmabllty: all controls, excepl power switches, are programmable using the HP-IB format.

## 3044A/3045A Options

The basic 3044A and 3045A system options are listed below. For more information refer to the 3044A/3045A data sheet.
3044A Optlons
110: Standard 3571A
120: Standard son 3330 B w/tsol. HP-1B
121: Standard $75 \Omega 3330 \mathrm{~B}$ w/lsol. HP-1B
122: 3 V Output
3045A Optlons
200: S0』 System
201: $75 \Omega$ System
204: 120 IB Oscilloscope

Price
add \$6550
add \$7455
add $\$ 7455$ add $\$ 300$

N/C
N/C
add $\$ 2670$

## Ordering information

3044A Spectrum Analyzer with Opt 110 \& 120 $\$ 14.005$
3045A Automatic Specmum Analyzer consisting of: 3330B Synthesizer; 3571A Spectrum Analyzer; 9825A Calculator, 6.8 k bytes meruory: ROMs, Interface.
documentation: $56^{\prime \prime}$ Rack.


## Description

Hewlell Packards 3580A Specirum Analyzer is a low frequency tigh performance analyzer, lis I Hz bandwidth allows the user to examine noise and extraneous signal content close in to a signal of interest.
For low frequency applications where sweep speeds can be slow and time-consuming. a special feature, adaptive sweep. allows the user to set a threshold above which only the spectra of intercst is observed. In this mode, the CRT is rapidly swept. When a signsl is encountered, the sweep slows down 10 reproduce full renponse. A factor of ten speed gain is possible.

Digital storage is another imponant feature which enhances the display for slowly swept low frequency signals. The analyzed signals are digitized and stored in memory. Trace information is then read from memory at a rate appropriate for obsaining an analog-like display.

## Digisal storage for spectra comparison

Digital slorage makes it possible to store one or two traces. When two are stored. both may be simultaneously displayed for easy comparison as shown below.


## Adaptive sweep

A iremendous savings in sweep time can be achieved by using adaptive sweep. In the left trace below over 80 dB of dynamic range is used so look at low level signals and noise. Two hundred seconds were required to make the swecp. In the right uace. the baseline is raised to give 50 dB of dynamic range. Noise and other responses are not analyzed so sweep now takes only 14 seconds.


## 1 Hz bandwloth

When using a 1 Hz onndwidth 60 Hz line related spectra are clearly exposed as showo in the left trace. An analysis of the same signal with a $10 \mathrm{H} \%$ bandwidth will not resolve the line related spectrat is shown on the righ.



## Telecommunications application

Besides analysis of voice specirum. HP's 3580 A gives a clear piciure of frequency spectrum for digital transmission. This piciure shows a 1200 baud full duplex moden using double sideband suppressed carrier FSK modulation. The "answer" band covers 850 Hz to 1450 Hz while the "transnit" hand covers 1950 Hz to 2550 Hz . The higher frequency band at high levels from 3150 Hz to 3750 Hz comes from 3nd onder products of the answer band.

## internal calibration signal

A 10 kHz pulse derived from a crystal can be used to compensate for internal errors. A 10 kHz calibration potentionometer is pro vided so the 10 kHz fundamental can be adjusted to fall on the top tine of the display. With this feature, operation and calibration can be verifed for most of the instrument.


## Specifications

Frequency characteristics
Range: 5 Hz to 50 kHz .
Frequency dial accuracy: $\pm 100 \mathrm{~Hz} .20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}: \pm 300 \mathrm{~Hz}, 0^{\circ} \mathrm{C}$ $1055^{\circ} \mathrm{C}$.
Display aceupacy: frequency error between any iwo points is less than $\pm 2 \%$ of their indicated separation.
Typlcal stabllity: $=10 \mathrm{~Hz} / \mathrm{hr}$ after I hour: $\pm 5 \mathrm{~Hz} /^{\circ} \mathrm{C}$.
Frequency dial pesolution: 20 Hz on frequeticy dial.

Bandwidths,   (accueacy $=35 \%$ )	$\begin{array}{r} 1 \mathrm{Hi}_{i}\left(25^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}\right) \end{array}$	3 Hz	10 H	30 Hz	100 Hz	300 HI
Shape ixotaf	10					8

Out of range blank: if controls are set so portions of displayed signal lie below 0 Hz or above 50 kHz , the baseline is displayed.
Amplitude specificatlons
Overall instrument range:
Linear $20 \mathrm{~V}-100 \mathrm{nV}$ full sede
Log $\quad \begin{aligned} & \quad+30 \mathrm{dBm} \text { or } \mathrm{dB} V \text { : } \\ & -150 \mathrm{dBm} \text { or } d B V\end{aligned}$

Amplitude accuracy:	Log	Lisear
Frequency response:		
$20 \mathrm{Hz-20} \mathrm{kHz}$	$\pm .3 \mathrm{~dB}$	$\pm 3 \%$
$5 \mathrm{~Hz}-50 \mathrm{kHz}$	$=.5 \mathrm{dg}$	$\pm 5 \%$
Switching terween bandwidths ( $25^{\circ} \mathrm{C}$ ):		
$3 \mathrm{~Hz}-300 \mathrm{~Hz}$	$=.5 \mathrm{~dB}$	=5\%
$1 \mathrm{~Hz}-300 \mathrm{~Hz}$	$\pm 1 \mathrm{~dB}$	$\pm 10 \%$
Amplitude diuplay	$=2 \mathrm{~dB}$	$\pm 2 \%$
Inpul alcenuater	$\cdots 3 \mathrm{~d} \mathrm{\theta}$	$\pm 3 \%$
Amplítude reference level: (IF allenuator)		
Moss sensitive range	$\pm 1$ dB	$=10 \%$
All other rangen	$\pm 1 \mathrm{~dB}$	$\pm 3 \%$

## Dynamic range: 80 dB .

IF feedthru: input level $>10 \mathrm{~V},-60 \mathrm{~dB}:<10 \mathrm{~V} .-70 \mathrm{~dB}$.
Spurious responses: $>80 \mathrm{~dB}$ below input reference level.
Smoothing: 3 pusitions, rolloff is a funclion of bandwidth.
Overload Indlcator: this LED indicator warns of possible inpul amplifier overioading. Withnut this indication it would be possible to introduce spurious responses without knowing it.

## Sweep cheracterlstics

Sean width: 50 Hz to 50 kHz .
Log sweep: $20 \mathrm{~Hz} 1043 \mathrm{kHz} \pm 20 \%$ after 1 sweeps.
Sweep times: . 1 sec 112000 sec .
Rep: In the repetitive mode, sweep will continuously sweep specified baod.
Reset: HP's 3580 is sel to the starl freguency of he sweep.
Manual: in combination with the concentric knob, manual sweep fully duplicates the span of the electronic sweep.
Adeptlve swesp: when in adnptive sweep below the itreshold level. scan speed is 20 to 2.5 limes faster. Threshoid is adjustable to cover 0-6ery of sereen. Signals greater than about 6 dB above threshold are detected and swept slowly.
Sweop arror light: thin LED indicates a sweep that is 100 fast to capture full response. When the light is on, response can be $>5 \%$ lower than it should.
Zero scan: to look at the time varying signal at the center or start frequency within the bandividth selected, the zero scan is used.
Output characterlstlce
Tracking generator output: (also known as BFO or uracking oscillator output).
Range: 0 to $1 V$ mins.
Frequency reaponse: $\pm 3 \%$. 5 Hz to 50 kHz .
Impedance: $600 \Omega$.
Total harmonic and spurlous content: 40 dB below I voli signal level.
X-Y recorder analog outputs
Vertical: 0 to $+5 V=2.5 \%$.
Horlzontel: 0 10 $+5 \mathrm{~V} \pm 2.5 \%$.
Impedence: $1 \mathrm{k} \Omega$.
Pen lift: contact closure to ground during sweep.
Dimenslone: $203.2 \mathrm{~mm} \mathrm{H} \times 412.8 \mathrm{~mm} \mathrm{~W} \times 285.8 \mathrm{~mm} \mathrm{D}\left(8^{\prime \prime} \times 16^{1 / 0^{\prime \prime}}\right.$ $\times\left(1 /{ }^{4}\right)$.
Welght: net, $12.25 \mathrm{~kg}(27 \mathrm{lb}) ; 3580 \mathrm{~A}$ Opt 001 ; net, $15.88 \mathrm{~kg}(35 \mathrm{lb})$. Temperature renge: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Power: IOD V. 120 V .220 V . or $240 \mathrm{~V}+5 \%-10 \%$. 48 to 440 Hz .35 VA max.
Opt 001 battery: 5 hours from full charge. It hours to fully recharge. The internal baltery is protected from deep discharge by an automatic turn off. Useial life of batteries is over 100 cycles.
Ordering Intormation
Opt D01: iniernal rechargeable batery add $\$ 385$
Opt 002: bałanced inpul

- 100 Hz to 1.5 GHz Frequency Range
- 10 Hz Resolution Bandwidth
- Frequency Counter Accuracy
- Digital Display
- Tunable Marker with Amplitude and Frequency Readout
- Store and Recall Control Settings



The 8568 A is a high performance spectrum analyzer for bench or HP-I8 sysiems use that operates over the 100 Hz to 1500 MHz frequency range. A sophisticated phase lock system combines 'synthesizer like" tuning and frequency accuracy with superior local oscillator spectal purity 10 make namrow resolbtion bandwidths practical at RF frequencies. The analyzer is designed around its own internal bus and controlled by a microcomputer to yield significant improvements in RF measurement performance, new operational fealures and unparalleled flexibility under program control.

## Performance

Exceptional stability enables the use of a 10 Hz resolution brandwidth over the 100 Hz to 1500 MHz tuning range of the nnalyzer. Unparalleled spectral purity and narrow resolution makes it possible to resolve line related sidebands or measure clean oscillators directly at RF frequencies. 10 Hz . resolution also results in -137 dBm sensitivity which makes greater than 85 dB spurious free dynamic range achievable. A frequency reference error of $1 \times 10^{-6}$ /day together with the analyzer's resolution and sensitivity allow small signals in the presence of large ones to be measured with frequency counter accuracy.

HP-IB


## Usabillty

The front panel concept of the 8568A is new in that the operator reads all the anslyzer control settings of the CRT disphry and sets function values through data controls. To activate a function the user pushes the appropriate button; he then has the oprion of setting the function's value using a knob, step keys or numeric/unit keyboand.

Measurements can be made following conventional "zoom" techniques using the center frequency. frequency span and reference level functions, or with the hetp of certain measurement aids. A preset button sets all analyzer controls io a convenient starting point: coupled functions such us resolution bandwidth and sweeptime change automatically as frequency span is reduced to maintain a callbrated display. A tunable marker is avnilable for directly measuring a signal or speeding the process of magnifying the portion of the spectram to be analyzed.

With the marker set to the signal peak, the signal's amplitude and frequency, to counter accuracy, are numerically displayed on the CRT. A second marker, useful for modulation or distortion meatsurements, miskesrelaúve measurements by displaying the difiterence in amplitude and frequency between the two markers. Marker information enables the operator to step between evenly spaced portions of the frequency spectrum such as communication channels or signal harmonics; the noise level at the marker cin to convented to RMS noise density nomalized to a 1 Hz , bandwidth. The marker may also be positioned at the peak of the largest signal on the screen and used to zoom-in on signals automaticalls.

Once the analyzer's controls have been adjusted, all settings can be suved and later recalled to repeat the measorement. even through a power failure.



All displayed information resides in a digital memory from which the CRT is refreshed ot a nicker-free rate. Display tilles may be added. A trace may be viewed real-lime or slored; max hold displays the largest amplitude at 100 ) points across the CRT over successive sweeps to aid in the measurement of residual FM or dritt. Up to three traces may be observed simultaneously and anthmetic be. tween traces or a trace and reference display line is possible for companison or frequency response normalization.


## Automatlc Measurement Capability

The design of the 8568 A lends itself to automatic control via the HP Interiace Bus (IEEE Standard 488-1975). The analyzer can be uned with the precision of a synihesizer while retaining analog sweep and exceptional spectral purity. Tes internal architecture lacilitates the reraote programming of all function senings and the output of CRT trace and marker readout information; the display itself is accossible for annotation purposes.

By exploiting this architecture, a new level of interaction between a user and a measurement system becomes possible under program control. While the user's measurement programs reside in the consoller, the operator need interface only with the analyzer (which functions as a "measurement lerminal"). A list of these programs may be displayed on the CRT for selection through the appropriatc code on the numeric keyboard. The programs themselves can lead the operator through a measurement using graphics to explain each slep of the process.
Friendly analyzer codes and HP-IB commands are used to program the analyzer, for example, CF 20 MZ instnucts the analyzer to set center frqquency 1020 MHz . Buill-in firmware features such os insirument preset, peak search and zoom further simplify writing software. Control settings may even be "programmed" from the instrument front pancl using "Icam" mode.
The primary advantage of computer control is the execution of complicated or time consuming measorement routines with a minimum of involvement by the operator. This eapability is especially useful in production line testing or unattended measurement situations such as spectrum monitoring. An unalyzer may be joined by other instruments in a disiributed sysicm, or be controlled remotely through a data communications network. Extemal control is desimble for setting the proper analyzer function valucs, reading data, performing any numerical manipulation required (including error correction), analyzing the resules, and providing output data in a convenient format on a printer. ploter. or the analyzer CRT. This capability is available in the form of a connigured system: 8S81A Automatic Spectrum Analyzer. Consider this measurement example:
Electromagnetic Interterence; the analyzer begins by using the CRT $t 0$ show the lest set-up. Next it draws the MIL-STD 461 conducted interierence test limits on the CRT, ndjusting them for the curment probe transfer impedance and normalizing for the analyzer impulse bnndwidth. The analyzer controls (including resofution bandwidth, video band width. and calibration mils) are set to their proper values for the measurement and the results are presented on a log-log plot together with a printout analyzing compliance.


## 8568A Specifications

## Frequency

## Displayed range

Frequency span: 100 Hz to 1500 MHz over IO division CRT horizontal axis. In zero span. the instryment is lixed iuned at the center frequency.

Full span ( $0-1500 \mathrm{MHz}$ ) is immediatcly execuied with 0-1.5 GHz or INSTR PRESET keys.
Frequency span accuracy: for spans $>1 \mathrm{MHz}, \pm 2 \%$ of the indicated frequency separation belween two poinls: for spans $\leqslant 1 \mathrm{MHz} . \pm 4 \bar{f}$ of frequency separation.
Center frequency: 0 Hz to 1500 MHz . Center frcquency step size may be sel using the numeric keyboard or MKR/ $\Delta \rightarrow$ STP SIZE key.

Fesdout accuracy: $+2 \%$ of frequency span + frequency reference error $\times$ lune frequency) in AUTO resolution bandwidth after adjusting freq zero at stabilized temperature, and using lhe errol correction function. SHIFT W and SHIFT X.
Start-Stop frequency: permissible valucs must be consistent with those for center frequency and frequency span. SHIFT O sets the analyzer starn and stop frequencics equal to the frequencies of the wo $\Delta$ markers.

Readout accuracy: same as center frequency.

## Marker

Normal: displays the frequency at the borizontal position of the iunable masker.

Accuracy: some as center freijuency becuracy.
PEAK SEARCH positions the mbrker at the center of the largest signal response present on the display to within $\pm 10 \%$ of resolution bandwidth. MKR $\rightarrow$ CF sets the analyzer center frequency equal to the marker frequency; MKR/ $\Delta \rightarrow$ STP SIZE sets the center frequency step size equal to the murker fiequency.
Freq count: displays the frequency of the signal on whose response the marker is positioned. The marker musi be positioned at leiwi 20 dB athove the noise or the inersection of the signal with an adjacent signal and more than four divisions up from the bottom of the CRT. Firequency span must be less than 500 MH ..

Accuracy: for span $\leqslant 100 \mathrm{kHz}$; lirequency reference erior $x$ displayed frequency $\pm 2$ counts. For span $>100 \mathrm{kHz}$ but $\leqslant 1$ MHz: freq. ref. ertor $\times$ displayed frequency $\pm 10 \mathrm{~Hz} \pm 2$ counis. For span > 1 MHz but $\leq 5 \mathrm{CO} \mathrm{MHz}:=10 \mathrm{KHz}=1$ couni.
Frequency relerence error: aying Rate <l $\times 10^{-4} / D a y:$ Temp Stability $<7 \times 10^{-2} 0^{6} 1055^{\circ} \mathrm{C}$.
Slgnal track: re-tunes the analyzer to place a signal identified by the marker al the center of the CRT and martitin its position. Useful when reducing frequency span to zoom-in on a signal: also keeps a drifung input signal conlered.
$\Delta$ : display's the frequency difference between the stationary and Iunable markers. Reference frequency need not be displayed.

Accuracy: same as frequency span accuracy: in the FREQ COUNT mode. twice the frequency count uncertainty plus drift during the periud of the sweap (typically $<10 \mathrm{~Hz} /$ minute). MKR/ $\Delta \rightarrow$ STP SIZE sels the center frequency siep size equal to the frequency difference between the markers. SHJFT O sets the analyzer stan and stop frequencies equal to the frequancies of the two markers.
Zoom: makes it possible to reduce the frequency span about the marker (or signal in the signal track and rieq count modes) using the step duwn key.

## Resolutlon

Resolutlon bandwidth: 3 dB bandwidths of 10 Hz to 1 MHz in a 1. 3. 10 sequence. Bandwidth may be selected manually or coupled to írequency span.
Bandwidth aceuracy: calibrated to: $\pm 20 \%, 3 \mathrm{MHz}$ to 10 Hz :
$\pm 10 \%$. 1 MHz to 3 kHz .
Bandwldth selectlvity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ bandwidth ralio: <15:I. 3 $\mathrm{MH}>$ to $100 \mathrm{kHz}<13: 1,30 \mathrm{kHz}$ to $10 \mathrm{kHz} ;<\mathrm{ll}: 1,3 \mathrm{kHz} 1030$
Hz .60 dB poinls on 10 Hz bandwidh are separaled by $<100 \mathrm{~Hz}$. Stabllity

Residual FM: 63 Hz peak-io-peak $\leqslant 10$ sec: span $<100 \mathrm{kHz}$. resolution bandwidth $\leqslant 30 \mathrm{~Hz}$, video bandwidth $\leqslant 30 \mathrm{~Hz}$.
Drft: $<10 \mathrm{~Hz} / \mathrm{minute}$ of SWEEP I'IME after 1 hr . warmup at slabilized lemperafurc. for frequency spar $\leqslant 100 \mathrm{kHz}$. Spans $>100 \mathrm{kHz}$ but $\leqslant 1 \mathrm{MHz},<100 \mathrm{~Hz} /$ minute of SWEEPTIME: $>1$ $\mathrm{MHz} .<5 \mathrm{kHz} /$ minure of SWEEPTIME.

Spectral purity
Nolse sldebands: $>80 \mathrm{~dB}$ below the peak oi a CW signal at frequency offisets $\geqslant 30 \times$ resolution bandwidth setting. for resolulion bandwidths $=1 \mathrm{kHz}$.
Line related sldebands: $>89 \mathrm{~dB}$ below the peak of a CW signal.

## Amplilude

Measurement range: $-137 \mathrm{dBm} 10+30 \mathrm{dBm}$.
Displeyed range
Scale: Over a 10 division CRT verical axis with the Reference Level at the top graticule line.

## Calibration

Log:
$10 \mathrm{~dB} / \mathrm{dlv}$ for 90 dB dlsplay from Peference Level.
$5 \mathrm{~dB} /$ div for 50 dB display
expanded from
Reference Level.
$\left.\begin{array}{l}2 \mathrm{~dB} / \mathrm{diy} \text { for } 20 \mathrm{~dB} \text { display } \\ 1 \mathrm{~dB} / \mathrm{div} \text { for } 10 \mathrm{~dB} \text { display }\end{array}\right\}$
Linear:
10si of Reference Level/div when calibrated in voliage. Fidelly:
Log:

## Cumulatlve

$E \pm 1.0 \mathrm{~dB}$ max over 0 to 80 dB
display, $20-30^{\circ} \mathrm{C}$.
$\leq \pm 1.5 \mathrm{~dB}$ max over 0 10 90 dB display.

## Linear: $\pm 3 \%$ of Reference Level.

## Reference level

Range
Log:
$+60.0^{1}$ to -139.9 dBn or equivalent in $\mathrm{dBmV}, \mathrm{dB} \mu \mathrm{V}$, volis. Llnear:
$228.6^{\prime}$ volts to $.22 \mu$ velis full scale.
Accuracy: the sum of the following faciors delermines the accumacy of the reference level readout. Depending upon the measurement technique followed after calibrution, vatious of these sources of uncertainty may not be applicable.
An intemal etror correction funchon calibrates and reduces the uncertaing introduced by inalyzer control clanges from the enor calibration state ( -7 dBm reference level. $1 \mathrm{~dB} /$ div scale. 10 dB RF alsenuation, I MHz bandwidth) when SHIFT W is execuled just prior to the signal measurement (i.c., at the same temperature) within the $20^{\prime \prime}-30^{\circ}$ range.

## Callbrator uncertainty: $\pm 0.2 \mathrm{~dB}$.

Frequency response (Flatness) uncertainty: inpul \#: $\pm 1$ dB. 100 Hz to $500 \mathrm{MHz}:+1$, -2 dB 100 Hz to 1500 MHz inpul \#2: $\pm 1 \mathrm{~dB} .100 \mathrm{bHz} 101500 \mathrm{MHz}$.
Amplltude temperature drift: at - 10 dB m reference level with 10 dB input attenuation and 1 MHz resolution bandwidth. $=0.05 \mathrm{~dB}^{\circ} / \mathrm{C}$ (eliminated by recalibration).
input attenuation swhehing uncertainty: $\geq 0.1 \mathrm{~dB}$ corrected ( $=1.0 \mathrm{~dB}$ uncorrected) over 10 dB to 70 dB range.
Resolution bandwidith switching uncertalnty: (referenced to 1 MHz bandwidih)-corrected (uncorrected)
Range $\quad 20-30^{\circ} \mathrm{C} \quad 0-55^{\circ} \mathrm{C}$

## 3 MHz to $10 \mathrm{~Hz} \quad \pm 0.1 \mathrm{JB}$

$( \pm 1.0 \mathrm{~dB}) \quad( \pm 2.0 \mathrm{~dB})$
$1 \mathrm{MHz} 1030 \mathrm{~Hz} \quad \pm 0.1 \mathrm{~dB}$
$( \pm 0.5 \mathrm{~dB}) \quad( \pm 1.0 \mathrm{~dB})$
Log scale switching uncertainty: $\pm 0.1 \mathrm{~dB}$ corrected ( $\div 0.5$ dB uncorrected).
IF Galn uncertainty: corrected (uncorrected). Assuming the intemal catibrauion signal is used to calibrate the reference level at $=10 \mathrm{dBn}$ and the input attenuator is fixed at 10 dB , any changes in teference level in the following ranges will contribute IF gain uncertainty:

Range	$20-30^{\circ} \mathrm{C}$	$0-55^{\circ} \mathrm{C}$
$0 \mathrm{dBm} 10-99.9 \mathrm{dBm}$	$\mathrm{NA}^{9}$	
	$(=0.6 \mathrm{~dB})$	$( \pm 1.0 \mathrm{~dB})$
$-60 \mathrm{dBm} 10-129.9 \mathrm{dBm}$	$\pm 1.0 \mathrm{~dB}^{3}$	
	$( \pm 1.0 \mathrm{~dB})$	$( \pm 1.5 \mathrm{~dB})$

Each 10 dB decrease (or increfive) is the amount of input attenuation at the time of calibration and measurement will ctiuse a corresponding 10 dB decrease (or increase) in the absolute reference level settings described above.
RF.Galn uncervainty (due to 2nd LO shitt): $\pm 0.1 \mathrm{~dB}$ cortected ( $\pm 0.5 \mathrm{~dB}$ uncortected).
Error correction accuracy (applicable when controls arc changed from the error callbration state if SHIFT $W$ and SHIFT X are used): $\pm 0.4 \mathrm{~dB}$.

## Marker

Normal: displays the amplitude at the vertical position of the lunable narker.
Accuracy: equals the sum of eilithmor uncertanty. reference level unceriainty, and scite fidelity between the reference level and marker position. a PEAK SEARCH positions the marker at the peak of the largest signal present on the display. MKR $\rightarrow$ REF LVL sel the amalyzer reference level equal to the marker amplitude. KMS noise density in a 1 H z bandwidth is read out using SHIFT M, by sampling the displayed trace and arithmelically correcting for the analyzer envelope detector response. hog shaping, and measurement bandwidh
$\Delta$ : displays the amplimede difference berween the stalionary and tunable markers. Reference frequency need not be displayed.

Aceuracy: equals the sum of scale Tidelity and frequency be-
tween the two markers.

## Reference lines

Display line: movable horizontal line with amplitude readout.
Threshold: movable horizontal thace threshold with amplitude readout.
Accuracy: equals the sum of calitrator uncertainty, reference Icvel uncertainty, and scale fidelity between the reference level and reference line.
Dynamle range
Spurious responses: for signal levels $\approx-40 \mathrm{dBm}$ at the input mixer of the analyzer, all image and out-of-band mixing responses, hamonic and intermodulation distontion products are $\therefore 75 \mathrm{~dB}$ below the input signal level.

Second harmonic distortion: fer a signal -30 JBm at the mixer and $\geqslant 10 \mathrm{MHz}$. second harmonic distortion $>70 \mathrm{~dB}$ down: 60 dB down for signals $<10 \mathrm{MHz}$.
Third-Order Intermodulation distortion: for two signals - 30
dBm at the mixer, third-onder intemodulation products $>70 \mathrm{~dB}$ down ( +5 dBm T: 0.1 . for 0 dB input attenuation).
Resldual responses (no signal at input): $<-10.5 \mathrm{dBm}$, with 0 dB input attenualion (typically $<-115 \mathrm{dBm}$ ).
Average nolse level: displayed <-137 dBm for frequencies >1 $\mathrm{MHz},<-117 \mathrm{dBm}$ for frequencies $\leqslant 1 \mathrm{MHz}$ with 10 Hz resolution bandwidih ( 0 dB input attenuation. 1 Hz video filten. When SHIFTM is used with marker, noise measures $<-144 \mathrm{dBm} / \mathrm{I} \mathrm{Hz}$ and $<-124 \mathrm{dBm} / 1 \mathrm{~Hz}$ respectively for frequencies $>\mathrm{I} \mathrm{MHz}$ and $\Leftrightarrow 1 \mathrm{MHz}$.

Video bandwidth: post detection low pass filter used to aver. age displayed noise; bandwidth variable from 1 Hz 103 MHz in a I. 3. 10 sequence. Video band width may be selected manually or coupled to resolution bandwidth.
Digital video averaging: displays the sween-to-sweep average of the inice over a specifintle number of sweeps with SHIFT G. video averaging is turned off with SHIFT H.

Galn compression: $<0.5 \mathrm{~dB}$ for signal levels $\leqslant-10 \mathrm{dBm}$ at the inpul mixer.

## Sweep

Trigger
Free run: sweep triggered by internal source.
LIne: sweep riggered by power line frequency
VIdeo: swcep rigered by detected waveform of input signal al an adjustable level; signal must be $\geqslant 0.5$ div peak-to-peak.
External: sweep triggered by rising edge of signal input 10 rear panel BNC connector; trigger source must be $>2.4$ voll (10 vol: max).
Midx mum input must not ecceed $\pm 30 \mathrm{dBm}$ dismage level.
${ }^{2}$ Accountid ior unjer Errer Correction Accuracy.
${ }^{3}$ Corroction ony apples over the 0 dBm it -59.9 dBm range.

## Contlnuous

Sequential sweeps initiated by the trigger: 20 msec full span to 1500 sec full span in $1.1 .5,2,3,5,7.5,10$ sequence.
Accuracy: sweep time $\leqslant 100 \mathrm{sec}, \pm 10 \% ;>100 \mathrm{sec}, \pm 20 \%$.
 full sweep in $1,2,5$ sequence: 20 msec full sweep 101500 sec full sweep in $1,1.5,2,3,5,7.5,10$ sequence.
Accuracy: same as continuous.
Sweep time may be sei manually or atitomatically for the frequency span, resolution bandwidth and video bandwidth selected.
Single: single sweep armed on activation and initiated by trigger (sweep $\geqslant 20 \mathrm{msec}$ ondy).

## Display

Trace: A and B are two independent signal response memories each having 1001 horizontal data positions and vertical resolution of $0.1 \%$. Memory contenis are displayed on the CRT at a rate independent of the analyzer sweep time. Trace $A$ is displayed brighter than trice B.

Clear/Write: clears memory conlents when firsc activated, then writes the analyzer signal response into the memory each sweep and displays memory.
Max nold: retains in memory and displays the largest signal level occuring at each horizontal data position over the repetitive sweeps beginning at the lime the function is activaled.
Vlew: stops writing into memory and displays memory withutt changing its contents.
Blank: slops writing into memory and blanks the trace while retaining the list response in memory.

## Arlthmatle

$A-B \rightarrow A$ : initially subtracts the stored memory contents of $B$ from the curtent memory contents of $A$ and writes the difference into $A$; this process continues as the $A$ memory is updated at the sweep rate. To accomplish $A+B \rightarrow A$ use SHIFT $c$.
$A= \pm B$ : exchanges A and B display memory contents.
E-OL $\rightarrow$ B: subtracts the amplitude of the display line from the memory contents of $B$ and writes the difference into $B$.
A third signal response memory. C (also with a 1001 data positions), can be uned for signal response storage. It is accessed indirectly by transferring memory contents between $B$ and $C$.
$B \rightarrow C: S H I F T 1$.
$\mathrm{B} \rightarrow \mathrm{C}$ : SHIFT
View C: SHIFT j.
Elank C: SHIFT k.
Annotation
Tifle: allowa the user to write characters into a specified area on the CRT by pushing SHIFT E and typing the keys next to the blue front panel characters and data numbers desired. Use B.ACKSPACE for corrections.

Blank: SHIFT o blanks (SHIFT p unblanks) all CRT characlers and control setting readouts. SHIIFT im blanks (SHIFT in unblanks) the CRT graicule.
Input.
RF Inputs
The slandsod insitument configuration is as follows:
Ingut \#1; 100 Hz to $1500 \mathrm{MHz} .50 \Omega$, BNC connector (Fused): dc coupled.

Pellectlon coefficient: $<0.20$ ( 1.5 SWR) $10500 \mathrm{MHz},<0.33$
(2.0 SWR) $5(40 \mathrm{MHz}$ to $1500 \mathrm{MHz} ; \geqslant 10 \mathrm{~dB}$ inpul attenuation.

Input \#2: 100 kHz to $1500 \mathrm{MHz}, 50 \Omega$. Type N connector; ac coupled.

Peflection coefficlent: $<0.20(1.5 \mathrm{SWR}) ; \geqslant 10 \mathrm{~dB}$ input atten. uation.
LO emisslon: ypically $<-75 \mathrm{dBm}$ ( 0 dB RF Alren),
Isolatlon: $>90 \mathrm{~dB}$ berween inputs.
Also avaliable: Input $\# 1,100 \mathrm{kHz} 101500 \mathrm{MHz}, 75 \Omega$, BNC
conncctor, ac coupled (Opi 001).

## Maximum Input leve!

$A C$ : conlintious power, +30 dBm (I watt) 100 walts. 10 usec pulse inco $=50 \mathrm{~dB}$ attenuation.
OC: Inpul \# 1.0 volls; Input $\# 2, \pm 50$ voles.
Input aftenuator: 70 dB ringe in 10 dB steps. Zero dB attenuation accessible only through numeric/unit keyboard. Attenuation may be selected manually or coupled to reference level to insure a -10 dBm input mixer drive level for full-screen signals; other mixer levels may be specified using SHIFT , and entering the desired amplitude through the keyboard.

Accuracy: $\pm 0.5 \mathrm{~dB} / 10 \mathrm{~dB}$ step but $< \pm 1.0 \mathrm{~dB}$ max.
Output
Callbrator: $30 \mathrm{MHz}=20 \mathrm{MHz} \times$ frequencs reference error (i $\times$ $\left.10^{-9} / \mathrm{Day}\right) . ~ 10 \mathrm{dBm}=0.2 \mathrm{~dB}$; 50 O .
Probe Power: $+15 \mathrm{~V} .-12.6 \mathrm{~V}$ : 150 mA max.
AuxHary (rear panel; nominal values)
Dlsplay: $X$. Y and Z outputs for auxiliary CRT displays. $X, Y$ : ) volt full deflection; $\mathrm{Z}: 0$ to I V intensity modulation, - i V blank. BL ANK outpul (TTL level $>2.4 \mathrm{~V}$ for blanking) compaLible with most oscilloscopes.

## Recorder

Horlzontal sweep output ( $x$ axla): a voltage proporional to the horizontal sweep; 0 V for leff edge $10+10 \mathrm{~V}$ for right edge. Vdeo output (y axis): detected video output proportional 10 verical deflection of CRT (race. Outpul increases $100 \mathrm{mV} / \mathrm{div}$ from 0101 V .
Penlift outpul (z axis): 15 V blanking oulput during relrace.
21.4 MHz IF: a $50 \Omega .21 .4 \mathrm{MHz}$ output related to RF input to the analyzer. Output nominally -20 dBm for a signal at the reference level. Bandwidth controlled by the analyzer's resolvtion bindwidth setting.
18t LO: $2-3,7 \mathrm{CHz},=-4 \mathrm{dBm}: 90 \Omega$ outpul impedance.
Frequency reference: $10.000 \mathrm{MHz} .0 \mathrm{dBm} ; 50 \Omega$ outpul inpedance.

## Instrument State Storage

Up to 6 complete sets of user-defined control settings may be stored and recalled by pressing SAVE or RECALL and the desired register number ( $\$$ to 6 ) from the keyboand. Instrument state information is retained in memory indefinitely in STANDBY and approximately 30 days after line power is temminated.

## Remote Operation

The standard 8568 A operates on the Hewlett-Packard Interface Bus (HP-1B). All nnalyzer control settings (with the exception of VIDEO TRIGGER LEVEL, FOCUS. ALIGN, INTENSITY. FREQ ZERO and AMPLD CAL) are remotely programmable. Function vaiues, marker frequency/amplitude, and A/B traces may be output; CRT labels and graphics may be input.

## General

## Environmental

Temperalure: operating $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$, storage $-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$.
Humidty: opernting $<95 \%$ R.H., $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ except as noted.
EMI: conducted and radiated interference is within the requiremenis of CE03 and RE02 of MIL STD 461A. VDE 0871, and CISPR pub'n 1, 2 and 4.
Power requlremente: 50 Io $60 \mathrm{~Hz}: 100,120.220$ or 240 volts ( $45 \%$.
$-10 \%$ ): approximately $450 \mathrm{VA}(40 \mathrm{VA}$ in standhy), 400 H ? operalion is a vailable as Opl 400.
Welght: total net, 45 kg ( 100 lb ); Display/IF Section, 21 kg ( 47 lb ):
RF Section, 24 kg ( 53 Jb ). Shipping, Display/IF Section 31 kg ( 69
(b): RF Section 34 kg ( 75 lb ).

Ordering information	Price
8568A Spectrum Analyzer	$\$ 27.800$

8568A Spectrum Analyzer $\$ 27.800$
Opt 001: 750 (BNC), 100 kHz 101500 MHz RF
Input \#
Opt 400: 400 Hz Power Linc Frequency Operation $\$ 400$
Opt 907: Fronl Handle Kil $\$ 40$
Opi 908: Ruck Flange Kit $\$ 30$
Opt 909: Rack Flange and Front Handle Kit $\$ 60$
Opt 810: Exira Mánual
$\$ 75$

# SIGNAL ANALYZERS <br> Automatic Spectrum Analyzer, 100 Hz to 1500 MHz <br> Model 858iÀ 

- Interactive Front Panel Under Program Control
- Friendly Programming Codes and Powerful Firmware
- 9825A Computing Controller
- Ease of Operation Via HP-IB



## Recammended



## HP-IB

The 8581A "Automatic Spectrum Analyzer" includes 8568A Spectrum Analyzer. 9825 A Desktop Computer with 23 K bytes of memory and all necessary accessories. 9866 B Printer with stand. and system catble. A "starter"-soliware PAC contains programs to store and recall user detined insinument states or plot an entire CRT display together with various sample measurement programs. In the process of describing thete programs. a basic set of software statements and subroutines are developed which can be incorporated by the user into his own software.

Ordering Information Price
8581A Aulonatic Spectrum Analyzer $\$ 45,600$
System Components
8568A Spectrum Analyzer
9825 A Desktop Computer with Option 002.23K Bytes
Memory
98210A Sting-Advanced Promming Plug-In98216A Plotier-General I/O-Exlended I/O Plug-In9866B Printer with Option 025, 0825A Interface98034 A HP-1B Interfice Card98226a Computer Cradle
System Table
85850 A Slater-Sof ware PAC for $8568 \mathrm{~A} / 9825 A$
Factory Assembly and Checkout Prior to Shipment
8581A Options
Opt 002: Delete System Täbleless $\$ 600$$\$ 150$
85860A Starter-Software Pac for B568A/9825A:PAC inchudes a 9825 A carridge containing prugramsto store/recall instrument states. plot the CRT dimplayand perform varioun sample measurements. Also in-cluded is a manual with annotated program listings.Cumplete compalihility requires 8568A: 9825A, Opi002: 9866B Opi 025: 98210A: 98216A: and 98034A(pius 9872A Op1 025 and HP-IB cable for plolfing).$\$ 250$

- . 01 to 22 GHz coverage with internal mixer
- Internal preselection 1.7 to 22 GHz
- Wide choice of resolution bandwidths
- Simple three knob operation
- Absolute amplitude calibration
- CRT bezel readout displays control settings



## 8565A Spectrum Analyzer

Covering from 0.01 to 22 GHz with its intemal mixer, the 8565 A has buidt-in preselection and brings accuracy plus convenience to microwave specirum analysis. The wide range. spurious-free display. compact design and case of use make it well suited for lab. production, or field applications requiring accurate measurement from IF thn microwave frequencies. The 8565A can cover 011022 GHz in just two spans for rapid location of signals prior to close-in analysis in one of six bands. Coverage is easily extended up to 40 GHz with the HP 11517A exteroal mixer.
High Resolutlon
Fully automatic stabilization in narrow spans reduces residual FM and drift. Standard resolution bandwidits range from 1 kHz 103 MHz . The ) and 3 MHz bandwidehs allow fast sweeps in wide spans and increased dynamic range for pulsed RF: na mow bandwidths for measurement of elosely spaced signals. Option 100 provides additional 100 Hz and 300 Hz IF bandwidth fillers, and residual $F M$ is < 100 Hz when stabilized. This 100 Hz resolution is useable up to 12.9 GHz and the 300 Hz resolution bandwidth to 22 GHz . All resolution filters are Gaussian-shaped for repeatable measurements, faster non-distonige sweeps and best pulse response.

## Absolute Amplitude Calibratlon

Absolute signal levels from -110 dBm to +30 dBm are easily measured because the HP-8565A always displays the value of the reference line with LED's in the CRT bezel and at the reference level contmol. Changes in RF, IF gain and preselector loss are suto maticadly included. In addition, flar frequency response insures aceuracy for relative as well as absolute power measurements.
Wide Dynamle Range
Internal preselection ( 1.7 to 22 GHz ) enables you to measure distorion products as much as 100 dB dowg. Even for clostly spaced signals or measurements below 1.7 GHz , all distontion produels are greater than 7008 down. In either case, maximum dynamic range is assured even for I wats signals with the 70 dB inpul altenuator. An input limiter ( .01 to 1.8 GHz ) and the internat preselector ( 1.7 to 22 GHz ) enable the 856SA to withstand RF signals up to +30 dBa for all mpul attenuator settings

## Designed For Canvenlence

Coupled controls allow you to make most measuremerts in 3 simple steps. Green color coded keys preset the 8565A for normal operazion so a measurement only requires that you tune to a signal. select a desired span, and raise it to the reference level. Auto-
matically selected sweep times insure a calibrated display for all combinations of frequency span, resolution bandwidth and video filtring.
The CRT bezel LED's display all perinent conirol setlings to give you all the information needed for signal evaluations in one central location. These data are also caplured in CRT photos,

## 8444A Option 058 Tracking Generator

Make swept frequency response measurements to $\pm 1.7 \mathrm{~dB}$ from 10 io 1300 MHz with greater than 90 dB of dynamic range. The outpul is absolutely calibrated at 0 dBm and continuousty variable to $<-10 \mathrm{dBm}$. The frequency of unknown signals as well as the frequency of any point on the frequency' response curve can be measured from the extemal counter output using the low-cosi HP $5300 /$ 5305 B 1300 MHz Counter.

## 8750A Storage-Normallzer

The analyzer is made even easier to use with the digital storage of the 8750 A because there is no need to re-adjust intensity or persistence as the sweep time changes. With the push of a bulton, a signal can be frozen on the CRT and then compared directly 10 the current inpur signal. Traces can also be compared aritmmetically (i.e.. normalized) 10 automatically remove frequency response variations. This is especially useful whea used with the HP 8444A Opl. 058 Tracking Generator.

## 8565Å Specifications

## Frequency Speciflcatons

Frequency range: 0.01 to 22 GHz with intemal mixer. 13.5 to 40 GHz with HP IISi7A External Mixer.
Tuning accuracy (digital irequency readout in any span mode)
Internal mixing: 0.01 to $2.5 \mathrm{GHz}<=5 \mathrm{MHz} \pm 20 \%$ of Freq. Span/Div: 2.5 to $22 \mathrm{GH} \% \pm 0.2 \% \pm 20 \%$ of Freq Span/Div.
External mixing: 14.5 to $40 \mathrm{GHz}_{2}< \pm 0.7 \%=20 \%$ of Freq Span/Div.

## Frequency spane

1.7 to 22 GHz : muluband span from 1.71022 GHz in one sweep. Full band: displays spectnum of entire band selected.
Per divislon: eighteen calibrated spans from 1 kHz per div, 10500 MHz per div io a $1,2,5$ sequence. plus a full band span, " $F$ ".

Span width accuracy: the frcquency error for any two points on the display for spans from 500 MHz /div to 20 kHz /div (unstabilized) is less than $=5 \%$ of the indicated separation: for stabilized spans $100 \mathrm{kHz} /$ div and less. the error is less than $\pm 15 \%$.
Zero spani analyzer becomes a manually luned recsiver.

## Spectral resolution and stablity

Resolution bandwidthe: resolution ( 3 dB ) bandwidths from ; kHz to 3 MHz in $\} .3,10$ sequence. Bandwidth and spar width are independenly variable or may be coupled for optimum display when control markers are aligned ( 1 -4).

Resolutlon bandwidth accuracy: 3 dB poins: $<\underline{x} 15 \%$.
Selectivity ( $60 \mathrm{~dB} / 3$ bandwidth ration): <15:1.
Stablity (fundamental mixing .01 to 4.1 GHz ): total residual FM stabilized $<200 \mathrm{~Hz} \mathrm{p}$-p in 0.1 sec: unslabilized $<10 \mathrm{KHz} \mathrm{p}-\mathrm{p}$ in 0.1 sec .

Stablization ranga: first LO automactically stabilized for frequency spans $100 \mathrm{kHz} / \mathrm{div}$ or less. First LO résidual FM typiLally $30 \mathrm{Hzp} \mathrm{p}-\mathrm{p}$ when stabilized.
Noise sidebends: $>70 \mathrm{~dB}$ down, $>30 \mathrm{kHz}$ from center of CW signal in a 1 krlz Res. Bandwidth and a $10 \mathrm{H} /(0.01)$ Video Filler.

## Amplitude Specificatlons

## Ampiltude range - internal mixer

## Msasurement range

Total power: +30 dBm (1 wall).
Damage levels: ( $50 \Omega$ nominal source impedance).
$d c: 0 \mathrm{~V}$ with 0 dB atten. $\pm 7 \mathrm{~V}$ with $\geqslant 10 \mathrm{~dB}$ input aften.
$a c ; 0 \mathrm{~V}$ wih 0 dB input atten, 10 V peak with $\geqslant 10 \mathrm{~dB}$ inpul atten.
AF: (signals above 10 MHz ) +30 dBm .
Galn compression: $<1 \mathrm{~dB}$ for 0 dBm input level with 0 dB attenuation.
Average nolse level: max, avg, noise level with 1 kHz Res. Bandwidth ( 0 dB atten and 3 Hz video filter) is in the table below:

frepuency   Band (6ind	Flust if in MHz	Hamente Mode	Molsa Lavel ( $18 \pi$ )	Frequancy Rasponse* $1 \pm \mathrm{dB}$ R NO
01.18	2050	$1-$	$-112$	1.2
1.7.4.1	321.4	1-	-109	1.7
3.88 .5	321.4	$2-$	- 103	23
5.8129	321.4	3	-94	25
8.518	3214	$4+$	- 11	3.0
10.522	32 L 4	$5+$	-18	4.5

-frequeney response includea input attenuator, preselector and raiel Irequency iesponse plus mixing anode gain variation (band to band).

## Amplliude range HP 11517A External Mlxer

Measurement range Maximum waveguide inpul: saturation (gain compression $<1 \mathrm{~dB}$ ), -15 dBnL . Damage level $>0 \mathrm{~dB}$ mor 0 . 1 esg.
Sensitulity (Average noise level in a 10 kHz IF bandwidth):
$14.5-18 \mathrm{OHz}<-80 \mathrm{dBm} .18 \cdot 26.5 \mathrm{GHz}<-70 \mathrm{dBm} .26 .3-40 \mathrm{CHz}<-60 \mathrm{dBm}$.
Typical sensitivily is 10 dB beller for each band.

## Referance Level

Reference level renge +70 dBm ( +30 dBm max, input) to -102
dBm in 10 dB steps and continuous 0 10-12 dB callbracd vernier
Heferenca lavel aceuracy: the Auro Swcep seling of the sweep time/div control insures a calibrated display within these limits:

Callbrator outpul ( $100 \mathrm{MHz} \pm 10 \mathrm{kHz}$ ): $-10 \mathrm{dBm}=0.3 \mathrm{~dB}$.
Refarence leval varlation (input attenuator at 0 dB ): 10 dB sleps $< \pm 0.5 \mathrm{~dB}(0$ to $-70 \mathrm{dBm}) ;<=1.0 \mathrm{~dB}$ (0 to $-90 \mathrm{dBm})$.
Vernler ( 0 to -12 dB ) conininuous: maximum crror $<0.5 \mathrm{~dB}$.
input attenuator: (at preselector input, 0-70 dB in 10 dB sleps).
Step size varlation: $<=1.0 \mathrm{~dB} 0.01$ to $18 \mathrm{GHz} ;<=1.5 \mathrm{~dB} 0.01$ to 22 GHz .
Maximum cumulative error over the 0 to 70 dB range: $< \pm 2.8$ $\mathrm{dB} 0.011018 \mathrm{GHz}< \pm 4.0 \mathrm{~dB} 0.01$ to 22 GHz .
Frequency response: see lable above.
Swifthing between bandwidths: $2 \mathrm{MHz} 101 \mathrm{kHz} . \pm 1.0 \mathrm{~dB}$.

## Callbrated display range

Log (expanded from reference level down): $70 \mathrm{~dB} @ 10 \mathrm{~dB} / \mathrm{div}, 40$ dB @ $5 \mathrm{~dB} / \mathrm{div}_{1} 16 \mathrm{~dB}$ @ $2 \mathrm{~dB} / \mathrm{div}$ and 8 dB @ $1 \mathrm{~dB} / \mathrm{div}$.
LInear: full scale from $56 \mu \mathrm{~V}$ ( -102 dBm in $50 \Omega$ to 707 volts $\langle+70 \mathrm{dBm}$ ) in 10 dB steps and continuous 0 to -12 dB vermier.
Display accuracy
Log: $<=0.1 \mathrm{~dB} / \mathrm{dB}$, but $<=1.5 \mathrm{~dB}$ over full 70 dB display range. LInear: $< \pm 0$. I division over full 8 division deflection.

Resldual responses (no slgnal present at Input); with 0 dB input alcen, fundamental mixing ( 0.01 to 4.1 GHz ) $<-90 \mathrm{dBm}$.

Signal Idenifler: available on all bands, used in I $\mathrm{Mfz} / \mathrm{div}$ span for signal idensification.
SIgnal Input Characteristics
Input son 0.01 to 22 GHz
Input connector: precision Type N iemale,
Input impedance Inpul altentiater at 0 dB : 50 ohnis nominal.
SWR: $<1.50 .01$ to $1.8 \mathrm{GHz} ; 2.01 .7$ to 22 GHz (at unaly\%er uuncd Frequencyi. Input attenuator at 10 dB or more: 50 ohms. nomunul. SWA: $<1.30 .01 \mathrm{bs} 1.8 \mathrm{GH}:<2.01 .7!022 \mathrm{CHz}$.
LO Emlssion ( 2.00 to 4.48 GHz ): - 50 dBn 0.01 to 1.8 GHz : -85 \$Bm 1.71022 GHz .
Input protection (for input signals from 0.01 to 22 GHz ) 0.01 to 1.8 GHz frequency band: intemal dicule limicer. 1.7 to 22 GHz frequency bands: saturation of TIG lilter (preselector) wecurs at total input signal power levels below lapul mixer damage.
External miker Input: BNC femmale connector is a port for LO power transfer, bias current and IF retum.

## Sweep Specifications <br> Sweep time

Auto: sweep time is itutsoratically controlled by Frequency Span/Div. Resolution Bandwideh and Video Filter controls to naintain an atbulute amplitude calibrated display.
Callbrated sweep thes: 21 internal sweep times from $2 \mu \mathrm{sec} /$ div $1010 \mathrm{sec} / \mathrm{div}$ in 1.2 .5 .10 sequence.
Display Characteristics
Cathode Pay Tube (aluminized P31 phosphor, $8 \times 10$ div Inter-
nal graticule)
Persistence
Conventional: ratural persivence of P3I phosphor.
Write: continuously adjusiable from 0.2 sec to $(\mathrm{f})$ storage.
Storage Nime: continuously adjustable from 1 minule (full bnghtness) (o $>30$ minutes (minimum brightess).
CRT Bezel Reidout: bezel LEDs display the following measurement data (included in CRT photographs raken with the HP 197A Opt 006 Oscilloscope Camera): Ampl. Scille Fictor. Rel. Level, Lipui Allen., Res. Bandwidth. Swecptimu(Div., Fraq.. Freq. Spun'Div.

General Speciflcations
Temparature range: operating $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. storage $-40^{\circ}$ 10 $+75^{\circ} \mathrm{C}$.
Mumidily range (Operaling): $<95 \%$ R.H. $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
EMI: conducted and radialed inlerference is within the requirements of methods CE03 and RE02 of MIL STD 461A. VDE 0871 and CISPR pub*n 1,2 and 4.
Power requirements: $48-66 \mathrm{~Hz}, 100,120,200$ or 240 volis $(-10 \%$ $10+5 \% \%$ ) 220 VA $\max$ ( 400 Hz operation available as Opt 400 ).

Welght: net 29.1 kg ( 64 lbs ). Shipping $38.6 \mathrm{~kg}(85 \mathrm{lbs})$.
Standard optlons avallable
Opt 100, 100 and 300 Hz Resolution Bandwidths: adds 100 Hz and 300 Hz resolution bandwidths with 11:1 sbape factor, residual $F M<100 \mathrm{~Hz}$ when stabilized and improves sensitivity by 10 dB . Opt 200-Callbration in $\mathrm{dB} \mu \mathrm{V}$
Opt 400-400 Hz Power Supply
Ordering information Price
8568A Speetrum Anslyzer $\quad \$ 17,850$
Opt 100: 100 Hz and 300 Hz Resolution Bandwidits add $\$ 800$
Opt 200: Calibration in $\mathrm{dB} \mu \mathrm{V}$ add $\$ 100$
Opt 400: 400 Hz Power Supply
11517A Extemal Mixer (lafer section req'd) $\quad \$ 250$
11618A Taper Section. 12.4 to 18 GHz
11619A Taper Section, 18 to 26.5 GHz
11520A Toper Section, 26.5 to 40 GHz
$\$ 160$
8444A Opt 058 Tracking Gencrator $\quad \$ 3,800$
8750 A Storage Normalizer $\quad \$ 1,450$

- Easy to operate
- Signal level displayed directly in dBm
- $\pm 2.25 \mathrm{~dB}$ amplitude accuracy



## 8557A Spectrum analyzer

## Economy plus performance

The Model 8557 A is a 0.01 to 350 MHz spectrum analyzer which plugs into any model 180 -scries oscilloscope dipslay. This low cost, easy-to-use analyzer provides high accuracy in both amplitude and frequency measurements.
Simple. 3-knob operation
Most measurements are a three step process. Center the invened marker under the signal to be measured: its frequency is displayed on the digital readout. Zoom-in on the signal be decreasing the frequency span: bandwidth. sweep time, and video filtering are sel automatically. Raise the signal to the top of the CRT: read its amplifude (in dBm ) of the reference level conirol.

## Absolute amplitude callbratlon

 for Option 002) withou the use or exteral standards or calculations. The signal level represented by the cop CRT gmticule line is always indicated by the reference level control, and vertical scale factors of $10 \mathrm{~dB} /$ div. $1 \mathrm{~dB} / \mathrm{div}$. or linear can be selected.

## Optlonal 75 ohm input

Two options are available which dlow measurements in 75 ohm systems: Option 001 has 75 ohms impedance and retains the dBm power calibration: Option 002 is also 75 ohms, but hie amplitude is calibrated in dBmV for measurements on systems such as C.ATV.

- Resolution bandwidths 1 kHz to 3 MHz
- Optional $75 \Omega$ input with dBm or dBmV calibration
- Digital Storage-Normalizer available



## New 8750A Slorage-Normallzer

The 8750 A is an accessory which provides digital storage, lrace comparison and normalization where data in memory is subtracted from curtent input and then displayed. In conjunction with the 182 T display maniframe and either the 8557A or 8558B. the StorageNormalizer provides nicker-frec display of measured signals. High resolution. slow sweep time measurements are easy to observe because of the 8750A's continuous refresh whose rate is independent of the analyzer's sweep rate. Additionally, two traces can be viewed from memory for CRT photography or dctailed signal comparison.

## 8557A Specifications

## Frequency specifications

Frequency range: 10 kHz 10350 MHz .
Frequency display span: (on a 10 -division CRT horizontal axis): 12 calibrated spans from $20 \mathrm{MHz} /$ div to $5 \mathrm{kHz} / \mathrm{div}$ in a 1.2 .5 sequence. In " $F$ " or full span the analyzer displays the full 10 kHz 10350 MHz . In " 0 " or zero span, the analyzer is a fixed-luned receiver.

Accuracy: frequency error between any two poines on the dísplay is less than $\pm 10 \%$ of the indicated frequency separation.
Digital Irequency readout: indicates ecnter frequency or stan frequency of the frequency display span. In full span, the readoul indicates center frequency or suar frequency of the frequency display span. In full span. the readout indicates the frequency at the marker. Resolution 100 kHz .

Accuracy: (after zeroing on the LO feedthrough) $=3 \mathrm{MHz}+10 \%$ of FREQUENCY SPAN PER DIVISION setting.

## Stablity

Aestdual FM: less than 1 kHz peak-lo-peak for time 50.1 sec (video ofler full clock wise, but not in detent).
Nolse slde bands: more than 75 dB below CW signal, 50 kHz or more away from signal with a 1 kHz resolution bandwidth and fill video fillering.

## Resolution

Bandwldth ranges: 3 dB resolution bandwidhts of 1 kHz to 3 MHz in a $1,3,10$ sequence. Resolution bandwidh may be coupled 10 frequency display span at a ratio of ewo display spans per resolution bandwidth.
Resolution bandwldth accuracy: individual resolution bandwidth 3 dB points calibrated $10=20 \%, 10^{\circ}-40^{\circ} \mathrm{C}$.
Resolution bandwldth selectivity: $60 \mathrm{~dB} / 2 \mathrm{~dB}$ resolution bandwidth ratio < 15 : 1 .
Video fliter: post-detection low pass filter used to average displayod noise. Bandwidh variable from approximately $3 X$ ResoluLion Bandwidth 10 approximately 0.01 X Resolution Bandwidth. In the MAX position provides a noise averaging filter with a bandwidth of approximately 1.5 Hz .

## Amplifude specifications

## Absolute amplitude callbration range

Log callbration range: from - 117 dBm to $+20 d \mathrm{Bm}$ in 10 dB steps. Reference fevel vemier, $010-12 \mathrm{~dB}$ continuuusly.
Log display ranges: $10 \mathrm{~dB} /$ div on a 70 dB display and $1 \mathrm{~dB} / \mathrm{div}$ on mm 8 dB display.
Linear dlsplay: from 2.2 microvolts ( -100 dBm ) full-scale to 2.24 volts ( +20 dBm ) full-scale in 10 dB steps. Full-scale signals in linear translate to approximately ful)-scale signals in log.

## Dynamic range

Average nolse level: $<-107 \mathrm{dBm}$ with a 10 kHz resolution bandwidth ( 0 dB input attenuation), $1-350 \mathrm{MHz}$.
Spurlous responses: for input signal level $\leqslant$ Oplimum Imput Level setting, al image and out of band mixing responses, harmenic and inter-modulation distorion products are more than 70 dB below input signal level, I $\mathrm{MHz} 10350 \mathrm{MHz}: 60 \mathrm{~dB}$ below, 20 kHz io 1 MHz .
Spurlous responses due to 3rd order Intermodulation distorHon: for two input signals 10 dB above Optimum Input Level setting 3 rd Order Intermodutation distortion products are $>70 \mathrm{~dB}$ below the inpur signals. $1-350 \mathrm{MHz}: 60 \mathrm{~dB}$ below, 10 kHz to 1 MHz (signal sepamtion $\geqslant 50 \mathrm{kHz}$ ).
Residual responses (no signal present at input): $<-100 \mathrm{dBm}$ wilh 0 JB input attenuation, $0.1-350 \mathrm{MHz}$.
Amplitude accuracy
Frequency response (flatness): $\pm 0.75 \mathrm{~dB}$.
Switching between bandwidths (al $10^{\circ}-40^{\circ} \mathrm{C}, ~ 90 \%$ relative humidity)
3 MHz to $300 \mathrm{kHz}:=0.5 \mathrm{~dB}$.
3 MHz to $1 \mathrm{kHz}:=1.0 \mathrm{~dB}$.
Reforence level accuracy (at fixed center frequency, ixed resoIution bandwidth): $\pm 1.5 \mathrm{~dB}$ (includes input attenuator and IF gain accuracy. May be improved using IF or RF substitution techniques).
Amplitude $\log$ display: $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$ but no more than $\pm 1.5 \mathrm{~dB}$ over full 70 dB displiny range.
Callbrator
Amplitude: $-30 \mathrm{dBm}=1 \mathrm{~dB}$.
Frequency: $250 \mathrm{MHz} \pm 50 \mathrm{kHz}$, crystal conisolled,
Irupui specifications
Input connector: Type BNC female.
Input Impedance: $50 \Omega$ nominal. Typical reflection coefficient $<0.27$ (1.74 SWR) for all Opumum (nput Level settings excepl -40 dBm (0 dB Inpui Altenuation).
Input ettenuator: 50 dB range. Accuracy $=0.5 \mathrm{~dB}$ per 10 dB step. but not more than $=1.0 \mathrm{~dB}$ over full 50 dB range.

## Maximum Input levels

AC or paak: peak or average power $+20 \mathrm{dBm}(3.16 \mathrm{~V}$ ac peak or 0.1 W ) incideat on analyzer. (MAX inpue markings on front panel indicate maximum inpuy allowable for <1 dBgain compression or allenuator overload.)
DC: $\pm 30 \mathrm{~V}$ dc.
Outpul characteristics
Cal output: $-30 \mathrm{dBm}, 250 \mathrm{MHz}$.
Probe power: $+15 \mathrm{~V},-12.6 \mathrm{~V}$ : 150 mA max. Powers 1120 N . $1121 \mathrm{~A}, 1123 \mathrm{~A}$. or 1124 A high impedance probes.
Note: oscilloscope display rear panel outputs refer 10 180T-serics displays and 180 -series Option 807 displays only. Sec below for information on modifying standard displays.

Vertcal output: (AUX A on oscilloscope display rear panel): 0 to 0.8 V for 8 -division deflection on CRT displity: 50 n output impedance.

Pen llt/blanking output: (AUX B on oscilloscope display rear panel): 01015 V ( 0 V . pen down). Approximately $10 \mathrm{k} \Omega$ impedance when blanked. Compatible with HP 7004 B . $7034 \mathrm{~B}, 7005 \mathrm{~B}$. and 7035B X-Y RECORDERS.
21.4 MHz IF output: a 21.4 MHz output lincanty related to the RF input to the analyzer. Bandwidth controlled by analyzer Resolution Bandwidth setting. Amplitude controlled by input ntenoator. IF gain vermier, und first six IF step gain positions ( -10 through -60 dBm Ref Level with 0 dB input attenuation). Ouiput is approximately -10 dBm for full-seale signals on the CRT. (AUX C on oscilloscope display rear panel, son omtput impedance.t
Horlzontal outpul (AUX D on oscilloscope display rear panel): $-5.010+5.0$ V for 10 div CRT deflection, $\$ k \Omega$ oulput impedance.

## Sweep characteristics

## Sweep time

Auto: sweep time is automatically controlled by Frequency Span, Resolution Bandwidth, and Video Filter.
Manual: sweep deternined by front panel control; continuously variahle across CRT in either direction.
Calfbrated sweep times: 16 internal sweep times from 0.1 $\mathrm{ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$ in a 1.2 .5 sequence. For sweep times of 2 $\mathrm{ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$, the analyzer is operable in its normal sweptfrequency mode. Faster sweeps are useful for analyzing modulation waveforms when the analyzer is being operated as a fixedtuned receiver with 0 Display Span. Sweep times may be reduced to an effective $10 \mu \mathrm{sec} / \mathrm{div}$ by using the 180 -series $\times 10$ horizontal magnifier.
Accuracy: $=10 \%$.

## Swaep trigger

Internal: sweep intemally triggered by envelope of RF inpul sig.nal (signal amplitude of 1.0 division peak-to-peak required on CRT display).
LIne: sweep triggered by power line frequency.
Free run: sweep triggered repetitively by intemally generated ramp.
Single: sweep triggered by front panel sweep trigger swith (spring relum position.).

## Display characteristics

Osclltoscope display sections
180 Series compatibility; the 8557A is compatible with all 180A/I80AR, 180C. 180D, 180F, 181A, 18IAR, 182A, 184A, and 184 B mainframes. It is operable with the 183A, 183B mainframes, but the display is limited to 6 divisions by the 6 -division CRT. The following 180 -scries oscilloscope displays are recommended for use with the 8558B Spectrum Analyzer because they provide 4 nonbuffered rear panel auxiliary ourputs (for unatenuated verical. horicontal, and penlift outputs) and P39 medium-persistence CRT phosphor (except with I8IT. I8ITR which provide varible persistence):

180TR	P39 phosiphor
181T	P31 plosphor with variable persistence
181TR	P31 phosphor with variable persistence
182T	P39 phosphor

See HP Service Notes 180A/AR-10, 380C/D-2, 18IA/AR-8 and 182A/C-1 for information peeded to modify standard display to provide auxiliary outputs.
Ordering information
8557a Spectrum Analyzer
Opt 001: 75 ohm input ( $B N C$ ), dBm calibration
Opt 002: 75 ohm inpuI (BNC), dBmV calibration
182T Display
180TR Display
181T Display
181TR Display $\$ 2700$
8750 A Storage-Normalizer $\$ 1450$

- Simple, 3 knó operation
- Digita! frequency readout
- Display of signal levels directly in dBm



## 85588 Spectrum analyzer

Economical, wide frequency coverage
The Model 8558 B is a 0.1 to 1500 MHz specirum analyzer which plugs into any 180 -series oscilloscope display. It is fully calibrated in frequency and amplitude. easy to use, and provides an economical means for making measurements in the RF range.

## Simple, 3-knob operation

Most measurements are a simple three step process. Tune to the signal to be measured: its frequency is displayed on the LED readout Zoom-in on the signal by decreasing the frequency span: bandwiath, sweep time, and video filiering are sel auromatically. Raise the signad to the top of the CRT: read its amplitude (in dBm) off the reference level control.
Absolute amplitude calibration
Signal levels can be read directly from the CRT in dBm (dBmV for Option 002 ) without the use of external standards or calculations. The signal level represented by the top CRT graticule line is always indicated by the reference level conirol, and scale factors of 10 $\mathrm{dB} / \mathrm{div}, \mathrm{I} \mathrm{dB} / \mathrm{div}$, and linear can be selecied.

## Optional 75 ohm input

Two options are available which allow meaqurements in 75 ohm systems: Option 001 has 75 ohms impedance and retains the dBm power calibration: Option 002 is also 75 ohms. but the amplitude is calibrated in dBmV for measurements on systems such as CATV.

- Resolution bandwidths from 1 kHz to 3 MHz
- 0.5 to 1300 MHz Tracking Generator
- Digital Storage-Normalizer available


8444A Opt 058 (Compatible with 8558B)

8444A Optlon 058 Tracking Generator ( $0.5-1300 \mathrm{MHz}$ ) Make swepl frequency response measurements to $\pm 1.5$ dB írom 0.5101300 MHz with greater than 90 dB of dynamic range. The output is absolutely calibrated at 0 dBm of dynamic range. The outpul is absiutcly calibrated ac 0 dBm and continuously variable to -10 dBm . The frequency of unknown signals as well as the frequency of any point on the trequency response curve can be measured using the extemal counter output and Model 5383A Counter up to 500 MHz or Model 5341A Opt 003 Counter to 1300 MHz .

## New 8750A Storage-Normallzer

The 8750 A is an accessory which provides digital storage. trace comparison and swept response normalization. The frequency response variation of a sivept measurcment system, such as the 8558 B and 8444 A , can be removed through normalization. In addition, a "real time" signal can be compared with a stored trace or boih traces can be viewed from memory for CRT pholography or delailed comparison.

## 8558B Speciflcations

## Frequency speciflcations

Frequency range: 100 kHz to 1500 MHz .
Frequency display spsn: (on a 10 -division CRT horizontal axis): 14 calibrated spans from $100 \mathrm{MHz} / \mathrm{div}$ to $5 \mathrm{KHz} / \mathrm{div}$ in a 1.2 . 5 sequence. In " 0 " (zero span) the analyzer is a fixed-tuned recoiver.
Accuracy: frequency error between any two points on the display is less than $\because 5 \%$ of the indicated frequency separation.
Digltal frequency readout: indicates center frequency or start frequency of the frequency display scan. Two ranges: 0 to grealer han 195 MHz with 100 kHz resolluion; 195 MHz io 1500 MHz with I MHz resoltuion. ZERO control allaws frequency readout to be adjusied for accurate calibration anywhere in the frequency range: CAL conirol removes frequency hysteresis. Resolution 100 kHz .

Accuracy: (after zeroing on the LO fecdithough and operation of the CAL button. $20^{\circ}-40^{\circ} \mathrm{C}$ ).
$0-195 \mathrm{MHz}:=1 \mathrm{MHz}+20 \%$ of FREQUENCY SPAN PER DIVISION selüng ( $\leqslant 1 \mathrm{MHz}$ per division).
195-1500 MHz: $\pm 5 \mathrm{MHz}+\%$ of FREQUENCY SPAN PER DIVISION setting.

## Stabillty

Residual FM: less than I kHz peak-to-peak for time $\leqslant 0.1 \mathrm{sec}$. Nolse side bands: more than 65 dB below CW signal, 50 kHz or more away from signal with a 1 k Hz resolution bandwidth and full video filter.
Resolution
Bandwidth ranges: 3 dB resolution bandwidths of 1 kHz to 3 MHz in a 1. 3. 10 sequence. Resolution bandwidit may be coupled to rrequency display span at a ratio of iwo display spans per resolution bandwidth.
Resolution bandwldth accuracy: individual resolution bandwidth 3 dB pomis calibrated to $=20 \%$.
Resolution bendwldth selectivily: $60 \mathrm{~dB} / 2 \mathrm{~dB}$ resolution bandwidth ratio <15:1.

Video dilier: posi-delection filter used to average displayed noise. Bandwidth variable from approximately 3X Resolution Bandwidth to approximately 0.0IX Resolution Bandwidth. In the MAX position provides a noise averaging filker with a bandwidth of approximately 1.5 Hz .

## Amplitude specificatlons

Absolute amplitude callbration range
Log callbration range: from -115 dBm to +30 dBm in 10 dB steps. Reference level vermier, 0 to -12 dB continuously.
Log display ranges: $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display, and $1 \mathrm{~dB} / \mathrm{div}$ on an 8 dB display.
 volis ( +30 dBm ) full-seale in 10 dB steps. Fult-scale signals in linear translate to approximately full-scale signals in log.

## Dynamic range

Average nolse leval: $<-107 \mathrm{dBm}$ with a 10 kHz resolution bandwidth ( 0 dB inpul attenuation).
Spurioua responses: for inpul signal lavel $\leqslant$ Optimum Input Level serting, all irsage and out-of-band mixing responses, harmonic and intermodulation distortion products are more than 70 dB below input signal level, 5 MHz to $1500 \mathrm{MHz}: 60 \mathrm{~dB}$ below, 100 kHz to 5 MHz .
Spurlous fesponses due to 3rd order Intermadulation dlatortion: for two input sigads 10 dB above Opumum Input Level seting 3rd Order Intermodulation distorion products are $>70 \mathrm{~dB}$ below the input signals, $5-1500 \mathrm{MHz} ; 60 \mathrm{~dB}$ below, 100 kHz 10 5 MHz (signal separation $\geq 50 \mathrm{xHz}$ ).
Residual reaponses: (no signal present at input): $<-100 \mathrm{dBm}$ wilh 0 kB input attenuation.

## Amplitude accuracy

Frequency response (Eauncss): $\pm 1.0 \mathrm{~dB}$.
Switahing between bandwidits (at $10^{\circ}-40^{\circ} \mathrm{C}$ ).
3 MHz to $300 \mathrm{kHz}:=0.5 \mathrm{~dB}$.
3 MHz to $\mathrm{kHz}: \pm 1.0 \mathrm{~dB}$.
Raference loval accuracy (at fixed ceater frequency. fixed resoIution bandwideh): $\pm 1.5 \mathrm{~dB}$ (includes input attenuator and IF gain accuracy. May be improved using IF or RF substitution techniques).
Amplitude $\log$ display: $\pm 0.1 \mathrm{~dB} / \mathrm{dB}$ but not more than $\pm 1.5 \mathrm{~dB}$ over full 70 dB display range.

## Callbrator

Amplitude: $-30 \mathrm{dBm} \pm 1.0 \mathrm{~dB}$.
Frequency: $280 \mathrm{MHz} \pm 50 \mathrm{kHz}$, crystal contralled.
Input specificatlons
Input connector: rype $N$ iemale.
Input Impedance: $50 \Omega$ nominal. Typical reflection coefficient $<0.20$ ( 1.5 SWR ) for all Optimum Input Level seidngs except -40 dBm ( 0 dBm input antenuation).
Input attenuator: 70 dB range. Accuracy $\pm 0.5 \mathrm{~dB}$ per 10 dB step but not more than $\pm 1.0 \mathrm{~dB}$ over full 70 dB range.
Maximum
AC or peak: peak or average power $+10 \mathrm{dBm}(1.0 \mathrm{~V}$ ac peak $)$ incident on mixer ( 0 dB input altenuation), +30 dBm ( 10 V ac peak or 1 W ), incident on input attenuator. (MAX input markings on front panel indicate maximum input allowable for $<1 \mathrm{~dB}$ galn compression or attenuator overioad).
$D C: \pm 50 \vee d c$.
Output characterlstics
LO output: +10 dBm nominal، 50 ohms: $2.05-3.55 \mathrm{GHz}$.
Cal output: -30 dBm .280 MHz
Probe powers +15 V. -12.6 V; 150 mA max. Powers 1120A, 1121A, 1123A, or 1124A high impedance probes.
 disciays and oldee i80-series visplays will oplion 807 onn.
Verical output: (AUX A on oscilloscope display rear panel.) 0 to 0.8 V for 8 -division reflection on CRT display: $50 \Omega$ output impedance.

Pen Ilit/blanking output: (AUX B on oscilloscope display rear panel): 0 io $15 \mathrm{~V}(0 \mathrm{~V}$, pen downi). Approximately 10 kn impedance when blanked. Computible with HP 7004 B .7034 B .7005 B . and 7035B X-Y RECORDERS,
21.4 MHz IF output: a 21.4 MHz output linearly related to the RF input to the analyzer. Bandwidth controlled by analyzer Resolution Bandwidh setting. amplitude controlled by input attenuator, IF gain vernier, and first six IF step gain positions ( -10 through -60 dBm Ref Level with 0 dB iaput attenuation). Output is approximately -10 dBm for full-scale signals on the CRT. (AUX C on oseilloscope display rear panel, $50 \Omega$ output impedance).
Horizontal outpul (AUX D on oscilloscope display rear phinel): -5.0 to $+5.0 \vee$ for 10 div CRT deflection, $5 \mathrm{k} \Omega$ output impedance. Sweep characteristics

## Sweep tme

Auto: sweep time is automatically controlled by Frequency Span, Resolution bandwidth, and Video Filter.
Manual: sweep determúned by fromt panel control, continuously variable across CRT in either direction.
Callbrated sweep time: 16 intemal sweep times from $0.1 \mathrm{~ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$ in a $1,2.5$ sequence. For sweep times of $2 \mathrm{~ms} /$ div to 10 see/div, the analyzer is operable in its nermal swept frequency mode. Faster sweeps are useful for analyzing modulation waveforms when the analyzer is being openated as a fixed-tuned receiver with 0 Display Span. Sweep times may be reduced to an effective $10 \mu \mathrm{sec} / \mathrm{div}$ by using the 180 -series $\times 10$ horizontal magní̃er.
Aceurscy: $\pm 10 \%$.

## Sweep tilgger

Internal: sweep intemaly triggered by envelope of RF input signal (signal amplitude of 1.0 division peak-to-peak required on CRT display).
Lline: sweep inggered by power line freuqency.
Free run: sweep triggered repetitively by internally generated ramp.
Single: sweep triggered by front pancl sweep trigger switch (spring return position).
Display characteristics
Oecllloscope display sections
180 Serles compatiblity: the 8558 B is compatible with all 180A. 180AR, 180C. $180 \mathrm{D}, 180 \mathrm{~F}, 181 \mathrm{~A}$. $181 \mathrm{AR}, 182 \mathrm{~A}$. 184 A . and 184 B mainframes. II is operable with the 183A, 183 B mainframes, but the display is limited 106 divisions by the 6 -division CRT. The following 180 -series oscilloscope displays are recommended for use with the 8558 B Spectrum Analyzer because they provide 4 non-buffered rear panel auxiliary outputs (for unattenuated verical, horizontal, and penlif outputs) and P39 medium-persistence CRT phosphor (except with 18IT, 18ITR which provide variable persistence):

180TR	P39 phosphor
181 T	P31 phosphor with variable persistence
181TR	P31 phosphor with variable persistence
182T	P39 phosphor

See HP Service Notes I80A/AR-IO, IB0C/D-2. 181A/AR-8 and 182A/C-I for information needed to modify standard displays to provide ausiliary outputs.

Ordering Information	Price
8558B Spectrum Analyzer	$\$ 4850$
Opt 001: 75 ohm input (BNC). dBm calibration	add $\$ 100$
Opt 002: 75 ohm inpul (BNC). dBmV calibration	add $\$ 100$
Opt 003: Intemal Limiter	add $\$ 150$
182T Display	$\$ 1650$
180TR Display	$\$ 1650$
181T Display	$\$ 2670$
181TR Display	$\$ 2700$
8444A Opt 058 Tracking Generator	$\$ 3800$
8750A Storage-Normalizer	$\$ 1450$

# Plug-in spectrum analyzer system, 20 Hz to 40 GHz 

Model 141 T system

- 20 Hz to 40 GHz with just a tuning section change.
- Advantages of fully calibrated solid state system.
- Add measurement capability to your system as needed.


141T. 8652B


8443A


B444A


8445B Op1 002. 003
Hewletl-Packard's high periormance plugio spectrum analyzer family makes frequency domain measurements from 20 Hz to 40 GHz . Because of the system's modularity, the user need purchase only analyzer components necessary to meet immedinte production or laboratory measurement requirements. Then, as broader frequency capability is required, additional luning sections or companion instruments can be added
The models $8553 \mathrm{~B}, 8554 \mathrm{~B}, 8555 \mathrm{~A}$, and 8556 A are tuning sections which plug into a 14 IT display maintrame atong with an 8552 B IF section 10 form a member of the Hewlett Packard high periormance spectrum analyzer family. Each luning section covers a frequency range convenient for equipment design or spectmim surveillance: $855 \mathrm{~h} \mathrm{~A} .20 \mathrm{~Hz} 10300 \mathrm{kHz}: 8553 \mathrm{~B}, 1 \mathrm{kHz}$ to $110 \mathrm{MHz}: 5554 \mathrm{~B}, 100$ kHz to 1250 MHz : and $8555 \mathrm{~A}, 10 \mathrm{MHz}$ to 40 GHz . The If section plug-in which is used with cach tuning section. serves to condition the measurement signal for proper display on the CRT. Two IF sectiuns are available, the 8552 B high performance model and the 8552A model for economy. The spectrum analyzer specifications included in this calalog assume the use of the 8552B.

The 8443A and 8444A are tracking generators complementing the basic specirum analyzer functiun with an RF source locked to the uning fiequency. The 84458 is an automatic preselector which enhances the dynamic range of the 10 MHz to 40 GHz 8555 A tuning section analyzer.
The lalT based specirum analyzer features absolute calibration of frequency and amplitude. high resolution and sensilvily. wide dynamic range. end simple to interprel display output.

The following pages cover specisum analyzer performance with each of the luning sections and companion tracking generator! preselector.

- Tracking generator expands measurement capability.
- Increase dynamic range with tracking preselector.
- Storage-normalizer adds digital storage.


Absolute amplitude calibration
For ease and speed of measurement, full frequency band amplitude calibration allows direct interpretation of signal power or voltage from the CRT display. A choice of logarithmic or linear scaling calibrates the CRT in dBm or $\mu \mathrm{V}$ respectively. Fronl panes seluings set the lop horizontal graticule on the CRT as the reference power in the logaridmic mode: all other CRT measurements can be made relative to this reference. In linear scaling the CRT is catibrated in volage per division using front panel settings. The bottom graticule is zem voltage.
When a combination of frequency scan, bandwidth, or video filter sertings are chosen such that the display becomes uncadibrated. a waming light indicates the condition.
High resolution frequency callbration
The frequency measurement capability of the spectrum analyzer is responsive to uscr need, making spectum measurements simply and accurately with three frequency sean modes.

First is the FULL scan mode, which displays the entire taning section irequency band on the 10 cm horizontal CRT graticule. This mode is effective in viewing broadband effects of eireuit adjustments and refinements as they are made. In FUILI. scon a marker on the CRT corresponds in frequency to the position of the pointer on the luning section frequency seale, so signals can be readily idenlified.
The second mode, PER DIVISION scan. centers the display about the frequency indicated by the suning section pointer. In this mode, narrow. calibrated scan per division and amtomatic frequency stabilizalion make high resolution measurements for analysis of sigsignal purity, sidebands, and low deviation FM.
In the third mode. ZERO scan. the analyzer becomes a receiver luned to the frequency indicated on the scale. Modulation in an input signal at the cuncd frequency is displayed on the CRT in the time domain. The sean rime control provides a calibraled time base.

## High resolution

The ability to resolve close-in signal sidebands. such as line related modulation, is imporant in frequency domain analysis. The Hewlen-Packard 141T plug-in spectrum analyzers each have narrow bandwidths for such resolution. Up to 110 MHz . the analyzers offer 10 Hz bandiwidths and $1018 \mathrm{GHz}, 100$ bandwidths. The frequency stabilization fealure already mentioned ensures high resolulion by maintaining a jilter free display.

## Whde dynamic range, sensitlve

Confidence in signal idemification is given by the analyzer's ability to meature wide amplitude differentials without distortion prodvels and to deasure very low level signals. The plug-in specirum analyzers have typically 70 dB of distorion free dynamic range: that is. the capability of measuring $0.03 \%$ signal distorion from the CRT display. With the 8A45B preselector the 8555A has a spurious free range of 100 dB . The CRT displays full dynamic range on a linear. easy to read scale.
Signals at as low a level as -142 dBm ( 20 nanovolts, 50 ohms ) can be detecred by the spectrum analyzer with 10 Hz bandwidth. At high frequencies and with 100 Hz bandwidth. -125 dBm signals can be measured.

have typically 70 dB of distortion free dynamic range; that is, the capability of measuring $0.03 \%$ signal distortion from the CRT display. With the 8445B preselector the 8555 A has a spurious free dynamic ruge of 100 dB . The CRT also displays foll dynamic range on a linear, casy to read scale.
Signals at as low a level as -142 dBm ( 20 nanovoles, 50 ohms) can be detected by the spectrum analyzer with 10 Hz bandwidth. At high irequencies and with 100 Hz bandwidih. -125 dBm signals can be measured.
A parallax free, storable display
The 141 T spectrum analyzer mainframe and display features a variable persistence CRT which enables response storage for any measurement. With very narrow bandwidth measurements, extremely slow sweeps are necessary to maintain amplitude calibration (allowing band-piss filters cime 10 respond). A reconding CRT is necessary to save this response for viewing. Of course. any response can be stored for a display ready to be photographed. Another display mainframe. the 140T, is available with standard persistence.

Interpretation of response levels on the CRT is free from paralax since the graticule is etched on the inside of the display screen adjacent to the phosphor.

## IF section adds convenience features

The high resolution 8552B or the economic 8552A 1F section features video filtering, reconder outputs and an intemal calibration signal to make the spectrum analyzer easier to use. Video filtering is a low-pass filter which avernges out noise amplitude response for easier small signal readings. It also makes wide band noise measurements easier.

Recorder outputs, including pen lift, allow hard copy duplication of the CRT display. Manual scan allows setting up of accessories. such is $X-Y$ recorders, adjusting signals on sereen during slow scans and measuring frequencies with a counter.

The intemal calibration standard is a very stable -30 dBm .30 MHz signal for quick front panel calibration.
Tracking ganerators for each frequency band
Either available incemally, or as a companion instmment, are leveled signal sources designed to track the swept tuning frequency of the spectrum analyzer. Amplifiers. filters or any circuit which requires an input signal can be characterized to 1300 MHz , with typically wider dynamic range and more precise frequency accuracy than with the spectrm analyzer alone.

The 8S56A low frequency iuning section has an internal tracking generalor, standard with the instrument. The 8553B and 8554B/ 8555A use separate generators namely 8443A and 8444A respeclively.

## New 8750 A Storage-Normalizer

You can add digital storage to the 140 -series spectrum analyzer with the 8750A (Opt. 001) and an extemal aicilloscope. Digital storage provides a flicker-free display regardless of the analyzer sweep speed and tacilitates trace comparisons of two traces. If a tracking generator is employed. the nommalization feature significantly reduces frequency response variations. The 8750A StorageNormalizer is a versatilc accessory which may be used directly with other H.P spectrum and network analyzers. (See Page 450).

## General specifications

141 T spectrum analyzer system
Input Impedance: $50 \Omega$ nominal. Reflection coefficient $<0.30$ ( 1.85 $S W R$ ). input altenuatar $\geqslant 10 \mathrm{~dB}$.
Maximum input level: peak or average power +13 dBm ( 1.4 V ac
peak), $\pm 50 \mathrm{~V} d c$.
Attenuator: 0 to 50 dB io 10 dB steps.
Scan time: 16 inicmal scan rutes from $0.1 \mathrm{~ms} /$ div $1010 \mathrm{sec} /$ div in a
1, 2. 5 sequence, and manual acan ( 8552 B only).
Scan time accuracy
$0.1 \mathrm{~ms} / \mathrm{dlv}$ to $20 \mathrm{~ms} / \mathrm{d} \mathrm{v}: \pm 10 \%$.
$50 \mathrm{~ms} / \mathrm{dlv}$ to $10 \mathrm{~s} / \mathrm{dlv}$ : $\pm 20 \%$.
Scan mode
Int: analyzer repetitively scanned by intemally genemad manp; synchronization selected by süan trigger.
Singie: single scan with front panel reset.
Ext: scan detumined by 0 to 18 volt exicinal signal.
Manual: scan detemined by front panel control.
Scan trigger: for intemal sean mode, stect betwien Auto: scan fire-rins.
LIne: scan synchronzed with power lioe frequency.
Ext: scan sy'nchronized witl $>2$ volt ( $\mathbf{2 0}$ volt nax.) signal
VIdeo: scan intemally synchronized to envelope of RF input.
Auxillary outputs
Vertical output: 0 to -0.8 V for full defleciion.
Scan output: $10+5 \mathrm{~V}$ for 10 div CRT deflection.
Pen lift oulput: 0 10 $14 \mathrm{~V}(0 \mathrm{~V}$, pen down).

## Display characteristics

141T, 140T
Plug-Ins: accepls Models 8552A/B. 8553B, 8554B, 8555A and 8556A and Model 1400 -series Oscilloscope plug-ins.
Cathode-say tube type
Model 141T: post-itcicicrator storage fulse, 9000 -volt acceleraling potentiad; aluminized P3) phosphor.
Madal 140T: post-itceltrator. 7300 volt potential medium-shor persistence ( P 7 ) phosphor.
Cathode-ray tube graticule
Model 141T: $8 \times 10$ division (approx. $7.1 \mathrm{~cm} \times 8.9 \mathrm{~cm}$ parallaxfroe intemal graliculc.
Perglstence, model 141T only
Nomal: natural persistence of P31 phosphor ( 0.1 second).
Varlable
Normal writing rate mode: continuously variable from less than 0.2 second to more than one minule.

Maximum writing rate mode: from 0.2 second to 15 seconds.
Erase: manual; erasure takes approximately 350 ms .
Storage time model 141T only: normal wrising rate; more than 2 hours at reduced brightress (eypically 4 hours).
Fast writing speed, model 141 Y only: more than 15 minutes.
Functions used w/th oscllloscope plug-ins only: intensity modulation, calibrator: beam finder-
EMI: conductad and radiuled interienence is within requirements of M[L-I-16910C and M1L-1-6181D and methods CE03, and RE02 of MIL-STD-461 (except 35 to 40 kHz ) when appropriale RF luning scclion and 8552A or 8552B are combined in a 440 T or 141 T Display Scction.
Temperalure range: operating, $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$; storage, $-40^{\circ} \mathrm{C}$ to $+75^{n} \mathrm{C}$.
Power requirements: $100,120,220$. or $240 \mathrm{~V}+5 \%$. - $10 \% .50$ to 60
Hz, nomally less than 225 watts (includes plug-ins used).
Welght
Model 8552A or 8552 B IF sectlon; ret, 4.1 kg (9 lb). Shipping 6.4 kg (14 lb).
Model 140 T deplay section; ne1, 16.8 kg ( 37 lb ). Shipping, 20 kg (45 lb).
Model 141 T display sectlon: net. 18 kg (40 lb). Shipping, 23 kg (SI lb).
Tunling sactlon: see following pages.
Slze: model l40T or 141 T with plug-ins: $221 \mathrm{H} \times 425 \mathrm{~W} \times 416 \mathrm{~mm}$
D ( $83 / 4^{7} \times 16^{2} / 4^{\prime \prime} \times 16^{*} / 4$ ")
Special order; chassis slides and adapler kil.
Orderlng Intormatlon Prlce
140 T Normal Persistence Display $\$ 1600$
Opt 900: Rack Fange Kit
141T Variable Persistence Display
add \$15
Opt 50B: Rack Flange Kit $\$ 2500$

8552A Economy IF Section add $\$ 15$

8552B High Resolution IF Section
$\$ 3875$

SIGNAL ANALYZERS
141T Spectrum Analyzer System: 20 Hz to 300 kHz
Model 8556A

## - Accurate signal level measurements ( $\pm 0.95 \mathrm{~dB}$ ) <br> - Accurate frequency measurements ( $\pm 3 \mathrm{~Hz}$ )



8556A
General purpose measurement tlexibility
The 8556A Specirum Analyzer covers the frequency range from 20 Hz to 300 kHz . It was designed 10 accommodate the variety of characleristic impedances and amplilude units used in making audio measurements. Balanced or unbalanced inputs are available, and open circuit voltages ( dBV or linear) or power ( dBm ) in several characteristic impedances may be measured. The analyzer is capable of high resolution; frequencies can be measured very accurately. A built-in tracking generator further increases the instrument's utility.
Frequency range
The 8556 A has two frequency scalcs, $0-300 \mathrm{kHz}$ for full coverage and $0-30 \mathrm{kHz}$ for better resolution an low frequencies. The analyzer may be swept symmetricallly about a sunable center frequency, swept from 0 Hz to a selectable end point, or operated as a fixed luned receiver. 20 kHz erystil markers (accurate to $0.01 \%$ ) can be genemted on the CRT to make very accurate frequency measurements.
Absolute amplitude calibration
The 8556A is calibrated for dBm in $600 \Omega$, dBm in $50 \Omega$. $\alpha \mathrm{BV}$. and volls. The very accurate reference level conrrol ( $\pm 0.2 \mathrm{3B}$ ) and vernier ( $=0.25 \mathrm{~dB}$ ) allow the IF substitution technique to be used to improve amplitede measurement accuracy.

## Low distortion

Careful design has decreased analyzer distorion to the point where a ful 70 dB dynamic range is achieved. This allows small signals. such as harmonic or intermodulation distontion, to be measured in the presence of large ones.

## Resolution-senslitivity

Resolution bandwidths berween 10 kHz and 10 Hz are available on the 8556A. Using the narrow bandwidth. 50 or 60 Hz line related sidebands can be measured. The analyzer's extremely low noise figure together with its narrow bandwidths makes the 8596A very sensitive. Signals as low as $-152 \mathrm{dBv}(25 \mathrm{nv})$ can be mcasured in a 10 Hz bandwidth. The 8556A may be used to measure EMI. such as interference conducted along an $A C$ power line.

## Isolated Inpyt

The isolated input climinates the possibility of spurious signa! pickup which could be caused by line related ground currents flowing in the ground connections between the amalyzer and signal source. The input impedance (I M $\Omega$ ) is high enough so thas a scope probe may be used with a minimum of loading. An optional balanced input is available which is transformer coupled for isolation and high common mode refection. The input impedance is 15 kn . and the analyzer is calibrated for either $3 \mathrm{Bm}-135 \cap$ or $\mathrm{dBm} \cdot \mathrm{I} 50 \mathrm{n}$ as well as $\mathrm{dBm}-600 \Omega$ and $\mathrm{dBm}-900 \mathrm{n}$. Balance (symmetry) is 80 dB al 50 Hz and ypically 50 dB at 300 kHz .

## Tracking generator

A tracking generator is buill into the 8556 A . If an extemal counter is connected to the tracking generator, frequencies can be measured 10 an accuracy of $=3 \mathrm{~Hz}$. Swept insertion loss or return loss measurements can be made on a device such as an amplifier or filter. A

- High sensitivity ( -152 dBv )
- Built-in tracking generator


140 dB measurement range is possible using the narrowest resoltition bandwidth. The tracking generator also provides a convenient signal for compensating an oscllloscope probe used with the 8556A. Other appllcations
The combination of a tracking generator and specirum analyzer in this frequency range is valuable in applications such as receiver lesting and fault location.

## Specifications-with 8552B IF Section

Frequency specifications
Frequency range: 20 Hz to 300 kHz . Tuning dial ranges of $0-30$ kHz and $0-300 \mathrm{kHz}$.
Scan wldth: (on a 10 -division CRT horizontal axis)
Par divislon: 10 calibrated scan widths from 20 Hz /div to 20 xHz div in a $1,2.5$ sequence.
$0-10 \mathrm{f}$ : 10 calibrated preset scans, from 200 Hz to 200 kHz in a I . 2. 5 sequence. Analyzer scans from zero frequency to ten times the sean width per division selling.
Zero: analyzer is a fixed luned receiver.
Frequency accuracy
Center frequency accuracy: $0-30 \mathrm{kHz}$ Range: $=500 \mathrm{~Hz}: 0-300$ kHz Range: $\pm 3 \mathrm{kHz}$.
Marker accuracy: RF markers every 20 kHz accurate to within $=0.01 \%$. Markers controlled by front pancl on/off switch.
Scan wldth aecuracy: frequency error between any two points on the display is less than $\pm 3 \%$ of the indicated frequency separation.
Stabilley
Residual FM: sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signal, scan time $\geqslant 1 \mathrm{sec} / \mathrm{div}$. 10 Hz bandwidth.
Nolse sldebende: more than 98 dB below CW signal, 3 kHz away from signal, with a 100 Hz IF bandwidth.
Frequency drfft: less Lhas $200 \mathrm{~Hz} / 10 \mathrm{~min}$.

## Resolutlon

Bandwidth ranges: If bandwidths of 10 Hz to 10 kHz are provided in a $1.3,10$ sequence.
Bandwidth accuracy: individual IF bandwidth $\mathbf{3}$ dB points calibrated to $=20 \%$ ( 10 kHz bandwidth $=5 \%$ ).
Bandwidth selectlvity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ IF bandwidth ratios, with IF section: <11:I for IF bandwidths from 10 Hz to 3 kHz : < 30 : I for 10 kHz bandwidth. For 10 Hz bandwidth. 60 dB points are separated by less than 100 Hz .

## Amplitude specifications

Absolute amplitude callbration
Log callbration modes
dbv
$0 \mathrm{dBV}=1 \mathrm{~V} \mathrm{rms}$
dBm-600n
$0 \mathrm{dBm}=1 \mathrm{~mW}-600 \Omega$
$0 \mathrm{dBm}=1 \mathrm{~mW}-50 \Omega$
dBm-50n
Inpul impedance is $1 \mathrm{M} \Omega$. dBm ranges are referenced with inpul properly terminated externally.

Lag callbration range: from - $150 \mathrm{dBm} / \mathrm{dBV}: 0+10 \mathrm{dBm} / \mathrm{dBV}$.
Log display range: $10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display. or $2 \mathrm{~dB} / \mathrm{div}$ on a 16 dB display.
Llinear sensiflvity: From $0.1 \mathrm{~V} / \mathrm{div}$ in a I. 2. 10 sequence. Linear sensitivity vemier XI to X0.25 continuously.
Dynamic range
INPUT LEVEL control: - 10 to $-60 \mathrm{dBm} / \mathrm{dBV}$ in 10 dB sleps. Accuracy $\pm 0.2 \mathrm{~dB}$. Marking indicates naximum input levels for 70 dB spurious-free dynamic range.
Average nolse leval ispecified with a $600 \Omega$ or less source impedance and INPUT LEVEL as $-60 \mathrm{dBm} / \mathrm{dBV}$ )

	-	
dBm-50n	$-122 \mathrm{dBm}(180 \mathrm{nV})$	142 dBm (18 nV)
dBm-600	$<-130 \mathrm{dBm}(250 \mathrm{nV})$	$<-150 \mathrm{dBm}(25 \mathrm{nV})$
BV	$<-132 \mathrm{dBV}(250 \mathrm{nV})$	$<-152 \mathrm{dBV}(25 \mathrm{nV})$
,		

Video fliter: averages displayed noisc, bandwidth of $10 \mathrm{kHz}, 100$ Hz , and 10 Hz . Bandwidth accuracy $\pm 20 \%$.
Spurlous responses: inpul signal level $\leq$ INPUT LEVEL setting: out of band mixing responses, harmonic and intermodulation distortion products are all more than 70 dB below the input signal level 5 kHz 10 $300 \mathrm{kHz} ; 60 \mathrm{~dB}, 30 \mathrm{~Hz}$ to 5 kHz . Third order internodulation productis are more than 70 dB below the input signal level, 5 kHz to 300 kHz with signal separation $>300 \mathrm{~Hz}$.
Residual responses (no signal present at Input): With the INPUT LEVEL at $-60 \mathrm{dBm} / \mathrm{dBV}$ and the input terminated with 600 ? or less, all line related residual responses from 0 to 500 Hz are below $-120 \mathrm{dBm} / \mathrm{dBV}$. All other residual responses are below $-130 \mathrm{dBm} / \mathrm{dBV}$.

$$
\begin{aligned}
& \text { Ampllitude accuracy: } \\
& \text { Frequency response } \\
& \text { Amplitude display }
\end{aligned}
$$

Log reference level control: provides 90 dB IF gatn control in 10 dB steps. Accurate to $\pm 0.2 \mathrm{~dB}(=2.3 \%)$.
Lag reference level vernier: provides conilnuous 12 dB range. Accurate to $=0.1 \mathrm{~dB}( \pm 1.2 \%)$ in $0 .-6,-12 \mathrm{~dB}$ positions: otherwise $\pm 0.25 \mathrm{~dB}( \pm 2.8 \%)$.
Amplltude messurement accuracy: $=0.95 \mathrm{~dB}$ wilh proper technique.

## General

Scan time: 16 internal scan rates from $0.1 \mathrm{~ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$ in a 1. 2,5 sequence.

## Scan mode

Int: analyzer repetitively scanned intermally.
Ext: scan determined by 0 to +8 volt extemal signal.
Single: single scan actualed by front panel bution.
Menual: scan detemined by front panel control.
Input level: provides 50 dB control of input preamplification and attenuation to prevent inpul overtoad. INPUT LEVEL markings of
$-60 \mathrm{dBm} / \mathrm{dBV} 10-10 \mathrm{dBm} / \mathrm{dBV}$ indicate maximum inpul level for a minimum of 70 dB spurious-free dynamic range. Accuracy $\pm 0.2 \mathrm{~dB}$ (2.3 21 !.

Input Impedance: 1 MSI shmed by $=-32 \mathrm{pF}$.
Maximum Inpul level: 10 V rms, $=200 \mathrm{~V}$ de. Ground terminals of BNC input conncetors are holated from the inalyzer chamsin ground to minimize ground loop pickup at low frequencies.
Maximum voltage, isolated ground to chassis ground: $=100$ $V$ de.
lsolated ground to chassls ground Impedance: $100 \mathrm{k} \Omega$ shumted by approximately 0.3 F .
Galn compression: for input signal level 20 dB above INPUT
LEVEL senting, gain compression is less than IdB.
Tracking gerierator specifleations
Frequency range: tracks the analyzer tuning, 20 Hz to 300 xHz . Amplifude range: continuously variable from 100 mV rms to greater than $3 V$ roms into an open circuit.
Ámplitude accuracy: with TRACKING GEN LEVEL in CAL position and 20 kHz markers off, outpul level al 100 kHz is 100 mV a 0.3 dB into an open circuit.
Fiequency response: $=0.25 \mathrm{~dB} 50 \mathrm{~Hz}$ to 300 kHz .
Output Impedance: 600:L.
Residual FM: $<1 \mathrm{~Hz}$ peak-10-peak.
Power requirements: $100,120,200$, or $240 \mathrm{~V}+5 \%,-10 \%, 501060$ Hz , normally less than 225 whis.
Welght: Model 8556 A LF section: net, 3.7 kg ( 8 lb ). Shipping. 3.3 $\mathrm{kg}(12 \mathrm{lb})$.
Size: $102 \mathrm{~K} .226 \mathrm{~W} .344 \mathrm{~mm} \mathrm{D}\left(4^{n} \times 8 \% / \mathrm{s}^{n} \times 131 \mathrm{x}^{\mu}\right)$.
Specifications with 8556A Options 001, 002-bslanced input
Amplitude
Log callbrallon modes-balanced (bridged) Input
$\mathrm{dBm}-135 \Omega$ (Option 001) $\quad 0 d B m=1 \mathrm{~mW}-135 \Omega$
$d \mathrm{Bm}-150 \Omega($ Option 002) $\quad 0 \mathrm{dBm}=1 \mathrm{~mW}-150 \Omega$
$\mathrm{dBm}-600 \Omega \quad 0 \mathrm{dBm}=1 \mathrm{~mW}-600 \Omega$
$\begin{array}{ll}\mathrm{dBm}-900 \Omega & 0 \mathrm{dBm}=1 \mathrm{~mW}-900 \Omega\end{array}$
Input impedance is typically $15 \mathrm{k} \Omega$. dBm ranges are referenced with input properly terminated extemally.
input
Maximum Input levels: normal Mode, $\pm 20 \mathrm{~V}$ rms or $\pm 150 \mathrm{~V}$ de for normal mode (symmetrical) signals between input signal connectors; Common Mode. 200 V rms at 60 Hz or $\pm 500 \mathrm{~V}$ de for common mode (asymmetrical) volages between input signal connectors and GUARD or insimment chassis; Guard. $=100 \mathrm{~V}$ dc from GUARD to instrument chassis. (GUARD to chassis impedance is approximately $100 \mathrm{k} \Omega$ shunted by $0.3 \mu \mathrm{~F}$.)
Balance (Symmetry): 0 - 30 kHz Range. greater than $80 \mathrm{~dB}, 50$
Hz 101 kHz : $1-300 \mathrm{kHz}$ range, greater than $60 \mathrm{~dB} .\{\mathrm{kHz}$ to 20 kH .
Ordering information Price
8556A RF section \$2525
Opt D01: Bałanced input add $\$ 220$
Opt 002: Balanced inpul add $\$ 220$

## 141 T Spectrum Analyzer System: 1 kHz to 110 MHz (cont.) Models 8553日 \& 8443A

- Wide frequency range
- 10 Hz resolution bandwidth
- High sensitivity ( -140 dBm )


8553B


## General purpose

The 8553B Spectrom Analyzer makes absolute amplitude and frequency measurements over the I kHz to 110 MHz range. This frequency sphr inclades andio. video, mavigation aids. telemerry, mulsiplex commuricition hysteme basebands. commersial AM. FM. TV, and land mobile communication. The analyzer features high resolution and stability, low distorlion, high sensitivity, and at wide dynamic range. A tracking genemor is available which improves the frequency measurement accuracy of the analyzer and cian be used to make swept measurements.

## Wide frequency range

The broad frequency range of 1 kHz to 110 MHz extends from andio through the fM breadcist band. Scan widths from 200 Hz to 100 MHz allow a user to view all or selected part of the frequency spectrum white the zero scan mode iums the analyaer into a fixed tuned receiver and displays amplitudc variations in the tirne domain. The analyzer has iwo dial scales, $0-110 \mathrm{MHz}$, for full coverage and 0 II MHz for betier resolution at low fequencies.
Resolutlon-stabillty
The s 553 B has revolution bandwidths that range from 300 kHz to 10 Hz . Wide bandwidths are nceessary for making measuremenis on a wideband specinam such as F.M. The extremely high resolution 10 Hz bandwidth allows measurement of 50 Hz sidebands 60 dB down. Such high resolution is made ponsihle by amomatic stahilizalion Inrough phase lock, which reduces residual Fil to a neglible level. Good stability is required to measure oscillator residual FM and driń
Absolute amplifude calibrallon
The 8553B Spectrum Analyzer is absolutely calibrated in bolh dBm and volts from $-142 \mathrm{dBm}(.02 \mu \mathrm{~V})$ to $+10 \mathrm{dBm}(.7 \mathrm{~V})$. This absolute calibration is derived from a huilt-in calibrator ( -30 dBm al 30 MHz ) and extremely flat analyzer frequency responsic ( $\pm 0.5 \mathrm{~dB}$ ). A display uncal. light wams if the display becomes uncalibrated. The probe power culpul supplies power to a high impedance probe which can be used to make bridging meanurements un circuits terminated al both ends.
High sensitivity
A low analyzer noise figure and narrow bandwidths give the 8553 B very high sensitivity. Signal levels as low as -140 dBm can be measured in 10 Hz bandwidth. and a preamplifier is available 10 further increase sensitivity by 16 dB . Video filtering in $10 \mathrm{kHz}, 100$ Hz and 10 Hz bandwidths will average the displayed noise. High analyzer sensilivity is required if distorion in an amplifier or oscil-

- Accurate amplitude measurements ( $\pm 1.25 \mathrm{~dB}$ )
- 10 Hz frequency with tracking generator
- 130 dB swept measurement range

lator is to bc measured as a funclion of outpul level. In EMI sludies. ficids sirengl) can be measured with a calibrated antenna.


## 70 dB dynamic range

The 8553 B has a 70 dB dynamic range when the signal level is properly condilloned al the inpul mixer. A wide dynamic range is necessary to nreasure small signals in the piesence of large ones. such as harmonic or intennoduation distortion or to monitor signals of widely varying amplitudes, such as in EMC. RFI, and surveillance work.

## 8443A Tracking Generator

A tracking generator, 8443 A , is available which covers the 100 kHz to 110 MHz frequency minee of the 8553 B . It has a huilt-in counter, and precision RF filtemators which are useful making substitution measurements.

## Frequency accuracy

In conjunction with an 8443A Tracking Genemator, the 8553B Specirum Analyzer can measure frequencies to an accuracy of - 10 Hz . When the 8443A is opemted in the "back analyzer" mode. the counter will read the frequency at a tumable marker which is generated on the analy/er CRT". The "rentore signal" mode is a more convenient way on menure signad frequencies in wide statts because the counter teads the signal frequency automatically without fine luning. The 8443A Tracking Generaior may also be usod exiemally as a 120 MHz diccif réading countcr.

## Swept measurements

The 8443A Tracking Gunerator can be used with the 8553B to make swept insertion low and renurn lons meaturements over the 100 kHz to 110 MHz frequenc: range. Bectase the signal source tracks the analyzer's tuning, up to 1300 OB dynamic measurement range is possible (ar 10 H ; bandwidth). Excellem system flatness ( $\pm 1.0 \mathrm{~dB}$ ) insures the accurate determination of swept response charncterstics.

## Specifications-with 8552B IF Section

Frequency specifications
Frequency range: $1 \mathrm{kHz-}) 10 \mathrm{MHz}(0-11 \mathrm{MHz}$ and $0-110 \mathrm{MHz}$ tuning ranges).
Scan width (on 10-division CRT horlzontal axia)
Per divislon: 18 calibrated scan widths from $20 \mathrm{~Hz} / \mathrm{div}$ to 10 $\mathrm{MHz} / \mathrm{div}$ in a $1,2,5$ sequence.
Preset: $0-100 \mathrm{MHz}$. autimatically selecis 300 kHz bandwidh IF Filler.
Zero; analyzer is fixed iuned receiver with selectable bandwidth.

## Frequency accuracy

Center frequency accuracy: the dial indicates the display center frequency within $=1 \mathrm{MHz}$ on the ( $)-110 \mathrm{MHz}$ tuning range: $\pm 200$ kHz on the 0-11 MH: tunine range with FINE. TUNE centered. and temperanre range of $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$.
Scan width accuracy: scan widths $10 \mathrm{MHz} / \mathrm{div}$ to $2 \mathrm{MHz} / \mathrm{div}$ and $20 \mathrm{kHz} / \mathrm{div}$ to $20 \mathrm{~Hz} / \mathrm{div}$ : Frequency error between two points on the display is less than $\pm 3 \%$ of the indicated frequency separation between the two points. Scan widths 1 MHz 'div to 50 $\mathrm{kHz} / \mathrm{div}$ : Frequency emor between (wo points on the display is less than $\pm 10 \%$ of the indicated frequency separation.

## Resolution

Bandwidth: IF bandwidths of 10 Hz 10300 kHz are provided in a 1. 3 sequence.

Bandwldth accuracy: individual IF bandwidths" 3 dB points calfibmited $\pm 20 \%$ ( 10 kHz bandwith $\pm 5 \%$ ).
Gandwldth s electivity: $60 \mathrm{~dB} / 3 \mathrm{~dB}$ IF bandwidh matios: 10 Hz 10 3 kHz bandwidths. $<11: 1.10 \mathrm{kHz} 10300 \mathrm{kHz}$ bandwidths. $<20: 1$ : 60 kB points on 10 Hz bandwidth separated by $<100 \mathrm{~Hz}$.

## Stability

Resldual FM stablized; sidebands $>60 \mathrm{~dB}$ down 50 Hz or more from CW signat, scan time $\geqslant 1 \mathrm{sec} / \mathrm{div}, 10 \mathrm{~Hz}$ bandwidth (typically less than I Hz peak-to-peak).
Resldual FM unstabillzed: < 1 kHz pcak-10-peak.
Nolse sidebands: more than 70 dB below CW sigoal, 50 kHz or more away from signal, with 1 kHz IF bandwidth.
Long term drift (after 1-hour warm-up), stabilized: $50 \mathrm{~Hz} / \mathrm{min}$. $500 \mathrm{~Hz} / 10 \mathrm{~min}$; unstabilized: $3 \mathrm{kHz} / \mathrm{min}$. $20 \mathrm{kHz} / 10 \mathrm{~min}$.

## Amplltude specifications

## Absoluta amplitude calibration range

Log: From - 1.30 to $10 \mathrm{dBm} .10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display or 2 dB/div on a 16 dB display.
Llnear: from $0.1 \mu \mathrm{~V} / \mathrm{div}$ to $100 \mathrm{mV} /$ div in a 1.2 sequence on an 8 -division display.

## Dynamic range

Average nolse level: <-110 dBm with 10 kHz IF bandwidth.
Video filter: averages displayed neise: $10 \mathrm{kHz}, 100 \mathrm{~Hz}$. and 10 Hz bandwidths.
Spurious reaponsas: are below a -40 dBm signal at the input mixer as follows: All image and ont-of-band mixime responses. harmonic and intermedulation distortion less than 70 dB down, 2 MHz 10110 MHz : less than 60 dB down. 1 kHz to 2 MHz . Third ordor intermodulation products less than 70 dB down. 1 kHz to 110 MHz (Signal separation $>300 \mathrm{~Hz}$ ).
Residual responses (no signal present at input): with inpyl atatemation at 0 dB: $<-110 \mathrm{dBm}(200 \mathrm{kHz}$ to 110 MHz ) $<-95$ dBm (20 kHz, 61 200 kHz ).

## Amplitude accuracy:

Frequency response
(Fhatess: attenuator sectings $>10 \mathrm{~dB}$ ): $1 \mathrm{kH}=10110 \mathrm{MHz}$ Amplitude Display

Log Linear

$\pm 0.5 \mathrm{~dB}$	$\pm 5.8 \%$
$\pm 0.25 \mathrm{~dB} / \mathrm{dB}$	$\pm 2.8 \%$ of
but net more than $\pm 1.5$	$=2.518$ dir
dB over the full	deflection

Log relerance level control: provides 70 dB range ( 60 dB below $200 \mathrm{kHz})$. in 10 dB steps. Accurate to $\pm 0.2 \mathrm{BB}(=2.3 \%$, Lincar Sensitivity).
Log reterence level vemier: provides comtinuous 12 dB range. Accurate to $\pm 0.1 \mathrm{~dB}(=1.2 \%)$ in $0,-6$, and -12 dB poxitions: otherwise $\pm 0.25 \mathrm{~dB}(\underline{2} .8 \%)$.
Amplitude measurement accuracy: $=1.25 \mathrm{~dB}$ with proper tech. nique.

## General

Inpul impedance: $50 \Omega$ nominal, BNC connector. Reflection coerficient $<0.13$ (I.3 SWR), impst attenuator $>10 \mathrm{~dB}$. A special $75 \Omega$ $8553 \mathrm{~B} / 8552 \mathrm{~B}$ is available.
Maximum Input level: peak or avenge power +13 dBm ( 1.4 V ac peak), $\pm 50 \mathrm{~V}$ dc. 1 dB compression point. -10 dBm .
Scan time: 16 internal scan rates from 0.1 ms/div to $10 \mathrm{sec} / \mathrm{div}$ in a 1. 2,5 sequence, or manual scan.

## Scan mode

int: analyzer repetitively scanned internally.
Ext: scan determined by 0 to +8 -voli extermill signal.
Manual; sean detecmined by fromt panel conirol.
Attenuator: 0 to 50 dB , is 16 dB inerements, coupled to Lag Reference Level indicator: atomalically maintains absolute calibration. Allenuator aceuracy $=0.2 \mathrm{~dB}$.
Power requirements: 100,120 . 220, or $240 \mathrm{~V}+5 \%$, $-10 \%$, 50 to 60 Hz , nomally less than 235 watus.
Welght: Model 85538 RF Section: Net, 5.5 kg ( 12 lb ). Shipping, 7.8 kg ( 17 lb ).
Dimenslons: $102 \mathrm{mmH} \times 236 \mathrm{~mm} \mathbf{W} \times 334 \mathrm{~mm} \mathrm{D}\left\langle\mathbf{4}^{\prime \prime} \times 8^{1 / \mathrm{H}^{\prime \prime} \times}\right.$ $13^{1 / 2^{\prime \prime}}$ ).
Tracking generator (8443A)
Frequency range: 100 kHz to 110 MHx .
Amplifude range: $<-120 \mathrm{dBm}$ to +10 d 8 m in 10 and 1 dB steps with a continnous 1.2 dB vernier.

## Ampllfude accuracy

Frequency response (flatness): $\pm 0.5 \mathrm{~dB}$.
Absolute: 0 dBm it $30 \mathrm{MHz}=0,3 \mathrm{~dB}$.
Output impedance: SOR, BNC connecior, ac coupled, refieclion cotfficient $\$ 0.09$ ( 1.2 SWR ) with output $\approx 0 \mathrm{dBm}$.

## Counter

Dlsplay: 7 digits with I digil over-range. Reads $10 \pm 10 \mathrm{~Hz}$ increments.
Resolution (gate lime): ) kHz ( 1 ms ), $100 \mathrm{~Hz}(10 \mathrm{~ms}), 10 \mathrm{~Hz}(100$ (ns).
Accuracy: $\pm 1$ count $\pm$ lime base accuracy.
Time base aging rate: $<3 \times 10^{-1} /$ day ( $0.3 \mathrm{~Hz} /$ day) after warmup.
Extermal counter inputs: 10 kHz to $120 \mathrm{MHz}, 50 \Omega 2 .-10 \mathrm{dBm}$ min.
Power: 100, 120, 220, or $240 \mathrm{~V}+5 \%,-10 \% .4810440 \mathrm{~Hz} 75$ walls.
Nat welght: $8443 \mathrm{~A}, 11.04 \mathrm{~kg}(24 \mathrm{lb}, 5 \mathrm{oz})$. Shipping weight 14.47 kg ( $31 \mathrm{lb}, 14 \mathrm{oz}$ ).
 $\times 131_{4}$ " .
Ordering information
Price
8553B RF Section $\$ 3250$
8443A Tracking Generalor $\$ 4775$

Callbrator amplltude: -30 dB m, $\geq 0.3 \mathrm{~dB}$.
Calibrator irequency: $30 \mathrm{MHz},=3 \mathrm{kHz}$.

- High resolution to 100 Hz
- Flat frequency response $\pm 1 \mathrm{~dB}$
- High sensitivity to $-122 \mathrm{dBm}(180 \mathrm{nV})$


8554 B


8444A

## 8554B Spectrum Analyzer

The 8554 B Spectrum Analyer RF Section covers the frequency range from $100 \mathrm{kH} \% 101250 \mathrm{MH} 2$. This broad frequency covenge allow's analysis from haseband through UHF navigation lands. Absolute amplitude calitration is maintained over the entire range. Some typical applications include power and frequency measurements on modulation, distonion and spurious outpus, frequency response measurements of filters, amplifiers, modulators and mixels. The analyzer can also be used to make noise measurements and EMI and EMC measurements using o calibrated amenna or current probe.

## Absolute amplitude calibration

Absolute amplitude measurements can be made from +10 to -122 dBm wilh $\pm 2.8 \mathrm{~dB}$ accuracy. This accuracy can be increased to $=1.75 \mathrm{~dB}$ using IF substitution. The display is calibrated in log dBm to obtain a wide display range and linear (voltage) for measurements requiring maximum resolution. The top graticule line on the CRT is a calibrated reference level which can be changed by the frum pancl controls from $+1010-72 \mathrm{dBm}$ for IF substitution messurements. Amplitude calibration is dependent upon the proper relationship between sweep widib, sweep time, resolution bandwidth and video fillering. An uncal waming light is present to indicate an uncalibrated situation.

## Flat frequency response

In broadband use, the wide bandwidilis allow fast swecping of the entire spectrum. The analyzer is eximely flat ( $\pm 1 \mathrm{~dB}$ ) overits entire range, allowing direct comparisons of signal amplitudes displayed on the CRT. A 0 to 50 dB input allemuator is provided to prevent overdriving the input mixer.

## Resolution

The low residual FM ( $<100 \mathrm{~Hz}$ peak-10-peak) of the 8554 B makes possible resolution bandwidths as narrow as 100 Hz . This enables resolving closely spaced signals such as 1 kHz and 400 Hz sidebands. Bandwidths range from 100 Hz to 300 kHz in a 1. 3. 10 sequence making it eisy to select an optimum bandwidih to scan width ratio. The resolution bandwidths consist of synehronously suned "gaussian" shaped filters to enable faster sweeping for any

- Variable persistence display
- Companion Tracking Generator
- External counter capability

given bandwidth. In addition. these fikers have narrow shape faclors making it possible to measure closely spaced signals differing greally in amplitude.


## Sensitivity

The high sensitivity ( -122 dBm in 100 Hz bundwidth) and wide spurious-free measurement range ( $>65 \mathrm{~dB}$ ) of the 8554 B means accurale measurements can be made on low Icvel signals and signals varying widcly in amplitude. For example, moduhation as low as $0.2 \%$ can be measured. Low level batmonic and intermodulation distortion. spectrum surveillance and EMI are just a few of the measurements possible. A video filter is provided in the IF section to average displayed noise and simplify the measurement of how level signals.

## Autometic funing stabillzation

The 8594 B Spectrum Analyzer is automatically stabilized in narrow scans. This gives the slability ( $<100 \mathrm{~Hz}$ peak-Io-peak residual FM) needed for high resolution analysis. Stabilization is accomplished by phase locking the LOs (local oscillators) to a erystal reference in sean widths 10 MHz and below. No signal recentering or checking for stabilization is required because the signal remains on screen when phase locked.

## 8444A Tracking Generator

The 8444A Tracking Generator is a signal source, which. when connected to the 855.7 B Spectnim Analyzer, has an outpul whose frequency is the same as the swepi frequency of the analyzer. The tracking generator is ised as a signal source to measure the frequency response of a devicc. It can also be used for precision frequency measurements. An external counter oulpul is provided on the $844 \cdot 4 \mathrm{~A}$ and the frequency of unktrown signals as well as the frequency of any point on a frequency response curve can be measured. The wse of the 5300/5305B Combrer is suggested for frequency measurements to 1300 MHz .
The tracking generator-spectrum analyzer system can be used to supply test signals for other devices as a sweeper. The swecp widths and sweep rates are controlled from the spectrum analyzer and the oulpul level from the tricking generator.

## 8554B Specifications-with 8552B IF Section

Frequency specifications
Frequency range: $100 \mathrm{kH} \approx 10 \quad 1250 \mathrm{MHz}$.
Scan whth (on 10 -division CRT horizontal axis)
Par division: 15 calibrited scisn widhts from 100 MHzidiv 102 $\mathrm{kHz} /$ div in a 1.2 .5 sequence.
Preset: ()-1250 MHz, iutomatically selects 300 kHz bandwidth IF filter
Zero: analyzer is fixed-luned receiver.
Frequency accuracy
Center frequency accuracy: the dial indicates the display center frequency with 10 MHz .
Scan wldth accuracy: frequency error hetween two points on the display is less than luse of the indicated separation.

## Resalution

Bandwidth: IF bandwidihs of 0.1 to $300 \mathrm{kH} \%$ provided in a 1,3. iosequence.
Bandwldth aceuracy: individual IF bandwidths 3 dB points calibruted to $=20 \mathrm{~S}:(10 \mathrm{kHz}$ bandwidth $=5 \% \mathrm{~m}$ ).
Bandwidth selectivity: $60 \mathrm{~dB} / 3 \mathrm{~dB} 1 F$ bandwidth matio <20: 1 for IF handwidehs from 10 kHz to $200 \mathrm{kHz} .60 \mathrm{~d} 8 / 3 \mathrm{~dB}$ bandwidh ratio < 11 : ) for IF bandwidths 100 Hz to 3 kHz .
Stabllity (reslduai FM)
Stablifzed: < 100 Hz qcak-to-penk.
Unstabilized: $<10 \mathrm{kHz}$ peak-to-peak.
Nolse sldebands: mole than 70 dB below CW signal, 30 kHz or more atway from signal, with 1 KHz IF bandwidth.
Amplifucle specilicantions
Absolute amplitude calibrallon range
Log: firom - I22 ro $+10 \mathrm{dBon} .10 \mathrm{~dB} / \mathrm{div}$ on a 70 dB display. or 2 dB/div on a 16 dB display.
Linear: from $0.1 \mu \mathrm{~V} / \mathrm{div}$ to $100 \mathrm{mV} / \mathrm{div}$ in y 1,2 sequence on an $8-$ division display.
Dynamic range
Average noise level: $<-102 \mathrm{dBra}$ with 10 kHz IF bandividth.
Spurlous responses: all image and out-of-band mixing responses, harmonic and intermodutarion distortion products are mare than 65 dB below a -40 dBm signal at the inpur mixer.
Residual responses (no signal present at Input): with inpu: attenuation at $0 \mathrm{~dB}:<-100 \mathrm{dBm}$.
Amplifude accuracy
Frequency response
(flathess)
$1(0) \mathrm{kH} 2$ to 1250 MHz
Switching belween
bandwidiths (at $20^{\circ} \mathrm{C}$ )
Amplitude display

Log
Linear -

$\pm 1 \mathrm{~dB}$	$\pm 12 \%$
$\pm 0.5 \mathrm{~dB}$	$\pm 5.8 \%$
$\pm 0.25 \mathrm{~dB} / \mathrm{dB}$ but not	$2.89 \%$ of
more thin $\pm 1.5 \mathrm{~dB}$	full 8 div
over the full 70 dB	deflection

## Callbrator output

Amplitude: $-30 \mathrm{dBm}, \pm 0.3 \mathrm{~dB}$.
Frequency: $30 \mathrm{MHz}, \pm 3 \mathrm{kHz}$.
Lag relerence leval control: provides 70 dB range ( 60 dB below 200 kHz ), in 10 dB steps. Accurale to $\pm 0.2 \mathrm{~dB}( \pm 2.3 \%$. Linear Sensitivity).
Log reference level vernler: provides continuous 12 dB range. Accurate to $\pm 0.1 \mathrm{~dB}( \pm 1,2 \%)$ in $0 .-K_{1}$ and $-12 d B$ positions: olherwise $=0.25 \mathrm{~dB}( \pm 2.8 \%)$.
Amplitude measurement accuracy: $=1.75 \mathrm{~dB}$ with proper tech. nique.
RF input specifications
input Impedance: $50 \Omega$ nominal, Typical reflection coeficient $<0.30$ (I. 85 SWR). input attenuator $\geqslant 10 \mathrm{~dB}$.
Mexímum input level: peak or average power $\div 13 \mathrm{dBan}$ ( 1.4 V ac peak), $\pm 50 \mathrm{Vdc}$.

General
Scen time: 16 intemal scan rates from $0.1 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$ in a

1. 2.5 sequence, and manual scan.

Scan time accuracy
$0.1 \mathrm{~ms} / \mathrm{div}$ to $20 \mathrm{~ms} / \mathrm{dlv}:=10 \%$.
$50 \mathrm{~ms} / \mathrm{div}$ to $10 \mathrm{~s} / \mathrm{dlv}:=20 \%$.
Welght
Model 8554 BF section: net, 4.7 kg ( $10 \mathrm{lb}, 4 \mathrm{oz}$ ). Shipping 7.8
kg 117 lb ).

## 8444A Specifications

Specifications for swept frequency response measurements
Dynamic range: $>90 \mathrm{~dB}$ from spectum analyzer I dB gain compression point to average noise level (approximately -10 dBm 10 - 100 dBm ). Spurious responses not displayed.

Gain compression: for -10 dBm signal level at the input mixer. Eain compression <1 JB.
Absolute amplutide calibration range:
Tracking generator (drive level to rest device: 0 to -10 dBm contimusty variable. 0 dBm absolitely calibrated to $=0.5 \mathrm{~dB}$ at 30 MHz .
Frequency range: 500 kHz to 1250 MHz .
Frequency resolutlon: 1 kHz .
Stabllity
Residual FM (peak-to-peak); stabilized. $<200 \mathrm{~Hz}$; unstabilized. $<10 \mathrm{kHz}$.

## Amplifude accuracy

System frequency response: $\pm 1.50 \mathrm{~dB}$.
Tracking generator callbration: 0 dBm at $30 \mathrm{MHz} 10 \pm 0.5 \mathrm{~dB}$.
Specificatlons tor precision srequency measuremente
Frequency accuracy: for unknown signals $=10 \mathrm{kHz}$. (Tracking drin typically $50 \mathrm{kHz/} 10$ min after 2 -hour warm-up). For points on frequency response curve, counter accuracy $\pm$ Residual FM (200 Hz ).

## Counter mode of operation

Manual scan: scan detemined either by frant panel control of 8552 1 IF Section or by extemal scan signal provided by the 8444 A.
Zero scan: analyzer is fixed-luned receiver. Counter reads center Frequency to accuracy of tracking drif.
Counter output fevel: typically 0.1 V mss.
Specifications for sweep/CW generator
Frequency: conirolled by specinm analyzer. Range 500 kHz to 1250 MHz with 8554 B . Scan widths are as enumerated on this page.
Frequency accuracy: $=10 \mathrm{MHz}$ using spectrom analyzer tuning
dial. Can be substantially improved using external counter outout.
Flatness: $\pm 0,5 \mathrm{~dB}$.
Spectral purity
Residual FM (peak-(t)-peak): 200 Hz .
Harmonic distortion: 25 dB below output level (typical).
Nonharmonic (spurious) signals: $>35 \mathrm{~dB}$ below outpul level.
Long temm stability: drif typically less than 30 kHz /hour when stabilized after 2 -hour warm-up.
Sweep width: $20 \mathrm{kHz}, 101000 \mathrm{MHz}$.
Sweep rotes: sclected by Scan Time per Division on specirum analyzer.
General
Temperature range: operation. $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. storage $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$.
EMi: conducted and radiated energy is within the requirements of MIL-16181D.
Power: 115 V and $230 \mathrm{~V}, 48$ so 440 Hz . 12 watts max.
Welght: net, 7.1 kg ( $15 \mathrm{~m}, 100 \%$ ), Shipping. 9.5 kg ( 2 l lb ).
Ordering information
Price
8554B RF Section \$4300
8444A Tracking Generator $\$ 3500$

- Absolute amplitude calibration
- High sensitivity $10-125 \mathrm{dBm}(2.5 \mathrm{nV})$
- Resolve signals to 100 Hz


8555A


8444A


844 $\overline{6} \overline{8}$ Opt 002,003

## 8555A Spectrum analyzer

The 8555A spectrum analyzer covers 10 MHz to 18 GHz with fuodamental and harmonic mixing. A single extemal waveguide mixer can provide 12.4 GHz 1040 GHz coverage. This broad frequency range coupled with its high sensitivity and resolution baod width allow a variety of power measurements. Frequency reeasurements, modulation and noise analysis on almost every type of design module: the frequency response of amplifiers, mixers, and modulators, response and alignment of filters isolators. couplers and timiters. With wide sesm widehs and calibrated amplitude the 8555A is ideal for spectrum surveillance and RFI/EMC field stength analysis with a calibrated anlenna.

## Absolute amplitude calibration

The 8555A offers absoiuse amplitude calibration from +10 dBm to -125 dBm over the 10 MHz to 18 GHz frequency range. This eapability makes possible cot only absolute signal power messurements, but also the measurement of the power differential berween two signals separated by as much as 18 GHz . The paralax free CRT graticule can read as a log scale (dBm) or a linear scale (volts) with a frequency response accuracy of $\pm 1.5 \mathrm{~dB} 206 \mathrm{GHz}$ and $\pm 2.0 \mathrm{~dB}$ to is GHz . The top line of the display is established as the refereace level by front panel controls. A light wams of an uncalibrated condiLion.

## High sensitivity

The high sensitivity from -125 dBm (fundamental mixing) to -100 dBm (4Lh harmonic) in a 100 Hz bandwidh makes it possible 10 measure large values of altenuation. out of band fiter and a mplifier response, weak transmilted signa's in surveillance work or microvolt signals in EMC applications. A pose detection filler with 10 kHz .100 Hz and 10 Hz position averages any noise and yields an extremely clan observed irace.

- Scan up to 8 GHz full screen
- 100 dB distortion free dynamic range with preselector
- Companion tracking generator to 1.3 GHz



## High resolution

Due to low residual FM ( $<100 \mathrm{~Hz}$ peak-10-peak) the 8555A offers outstanding 100 Hz resolution which allows the users $t 0$ resolve closely spaced signals and low level sidebands resulting from a I $\mathrm{k} . \mathrm{Hz}$ modulating signal. The resolution capability makes it powsible 10 analyze spurious low frequency modulation of microwave signals. The high stability of the analyzer results in more accurate measurements of residual FM. Iongteren drift. phase noise and specrral purity. Furthermore, the Gaussian shape of the IF filters allow fastest sweep for a given resolution bandwidth.
Automatic tuning stabilization
When scanning over a relauvely narrow frequency range, whe fre. quency stability of the andyzer's intemal tocal oscillators become important for high resolution and frequency measurements. For this reason the 8555A is equipped with a tuning stabilizer circuir which automatically phase locks the analyzer to a crystad oscillator. Display jtter and signal recentering are virtwally eliminated.
Added input mixer protection
To prevent an inadvertent 0 dB setting of the input attenuator, a pushbutton lockout is provided on the attenuator knob.

## 8445B Tracking preselector, 10 MHz to 18 GHz

The 8445 B tracking preselector is a YIG tuned filter coupled to the 8555A spectrum andyeer in order to be tuned exactly to the analyzer's receplion frequency. The preselccior eliminates harmoric mixing image and multiple responses from 1.8 to is GHz . The result is a wide messurement range and an end to signal identification. Clean, full band sweeps possible in scans of $2,4,6$ or 8 GHz depending upon the band selected.

Below 1.8 GHz the image and multiple responses are eliminated by a low pass filter in the preselector.

An optional live digit LED display with I MHz resolution allows accurate measurement of either the display frequency at the display marker in full scan mode or the center frequency in per division scan.

## 8444A Tracking Generator 10 to 1300 MHz

The 8444A Tracking Gencrstor provides a level, calibrated RF signal which is exactly the cuned frequency of the spectrum analyzer. This enables swept frequency tesis such as frequency response and relum loss meiturements up to $1300 \mathrm{M} . \mathrm{Hz}$. With an extemal counter the frequencies of unknown signals on points along a frequency response curve can be made.

## 8555A Specificatlons - with 8552 IF Section

Frequency speciflcatlons
Frequendy renge: $0.01-40 \mathrm{GHz}$.
Tuning range
With Internal mixer: $0.01-18.0 \mathrm{GHz}$.
With external mixer: $12.4-40 \mathrm{GHz}$.
Harmonic mixing mode
Stgnal IdentHlcation: not nomally required with preselector.
Signal identifier provided for positive identification of all responses. Rejection of images and multiple responses with preselector is $>70 \mathrm{~dB}$.
Scan width
Full sean: the width of the scan depends on mixing mode. Scan width $=n \times 2000 \mathrm{MHz}$, where n is the mixing mode; e.g. for $\mathrm{n}=$ 2, scan width is 4 GHz . Maximum scan widh full screen is 8 GHz with coaxial mixcr. Preselector necessary to make wide scans usable.
Per division: 16 calibrated scan widths from $2 \mathrm{kHz} / \mathrm{div}$ to 200
MHz/div in a $2,5,10$ sequence.
Zero acan: analyzer becomes fixed quned receiver.
Frequency accuracy
Dlal accuracy: $n \times( \pm 15 \mathrm{MHz}$ ) where $n$ is the mixing mode.
Sean accuracy: frequency ertor between two points on the display is less than $\pm 10 \%$ of the indicated separation.
Stabllity: residual FM stabilized <100 Hz (peak-lo-peak) (fundamental mixing).
Nolae sidebanda: for fundamental mixing. More than 70 dB below CW signal 30 kHz or more away from signal. with 1 kHz IF bandwidth and 100 Hz video filter.
Frequency drift
Long lerm dift: al fixed center frequency ofter 2-hour warm-up (Typical).
Stabillzed: $\pm 3.0 \mathrm{kHz} / 10 \mathrm{~min}$.
Unstabllized: $\pm 25 \mathrm{kHz} / 10 \mathrm{~min}$.
Stabilization range: first LO can he automatically stabilized to inemal erystal reference for scan widths of 100 kHz /div or less.
Resolution
Bandwldth range: selectable 3 dB bandwidths from 100 Hz to 300 kHz in a 1 , 3، 10 sequence.
Bandwldth shape: approximately gaussian.
Bandwledh setectlvity: $11: 1$ so $20: 1(60 \mathrm{~dB} / 3 \mathrm{~dB}$ ).
Bandwldth accuracy: individual IF bandwidth 3 AB points calibrated $10 \pm 20 \%$ ( 10 kHz bandwidth $\pm 5 \%$ ).

## Amplitude specifications

## Measurement range

Log reference level: from $-60 \mathrm{dBm} 10+10 \mathrm{dBm}$.
Linear sensitlyty: from $0.1 \mu \mathrm{~V} / \mathrm{div}$ to $100 \mathrm{mV} / \mathrm{div}$.
Sensittulty and trequency rasponse whith Internal coaxtal mixer
Average nolse level: specified for I kHz bandwidth.
Frequency response with 10 dB input allenthtor seiting:

frequency Range ( $\left.\mathrm{OH} \mathrm{H}_{4}\right)$	Mant Mods (n)	Average Kolse Level (dBm mox)	frequancy ${ }^{2}$   Respome   (dB nex)
0.01-2.05	$1-$	-115	- 2.0
2.50)= 6.15	2-	-117	$\pm 10$
$2.60-4.65$	4	-117	$\pm 1.0$
4.11-6.15	+	-115	-1.0
4.13-10.25	$3-$	- 103	-15
$6.17-10.25$	$\stackrel{2+}{4+}$	-105 -95	$\pm 1.5$
8.23-14.35	3	-95 -100	$\pm 2.0$
1029-1800	$4+$	- 90	$\pm 2.0$

-Includes mofe flequency reaponsa RI' attenuate trequancy resgonse, muxing mode gain variahon, RF indul vswr.
Sensittvity and requency response with 11517A external wayegulde mixer and approprlate wavegulde iapera

## Average nolse level 10 kHz bandwidth (d8m typical):

$124-18.0$	6.	-85
$18.0-26.5$	6.	-80
$26.5-40.0$	10	-6.5

Frequenoy response: iypically $\pm 3 \mathrm{~dB}$ over $; \mathrm{GHz}$ frequency scans.
Realdual responses: referred to input on fundamental mixing: $<-90 \mathrm{dBm}$.
Dlaplay range
Log: $70 \mathrm{~dB}, 10 \mathrm{~dB} / \mathrm{div}$ and $2 \mathrm{~dB} /$ div log expand on a 16 dB display. Linear: from $0.1 \mu \mathrm{~V} / \mathrm{div}$ to $\$ 00 \mathrm{mV} / \mathrm{div}$ iv a 1,2 sequence on an 8 -division display.
Spurious responses due to second harmante distorion whith preselector:

Irequancy Range	Poww Incldo is of Inpor Hixe	7nd Kamonic Bhstorlion
$0.01-1.85 \mathrm{GHz}$	$-40 \mathrm{dBm}$	$-63 \mathrm{~dB}$
1.85-18.0 GH2	0 dBm	$-10048$

Spurlous responses due to third order intermodulation dlatorilon with preselector:

froquency Pang	Signal Saparsilde	Pow facident an inpur Muer	Thard Draer Iatermodulation Distortion
$0.01=1800 \mathrm{CH}$	$\begin{aligned} & \mathrm{S} 1 \mathrm{MHz} \\ & \mathrm{c} 2 \mathrm{M} \end{aligned}$	- 30 dBm	-70 dB
0.01-1.85 CHL	$>70 \mathrm{MHz}$	$-30 \mathrm{dBm}$	- 70 di
185.180 $\mathrm{CH}_{2}$	$\times 70 \mathrm{MHX}$	0 HHm	-100 dif

Video filter: post detection filter used to average displayed noise. Nominal bandwidths: $10 \mathrm{kHz}, 100 \mathrm{~Hz}$, and 10 Hz .
Galn comprassion: for internal mixer gain compression <ldB for
-10 dBm peak or average signal level to input mixer. 11517 A External Mixer ( $12.4-40 \mathrm{GHz}$ ) gaid compression $<1 \mathrm{~dB}$ for -15 dBm peak or average signal level to input mixer.

## Amplltude accuracy

IF gain varlation with different bandwidih settings: (at $20^{\circ} \mathrm{C}$.)

Log: $=0.5 \mathrm{~dB}$.
Linear: $=5.8 \%$.
Amplifude display
Log: $\pm 0.25 \mathrm{~dB} / \mathrm{dB}$, but not more than $\pm 1.5 \mathrm{~dB}$ over the full 70 dB
display range.
Linesar: $\pm 2.8 \%$ of full 8 -division deffection.
Log reference level: accurate $10 \pm 0.2 \mathrm{~dB}(=2.3 \%$ linear sensitivi(y).
Log reference level vemier: accurate $10 \pm 0.1 \mathrm{~dB}(1.2 \%)$ in 0 .
-6 . and -12 dB positions: otherwise. $=0.25 \mathrm{~dB}( \pm 2.8 \%)$.
Inpur attencetor range: $0-50 \mathrm{~dB}$ in 10 dB steps, manual safery lockout for 0 dB position.

Frequency response: iypically $\pm 0.6 \mathrm{~dB}$ from 10 MHz to 18 GHz .
Callbrator output: ampliiude $-30 \mathrm{dBm} . \pm 0.3 \mathrm{~dB}$. Frequency 30 $\mathrm{MHz} \pm 3 \mathrm{kHz}$.
ADsolute callbration accuracy: overall accuracy is a function of measurement technique. With the appropriate technique, absolute accuracy of $\pm 1.6 \mathrm{~dB}$ (fundamental mixing) and $\pm 2.6 \mathrm{~dB}$ (4th harmonic mixing) is achievable.
Input characterlstics
Input Impedance: 50 ohms nominal ( $0.01-18 \mathrm{GHz}$ ).
Reflection coeffelent: $<0.130$ ( 1.30 SWR) for inpul RF stlenuator sertings $\geqslant 10 \mathrm{~dB}$.
Maximum Input level: peak or average powcr $+13 \mathrm{dBm}(1.0 \mathrm{~V}$ ac rms) imeident on mixer ( +30 dBm with Opt 002), +33 dBm incident on input altenuator.
RF Input connector: type $N$ female.
LO emisslon: - 10 dBm without preselector. -80 dBm with preselector over recommended operating ranges ( 10 dB input attenualor selling).
Speclications with option 002; internal Ilmiter Installed All specifications are the same as for the standard unit except the following:

## Maximum input lavel

Conllmuous: $1 \mathrm{~W}(+30 \mathrm{dBm})$.
Pulse: 75 wats peak, pulse widit $\leqslant 1 \mu \mathrm{~s} .0 .001$ duly cycle.
Reflection coetficlent: <0.33 (2.0 SWR).
Frequency reponse (Ilatness): $< \pm 0.5 \mathrm{~dB}$ degradation in response. $0.1-12.4 \mathrm{GHz}$.

## General

Scan time: 16 onternal scan rates from $0.1 \mathrm{~ms} /$ div to $10 \mathrm{sec} / \mathrm{div}$ in a 1. 2, 5 sequence.

Power requlrements: $100,120,220,240 \mathrm{~V}+5 \%-10 \%, 50-60 \mathrm{~Hz}$. normally less than 225 watts (varies with plug-in units used).
Size: $102 \mathrm{H} \times 226 \mathrm{~W} \times 344 \mathrm{mmD}\left(4.0^{\prime \prime} \times 8^{7 / \mathrm{H}^{\prime \prime}} \times 13.5^{\prime \prime}\right)$.
Welght: net. 16.8 kg ( 14 lb .15 oz ). Shipping. 8.7 kg ( 19 lb ).

## 8445B Tracking Preselector

Frequency speciflcatlons
Frequency range: $\mathrm{DC}-1.8 \mathrm{GHz}$ low-pass filer. $1.8-18 \mathrm{GHz}$ tracking filler.
Tracking fllter 3 dB bandwidth: typically $20-49 \mathrm{MHz}$.
Tracking filter skint roll-off: characteristics of a three-pole filter. (Nominal: $18 \mathrm{~dB} /$ octave.)

## insertion loss

	Prequency	Inxertion Lost (Excepe: Opl. 004)	Insertion Loss (0pl. 004)
Low. Pats Filter	DC -1.8 CHL   @ 2.05 GHz	$\begin{aligned} & =2.5 \mathrm{~dB} \\ & >50 \mathrm{~dB} \end{aligned}$	-
Trarkung Filleq	$\begin{aligned} & 18-12 \mathrm{GHz} \\ & 12-18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <868 \\ & <10 d 8 \end{aligned}$	$\begin{aligned} & \angle 781 \\ & \angle 80 \\ & \hline 80 \end{aligned}$

[^33]Typlcal preaselector minimum ineertion loea at $25^{\circ} \mathrm{C}$.
PRESELECTOR INSERTION LOSS


Out-of-band rejection: for YIG filter 1 GHz from center of passband $>70 \mathrm{~dB}$.
Dlgital Irequency readoul (Optlon 003):
Function:
Full scan mode: displays frequency at invened marker.
Per division scan: dísplays center frequency.
Manuel or remote operation of preselector: displays uned
frequency of filter.
Resolution: 1 MHz .
Accuracy: $0.01-1.0 \mathrm{GHz}:=6 \mathrm{MHz}$.

$$
1.0-4.0 \mathrm{GHz}:+8 \mathrm{MHz}
$$

$$
4.0-18 G H z:=0.2 \%
$$

Input specifications
Input connector: precision Type N female.
Input VSWR: typically $<2.0$ ( $1.8-18 \mathrm{GHz}$ ).
LImiting level: (maximum input level for $<1 \mathrm{~dB}$ signal compression) $>+5 \mathrm{dBm}$.
Damage level: >+20 dBm.

## General

Remote function; YIG filter frequency can be set by extertally supplied voltage.
Power requlrements: $100,120,220$ or $240 \mathrm{~V}+5 \%-10 \%$. 48 to 440 Hz , less than 110 watts.
Slze: $88.2 \mathrm{HI} \times 425 \mathrm{~W} \times 467 \mathrm{mmD}\left(3^{13 / 322^{\prime \prime}} \times 16^{4} / 4^{\prime \prime} \times 18^{3 / 4} 9^{\prime \prime}\right)$.
Welght: net, 8.8 kg ( 19 lb 5 oz ). Shipping. 11.9 kg ( 26 lb ).

## 8444A Tracking Generator

Frequency range: 10 MHz io 1300 MHz .
Frequency resolution: 1 kHz .
Aesidual fM (peak-to-peak): 200 Hz (stabilized).
Amplitude range
Spectrum analyzer display: from - $130 \mathrm{dBm} 10+10 \mathrm{dBm} .10$
$\mathrm{dB} / \mathrm{div}$ on a 70 dB display or $2 \mathrm{~dB} / \mathrm{div}$ on a 16 dB display $(8552 \mathrm{~B}$ only).
Tracking generator (drlue level to test devica): 0 to -10 dBm continuously variable.
Amplitude accuracy
System frequency response: $=1.50 \mathrm{~dB}$.
Tracking generator calibratlon: 0 dBm al 30 MHz to $=0.5 \mathrm{~dB}$.
Dynamic range: $>90 \mathrm{~dB}$.
Counter output: rypically 0.1 V ms.

## General

Power: 115 V and 230 V , 4810440 Hz , 12 walts max.

Welght: net, 7.1 kg ( 1 llb .1002 ). Shipping. 9.5 kg (21 lb).
Ordering Informatlon Prlce
8555A Tuning Section $\$ 7900$
Opt 001: APC-7 connectors add $\$ 40$
Opt 002: Intemal limiter add $\$ 210$
Opt 005: Video upe
8445B Trucking Preselcetor. dc. 18 GHz add \$105

Opl 001: APC-7 connectors
$\$ 3050$
Opt 002: Add manual controls
Opt 003: Add digital frequency readout
Opt 004: Delete low-pass Eiler add $\$ 80$ add \$670 less $\$ 425$
Opt 005: Delete intenconneal rigid coax
less $\$ 50$
8444A Tmeking Gencralor. $10 \mathrm{MHz}-1300 \mathrm{MHz}$
$\$ 3500$
11517A External Mixer (tape section req ${ }^{\circ}$ )
$\$ 250$
11518A Tape Section, 12.4 to 18 GHz
$\$ 160$
J1519A Tape Section, 18 to 26.5 GHz
$\$ 160$
$\$ 160$



B750A


8447 Series

## 8750A Storage-Normalízer

The 8750A's digital storage allows the user 10 maintain a fickerfree display, even at slow sween speeds. Trace comparisons are simplified with the dual memory by simultaneonsly display ing two races. When used with a tracking gencrator, system frequency response variations may be stored in memory and automatically removed from the measuremeni (nomalization).

The 8750A in directly compatible with the HP 8557A. 8558B. and 8565A spectrum analyzers, as weلl as mosi HP network analyzen. and requires a conventional low-frequency oscilloscope to be uscd with the 140 series analyzers. (Sce page 450.)

## 8447 Serles amplifiers ( $0,1-1300 \mathrm{MHz}$ )

The 8447 Series amplifiers feature low noise and wide bandwidth, This makes them ideal for improving spectrum analyzer sensitivity and noise figure while providing inpur isolation. Accurate measurements over a wide frequency range are issured due to the broad frequency coverage. flat frequency response and low disiontion of these amplifier. (See page 31).
$71694 A 75 \Omega$ Matching tranaformer ( $3-500 \mathrm{MHz}$ )
Allows measurement in $75-0 \mathrm{hm}$ systems while retaining amplitude calibration. VSWR is less than 1.2, and insertion loss is less than 0.75 dB . Note: Also see Options 001 and 002 for $75 \Omega$ versions of 8557A and 8558B.
1121A Active probe ( $0.1-500 \mathrm{MHz}$ )
Provides high impedance ( $>100 \mathrm{kR}$ shunted by $<3 \mathrm{pF}$ ) inpul to spectrum analyzer for measurements on sensitive circuils. Probe power is supplied by most HP Spectrum Analyzers and flat response with unity gain assures accurate, convenient measurcments. (See page 449).
11517A External mixer
To extend the frequency range or the 8555A and 8565A analyzers 1040 GHz . Taper sections for $12.4-18 \mathrm{GHz}(11518 \mathrm{~A}), .8-26.5 \mathrm{GHz}$ ( 11519 A ) or $26.5-40 \mathrm{GHz}$ (11520A) bands are required.
11893A Limbler ( $0.1-12.4 \mathrm{GHz}$ )
The Model 11693 A Limiter provides input protection for a variety of instruments in general applications (usable from 0.01 to 18 GHz ). For example, the input cirevits of spectrum analyzers. samplers, or amplifiers may be protected for inputs up to 75 walts peak or I watt average power. Also, signal generators can be protected from applicalion of reverse power.

## 8721A Directlonal bridge

For making return loss measurements from 100 kHz to 110 MHz . (See page 449 under "11652A: Dírectional bridge").
B408A Frequency comb generator
Produces frequency markers at I. 10 , and $100 \mathrm{MHz}_{\text {I }}$ increments accurate to $=0.01 \%$. Exiemnd oscillator can be used to generate precision inlerpolation sidebands. Comb is usable to beyond $S \mathrm{GHz}$.

## 197A Oscllioscope camera

For a permanent record of your measurements. The 10367A Adapter is required to use the camera with 182 -senies displays. (See page 175).

Ordering Information	Price
11694A $75 \Omega$ Matching Transformer	\$75
11517A Extemal Mixer (Mixer only)	\$250
11518A/11519A/11520A Waveguide Taper Sections	\$160
11693A Limiler	\$235
8406A Frequency Comb Generalor	\$875
8750A Storage-Normalizer	\$1450

- 

Phase Noise Measurements Close to Carrier

- Fractional Frequency Deviation With Low Dead Time
- Wide Input Frequency Range 500 KHz to 18 GHz
- Automatic Operation
- Complete Application Programs
- Fully Integrated and Tested


5390A Frequency Stability Analyzer

## General Description

The 5390A Frequency Stability Andyzer is a powerful, fully automalic calculator conirolled system designed to meet the demand for measuring the frequency instabilities of various rypes of oscillators and signad sources. Two different measures of frequency instabilities can be performed by the systern: one, a time domain measure, is the two sample varience of fractional frequency fluctuations (fractional frequency deviation), the other, a frequency domain measure is the spectral density of phase lucuations (phasc noise. s $\$(\mathrm{n})$.
The 5390A uniquely integrates the:

- high resolution ( 2 nsec ) time measuring capability of S345A Electronic Counter
- bigh speed measurements and extended gate time control of the 5358A Measuremment Storage Plug-In
- low noise heterodyne down conversion of input signals of the 10830A Mixer/[F Analyzer
- the powerful and friendly capabilities of the 9825 Computing Controller
- system Seff test and verification capability provided by the 1083IA Test Tone Generator
- interactive application programs
into a system that provides exceptional capabilities to measure two of the most common measures of the frequency instabilities of oseillators.
The system offers a mulitude of capabilities and is invly many instruments in one. Primasily it is a special purpose instrument for measuring either fractional frequency deviation or close-in phase noise. In addition it is a general purpose HP-IB system featuring the 5345A Counter under the control of the powerful 9825A Calculator able to perform a large variety of automatic measurements (see application note series 174).


## Frequency stability measurements

The 5390A is a complete tool for measuring either fractional fro quency deviation or close in phase noise including complete signal processing provided by the 10830A Mixer/IF Amplifier. The input signats from the test and refereoce oscillators are heterodyne down converted to an audio range beat note between) Hz and 100 KHz . This technique greatly improves the system resolution. The 10830A can accomodate a wide range of input srequencies from 500 KHz to 18 GHz in three bands with provision for external mixers.
The softwane package supplied facilitates the making of both these measurements. The programs are casy to use due to the interactive onode of operation. The special function keys of the calculator are used to select the desired mode of operation much like the controls
of an ordinary instrument. A typical measurement sequence involves connecing the test and reference oscillators. specifying the measurement parameters (which can be saved and retrieved from a data cartidge) and iniliating the measurements. Once started the system is automatic and runs to the completion of the specified measurements unatiended.

System performance verification $i 5$ built in, being supplied by the 10831A Test Tone Generalor, Used with either of the applciation programs. the system's noise floor can be verified at a 10 KHz beat frequency and a good functional lest of the system's operation performed. Diagnostic programs are also supplied for 9825. S345A/ 5358 A combinstion, and the optional 59309A. These can be used to isolate problems to the individual instrument level and aid the trouble shooting of each. Functional verification of each component of the system is achieved to a very bigh confidence level.

Boch programs fealure convenient output of results on the 9871A Princer/Plotter. All the mensurement parameters are printed out including the date and time tautomatic when the clock option is included) along with the results in numerical form. The results can then be outpul in graphical form to the 9871A and plotted. The user has complete control over plot parameters so the data can be arranged in the most convenjent form. Mensurement results can also be saved on a dala cantidge providing a means to plot several sets of data on the same graph.

## Fractional trequency devlation measurement capabillites

This widely recognized time domain specification of frequency stability is fast, simple, and easy to measure with the 5390A. Control of the measure ment is accomplished by the operator specirying measurement parameters at the keybord of the 9825A. The Tau values. number of samples to be averaged, carrier frequency, measurement bandwidth can all be specified. To make the system even more versatile, the Tau values can be generated by specifying each point or by setting-up a sweep which may be either log or linear by specifying the end points and step size. Tau values can be specified over a wide range from $10 \mu \mathrm{sec}$ to more than $10,000 \mathrm{sec}$ with a resolution $0.1 \%$ or / cycle of the beat frequency whichever is greater. The number of Tau's that can be measured at one sime is limited by only the calculator's memory. With this high resolution and number of points it is easy to identify the various noise process exhibited by the oscillator under test.

The 5390 A provides excellent performance characteristics for measuring even the nrost stable oscillators achieving high sensitivity and low dead time. The maximum sensitivity, a function of the beal frequency and ultimately limited by the noise flow of the 10830 A , is given by


$$
\begin{aligned}
\sigma_{y}^{-}(\tau)_{m b n} & =\frac{1.155 \times 10^{-4}}{\tau} \cdot \frac{\nu_{\mathrm{b}}}{\nu_{0}} \text { for } \nu_{\mathrm{b}} \geqslant 900 \mathrm{~Hz} \\
& =\frac{1 \times 10^{-i}}{\tau} \cdot \frac{1}{\nu_{0}} \text { for } \nu_{11}<900 \mathrm{~Hz}
\end{aligned}
$$

where $\quad \nu_{0}=$ bea! frequency $\nu_{0}=$ carrier
$t=$ measurement lime
The dead time is limited by the 5358A can be as low as $17 \mu s$ or 1 cycle of the beal frequency which ever is greater, thus reducing the bias function correction necessary for small Tau values. Close-In phase noise measurement capabllites

Traditional phase noise measuring techniques are limited as 10 how close in to the carier measurements can be made, aboul 10 Hz usually is as close as can be achieved. The 5390 A provides the meats to get closer than this limitation plus the ability to cover an overlap region up to 10 KHz . The measuremedt technique is an N sample varience (sometimes referred to as the Hadamard Varience) which is n varience of N time domain measurements which can be related to the phase spectral density. The sampling function produces an equivalent digital filer which can be made to have an arbitrarily narrow bandwidth. Thus the ability to get close to the carner.

Measurements are casily made by firsi specifying several measuremen parameters, theredfer the system completes the measurements maftended. The user can specify the offset frequencies, filter handwidth, averaging parameters, number of sweeps. correction coefficient. The offsel frequencies can be specilied by one of three ways: at specific írequencies or by a log or linear sweep where the end points and step size are specified. Bandwideh cin be specified as a particular value for each offset frequency. or as a percentage or as a codstant value. The set of offsel frequencies can be measured any number of speciñed times. The results of each "sweep" are printed out and when all are complete statisties on the mean, sigma, miminum aod maximum are printed providing information about the variability of the noise processes.

The sensilivity floor is a function of the beat frequency and is jimiled by the lime resolution of the 5345A as given by:

$$
\begin{aligned}
\mathscr{E}(\ell \min & =173+20 \log v_{\mathrm{J}}-10 \log \mathrm{f} \mathrm{db} / \mathrm{Hz} \\
\text { where the } v_{1} & =\text { beat frequency } \\
f & =\text { offset frequency from carrier }
\end{aligned}
$$

The offiet frequency resolution is a function of the beat frequency and is given by:

$$
f=\frac{\nu_{u}}{6 i} \text { where }\{=1,2,3 \ldots
$$

Systems options (see data sheet for complete listing) 001: adds memory to the 5358A Phig-in in 2k byte add $\$ 300$ increments. Up to three opt. OOI's may be added 004: adds s9309A Digital Clock and one 10631A cable add $\$ 1085$ to syslem.
101: expands 9825A memory from 6k 10 14k bytes
102: expands 9825A memory from 6 k to 24 k byles
162: adds 9862A XY Plotter and interface for 9825 Calculator. Replaces 98214 A ROM.
166: adds 9866B Thermal Printer and interface for 9825A Calculator
325: deletes 9825A Calculator. Appropriate if system is to be used with an existing 9825A Calculator.
371: deletes 9871 A Printer/Plolter. Appropriale if sys- less $\$ 3400$
tcm is to be usod with an exissiog 9871A or 9862A Ploller.
Ordering Information
Price
5370A Basic system inciudes;
5345A Opi 011 Electronic Counter
5358A Measurement Slorage Plug-In
10830A Mixer/IF Amplifier
10831A Tess Tone Generator
9825 A Calculator
98210A Adv. Program/String Variab. ROM
98213A Gen. Purpose/Exi. I/O ROM
98034A HP-IB Interface
9871A Opt 011 Printer/Plotier
System Soliware Cartridge
System. Application and Insirument Manuals
System Cabinet and Cables
Factory Assembly and lntegration
90 day calculator on-site warranty
1 year instrument bench repair warranly
5390A Basic Systerm


The 5427A provides closed-loop conirol ol environmental and/or developmental random vibration test stimuli. Sine and transient test control may be added optionally and inexpensively.

The basic system consists of: 5478C 2-channel (expandable to 4) analog-io-digital conventer for processing iced-back information: 54427A fast. microcoded digital processor; 1335A Purvistence CRT Display: 2640B operator's ferminall; 5477 A pushbuton control unit. 9885 M nexible disc storage unit; cabinet and programs for random control and a set of analysis roulines designed for easy operation by laboralory personnel.

## System operatlon

Random. sine and imansient conirol follow the same logical operational phases. First, the appropriale dise is loaded and the test program or setup (envelope, alarm and ahort limits, iest time, calibrations, ctc.l is londed from dise storage in resporse to one of 25 search codes or names. If a new program or modifications are desired, a friendly question-and-answer sequence is used. Once a new setup has been generated or changes made. it can be assigned a new name and stored for later use.

After a satisfactory selup is oblained, the operate phase allows control of the actual test via pushbultons on the central control pánel. Removable smap-on overlay panels clearly label butons for the lype of est desired. Choices of on-line displays and a 'save' button allows saving of up 10110 displays for later ploting. including auxiliary PSD measurtments during random control

After the tesi, results and all sived dala are available for review or documentation. The digital plotter option provides fully labeled, repord-quality ploss of test results.

## Specification summary

## Aandom control

Resolution: 64, 128, 256, 512 lines ( 1024 lines optional).
Loop Time: $\leqslant 1.0$ second with 2500 Hz bandwidth, 256 lines.
Bandwldth: $\Delta f$ to 5000 Hz .
Dynamic Range: $\geq 65 \mathrm{~dB}$.
Reference Spectrum: progranmablc. 40 breakpoints.
5427A BASE PRICE

Model 5427A<br>- Digital Accuracy and Repeatability<br>- Pushbutton Operatlon, Eliminates Programming<br>- Easily Expanded to Sine and Transient Control<br>Model 5451<br>- Multi-Channel Operation DC to 50 kHz<br>- Keyboard-Controlled Data Acquisition and Analysis<br>- 80 dB Dynamic Range<br>- Dedicated Modal and Signature Analysis Packages

The 5451 Fouricr Analyzer provides digital frequency domann analysis of complex time signals in the frequency range of DC to 50 kHz ( 100 kH e onfional), $\mathrm{J}_{1}$ is a fully calibmed. multi-purpose digital system for data acquisition. data storage, and diata analysis. The primary analysis functions which are controlled from the system keyboard include: Forward and inverse Fourier ransform, auto and cross power spectrum, iranster and coherence function and ime or frequency domain averaging.

The ability to measure these functions quickly and accurately and with large dynamic range makes the Fourier Analyzer a powerful tool for stimulus-response measurements, system identification, vibration conirol. modal analysis. signature analysis. underwater sound. acoustics, communicalions. and more.

## Band Selectable Fourler Analysis

545) Band Selectable Fourier Analysis (BSFA) allows the digital analyzer user to perform digital spectrum analysis over a 「requency band whose center lrequency and bandwidth are independently selectable by the operalor. This frees the user from the DC to $F_{\text {mur }}$ restrictions of convenlional baseband digital analysis. With BSFA the frequency resolution of a measuremens can be increascd by a factor of 400:) without a corresponding increase in the amount of computer data space required. With BSFA, the fuil dynamic range of the aradyzer ( 80 dB ) can be applied to the band of interest without merference from oulside frequencies.

## Modal Analysls Opiton

Hewlett-Packard offers a comprehensive modal analysis system designed to meet the requirements of o wide range of modal lesling applications. The Hewleu-Packard Modal System operates on measured iransfer function dala to desermine modal propenies. In addifion, an animaled isometric display of the structure under lest is generated to aid the engineer to better understand its dynamic claracteristics. This system ofters significant time savings over Iraditional swept sine analog lechniques because it operates on transfer function data. The sysicm provides random, pseudo-random, Iransient, or periodic random excitation for transfer function measuremenis.

## Slgnature analysia

Noisc. vibration. and failure problems in rotating machinery are quickly analyzed using llewlelt-Packand's powerful Signalure Amalysis Package. Il combines key rotating machinery measurements into a dedicated user-oriented system that's used for preventive maintenance. production qually control. design analysis. and noise and vibration studies.

Sis measurements arc pushbution selectable from the operator's control panel; RPM and TPME Spectral Maps, Power Spectrum Analysis. Composite Power Spcetrim, Order Ratio, and Order Tracking. This complete range of measurement and analysis features helps the user quickly gain insight into the overall dynamic characteristics of the device. climinating lime-consuming 1rial-andertor procedures.
5451 SYSTEM PAICE
$\$ 60,000$ to $\$ 100,000$

# SIGNAL ANALYZERS <br> Digital Signal Analyzer <br> Model 5420A 

- Dual-Channel Transfer Function
- Band Selectable Analysis
- Fully Calibrated Annotated Display


The 5420A Digital Signal Analyzer makes a wide variety of time and frequency domain measurements in the range of de to 25 kHz . Capable of both stimulus-response and response-only anatysis, its measurement reperloire includes:

- Transfer Function
- Coherence Function
- Impulse Responsé
- Autol Cross Spectrum
- Lincar Spectrum
- Time Average
- Amplitude Histogram
- Auto/Cross Correlation

Included are powerful features such as a fully annotated and calibrated dual-trace display, digitall storage for measurement results. extensive post-processing, and a random noise generator. The 5420 A is well suited to studies of strucheral noise and vibration and the measurement of electronic systems and signals.

## Operation

Operation of a digital signal analyzer has never been casier. A novel 'menti' concept replaces the rotary and toggle switches commonly used to control an instrument's operation. The entire set-up state, including measurement type. bandwidth, voltage ranges, etc., is displayed at the push of a key. Changes are made by selection from displayed lists (menus) or by direct numerical input from the control keyboard. Up to 50 different setups may be stored on the digital cartridge for rapid recall.

Once se1 up, measurements are easily executed. Results are always fully catibrated and annotated. Up to 120 measuremene resulis may be stored on the dighal cartridge.

- Powerful Post-Measurement Processing
- Digital Data Storage
- Random Noise Generator


Band Seleclable Transfer Funclion Display


## Cursors

The 5420 A includes flexible X and Y axis cursors to provide data readout in full format. display expansion and measurement control. Cursors may be swept or set explicitly to desired locations. Data values may be read absolutely or relatively on each axis. Any area of the display may be expanded 10 full screen. Harmonic markers are provided. The X -axis cursors may be used to set the desired center frequency and bandwidth of the measurement, concentrating the resolution of the 5420 A into an area of interest.

## Post-processing

Data may be processed in a variety of ways. Quartities such as power, power in a band, harmonic power, resonant frequency, and percent critical damping are available at the stroke of a key. Time domain differentiation and integration of a frequency domain function are also provided. The four-function 'waveform calculator, with real and complex constants, allows calculations such as mechanical impedance, coherent output power. signal-to-noise ratic, open-loop gain, and more.

## HP-IB

The Hewlett-Packard Interface Bus accessory, 10920A, interfaces the 5420A with oither HP -1B compatible insmiments and computing controlles to yield custom system solutions to specific mea. surement problems. With this oplion, a compuling controller can 'push' all of the keys on the SS20A's front panel. The computing controller can also take data from the insinumeni for further processing and send data back to the 5420A for display.

## Digltal plotting

When equipped with the 10920 A , the 5420 A will produce four color annotased plots on the HP 987 A A Plotter. A hard copy record of instrument sec-up states can also be obtained from the plotter. Finilly. the 9872A provides outpul of measured data in tabular form.

## And more. . .

There is a lot more 10 the 5420A than can be described here. Local Hewlett-Packard field representatives can provide detailed information.

## 5420A Digital Signal Analyzer 10920A: HP-IE Interlace

## 3721A Correlator

The Model 3723A Corresator is a digital suatistical signal analyzer covering the range de to 250 kHz . It computes autocartelation. cross-correlation, and amplitude probability functions. In addition, a sigual recovery facility uses signal averaging to improve the signal-to-noise radio of a repetitive signal buried in noise. The resullant functions are displayed on a built-in CRT.

The versatite analysis and sveraging capabilities combined with porabilíry, automatic calibration, buill-io CRT and real-time operation make the 3721A an ideal analyzer for bouh laboratory and ficld use.

## Major Specifications

inpul signal bandwidth: dc to 250 kHz .
Input range: 40 mV ims to 4 V ross.
Funotlons: Aulocorrelation. Crosscorrelation, Probability (Density and Integral), Signal Recovery.
Number of polnts: 100 points computed and displayed for each function.
Sampling Interval: Is to $1 \mu \mathrm{~s}$ ( 1 Hz to 1 MHz sampling rates). Extemal clock facility allows any interval $\geqslant 1 \mu$ s to be selected. In Correlation and Signal Recovery the time belween displayed points is equal to the sampling interval.
Averaging (two modes are provided)
Summation: computation automatically stopped uhter a $u x e d$ number of samples has been caken. Number of samples selectable from 128 to $128 \times 1024$,
Exponenilat: continuous averaging with time constant selectabit from 36 ats to over $10^{7}$ seconds.
Calbration: vertical calibration is automatically displayed on an illuminated panel (except Probability).
Outputs: all computed functions are displayed on the buitt-in CRT. Analog oulputs are provided for use with $\mathrm{X}-\mathrm{Y}$ recorder and external oscilloscope. Digizal outputs allow the transfer of computed data to any HP digital computer or HP paper tape punch (2895A or 8100 A ). Extra plug-in assemblies are required, type depending on the peripheral used.

## 3720A Spectrum display

The 3720A Spectrum Display is a unique add-on unit for the Correlator, to complement and extend its capablity by Fourier transforming any lime display on the 3721A and presenting is equivalent frequency fumction on a built-is display.
The 3720A performs the Real and/or Complex transformation of autocorrelation and crosscorrelation functions 10 produce the Power and Cross Spectral Densiry functions respecively, and convens signal recovered data into frequency information.
Together the 3721A Conelator and 3720A Spectrum Display. each with its own CRT display. form an analysis system giving both time and frequency information simultaneously.


Models 3721A, 3720A

## Major Specifications

Input dala: digital dara is transferred from the Correlator and held in either of two stores, laboled I and 2.
Computed transforms: either the Real or Complex imansform can be computed of the contents of store 1 , the contents of store 2 , or the contents of stores \& and 2 together.
Frequency range: $0,005 \mathrm{~Hz} 10250 \mathrm{kHz}$ using internal 3721A elock. Extendable down to do with extemal clock.
Displayed frequency range: two dewades of frequency are displayed, the highest frequency being $1 / 2 \Delta t \mathrm{~Hz}$ ( $\Delta \mathrm{t}$ is the 3721A Timescale setting).
Dynamic range: ratio of full scale signal to noise level, for fixed ine egrator gain, is bener than 50 dB .
Gain: coneinuously variable over a 2 -decade. 40 dB . range in seven discrete steps, with intermedtate vermier.
Window: two choices are avalable.
OFF: naural window, nomioal bandwide $1 / 2 \mathrm{nin}$ di.
ON: Iriangular window, nominal bandwidth $1 / 101 \Delta t$.
Interpolation: (wo modes available.
MANUAL: computes and displays 100 frequedey points. Frequencies of al 100 points can be simultancously and equally varied over a frequency interval, $1 / 200 \Delta t$.
AUTO: automates the manual interpolation, calculating 10 equispaced points across cach frequency interval.
Transtorm presentation: all combinarions of the following axes are available for display.
Vertical axle: Phase, Log Mod, Modulus, Imaginary, Real.
Hortzontal axls: Frequency. Log Frequency. Real, Phase.
CRT dlsplay: buil-in variable persistence CRT with storage facility.
$X . Y$ recorder: separate horizontal and vertical analog outputs corresponding to the CRT display.
Ordering intormallon
3720A Spectrum Display
Price
3720A Spectrum Display
3721A Correlator
$\$ 7265$
$\$ 10125$


## 3722A

The Model 3722A Noise Generator uses digital eechniques to synthesize binary and Gaussian noise patterns. These 'pseudorandom pattens. which are of known content and duration, are repeated over and over withous intemuption. Since one pattem is idenrical with the next. each pattem has the same effect on the system under test. For this reason, pseudo-random noise signals calse no statistical variance in test results. The Model 3722A also generates ruly random bínary and Gaussian noise.

The baxis of the Model 3722A is a binary waveform pencrator. The binary output has a $(\sin x / x)^{t}$ shaped specinum and the Gaussian output. which is derived from the binary signal by precision low-pass filtering, has an almost rectangular spectrum. Both binary and Gaussian outputs are controllable in bandwidth, hut the output power remains conslint regardless of selected bandwidth. The frequency of the first null in the binary spectrum is selectable from 0.00 : $\mathrm{H} /$ to $\mathrm{I} \mathrm{MH} \mathrm{\%}$. and the bandwidth (at -3 dB point) of the Gaussian noise is selectable from 0.00015 Hz 1050 kHz .

## Opt H01

Model 3722A Option HOL is a standard Model 3722A Noise Generator modified to provide a second binary output which can be detayud ty a selectable number of clock periods with respect to the main binary output. The delayed binary output is available only when the instrument is in the pseudo-mandom mode. The delay insroduced between the two binary outputs is selected by three decade switches on the front panel. These dwitehes are set according 10 a conversion table supplied with the instrument.

## Specifications

## Binary output (fixed amplifude)

Amplitude: $\pm 10 \mathrm{~V}$.
Output Impedance: < $10 \Omega$.
Load Impedance I k $\Omega$ minimum.
Rise time: <100 rs.
Power density: approximately equal to (clock period $\times 200$ ) $\mathrm{V}^{\mathbf{z}} / \mathrm{Hz}$ at low frequency end of spectrum.
Power spectrum: $\left((\sin x / x)^{2}\right.$ form) first nul) occurs at clock frequency, and -3 dB point occurs at $0.45 \times$ clock frequency.

## Gaussian output (fixed amplitude) <br> Amplitude: 3.16 V rms.

Output impedance: <I $\Omega$.
Load Impedance: $600 \Omega$ minimuor.
Zero drift: $<5 \mathrm{mV}$ change in zero level in any $10^{\circ} \mathrm{C}$ range from $0^{\circ}$ to $+55^{\circ} \mathrm{C}$.
Power density: approximately equal 10 (clock period $\times 200$ ) V8/Hz at low frequency end of spectrum.
Power spectrum: rectangutar, low-pass: nominal upper frequency $\mathrm{f}_{11}$ ( -3 dB point) equal to $1 / 20$ th of clock frequency. Specirum is flat within $=0.3 \mathrm{~dB}$ up to $1 / 2 f_{0}$ and more than 25 dB down at $2 \mathrm{f}_{\mathrm{u}}$. Grest factor: up to 3.75 . dependent on sequenee lengh.

## Variable output (binary or gaussian)

## Ampllitude (open circult)

Blnary: 4 ranges: $=1 \mathrm{~V}, \pm 3 \mathrm{~V} .=3.16 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. with ten steps in each range, from $X 0.1$ to $\times 1.0$.
Gausslan: 3 ranges: 1 V rms, 3 V rms, and 3.16 V rms, with ien steps in each range, from $\times 0.110 \times 1.0$.
Output Imperdance: $600 \mathrm{n} \pm 1 \%$.

## Maln controls

Sequence length swith: first 17 posizions select different pseudo-random sequence lengths; final position selects randora mode of operation (INFINITE sequence length). $N=2^{\circ}-1$, where $\pi$ is the range 4 brough 20.
Clock perlod awlich: selects 18 frequencies from intemal clock.

## Internal clock

Crystal frequency: 3 MHz nominal.
Frequency atabillty: $< \pm 25$ ppm over ambient temperature range $0^{\circ}$ $10+55^{\circ} \mathrm{C}$.
Output: + $12.5 \vee$ rectangular wave, period as selecied by CLOCK PERIOD swich.

## External clock

Input trequency: useable BINARY oulput (pseudo-random only) with extemal clock frequencies ip to ! MHz .
input level! negative-going signal from $+5 \vee 10+3 \mathrm{~V}$ initiates clock pulse.
Maximum Input: $=20 \mathrm{~V}$.

## Remote control

Control Inputs: remote contral inputs for RUN. HOLD. RESET. and GATE RESET functions are connected to 36 -way receptacle on rear pancl.
Sequence length Indication: 18 pins plus onc common pin on the 36-way receptable are used for remote signaling of selecied sequence lengths (contact elosure berween comenon pin and any one of the 18 pins).

## Delayed binary output (Opt H01)

Typical performance figures for the delayed ourpur are:
Amplltude: switches belween +1.5 V and +12 V .
Maxhmum sink current at 1.5 V leval: 10 mA .
Impedance: $50 \Omega(+1.5 \mathrm{~V})$ and $600 \Omega(+12 \mathrm{~V})$.
Rlse time: < 50 ns .
Fall tlme: < 20 ns.*
*Measured with $\div$ probe shuated by 10 pF .

## General

Dlmenslons: $132.6 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 416 \mathrm{~mm} \mathrm{D}\left(5^{7 / \mathrm{gr}^{\prime \prime} \times 16^{3} / \mathrm{s}^{n}}\right.$ $\times 16^{3} / \mathrm{s}^{\prime \prime}$ ).
Weight: net, 10.5 kg ( 23 lb ). Shipping 13.5 kg ( 30 lb ).
3722A Noise Generator

- Truly modular, fits standard heights and widths
- Broad range of accessories for bench or rack use
- Strong frame, yet easy service access to interior


Look inside newer HP Instruments housed in System-II cabinets, and you will find an extremely strong frame atlowing maximum use at interiar space. Yet, there's excellent service access from top. bottom and sides. (Optional bail handle is shown on this par: icular instrument.)

In 1961. Hewlelt-Packard introduced a new universal enclosure system for insiruments. That system (called "System !" within HP) made it practical to stack instruments reatly for bench use. while at the same time providing a convenient means for mounting the instruments directly in a rack. It was also esthelically more appealing than the simple boxes of various sizes that had been the norm-and it provided more convenient access to internal pars and more erficient use of space than the conventional chassis-slipped-into-a-box approach conmonly in use at that time.

## Need for a new enclogure system

Continuing changes in the nature of elecIronic instrumentation have created new needs in enclosure systems. Foremost among these is the need for even betler accessibility to internal parts. as circuits become more densely packed. Ideally, this not only means access from top and bottom, as provided by the 1961 system, but also from the sides, front and back as well.
Today's miniaturized circuits also lead to two other types of problems. First. the enclosures lend to be smaller than in the past-meaning thal costly combining cases or space-consuming rack adapter frames are often required for grouping smaller producis together on the bench or in the rack. Sec-
ond. there's the nied to optimize utilization of smaller froni pancl areas-and it becomes increasingly diđticult to arrange displays. nomenclalure and the growing number of controls for convenient user operation.

Radialed electrical inserference can also be a significant problem. as transition times of digital signals shomen to the nanosecond region. This means thut instuments tend to radiate a greater amount of high-frequency energy. Uhereby creating polential problems for users operating sensitive devices in close proximity.
New standard enclosure: System-Il
With the above in mind. Hewlet1-Packard has developed a new enclosure system for HP products, using on "inside-out" dexign approach. That is, design priorities firsi concentrated on all servicing. manufacturing. electrical, mechanical, and thermal needs before tuming to the esthetic consideralions. The resulting enclosure has greater strengh but is lighter in weight than the earlier design. Also, it provides better accessibility for servicing, has more versatility in bench/rack configurations, and it inherendy provides significant allenuation of unwanted RF energy.

This new enclosure is called "Syslem 11". and it is now the standard package in which new HP cabinet-enclosed products are being introduced.


Three Iront hande and/or rack Ilange Klts are avaliable as standard options on full-width instruments-or, the kils may be purchased separately.

Compalibility with eurrent Sysiem.) products has been carefuliy considered. Cabinet and panel colors for both systems are the same, and the new System-ll instruments will conveniently slack on the older Sysiem-I enclosures (and vice-versa).

The basic System-II frame consists of six die-cast Juminum parts: a front panel frame. a rear panel frame, and four connecting side struts. It is rigid by ilself and does not depend upon internal decking. front or rear panels. or covers for slrength. The re, sulting open design makes maximum use of available spacc. and allows easy access inside.

The sturdy front panel frame is the heart of the design. Lt has integral pads for the side struts, mounting holes for fastening the fromt panel, recesses for from handles and rack flanges or for links that lock adjacent enclosures together. slats for plug-in latches. and narrow channels for holding top, side, and bollom covers.

Heights


## Widths



## Depths



The narrow U-shaped channels serve as wave traps that reduce the radiation of (or susceptibility 10) unwanted RF energy. As a further precaution, small ridges aligned in the direction of cover insertion provide high-pressure points for establishing good electrical contact. Only RF energy at wavelengths much shomer than those of concem can move between these conlact points. Trim detail on the side covers provide the same kind of RF seal along the sides, as does a stoilar artangemedo under the lip of the covers at the fear. The covers, however, are each retained by a single captive screw, enabling quick removal for servicing.

The sizes of holes such as those needed for mounting cabinel feet have been reduced 10 practical minimums.

## Maximized panel area

Unlike the eartier design, the System-II front panel frame uses all the available area in full multiples of vertical EIA/IEC increments. Also. the front panel frame overhangs lower side menters, completely filling the allotted rack space while still allow. ing room for the optional use of System-Il rack supporl shelves.
The fromt panel mounts to the framework with screws accessible from the outside, and because it does not serve as a seructural member, there is an increase in the amount of usable panel space. This reduces the crowding of controls so insunuments beconte easier to operate.
All screws used io cabinet assenbly anc of the self-locking type with an inserted plastic patch on the threads, preventing the screws from working loose when aubject to vibration.

## Easler carrying

Front-parel handles (now optional) bave been designed with an oulward till. The angled handle is comforable for the hand, while presenting a minimal visual obstruction of controls located along the edges of the front panel. (Optional rack-mounting flanges may be installed with or without the front handles in place.)

Summary of System-Il dimenslon descriplors

Descriptor		mal	Inchai
Kelfiri 354	20	8 C .1	3.469
514.4	310	1328	5,219
3H	刲	177.0	6.969
$84 / \mathrm{H}$	50	221.5	8.719
10\%/	60	265.9	10.469
12Y/3	70	310.4	12219
WIDIT			
\%明		105.7	4.160
K14w		212.3	8360
\% $/$ H\%		3789	12.50
INTP		425.5	15.750
Deppha			
110		268.2	10.000
140		3434	11.800
170		421.6	12.600
200		497.8	19.600
230		574,0	22800

'SEA ARSI C83.9-1972 or IEC 297.1975.
${ }^{2}$ Hf products ara nol avaliatle in S-il cabinets th Kw, but this is usetul dimension to inaleate Jiljer panal widithe

- Adding S-ll rack lianges et ants the 1 MW dimension for mounting in standard 4826 mins ( 19.000 inch) rach.
* Depin dimensien inclutes basic cabinet only, does nol Inciude proversians such as controls, lront handlas, sle.

Full-width products have a handle on each side. Each side handle is in the form of a long strap, which provides more freedom in finding a balance poine. The strap handie recess in each side panel also provides a place for mounting rack slides.
An optional front bail handle is available for smáler products, and some products are equipped with a serap handle on rop.
Modular small enclosures
The smaller enclosures in Sysiem-Il are dimensioned to be exact submultiples of the standard rack width design. Rack mouncing frames are therefore not required; a simple extender to reach full rack width is all that is needed.
It is easy to group instruments together horizontally or vertically by using simple lock links. The links can be installed by using threaded holes already provided in the framework. allowing quick assembly and separation of instruments.


Bail-type carrying handes are avallable for $1 / 2 \mathrm{MW}$ products having helghes of $34 / 2 \mathrm{H} .5 \% \mathrm{H}$ of 7 H .


Standoff feet In Klt 5081-2009 provide rear panal pratection for Instruments operated. transpored or stored vertically

Klt 5061-0095 provides flanged cord wian posts as a conveniant way to keep power cords and slgnal cables with an instrument.

Locking cabinets together


Sub-module cabinets (V, MW \& $1 / 2 \mathrm{MW}$ ) of equal depths lock slde-by-side, using horizonal lock links from Kit 508i-0094.


Cabinets of equal depths can be stacked and locked togehter securaly, using venical lock llnks from Kit 5061-0094.

General accessorles and parts for System-II cabinets

Item ${ }^{\text {a }}$	Fits these Sysem.Il Cabinats	Descripdan	Part Number	
Fronl handle khl   (Will be shipped with instrument, If ordered as Opiton 907 at same lime. Otherwise avallable separately per Par Numbers listed at right.)	All cabinets-bul principle use is on 1 MW (Full Module) cabinels, or on sub-Hodule cabinets lacked togethes to form width of I HW.	Includes two front handies; fit on each side $32 / 2 \mathrm{H}$ of tiont panel trames. for cabinets this high: 54/ H $121 / 4 \mathrm{H}$	5051-0088   5061-0089   5061-0090   $5061-0091$   5061-0092   $5061-0093$	$\$ 20$   $\$ 20$   $\$ 30$   $\$ 30$   $\$ 45$   $\$ 45$
Hall handle dit	L/2 MW (Hall Module)	Convenient carrying handle for lightwerght $\quad 34 / 2 \mathrm{H}$ cabinets this high.	$\begin{aligned} & 5061-2001 \\ & 5061-2002 \\ & 5061-2003 \end{aligned}$	$\begin{aligned} & \$ 15 \\ & \$ 20 \\ & \$ 25 \end{aligned}$
Cablnet lock-together kth	All cabinats, plovided they are of equal depth.	Xil of lock linh handware and serews lor joining instument cabinets in several different configurations. Enough horizontal links (12 (ront, 6 rear) to tor three side-by-side joinis (ud to 4 insliuments), and enough vartical links (4 iront. 4 rear) to term two over-under joints (up io 3 instrumentis). ${ }^{2}$	5061-0094	815
Cabinet faxt	1 MH (Full Module) and $1 / 2 \mathrm{MW}$ (Hall Module)	Standard fool (1): lits boriom ol 1 MW and 1/2 HW cabinels (requires 2 tiont, 2 rear).	$5040-7201$	$\$ 2$ 夠.
		III stand (1): tils omio standard loot and is used in palrs (fronl or tear).	1460-1345	$\$ 2$ ea.
		Hon-skid feot (1): used (in pairs) in lieu of standard reas or troni loot, lo minimize bench-10p creeping insirument. (Some lighter-weight producis ate supplled with this type fool on rear.)	5040.7222	$\$ 3$ es.
	4/2 MW (Quarter Modula)	Standard fool (1): 6is boteom of y/ MW cabinet (requires 1 in fronit. 1 in reat).	5040-7205	$\begin{gathered} \$ 2.50 \\ \text { ea. } \end{gathered}$
		Filt stand (1): fils onlo bu MW standard loot (only I used, for tront or rear).	1460-1369	$\begin{gathered} \$ 2.50 \\ \text { 8a. } \end{gathered}$
feet, rear panel standols	All cabinets-except does not nomality ilt cabinets which are $1 / 4 \mathrm{MW}$ and $3 / 5 \mathrm{H}$.	Kit of lour spectel teal which provide 25.4 man (1 in.) standoff protection to rear pansl. Used when instrument is operated in vertical sosition, or when it is transported/storer on its rear panel.	5061.2009	$\$ 5$   ea.
Cord-mrap kit, rear panel	Recommended for groducts only $3 / 4$ MW and th MW weighing loss than 11 kg ( 24 lbs. )	Kil of foul llanged pasts around which power cords or signal cables may be wiapped for transpor/storage. Inot designed for heavy duty support; use kit 5061-2009 for such apolicathans.)	5061-0095	\$5

[^34]

Cabinets $1 / 4 \mathrm{MW}$ utilize one broad foot each al Iront and rear (elther accept tilt stand). Note how rack mounilng adapter and rack flange fil onta iront irame, atter trim strip is removed.


Sub-module cabinels ( $1 / 4 \mathrm{MW}$ \& $1 / 2 \mathrm{MW}$ ) may be extended to full rack widin, by using rack mounling adapters as shown above.

Cabinets 'z MW and 1 MW utilize lwo feet each al both front and rear (all accept till stand). Note how Iront handle and/or rack flange fit onto Iront frame.


Sub-module cabinets ( $\because \mathrm{MW} \& 1 / 2 \mathrm{MW}$ ) al any height and deoth may be rack mounted by using the support shell and oplional liller panels.

Standard slides fit full module cablnets (MW) for instaltation in HP rack enclosures, Adapler brackets for using slides in non. HP rack enclosures are also available.

## Rack mounting accessorles for Sysiem-11 cablnets

s-11   Cablatet widin	Item ${ }^{\text {d }}$	Descriprion		Pan Number	$\mathrm{Pric}^{\text {cien }}$
$\lim _{(f)}^{M W} \text { Mosule) }$	Rack llange kit   (Will tes shipped with instrument, if oc dered as 00 tion 908 at same time. Otherwise available separately per Part Numbers listed at right.)	Includes two rack llanges; fit on each sithe of front panel frames, for cabinets thils highs	$\begin{aligned} & 31 / 2 \mathrm{H} \\ & 51 / 4 \mathrm{H} \\ & 7 \mathrm{H} \\ & 83 / 4 \mathrm{H} \\ & 101 / 2 \mathrm{H} \\ & 2 \% / 6 \mathrm{~K} \end{aligned}$	$5061-0076$ $5051-0077$ $5061-0078$ $505-0.079$ $5061-0089$ $5061-0081$	
	Rack timpe \& frone hundle comblination blt   (Will be shipped with instrument. if ordered as Optian 909 al same time. Otherwise available separately pes Part Numbers listed at right.?	Includes twi) rack fiange/front handle cambinations : It one each side of front panei frame, for cabinets this high:	$\begin{array}{r} 31 / 2 \mathrm{H} \\ 51 / 4 \\ 7 \mathrm{H} \\ 8 \mathrm{H} \\ 10 \mathrm{H} \\ 12 \mathrm{H} \end{array}$	$5051-0082$   5061-0083   $5061-0084$   5061-0085   $5061-0086$	
	Standard slldg kil lor HP rack enclosures	Includes two standard slides for instaling instrument weighing no more than 38.6 K ( 85 ll ).) into HP tack enclosures. Fie side hamdle recess on $S$ - 11 cabinets this deep.	$\begin{aligned} & 1408170 \\ & 200 \& 100 \end{aligned}$	$\begin{aligned} & 1494.0018 \\ & 1898.0017 \end{aligned}$	$\$ 44$
	Standard tilt slide for MP rack entlosures	Same as standard slide above, plus permits tilting instruments up or dewn $90^{\circ}$. Fit:	$\begin{aligned} & 140 \& 1 \times 0 \\ & 200 \& 230 \end{aligned}$	$\begin{aligned} & 1494-0075 \\ & 1494-0026 \end{aligned}$	(365
	Sliot adapler bracker kil	Includes brackets for adapting the standard slides above for use in non-Hp rack system enclosures of adequate depth.		14960023	520
	Hean-duty slide hut lor HP rach enclosures	Inciudes tro heavy-duty slides for inseallinge instrument weighing no more than 79.6 kg ( 175 lb .) into HP rack enclosures. fit $\mathrm{S}-11$ csblnets this detp.	2008230	1494-0016	$81 / 5$
$\begin{aligned} & \text { Y M M } \\ & \text { (Oastar Module) } \\ & \text { and K M Mw } \\ & \text { (Hall Module) } \end{aligned}$	Bach mounting adapter $\mathbf{~ d i t}{ }^{3}$	Includes one rack flange and one extersion adapter $1 / 4 \mathrm{MW}$. For mounting one $s-14$ csbinet $1 / 3$ tivith having a height $3 t / 2 \mathrm{H}$.		$5061-0053$	125
		includes one rack tlange and one extension adapter $1 / 2 \mathrm{MW}$. For mounting one $\mathrm{S}-11$ cabinet $1 / 2 \mathrm{MW}$ or two cabinets $1 / 4 \mathrm{MW}$, having these heights:	$\begin{array}{r} 31 / 2 \mathrm{H} \\ 51 / 4 \mathrm{H} \\ 7 \mathrm{H} \\ 101 / 2 \mathrm{H} \end{array}$	$8061-00^{3} 3$   $5061-10(3)$   5051-0   5Г5E1-10066	$\begin{aligned} & 525 \\ & 525 \\ & 535 \\ & 545 \\ & 545 \end{aligned}$
		Includes one rack flange and one extension adapter $1 / 4 \mathrm{BWW}$. For mounting one S-11 cabinet $1 / 2$ MW together with one cabinet $1 / 4$ NW, or ior msunfing three cabinets $1 / 4$ NW logether, having a height of $31 / 2 \mathrm{H}$		5d61-0055	\$25
	Rack flange kiv	May be used whenever \$ $\$ 11$ cabinets $1 / 2$ MW andio: $1 / 2$ MW are combined to a fall widtli of 1 Mit (full Module).		Sea I MH sbove	
	Ract IIzmea E lromi hanale cambinalion kit ${ }^{2}$	May be used whenever s.ll cablinets ta MW and/or $1 / 2$ Mw are combined a fuil wiath il 1 MW \{full Module\}.		$\begin{aligned} & \text { See } 1 \text { MW } \\ & \text { above } \end{aligned}$	
	Sugpor shet	For mounting ore or more S-11 cabinets which are $1 / 2 \mathrm{MW}$ or $\mathrm{V} \mathbf{1 2} \mathrm{MW}$. and up to 200. Cabinet depths need not be equal, but heights must match support shelf height, except where top filler panels ate used. Maximum sheil projection behind front mounting panel is 234 mm [高] in. 1.	$\begin{aligned} & 31 / \mathrm{H} \\ & 5 \% \mathrm{H} \\ & 7 \mathrm{H} \end{aligned}$	5061-0096   5061.0097   5051.0898	$\begin{aligned} & 5100 \\ & 510 \\ & 5125 \end{aligned}$
	Sllde kit for sugpon shell	Includes two slides for slidemounting any of the above three support shelves in $\mathrm{HP}^{\prime}$ rack enclosures.		14980015	543
	froml tiller panels ior suppor sheil	for $31 / 2 \mathrm{H}$ support shelf partially filled with S-11 instruments. and having the tollowing front panel sqace 10 fill	$x_{4}$ MW 10 sill   - MW to ill   $\because$ MW to lim	5061-2021   5061-2020   5061-2023	$\begin{aligned} & \$ 15 \\ & \$ 20 \\ & 525 \end{aligned}$
		For $51 / 2 \mathrm{H}$ support sheff, and having the following front panel space to fill:	$: \quad$ MW 10 : 11   1. MN la It:   1. MW 10 ilil	$\begin{aligned} & 5861-2024 \\ & 50161-2075 \\ & 5021-212 . \\ & \hline \end{aligned}$	570   35   300   30
		rot 7 H support shert, and having $1 / 2 \mathrm{MW}$ lecist pante? space to fill.		5061.2027	375
	Top filler panels for support shell	For $\mathrm{K} / \mathrm{MW}$ and hasied the Iofiowing sertica! space Is fill	$\begin{aligned} & 124 \mathrm{H} \\ & 31 / 2 \mathrm{H} \end{aligned}$	$\begin{aligned} & 5061 \cdot 2035 \\ & 5061-70.36 \end{aligned}$	$\begin{aligned} & \$ 10 \\ & \$ 15 \end{aligned}$
		for $y_{2}$ NH and having the tollowing vertical space Io (III,	$\begin{aligned} & 13 \% H \\ & 34 i \geqslant H \end{aligned}$	$\begin{aligned} & 5061 \cdot 20 \leq 7 \\ & 5061-2038 \end{aligned}$	$\begin{aligned} & \$ 15 \\ & \$ 20 \end{aligned}$

[^35][^36]
( 0.75 m )


## Cable assemblies

11170A Cable assembly
30 cm ( 12 in .) of 50 -ohm coaxial cable terminated on both ends with BNC (m) connectors.

11170日 Cable assembly
61 cm ( 24 in ) of 50 -ohm coaxial cable terminated on both ends with BNC (m) connectors.

11170C Cable assembly
122 cm ( 48 in .) of 50 -ohm coaxial eable terminated on bath eads with BNC (m) connectors.

11000A Cable assembly
$112 \mathrm{~cm}\left(44^{\prime \prime}\right)$ of 50 -ohm coaxial cable terminated on both ends with a dual banana plug, fur $/{ }^{\prime \prime}$ " binding posis.

11001A Cable assembly
112 cm ( 44 in .) of $50-\mathrm{hm}$ coaxial cable terminated on one end with a dual banana plug and on the other end with a UG-88C/U BNC (m) connector.

11002 A Test leads
$152 \mathrm{~cm}(60 \mathrm{in}$. ) test leads alligator clips to dual banana plug.

11003A Test leads:
152 cm ( 60 in .) test leads, probe and alligator clip 10 dual banana plug.

11035A Cable assembly
30 cm ( 12 in .) of 50 -ohm coaxial cable ierminated on one end with is dual banana plug and on the other end with a UG-88C/U BNC (m) connector.

11143A Cable assembly
112 cm (44 in.) iest leads, dual BNC to alligator clips.

11500A Cable assembly
183 cm ( 72 in .) of 50 -ohm coaxial cable terminated on both ends with UG-21D/U Type $N(m)$ connectors.

115008 Cable assembly
Identical with 11500 A except 61 cm ( 24 in .) long.

## Price



Adapters type N, Standard $50 \Omega$

Part no.	Price
1250-0077 N (f) 10 BNC (m)	\$7.90
1250-0082 N (m) to BNC (m)	\$14
$12500176 \mathrm{~N}(\mathrm{~m})$ to Type $\mathrm{N}(\mathrm{f})$ right angle	\$8.75
1250-0559 N tee. (m) (f) (f)	\$21
1250-0777 N (0) to Type N (0)	\$6.50
1250-0778 N (m) to Type N (m)	\$10
1250-0780 $\mathrm{N}(\mathrm{m})$ to BNC (f)	\$5
1250-0846 N tee (f) (f) (f)	\$11


Adapters type N, Precision' $50 \Omega$	
Part no.	Price
1250-1472 N (5) 10 N (1)	\$20.50
$1250.1473 \mathrm{~N}(\mathrm{~m})$ to BNC (m)	\$20.50
1250-1474 N (i) 10 BNC (i)	\$16
1250-1475 N (mi) $10 \mathrm{~N}(\mathrm{~m}$ )	\$26
1250-1476 $\mathrm{N}(\mathrm{m})$ to BNC (f)	\$20
1250.1477 $\mathrm{N}(\mathrm{f})$ to BNC (m)	\$17.50
Adapters type N, Standard $75 \Omega^{2}$	
Part no.	Price
1250-1528 $\mathrm{N}(\mathrm{m}) 10 \mathrm{~N}(\mathrm{~m})$	\$25
1250-1529 N (I) to N (f)	\$25
1250-1533 $(\mathrm{m})$ to BNC (m)	\$40
1250-1534 N (f) to BNC (m)	\$35
1250-1535 $\mathrm{N}(\mathrm{m})$ to BNC (f)	\$ 40
1250-1536 N (f) to BNC (f)	\$30

Adapters SMIA
Part no. Price
1250-1158 SMA (f) 10 SMA (f) $\$ 8$
1250-1159 SMA (m) to SMA (m) \$11

Adapters APC-7

Part no.	Price
11524 A APC- 710 Type $N(\mathrm{n})$	$\$ 95$
11525 A APC- 710 Type $N(\mathrm{~m})$	$\$ 85$
11533 A APC-7 10 SMA $(\mathrm{m})$	$\$ 135$
11534 A APC- 710 SMA ( $)$	$\$ 135$

Adapter banana plug

Part no.	Price
$1251-2816$ Dual Banana plug	$\$ 2.35$

Adapters BNC, Standard $50 \Omega$
Part no. Price

1250-0076 Right angle BNC (UG-306/D)	Price
1250-00.80 BNC ( $)$ to BNC (0) (UG-914/U)	\$4.90
$1250-0216$ 日NC (m) to BNC (m)	\$5.25
$1250-0781$ BNC Tee (m) (f) (f)	\$6.20
1250-1263 BNC (m) to single banana plug	\$9.30
1250-1264 BNC (m) to dual banana plug	\$16
1251-2277 日NC (f) 10 dual banana plug	\$10
10 llOA BNC (m) to dual banama plug	\$25
101114 BNC (f) 10 shielded banana plug	\$17
10113A Dual BNC (f) to triple banama plug	\$17

Adapters BNC, Standard $75 \Omega$
Part no. Price
1250-1296 Right Angle BNC
1250-1287 BNC (f) 10 BNC (f)
$\$ 12$
1250-1288 BNC (m) to BNC (m)

Type N dute confuctor. Cenler pin sirect lor 15 a characteristle.


11021A

10007B, 10008b Probe
Price
The 10007 B and 10008 B are straight-thru BNC probes with a relractable hook lip. and 20 cm ( 8 in .) ground lead with alligator tip included

	Peak   Voltage	Shunt   Capaltance	Lenguh
10007 B	600 V	40 pF	$1.1 \mathrm{~m}(3.5 \mathrm{ft.1}$
10008 B	600 V	60 pF	$1.8 \mathrm{~m} 16 \mathrm{f})$.

17021A Divider probe
lo60: I divider probe increases mange of HP 42SA DC. Microvoll-A mmeter to 1000 volls

## 1102日A Current divider

100:I divider for extended range measurements for 4S6A AC Curtent Probe

## 11036A AC probe

Peak responding for use with 410C
11040A Capaclitive vollage divider
For 410 serics voltmelers. [ncreases range so transmiluer voluges can be measured quickly and eas. ily. Accuracy $=19$. Division ratio 100:1. Input capacity approximately 2 pF . Maximum voltage 2000 V as 50 MHz . decreasing io 100 V al 400 MHz . Frequency range 10 kFiz to 400 MHz

## 11045A DC voliage divider

For $410 C$ volumeter. Gives maximum stuety and conveniences for measuring high voltages as in telcvision receivers, ctc. Accuracy $\pm 5 \%$. Division ratio 100: ). Input impedance I $G \Omega$. Maximum voltage 30 kV. Maximum current dmin $2.5 \mu \mathrm{~A}$

11047A Output voltage tlvider
Input $600 \Omega$. Output $600 \Omega=1 \%$. $6 \Omega \pm 1 \%$. Voltage rating $1 \%$ watt


11473A

## 456A Description

Conventional volmeters or oscilloscopes can measure eurrent quickly and dependably-withoul direes connection to the circuit under test or any appreciable loading to test circuit. HP's 456A AC Current Probe clamps around the current-carying wire, and provides a vollage output read on a volmeter or scope. Model $756 A^{\prime}$ s I mA io $/ \mathrm{mV}$ conversion permits direct reading up 101 A mas.

## 456A Specifications

Sensitivity: I nivima $\pm 1 \%$ at I kHz .
Frequency response: $\pm 2 \%, 100 \mathrm{~Hz}$ to $3 \mathrm{MHz}: \pm 5 \%, 60 \mathrm{~Hz}$ to 4 $\mathrm{MHz} ;-3 \mathrm{~dB}$ al $<25 \mathrm{~Hz}$. and $>20 \mathrm{MHz}$.
pulse response: rise time is $<20$ ns, sag $<16 \% / \mathrm{ms}$.
Maximum lnput: 1 A ms, 1.5 A peak: 100 mA ahuve 5 MHz .
Effect of de current: no nppreciable effect on sensitivity and distorion from de current up to 0.5 A .
Input Impedance; (impedance idded in series with mensured wire by probe) -50 mQ in series with $0.05 \mu \mathrm{H}$ (his is approximately the inductance of $\mathrm{I}^{1 / 2}$ in. of hookup wire).
Probe aperture: 4 mm ( $1 / \mathrm{se}$ ") diamcter.
Probe thunt capactty: approx. 4 pF added from wirc 10 ground.
Distortion at 1 kHz : for 0.5 A input al least 50 dB down: for 10 mA inpul at least 70 dB down.
Equlvalent Input noise: $<50 \mu \mathrm{~A}$ rms ( $100 \mu \mathrm{~A}$ when ac nowered). Output Impedance: $220 \Omega$ at 1 kHz ; approximately +1 V dc component: should work into load of not less than $100,000 \Omega$ shunted by approximately 25 pF .
Powar: battery life (Iw-l), approximately 400 hours; ac powel wipply: Oplion 001 , 115 or $270 \mathrm{~V}=10 \%, 50$ io 1000 Hz яpprox. 1 W .

## 11473A-11476A Description

New balancing transformers provide a balanced output from a single-ended input, or a single-ended output from a balsnced input. Impedances available are 75 ohms unbalanced to $124 \Omega, 135 \mathrm{n}, 150 \mathrm{n}$. and 6000 balanced. Frequency response is $\pm 0.5 \mathrm{~dB}$.
(Lach module contains two lianstimmers with Ine folfowing soecifications)


- 50 an unblancen to balanced transtormer available on special basis. Above speciticatices apply

11473B Balancing Transformer 11474A Balancing Transformer 11475A Baloncing Transformer 1/476A Bajancing Transformer


1051A

1051A, 1052A Combining cases
Modeis 1051 A and 1052 A combining cases conveniently rack or bench moumt combinations of small modular Hewlet-Packard instruments. In addition, these cases can be stacked on each other or on any full module instrument. Both cases accept $1 / 3$ or $1 / 3$ instrument modules, 130 mm or 198 mm wide ( $51 / \mathrm{s}$ or $7^{75 / 3 z}$ inches). The basic difference is that the 1052 A is $130 \mathrm{~mm}\left(5^{\prime} / \mathrm{m}^{\prime \prime}\right)$ deeper, and will accept modules up to 416 mm deep ( $16^{3 / \mathrm{s}^{7}}$ ). The extra length provides more space in the reas for wiring. The 1051A accepts instruments up to 186 mm deen $\left(11 \%^{N}\right)$. Each case is furnished with iwo dividers.

## 1051A, 1052A Specifications

Price

## Dimensions

1051A: $178 \mathrm{H} \times 482.6 \mathrm{~W} \times 307 \mathrm{mmD}\left(7^{\prime \prime} \times 19^{\prime \prime} \times 13^{1 / 4}\right)$.
1052A: $178 \mathrm{H} \times 482.6 \mathrm{~W} \times 467 \mathrm{~mm} D\left(7^{\prime \prime} \times 19^{\prime \prime} \times 18^{3 / x^{n}}\right)$.

## Weight

1051A: nes, 3.5 kg (10 lb). Shipping, $6.7 \mathrm{~kg}(15 \mathrm{lb})$
1052A: nct. 3.4 kg ( 12 lb ). Shipping. $8.1 \mathrm{~kg}(18 \mathrm{lb}) \quad \$ 32 \mathrm{~s}$
Op1 910: extra manual
add \$1
Rack adapter frames 5060-8762, 5060-8764
These frames can be used to hold combinations of $1 / 3$ and $1 / 2$ width module HP insiruments. Each frame is furnished with mounting handware and divider panels. Two models are available for different instrument heighis. Adapter frames are for pentianent or semipermanent rack mounting. Where quick removal and reinstallation of instruments is desimble. the I05IA and 1052A combining cases should be used.
6060-9762: cquivalent 10 IEC JU ( $7^{71} \mathrm{H}$ ), accepts in-
strument hcights of 3 R. 77. or $155 \mathrm{~mm}\left(1^{1 / 2^{\prime \prime}}, 3^{1 / 22^{\prime \prime}}\right.$, or b" $\mathrm{ys}^{2}$ ")
5060-8764: accepts only instrument heights of 38 or 77
$\operatorname{mm}\left(1^{1 / 2^{4}}\right.$ or $\left.3^{1 / s^{2}}\right)$
Filler panels, 5060-8757 to 5060-8761
Filler panels can be used to close off any leflover space after instruments are mounted in combining cases or adapter frames. Panels are made in a variety of widths and heights. Available widths are $1 / \mathrm{s}$. $1 / 3$, and $1 / 9$ modules; heights are $1 / 4.1 / \mathrm{s}$ and the full 155 mm ( $6^{3 / 32^{\prime \prime}}$ ).
Specifications, filler panels

P Jn Ka	Moduk CaseMolent - Widh	0 0/maxiors		Prica
		mm	is	
5060.8757   5500.8758   500.8799   $5060-8760$   50686		$\begin{aligned} & 38 \times 130 \\ & 7 \times 130 \\ & 15 \times \times 130 \\ & 155 \times 198 \\ & 155 \times 63 \end{aligned}$		(11)

The accessory drawer can be used in place of a filler panel to finish off unused spaee in the combining cases. The drawer is $1 / 2$ width and $1 / 2$ height.
Dimensions: $77 \mathrm{H} \times 130.2 \mathrm{~W} \times 279.4 \mathrm{~mm} \mathrm{D}\left(3^{1 / 32^{\prime \prime}} \times 5^{1 / k^{\prime \prime}} \times 1 \mathrm{I}^{\prime \prime}\right)$


5060-0789


11046A


11056A


Cooling kits, 5060-0789 and 5060-0796
These cooling kits are designed to be easily installed in the 1052A combining catce. They can be installed in the 1051A, at the factory upon special request, but installation in the shorter case limits the depth of instruments the case can accept, and makes it impossible to use the accessory drawer.
$5060-0789: 115 \mathrm{~V}, 50$ to $60 \mathrm{~Hz} \quad \$ 200$ 5080-0796: $230 \mathrm{~V}, 501060 \mathrm{~Hz} \quad \$ 200$

Control panel covers, 5060-8766 to 5060-877 1
A series of control panel covers equipped with carrying handles are available for full reck width instruments. These covers protect instrument front panels and make meck mounted insiruments tamper-proof.
One of these covers, the 5060-8768, fits either the 1051 A or 1052A. Other covers are available to fit the six modular enclosures with from panel heights ranging from 88.1 to $310.4 \mathrm{~mm}\left(3^{1 / 2}\right.$ to $12^{4 / 2}$ ‘").
6080-9766: $88.1 \mathrm{~mm}\left(31 / 2^{\prime \prime}\right)$ EIA panc) height $\$ 80$
5060-9767: $132.6 \mathrm{~mm}\left(5 \psi^{\circ}\right)$ EIA panel height $\$ 85$
5080-8768: 177 mim ( $7^{\prime \prime}$ ) E1A pancl height $\$ 90$
6060-8769; 221.3 mm (8 $\mathrm{N}_{4}{ }^{*}$ ) ElA panel height $\$ 95$
$\left.5060-8770: 265.9 \mathrm{~mm}(101 /)^{-3}\right)$ ElA panel height $\$ 100$
$5060-8771: 310.4 \mathrm{~mm}$ ( $121_{1}$ " $^{\prime \prime}$ ) EIA panel height $\$ 110$

## 11046A Carrying case

This rugged, splashproof carrying ease sceepis $1 / 9$ width module instruments (maximum depth 203.2 mm or $\$^{\prime \prime}$. The case includes a shoulder carrying strap. Weight $5,4 \mathrm{~kg}$ (12 (b).

11056A Handle kit
A handle for carrying HP instrument modules of $1 / 4$ width. $\$ 15$

## 11075A, 11076A Module instrument case

A rugged, high impact plastic instrument case for HP $1 / 3$ modute instruments. Instruments can be operated, stored or carried in this splashproof case. Stornge compariment for power cold in rear of case is accessible through a removable hatch. Front lid contains adequate storage space for cables, test leads, etc. The dual purpose tilh stand also serves as a carrying hardle. 11075 A is $203 \mathrm{~mm} \mathrm{D}\left(8^{\prime \prime}\right)$; 11076 A is 279 mm ( $11^{\prime \prime}$ ) D.
11075A: Module Instrument Case
11076A: Module Insinment Case
$\$ 135$

## Rugged protection for instruments

System-II modular instrument transit cases

Typical cushlon
full size ( 425.5 mm ) module
ical cushion
half size modula ( 197.6 mm wide)


Typical transit case


## Transit Case Styles

The HP transit cases are rugged protective outer shells for use when instruments must be frequently transpored and used away from laboratory conditions. They are molded of strong fiberglassreinfored plastic. All are sealed tighlly with 0 -ing gaskets and clamping latches. They are rainproof under the test conditions of MIL-STD-108. Carrying handles are conveniently placed, fold flat when not in use.
Transit cases are typically provided with foam cushions, custom formed to fit the standard HP modular cabinets. This artangement provides maximum protection againsl: damage from handling. dropping, or crushing. A selection of case sizes is available to accommo date nearly any instrument and combination of accessories.

Transli cases

Instrument jin! (inches)			instrument side (mm)			Case Size* (inchas) he! including hardware			Case size (ma)   Kot tachalige hadwhe			Style	108.	$\begin{aligned} & \text { olaq } \\ & \text { chi } \\ & \hline 1 \end{aligned}$	MP Pars Nsabes	Brice
$31 / 2$	163/4	131/4	88.1	425.5	336.6	201/2	17\%	9	520.7	444.5	228.6.	$V$	15	58	9211.1288	$\$ 185$
51\%	$16^{3 / 4}$	131/4	132.6	425.5	336.6i	201/2	371/2	103/4	520.7	444.5	273.1		16	73	9211.1289	3185
7	163/4	13\%	177.0	425.5	336.6;	$201 / 2$	$17^{1 / 2}$	121/9	520.7	444.5	317.5		17	77	9211.1290	$\$ 185$
$83 / 4$	16\% ${ }^{\frac{1}{4}}$	131/4	221.5	425.5	336.6	201/4	17\%\%	141\%	520.7	444.5	3620	5	18	82	9211-1291	5205
31/2	$163 / 4$	183/3	88.1	425.5	466.7	23	21	9	584.2	\$33.4	228.6	$\checkmark$	18	82	9211-1292	5220
51/4	$16{ }^{1 / 4}$	1830	132.6	425.5	466.7	23	21	107/4	584.2	533.4	273.1	y	19	$8{ }^{6}$	9211.0839	5230
7	$163 / 4$	183\%	177.0	425.5	466.7	2 \%	21	32\%	584.2	533.4	317.6	Y	6	91	9211.1293	5215
$83 / 4$	16\% ${ }^{1}$	$183 / 4$	221.5	125.5	466.7	23	21	14\%	584.2	533.4	362.0	,	21	95	9211-1294	5220
101/2	16\% 4	18\%	265.9	425.3	466.7	23	21	16	584.2	533.4	406,4	\$	22	100	9211-1295	5220
$121 / 4$	16\%	18\%	310.4	825.5	466.7	23	21	1744	584.2	533.4	450.9	5	22	100	9211-1313	5225
$51 / 4$	163.	21\%	132.6	425.5	542.9	251/2	231/2	193/4,	647.7	596.9	273.1	$\psi$	24	110	9211-1296	\$290
3	$163 / 4$	21\%	177.0	425.5	542.5	251/2	23\%	121/2	647.7	596.9	317.5	4	24	110	9211.1735	\$300
121/4	162\%	24\%	310.4	425.5	542.9	24	19	294,	609.6	482.6	755.7	\$	32	150	$9211-1297$	8410
$61 / 2$	51/9	8	165.)	130.2	203.2.	$14 / 4$	9	111/6	362.0	228,6	285.9	$v$	6	36	9211.1317	5110
$61 / 2$	$51 / 9$	11	165.1	1302	279.4	$16 \%$	$10 \%$	111/4	428.6	263,5	285.8	V	11	50	$9211+1318$	\$125
$61 / \%$	734	8	165.1	196.9	203.2	$16 \%$	10\%.	111/4	428.6	263.5	285.8	$v$	i)	50	9211.1316	\$139
$61 / 2$	$77_{4}$	11	165.1	196.9	279.4	$16^{7} 9$	103\%	111/4	428.6	263.5	285.8	Y	II	50	92:1-1315	$\$ 125$
$51 / 2$	73/41	16	165.1	196.9	406.4	201/2	$121 / 2$	11\%	520.7	317.5	285.8	V	15	68	9213.1734	\$185
61/8	101/2	11	165.1	\%66.7	279.4	161/2	141/2	会产	419.1	368.3	215.9	V	12	55	9211-1895	3135

Full-module width instruments
Appropriate Front Handle Kit (HP Part Number 506)-0088 to -0093) must be installed on instoments for adequate protection.

Instrument sla						Case siza* (mat including hardwars)						Styla	H9 Parl Number	Price
H		W		0		1		W		D				
In														
$31 / 8$	$88.1$	16\%	$425.5$	$131_{4}$	$349.3$	2	$594.2$	$21$	$533.4$	84/4	$22^{2} 3$	$V$	9211.2642	1230 8230
$51 / 4$	1326 177.0	167 $167 / 4$	425.5 425.5	$133 / 4$ 13	3493 3493	23 23	584.2	21	533.6 533.4	$10^{1 / 1}$ $121 / 4$	266.7 311.2	V	9211.2043 9211.2844	1830 8230
8H4	22) 5	$16^{3 / 4}$	425.5	$13^{3} / 4$	349.3	23	584.2	21	533.4	14	3556	V	9211-2645	$\underline{230}$
10\%	265.9	16\%	425.5	$133_{4}$	349.3	21	584.2	2)	533.4	15\%	4001	\$	921.2646	5230
12\%	310.4	16\%	425.5	133/4	349.3	23	$594 ?$	2)	53.4	171/2	4445	S	92.11-2641	\$230
342	881	164.4	425.5	163	4255		6223	24h	6223	$8{ }^{314}$	22.3	$V$	9211-2683	245
$51 / 4$	1326	S6\%4	425.5	$16{ }^{1}$	425.5	24.1	622.3	2415	522.3	1017	2667	$\checkmark$	$921-2649$	$\{245$
$1$	177.0	$6^{694}$	425.5	$167 /$	425.5	$24 \%$	6223	24.6	622.3	1294	311.2	$\checkmark$	$9211-2651$	[245
$8{ }^{8 .}$	2215	16\%	425.5	$163 / 4$	425.5	$24^{\prime}$	6223	24\%	622.3	14	355.6	5	9211-2651	\$243.
$10 \%$	265.9	$163 / 2$	425.5	$163 / 4$	425.5	241,	62.23	24\%	622.3	15\%	4001	5	9211.3652	3245
1218	310.4	164.	425	$16 \%$	4255	28	7112	24	603.6	17/7	444.5	S	9211-2653	3250
$31: 3$	88.1	$16^{2 / 4}$	475.5	19/4	50.17	28	711.2	24	609.6	$88 / 4$	222.3	$V$	9211.2654	5250
51/4	1325	163/4	425.5	19\%/4	501.7	28	711.2	24	609.6	101\%	266.7	$V$	$9211-2655$	\$250
1	1770	16.4	495.5	$19^{3}{ }^{3}$	501.7	28	711.2	24	6095	121/4	$31!2$	$V$	921)-2656	\$250
$\mathrm{s}^{3}$	2215	16.4	125.5	$193 \%$	5017	28	7112	24	609.6	14	35.6	5	9211.2657	\$256
14.2	265.9	16\%	425.5	19\%	501.7	28	711.2	24	809.6	153/4	400.1	5	9211-2658	5259
12's	310.6	$163 / 5$	4255	$1933_{4}$	5017	28	711.2	26	609.8	37/2	444.5	S	9211-2659	5250
$31 \%$	88.1	163/4	4255	$223 / 4$	517.9	30\%	174.7	$24 \%$	6223	$83 / 4$	22. 3	$V$	$9211-2660$	5250
3.1	132.6	$16 \%$	425.5	2234	57.9	$301 / 2$	774.7	241\%	6223	10\%	266.1	$V$	9211.2661	1250
7	1770	16\%	1255	$223 / 4$	571.9	$30 \%$	774.7	$24^{1 / 2}$	6223	124,	315.2	5	9211-2652	1250
83.4	221.3	$16 \%$	425.5	223/4.	577.9	$301 / 2$	774.7	$25^{1 / 4}$	566.8	14	3.55 .6	5	3211.2663	5260
$11^{11}$	265.9	16\%	125.5	$223{ }^{3}$	577.9	3015	374.7	2614	666.8	153/4	400.1	5	9211-2654	5280
121.19	310.6	16\%	425.5	22\%	577.9	$301 / 2$	774.7	26\%	666.8	17'6	444.5	s	9211-2655	1260


Half-and quarter-module width instruments
Dlmenslons in inches and mm

Inrtrumemitho						Case stre" (not ineludiag tandwald)						Styic	HP Part Number	Pilce
H		W		0		1		$w$		0				
71	$m m$	In	mp	15	Minl	In	mm	in	mmm	14	7 mm			
$7 \%$	88.1	$8 \times 3$	20.42	10\%4	2731	145/9	37.8	173:	34.3	71/3	190.5	Y	9211.2666	\$15\%
54	1326	$8{ }^{3} 16$	206.2	$10 \%$	2331	$147 / \mathrm{m}$	377.8	331.4	349.3	91/4	235.0	$v$	921:-2667	$\$ 155$
$7$	177.4	838	204.2	$10^{3 / 1}$	2731	14\%	3718	133/4	3093	11	279.4	$y$	9211-2668	$\$ 155$
$8{ }^{3 / 4}$	221.5	8\%/8	204.2	$10^{3 / 4}$	273.1	14\% ${ }^{1 / 8}$	3778	135,4	349.3	123\%	3239	V	9211.2069	\$155
10\%	265.9	$83 \%$	204.2	$10^{3}$	2731	147\%	377.8	13\%	349.3	141/2	368.3	V	$9211-2670$	\$155
3.7	88.1	8) ${ }^{\text {a }}$	304.2	[33/4	3493	20	508.0	131/2	342.9	71/2	190.5	$\stackrel{V}{v}$	$9211-2571$	1165
51	132.6	8\%	204.2	$13{ }^{3 / 4}$	345.3	20	508.0	131/	3429	$9^{1 / 4}$	235.0	$v$	921.2672	\$155
2	37.0	83	204.3	$\underline{133 / 4}$	348.3	20	308.0	131/2	342.9	91/4	235,0	$Y$	9211-2671	$\$ 185$
88	221.5	$83 / 4$	2042	$133 / 4$	349.3	20	508.0	$131 / 2$	342.9	$12^{3 / 4}$	323.9	$v$	9211.2674	$\$ 165$
$10^{\prime \prime}$	2659	$83 / 5$	204.2	$33^{3} 4$	3493	20	508.0	$131 / 2$	3429	$141 / 2$	368.3	$v$	$9211-2675$	8165
31/2	138 17	$83 / 7$ $83 \%$	2047	153/4	4255	20 70	508.9	$131 / \%$	3429	$71 / 2$	190.5	$\checkmark$	9211.2676	\$165
7	177.6	8\%\%	204.2	163/4	425.5	20	508.0 508.0	131/2	347.9 3429	${ }_{11} 1 / 4$	235.0 279.4	Y	$9211-2571$ 9211.2678	\$165 $\$ 165$
8\%	221.5	83	2042	$16 \%$	425.5	20	508.0	131/2	3429	124,	323.9	V	9711.2679	\$165
101/2	265	$83 \%$	204.2	16.4	4255	20	508.0	$13 \%$	342.9	$14 \%$	368.3	$v$	92)1-2680	\$165
$31 / 8$	88.1	83	2042	193.	501.7	$24^{1 / 4}$	616.0	13	\$30. 2	714	150.5	$V$	$971 \mathrm{i}-2681$	\$175
$51 / 2$	? 376	$8 \%$	204.?	$19^{3}$	501.7	$24^{1 / 4}$	616.5	13	3302	91/4	2350	$Y$	9211.2682	5175
7	177.0	$8{ }^{2} / 4$	2042	192	5017	2414	816.9	13	$330 \%$	11	279.	$V$	9211.2683	$\$ 175$
81/4	$22] 5$	$8 \%$	$204 . ?$	193/4	501.7	24.4	616.0	13	$330 . \%$	123	3239	$\forall$	\$211.2684	$\$ 175$
$101 / 2$	2659	8\%/9	204.2	19\%14	5017	2416	816.0	13	330.2	141/2	3683	V	9211.2645	\$175
31\%	881	41/2	1048	10\%.4	273.1	14	355.6	10	254.0	61/2	165.1	$\psi$	9211.2686	\$145
$51 .$	132.6	41/6	104.8	103/4	271. 1	14	355.6	10	2540	$8{ }^{1 / 2}$	209.6	$V$	9211-2687	\$145
$7$	177.0	4\%	104.8	10\%	2731	14	355.6	10	254.0	10	254.0	$V$	9211-2688	$\$ 145$
$31 / 2$	881	81/0	104.8	133/4	349.3	$16^{7 / 2}$	428.	10\%	266.7	6	165.1	$V$	9211.2689	\$155
5.1	3326	41/9	104.8	133/4	349.3	16\%	428.6	101/2	266.7	$81 / 2$	209.6	4	$9211-2690$	$\$ 155$
7	177.0	41/9	1048	13314	3493	15\%	428.6	10\%	26.7	10	25.0	$V$	9211-2691	\$155
3'h	88.1	41/8	1048	$16^{3 / 4}$	425.5	2014	534.4	113.	2985	$6 \%$	165.1	$V$	9211-2692	\$160
$51 / 2$	132.6 177.0	4/18	104.8 104.8	$163 / 4$ $163 / 4$	455 425	20146	514.4 514.4	$11 y_{4}$ $11-1 / 4$	298.5 298.5	$81 / 4$ 10	2096 254.6	4	9211.2683 $9211-2694$	\$160 $\$ 150$
						2014	314.4	110	298.5	10	24.6	$V$	521-269	



Cases for other size insiruments of geecial applications are evailable through

Caster klt 1490-0913 can be field installed to provide (4) $31 / 4^{"}$ dlameter swival casters HP Service Center


Operating Case with instrument and drawer.
HP cases are rugged proteclive outer shells for use when insiruments must be frequently transported and used away from laboratory conditions. They are molded of strong fibenglass and have conveniently placed canying handies that fold flat when nol in use. All are sealed tighly with 0 -ring gaskets and clamping latches and are rainproof under the test conditions of MIL-STD-I08.
Operating cases are equipped intemally with shock-mounted frames that accepl any standard 19 -inch rack-mounting instruments up to the maximum height of the frames. This anangement offers the convenience of operation without removing the instrument from its carrying case. At the same time, environmental protection is afforded.

More than one instrument may be combined in a single operating case for convenjence in sellimg up and operating. Patch-cable interconnections may then be left in place within the casc, so that when the unil has been transpored to its place of use the covers are removed and the instruments inside are ready to put into use with a minimum of delay.
Drawers are available in three different heights so that small accessories. tools. etc., can be kept inside the case with the instruments. Firted foam cushions can be made up to accommodate nearly any shape articles.


A caster kit is avallable to fit the operating case allowing it to become a moblie rack. Once the kit is installed, the casters themselves may be attached or removed in seconds. With casters removed, the attaching hardware add's nothing to the overall dimensions of the case.


Fited loam drawer cushions to accommodate various HP accessory combinations are avallable.


Equipped with elastomerlc shock mounts, these enclosures provide outstanding shock and vibration attenuation. A set of standard shock mounts can be provided for any equlpment weight and tragility.



Nopilinal rack ht. in	LSO					Case Size finthas)   Not including haidware			Case Size (mm) W Not including hardivare			16	N ${ }_{\text {N }}$			HP Pan Number	Prics
	3 J	75		20	9.1	240	10.8	28.5	6055	274.3	123.9	40	181	50	287	9211-1302	5725
84	50	75	34.0	20	91	24.0	15.0	27.0	609.6	381.0	665.8	85	20.9	55	25.4	8211-1303	\$800
10v=	8 L	130	59.0	30	13.6	240	17.0	28.5	6096	431.8	73.9	53	24.0	64	290	$9211-2635$	\$825
12\%	7	100	454	25	113	24.0	189	28.5	609.6	480.1	123.9	45	249	65	29.5	9211-1153	\$850
14	80	130	59.0	30	13.6	24.0	20.6	28.5	609.6	52.7	723.9	57	25.9	30	378	52111281	51100 51100
15\%	90	130	59.0	30	13.6	24.0	12.4	28.5	609.6	5590	7239	60	27.2	15	34.0	9211-1222	\$1100
171/2	100	130	59.0	30	136	24.0	241	38.5	809.6	612.1	123.9	64	29.0	80	363	$9211-1243$	$\$ 1100$ $\$ 1150$
191/4	110	130	59.0	30	13.6	240	25.9	28.5	609.6	6519	723.9	69	31.3	85	380	921.1235	$\$ 1150$ $\$ 1150$ $\$ 1500$
21	130	250	113.6	50	32.7	24.0	78.0	28.5	609.6	$311 ?$	723.9	75	34.0	90	40.3	9211-1225	$\$ 150$ $\$ 1300$
2234	184	250	113.4	30	22.7	24.0	29.5	28.5	609.6	749.3	723.9	77	34.9	95	431	9211-2636	11500 $\$ 1300$ $\$ 1300$
241/4	15 J	250	113.4	50	$\frac{12.7}{7}$	240	31.0	28.5	609.6	781.4	723.8	哭	36.3 37	100	45.4	9211.1911	(1300
$26 \%$	161	250	113.4	50	227	24.0	30.8	28.5	609.5	7 fa 2.3	723.5	83	37.6	105	47.6	$9211-2637$	a $\$ 1300$ $\$ 1300$
$88$	ITV	2.50	1134	50	22.7	24.0	345	28.5	609.6	876.3	723.9	81	39.5	110	499	921)-2638	\$ $\$ 1300$
2914	184	250	1134	50	22.7	24.0	36.4	28.5	609.6	924.6	723.9	98	40.8	115	52.2	9211.2633	\$1350
314	194	250	$113:$	50	22.7	24.0	38.0	28.6	6096	965.2	723.9	94	42.6	120	54.4	$9211-2600$	$\begin{aligned} & 1350 \\ & 18185 \end{aligned}$
331/4	204	250	113.	50	22.7	74.0	35.9	285	600.6	995.7	7239	97	44.0	125	56.7	$9211-11133$	$\begin{aligned} & \$ 1350 \\ & \$ 2100 \end{aligned}$
4742	214	320	1432	70	31.8	240	53.9	28.5	609.5	13691	723.9	140	63.5	175	74.4	9211-2891	\$2100

L. Eaen Operating Case is supplied with one l-bat sel for supporting sifes of instruments.
2. Has interlocking leet for stacking.


## Standard \& special order features

Inner rack frame with provision for infinitely adjuslable T-bar instriment suppori brackers.
Inner rack frame with RETMA hold patem drilled in rear rails.
Matiog feel for stacking one case on top of another. Special color other than tan. Please specify.
Modified inner rack frame depth. Slandard depth 20 " from fromt panel mounting surface to rear surface of frame. This option includes an appropriate change in the overall depth of the enclosure. Please specify desired inner frume depit. Maximumin $23^{\prime \prime}$, minimum $12^{\prime \prime}$.
Chassis trak C-300 instrument slide pair to mount on either side of inner frame using RETMA hole pattern drilled in front and rear rails.
Special shook mounts for unosual instrument weights. Please specify weights.
Incseased front cover depth. Maximum depth 6". Please specify.
Increased rear cover depth. Maximum depth 6 ". Please specify.
Latches recessed into the surface of the case.
Handles recessed into the surface of the case.
Hermetically seated case tested by the hot water method.
MIL-C-4 50 certification with the exception of design and preproduction testing. Case will have increased wall thick ness, hardware anodized to military
specificalion, and will be hermetically lested using the hot water method.$\$ 70$
Addition of an automatic pressure relicf valve. ..... $\$ 20$
Addition of a manual pressure retief valve. ..... 810
Addition of form permanemly mounted. 3 i.:" diance- ter swivel casters. ..... $\$ 40$
Addition of four removable. 3 'e" diameler suivecasters. Also available in kit form B;N 1490-0913.
Addition of two aluminum hat-section skids to the ..... 555
casc bolom.
Addition of lift rings to either side of the case. ..... \$30Accessories$9211.118431 \mathrm{y} \mathrm{H}(88.1 \mathrm{~mm})$ Drawer with ball bearingslides.$\$ 170$9211-1165 51/t H (132.6 mm) Drawer with ball bearingslides.$\$ 180$
9211-1186 7 H (177 mm) Drawer with ball bearing slides. ..... $\$ 190$
0950-0122 AC power receplacle strip with four outletsmounted on bollom rear of inner sack frame. Powercord $1 \mathrm{~m}(3.3$ ) long. NEMA conneciors.$\$ 22.50$
9211-1173 Pair T-Bar instrument suppor brackets. ..... $\$ 25$
1480-0913 Cas$\$ 55$

On spccial order. complete transponable field instrument groups can be assembled to sull indivjdual requirements. On request. cases can be fabriculed that meet the envimomental requirements of Miliraгу Specifirations.

- Designed for $A M, F M$ and $Q M$ transceivers from 2 to 1000 MHz
- Ideal for testing citizens' band, aircraft communication. tractical and FM mobile radios.
- Measures up to 100 watts transmitting power


The HP R950B Transecives Test Syatem will whomatically vest $A M$ ind $F \mathbf{M}$ communtations transecivers over the irequency range of 2 so 1000 MHz . It is nearly ideal for production line testing. $R \& D$ evalluation, quality answance lesting, incoming inspection, and user maintenance of many transceivers. An HP 9825A Cileulator controls the stimulus and measurement capabilities of the system via the HP Interface Bus (HP-1B).
Several new insiruments have been incorpomited in the 89508 to ofier improved periomanec. A new mulimeter with rms detecior and increased speed has reduced transceiver test time typically by $20 \%$. A new cotimer provides direct count to 1300 MHz and a new power supply frovides current or voltage programmability. Thesc changes demonstrate the ease of system improvement offered thru HB-IB av new and betler equipment becomes available.

## Speed

Using the 8950 B sysiem. Iramectiver test time can typically be reduced by a factor of 10 or more. resulting in greatly increased productivity. For example. he system can perform atypical set ol tests on a mobile radio in about 2 minutes, while a manually operaled selup would require about 20 minutes.

## Accuracy

Operation of the 8950B under calculator can offer beller accuracy than a manual system. By automatically applying previously measured calibrations faciors, repeatable system emors such us irequency response and inserion low can be virually eliminated.

## Data presentation

The 9285 A calculator includes a small thermal printer adequate for writing soft ware or for sharn messitige printouts. Boih the 9871 A Character Impaci Printer (Option 001) and the 9866B Thermal Printer are systems compatible to provide more sophisticated printouts.

## A flextble HP-l日 syatem

HP-IB interconnection insures that your 8950 B will nol become obsolete in the near future: as new and more advanced insirumentation is offered. your system can easily be updaied to include added meaturement capability. The 8950 B employs general purpose. off-the-shelf inatrument except for the 895 IB System Interface. This means you may already be using nearly identical instruments in your measurementi: thercfore. esi results will be direculy comparable and opetition and maintenance will be simplified.

## 89518 System intertace

The 8951 B System Lnterface contains all the sienal switching and conditioning needed to route signals to and from the proper instouments and the madio under test. All radio connections are made at a singlc working panel and no mantal switching or cable reconnection is necessary during a typical series of tests.

In addition to switches, the 8951B includes a 100 watl RF antenuator, a high quality FM diseriminator, and a diode detector for AM measurements. Three band-reject filters with provision for an extemal filter are used for distortion and SINAD measurements.
The 89518 has added several additional capabilities. Positive and negative peak delectors provide improve measurement aceuracy of distorted FM sigrals found in modulation limiting testing. Buffer amplifiers have been added to reduce internal setting limes and increase testing speed. Exira switching has been provided 10 allow system expansion to include specirum analysis, floating transmitter keying and supply voltiage measurement.

## 9825A Computer controller

The thexible and poweriol ge25A is an almosi ideal controller for this system. It uses a high-level programming language called HPL which offers power and efficiency for handling equations and conrolling insiruments, yen is easy to leam and use. The calculator and HPL allow easy storage and review of programs and data on a built-in, high speed. 350.000 byle sape carridge.

## System soltware

The 8950 B is fumished with a rape carlridge conisining a comprehensive library of system programs: 1) the verification program is a short system self-test to assure the user that the system is operation, 2) the calihration program generates calibmtion factors to correct repeatable ertors in the system, 3) the ineasurement subrodaines allow complex measurements to be made by writug only a single statement. 4) and the instrumber drivers facilitate information cransfer berween the calculator and the instruments.

## Writing programs

To perform a serics of tesis on a manseeiver. a program must be written which accesses the appropriale measurement and insirument driver subroutines. Additional program stalements will provide a printed copy of the results which can inelude the chosen test limits or a Past-Fial indication of total tent performance. Because of the softwane flexibility, special lests can easily be written uwing the instrument drivers provided with the sysiem.

Typleal system tests

Recaiver:	Transmitter:
SINAD sensitivity	Carrier power
Quietimg sensitivity	Carrier frequency and stability
Squelch threshoid	AM depth
Audio power	FM devialipn
Audio dintorion	Audio distortion
Audio response	Audio response
Hum and noise	Audio sensitivity
AGC response	Squelch tone frequency
Modulation aeceptance	Limited spurious measurement
bandwidth	Power supply sensitiviry
Power supply sensitivity	Curtent drain.
Current drain	
DC and AC voltage	Module and Subassembly:
	Resistance AC volis
	Frequency DC vols

## 8950B System specificatlons (includes software calibration)

General
Syatem frequency range: $1-1000 \mathrm{MHz}$.
Syatem power range: 0.5-100 watls.
Galculator controlled power supply voltages: 0 to $50 \mathrm{~V}, 50 \mathrm{mV}$ resolution.

## Current draln measurement range: 50 mA to 10 A .

Tranamitter tests
Power measurement range (Antenna port): 1 mW to 100 wats.
Power measurement range (AUX RF Input): $10 \mu \mathrm{~W}$ 10 1 watt.
Power measurement accuracy (Antenne port): expected $=0.14$ $\mathrm{dB}(=3.3 \%$ ).
Frequency measurement range: $010 \quad 3300 \mathrm{MHz}$.
AM measurement
Frequency range: 2-400 MHz .
AM depth range: 0.2-90\%.
AM aecuracy ( 1 KHz rate $10 \%$ to $80 \%$ ): $\mathrm{F}_{\mathrm{c}}<200 \mathrm{MHz}:=2 \%$
$=3 \%$ of Full scale: $\mathrm{F}_{\mathrm{c}} \geq 200 \mathrm{MHz}: \pm 2 \% \leq 5 \%$ of reading.
AM rate range ( 3 dB ): $50 \mathrm{~Hz}-25 \mathrm{kHz}$.
AM residual distortion (at $30 \%$ AM): $\leqslant 2.0 \%$.
FM measurement (positive and negative paak detection)
Frequency range: $4-1000 \mathrm{MHz}$.
Peak deviation range: $300 \mathrm{~Hz}-20 \mathrm{kHz}$.
System residual; <10 Hz in 1 kHz BW .
FIM accuracy ( 1 kHz rate ): $\pm 3 \% \pm 20 \mathrm{~Hz}$.
FM rate range: $50 \mathrm{~Hz}-20 \mathrm{kHz}$.
FM residual distortion (at $\geq 3 \mathrm{kHz}$ peak deviation): $\leq 1.0 \%$.
OM measurement
Frequency range: $4-1000 \mathrm{MHz}$.
Deviation: $\Delta \emptyset_{\text {mix }}=20 /$ mod. rate $(\mathrm{kHz})$.
©M rate range: $50 \mathrm{~Hz}-20 \mathrm{kHz}$.
OM accuracy ( 1 kHz rate): $\pm 3 \%$.
Spurious measurements ( $>1 \mathrm{MHz}$ away from carrier): 0 to - 40 dBC .

## Recelver tests

Minimum measurable sensitivity (typleal): $0.2 \mu \mathrm{~V}$.
Output level range (Antenna port, Into 50 ohms): - $14610-19$ $\mathrm{dBm}(0.02 \mu \vee$ to 25 mV ).
Output level accuracy ( 1 to 1000 MHz , at Antenna port): $=1.5$ dB.
Audlo power measurement accuracy: $0.5 \% \pm$ speaker load tolcrance.
Audio distorton measurement: A: 400,1000 , and 3000 Hz rales. Residual dlatortion: RF generator distorion $+0.3 \%$.
Audlo sequency range:
AM: 50 Hz to $50 \mathrm{KHz}(\mathrm{RF}$ freq $>10 \mathrm{MHz}$ )
FM: 50 Hz to 100 kHz .
Modulation acceptance bandwldth measurement range: 1 to 100 kHz .
General characterlstlcs
Operaling temperalure range: $15^{\circ}$ to $35^{\circ} \mathrm{C}$.
Power requirements: 115 volts $\pm 10 \%, 60 \mathrm{~Hz}$.
Net weight (less calculator): $216,8 \mathrm{~kg}$ ( 478 lb ).
Options Price

002: Additional Power Suppiy capability (Substitute
6268B. \#026. J80 and 59501A (or (6002A)
003: Reduced frequency ( 110 MHz ) less $\$ 4,300$
$004: 230 \mathrm{~V} .50 \mathrm{~Hz}$ operation
N/C
005: Delete 9825A Calculator and Access less $\$ 10,750$
8950B Transcelver Test Systom
$\$ 63,000$
(including a calculator and programs)

## Data and voice testing

There are a wide varicty of tests which can be made on a data communications system. Depending on the point in the system al which the tests are made. quite different philosophies and techniques apply. These group convenienly into three areas; data domain, time domain and frequeacy do main. Data domain tests are concemed with the flow of digital information within the data sommenications systems. Time domain
change with time. Intensittent problems are very difficult and time consuming to troubleshoot in any systern. The size and complexity of a data communication system aggravates the problems.
Eveo private leased lines are in a constant state of slow. When a lrunk goes down for testing or repair, a new trunk will be pached in with different parameters. This constant change requires more frequent testing.


Figure 1 . The three domains of data communication instrumentation.
includes common digital tests, such as Bit Error Rate. Frequency domain tests are made on the analog transmission line, for example. group delay response.

Data comsounications roubleshooting involves some wique testing problems that are different from the tesing done on cradilional equipment. The individual tesis and parameters are simple because of the low bandwidths (about 3 kHz ) and modest sjenal-to-noise ratios (about 24 dB ). The difficulty comes from the complex interrelationships of these simple parameters. For example, bow daes envelope delay distorLion of the line (Figure 2) affect the digital error rate of a modem (Figure 3), and how does that affect the throughput of the computing system? The mathematical relationship between these simple parameters is very diffade to undersland for tertestial data links. And, it is only one of many relationships thal have to be understood when eroubleshooting a data communicalion syssen.

Data communication systems require extensive handshaking between machines and across the different domains. Haodstake problems ane difficult to locate because they are uansient and because each machine alone will usually test good. It is very difficult to isolate the handshake problem to one interface.

The geographic size and multizude of subsystems in a telecommunication system make it vulnerable to intermittent and transient impairments as well ar degradation and

## Data domialn

Logic State Analyzers are capable of tripping and displaying both serial and parallel digital data in their natural binary forms. They are useful for monitoring serial data out of the modem, parallel data on the information bus, and both serial and parallel data within the Data Temninal Equipment.
The logic analyzer can ligger on the sync word of the serial bit stream and display the subsequent byles of data. The instrument can delay from the sync point and display date far removed from the sync character. Digital memory allows easy examination of transient messages common in data communications.

Parallel data analysis can be used to examine data on the RS232/V24 bus between the data terminal equipment and the modem. The trigger word can be used to start the display on important signals (e.g. request-to-send ar received-line-signaldetect). The display can be used to monitor. simulsaneously, activity on the other lines of the bus.

Before a link can pass dala, the subsyslems must "handsbake" with each other to esiablish a coolinuous synchronized link. The data terminal equipment rums on the modem transmit carrier by raising request$t 0$-send. The modem will allow time for training sequences, echoes and receiver squelches before replying with a clear-10send to the computer. The 10235A Interface cover is designed to monitor both standard and new handshake sequences on the terminal interface.

## Digital measurements-time domain

Data Error Analyzers are used to monitor the quality of both the modem and transmission facility. They provide more information about the modem and transmission line than Logic State Analyzers, but do information about the Data Terminal Equipment which they replace.

The overall quality of the link is indicated by its Bit Error Rate. A good link will have il error rate better than $1 \times 10^{-8}$ errors per bit. This measurement will include the effect of both ransmission line impairments and the modem's ability to overcome them. Modems vary widely in their sensitivity to line impairments. Low speed (less than 300 bps ) and adaplively equalized modems are less sensitive than bigh spered (more than 4800 bps) and nonadapively equalized modems.

Sioce data communication systems ransuil data and control errors in blocks, these insimments also measure Block Ertor Rate. Bíl Error Rate and Block Error Rate ean be used together to examine the stariseics of the error mechanism. If the Bit Error Rate and Block Error Rate are boih high. the impalment is random and probably due to noise. If the Bit Error Rate is high but the Block Error Rate is low, the impairment is more sporadic. This happens when lines are switched, sync is temporarily lost or impulse noise is 100 high,

Error rates are qualitative checks of the data communication system which can be made in a few minutes. If the system is bad. diagnostic measurements are provided to help isolate the problem. Dropouts, clock slips, crror skew, jitter and total peak distortion indicate some of the problems that can occur on a link. These measurements are made simutaneously with the estor rate measuremenls and can be printed on in alltomatic. unattended mode if desired.
These instuments are available in programmable versions for futly automacic syslem maimenance and checkout.

Catustrophic failures can usually be found with self tests and loop back switches built into the Data Teminal Equipment and Modem. A Transmission Test Set can find catasirophic failures of the unamimission line. Logic Analyzers and Data Error Analyzers can find cataswophic failures that are not illuminated by internal self tests.

Degradations of the modem or Itansmission line are more difficull so find and require more extensive test equipment. The mosl common degradation is an excessive error rate due to line impairments or a faulty modem.
The transmission line will have a set of steady state impairments (o.s., ampliude distonion, envelope delay distortion, nonlinear distortion, and frequency offset whicb smear the modem's symbols and make them harder to separate in the modem receiver). The line will also have random impairments (e.g., message circuit noise, impulse noise. phase gilter, plase and gain hies which ean temporarily push the symbols into the wrong slol. alusing a digiral error).

## Line impairments-frequency domain

Transmission Line Analyzers and Transmission Impaiment Measuring Sets (TIMS) are used in measure lue transmission distortion pammeters that cause the modems to have a high bil error rate. These distortion parameters fall into two main iypes: steady-state and Iransient. These tmensmission parameter measurements are made on the telephone plant facilitics. Bectuse they are frequency domain measurements, they do not provide information about the data or rime domain. In most cases, these ransmussion parameler measurements conform to CCITT or Bell standards . . . both in their results and in the methods used.

Typically, a telephone line is conditioned for a given dala rate. thereby limiting the distortion allowed. The total line capability can be assessed if three tine characleristics are established:
(a) effective channel bandwidth as given by the attenuation and delay distorion
(b) net-circuit loss
(c) noise

The altenustion and delay distorions impose an upper limit 10 data Iransmission speed and reduce the noise margin 10 errors generated. The net circuit loss and noise affect the signal-to-moise margin. Noise includes both steady-state background noise and transient noise which inchudes impluse noise, gain and phase hits and drop-outs.

## Measurements

There is a major difference in testing above and below 2000 bps. Below 2000 bps . modems are asynchronous and usually frequency shifi keyed (FSK). These modems are not as sensituve to líne impairements and can be mainsained most of the rime with simple test equipment like HP 3551A and 3555 B . The digilal measurements can all be made by the HP 1645 A which is caprable of either asynchronous or synchronous lesting.

Dala rates higher than 2000 bps are accomplished by transmitting more bits per symbol. This requires a synchronous modem of more sophisticated Jesign. These modems, especially at 7200 and 9600 bps , are sensitive to channel imptimments. Bell modems usually are phase shifl keying (PSK) or quadrature amplitude modulation (QAM). Also used are pulse amplitude modulation (PAM) and AM single sidehand (SSB) mod. ems.

Only the Logic Slate Analyzers are capable of on-line testing with data traftic. The Datan Error Analyzers and Transmission Test Sels generally requice that the line be laken out of service and tessed at each end with a compatible tesi set. These lest sets require a known stimulus for all measurements except signal level and message circuit noise.

The majority of data networks are duplex
(two way) because of the necessity for crror control schemes that require a reply (ACK or NAK) from the nominal receiver. Because of this, the resting muse be done near to far and far to near to verify that both directions of the bive are working.

There usually must be an identical or equivalent test set on each end of the line (4940/4940 or 1645/1645) and a rechnician 10 operate the set in each direction. The 4942A and 3770 B use a microprocessor to achicve master-slave operation so that only one lechnician is required.

Sometimes lines can be looped around at the far end to eliminatc the extra secbnician and rest set. In the laboratory. this is always true for half duplex testing of experimental equipment. In the field, however, the loop around causes twice the length of line to be tested. so the parameters are relalive. . . not absolure, and not tarilied. Some modems are capable of gain restoration in loop around to avoid an unrealistic exira 16 dB loss. Digital loop around can be accomplished at the termionl intesface or in software in the DTE.

The 4940 A is capithle of measuring all the tariffed impairmenls in the U.S. The 3770 B measures in one combined unis all of the maintedance parimeters laid down in CCIT recommendation M. 1060, P53A. and V5S. The 1645A is capable of synchronous micasurements according to boik Bell and CCITT specifications. There is smme overlapping of the frequcicy domain measuremeats. A 3551A might he used to make simple measurenenis on a synchronous circuil and a 4940 A might be used to investigate difficult problems on a low speed asynchronous circuil.
The chaice berween digital and frequency measurements djepends on the application. A iclephone compary may nol have access to or responslbillty for the digital side of the modem, so frequency measurements would be hest. A data communication end-user interested in go/no-go resting ean make them fastest with a digital measurement of bit error rate or data characters. Since malfunctions know no boumdarich, it is imporiant that the lest equipment fil the problent.


Figure 2. Advanced test sets like the 4940A, 4942A, and 3770A/B can measure envelope delay distortion.


Figure 3. This classicial pertormance characleristic of a modem shows where three lypes of equipment can coniribute. Data error analyzers, like the 1645A, can measure blt-error-rate (EER) in the time domain. Simple ransmission lest sets. like the 3551A, can measure signal-tonoise ratio in the trequency domaln. Advanced test sets llke the 3770A/B, 4940A, and 4942A can measure importani envelope delay distortion (EDD). Further the 4940A measures non-linear distorion (NLO).


Figure 4. Where to use the various HP instruments in a data communicatlon system.


1645A


Oirect reading, autoranged indications are displayed on an LED readout. Handshake signals conforming to CCITT convention are included for operation through any modem system

## 1645A Descripilon

Hewlell-Packard's Model 1645A Data Error AnilyFer quickly isolates data communications link problems through six simultaneous measurements. During tests. the 1645A can be left totally unattended because it automatically maintains synchronization even in the presence of dropouts. And for added convenience. the 1645A can be equipped with a printer for hard-copy. permanent recordings of long tesis.
Bit-error and block-error rate tests are antoranged and displayed directly on an LED readoul. Where is no need to periorm any caleulation. Additionally. the 16a5A measures jitier or total peak distorion (the sum effect of jitter and bias), counts the number of times carrier loss or dropouls occur, measures data-error skew and counts the number of clock slips resulting from phase hits on the link or modem sync problems.
With all these measurements made during the same lest interval, you'll know preciscly what is causing your problem. in modems. data channels, complete commonicalions systems.

## 10235A Interface cover

The 10235A Interface Cover is designed for Irouhleshooting problems on the RS-232C interface bus. The most common problems such as wrong voltages and excessive cumaround times, which most commonly occur during instaltation. ane easily pingointed with the measurement capability of the ineerface cover.
Measurements include time interaal. voltage measurements. audio monitoring, data set control signal monitoring, and the ability to send control signals to the data sets. This measurement capatility can be ensily patched through the $25 \times 25$ pin matrix 10 every pin or the RS232C interiace for complete lesting.
The progmmmable matrix has the 25 pins of the RS-232C interface (modem and business machine) connected to the columns along with movt of the RS-232C conductors from the 1645A to the molem. Several imponant signals, send data, receive data, transmit cleck and receive clock, ate separmed and applied to the matrix rows for manual manipulation by the technician.

The most imponant row outputs are TPI and TP2 which are connected to the time interval circuits for measuring the interval between signats occurting on two different leads in the matrix. The interval timer measures the time while a visual indication of which lead changed state fisst is supplied by LED's connected to TP 1 and TP2. This permits accurale timing measurements of imporant signalk such as mumaround time between Request to Send and Clear to Send responses. Test poinis I and 2 may also be monitored with the buile-in loudspeaker. For maximum flexibility the voltmeter can be connected through jumper leads to TP1. TP2 , or TP3 of the matrix to any of the 25 input leads. The extemal inputs also allow extemal voltuge measurcments such as telephone line signal levely.

Control information can also be exchanged between the 10235 A and the deta set by using any' of the eight data set comrol switches. In addition control sigats from the data sel can be monitored through the matrix on the eigh control signal indicators.

## Interfaces

For versatility in design and roubleshooting, both CCITT V24 (RS-232C) levels and TTLL icvels are available in the 1645A. TTL levels are through front panel BNC connectors. Interfacing with standard RS-232C syscms is through a rear panel 25 pin connecior. The syslem inlerface, including connector, is contained on one circuit cand whicls is easily' replaced for other interfaces. The Model 10388A interface card and cable is for modems conforming to CCITT V35 (W.E. Type 306) high speed modems. The Model 10387A interface is for type 303 wideband modems. Interfacing with modems conforming to MIL-188C slandards is available on speciad order. A breakout box. Model 10389A for RS-232C systems. is availatle as a convenient melhod of opening interconnecting lines. Test points on each side of the switch permits monitoring of signal levels, or with jumper leads offer a convenient meihod of matching different system installations.
For communicalions companics that need to test both low and high speed systems the 1645 S offers a complete data transmission tens sel. The test set includes a I645A Data Error Analyzer with RS.232C interface: 10235A Interface Cover: CCITT $\vee 35$ and Type 303 intelface with matching cables; Model 10389A RS-232C breakout box with cable; and wo accessory pouches. The 1645A in this system incorporales a wider phase lock loop caplure range which allows receiver lock-on to PRBS signals of other units that do not have crystal controlled transmiters for end-10-end testing. The $1645 S$ includes two diode and two resistor pins for the 10235A matrix. This complete lest system offer eighe basic data communication measurements plus audio which is capable of detecting malfunclions ranging from crossed wises to intersymbol interference in a wide range of dala communications systems.


## 10235A

## 1645A Specifications

## Blit rate <br> <br> Intemal

 <br> <br> Intemal}Transmitter bits per secod: selectable 75, 150. 200. 300,600 . 1200. 1800. 2400. 3600. 4800, 7200. 9600.

Cryetal Irequency: $5.75 \mathrm{MHz}=0.03 \%,<0.01 \%$ jilter.
Recelver with blt aynchronlzer: same as internal transmitter.
External: iransmitter and receiver, io 5 MHz .
Data outputs/Inputs
Front panes
Input: dala input requires TTL levels: max input $5,5 \mathrm{~V}$.
Outputs: recciver sync, transmitter sync, and event at TTL levels: data output is $>2 \mathrm{~V}$ inio 50 ohms: jitter/lotal peak is 1 V p.p for each $10 \%$ of $p-p$ distorion from waveform causing distorlion.

## Rear panel

Inpuls: backward channcl dita, external transroither and receiver clock require TTL levels: max inpui 5.5 V .
Outputs: bits lost af TTL levels: intemal transmitter clock is $>2$ $V$ into 50 ohms.
Multipin connectors: 25 pin female connector for interfacing with standand RS-232C communications systems. 36 pin female printer output at TTL levels in BCD 842 1 code.
General
Power: 115 or 230 V ac. 48 to $440 \mathrm{~Hz}, 150 \mathrm{VA}$ max.
Operating environment: 1emperalure, $010+55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F} 10\right.$ $\left.+130^{\circ} \mathrm{F}\right)$; humidiry, $1095 \%$ relative humidity at $+40^{\circ} \mathrm{C}\left(+104^{\circ} \mathrm{F}\right)$; altitude. 204600 m ( 15000 11): vibration, vibrated in three planes for IS min. eacts with 0.254 mm ( 0.010 in ) excursion. 102055 Hz . DImenslons: $133 \mathrm{H} \times 425 \mathrm{~W} \times 186 \mathrm{mmD}\left(51 / 4^{4} \times 16^{3 / 4 "} \times 11 / \mathrm{m}^{\mathrm{N}}\right)$ Welght: net. 8.2 kg ( 18 lb ). Shipping, 10.9 kg ( 2 Alb l .
Accessorles supplled: one 3 m ( 10 if ) RS.232C interconnecting cable to connect the 1645 A to the modem, connects 10 10235A when used in the 1645S configumation (HP P/N 01645-61605), one 2.3 m ( 7.5 ft ) 3 wire power cord $\langle\mathrm{HR}$ P/N 8120.1378); one Operaling and Service Manual.

## 1645 A Indicators and controls

Indlestors
Out of lock; reccived data invented; bit ersor: carrier loss: clock slip: block error: data sel rady (DSR): clear to send (CTS): loss of data: tesl on.
Selector swltches
Clock; pattem; data/ $\overline{\text { data; }}$ exponenl range; single/cycle (printes): DTR/RTS/back ward cbannel: start/stop: off/loop; off/xmil errors: off/โlter; cvent, bit error, carrier loss. clock slip. block emor, skew. jitter/total peak.

## 10235A Specifications

## Time interval

Range: 999 ms full scale.
Resclution: 1 ms.
Accuracy; $2 \%$ of measured interval $\pm 1$ couni.
Start-Stop: TPI \& TP2 inpul, LED indicates event siarl at TPI or TP2.

Trigger slope: posilive edge.
Trigger amplltude: $\pm 1 \mathrm{~V}$.
Input reslstance: approx. $4 \mathrm{k} \Omega$.
DC dlgital voltmeter
Ranges: 19.99 V . 199.9 V full scale.
Accuracy: $\pm 1 \%$ of reading, $\pm 1$ counl.
Dlgital units: $3^{1 / 2}$ digits.
Input reslatance: I $\mathrm{M} \cap$.
Overload protection: to 1000 V .

## General

Interface conneclors: three 25 pin female connectors for connecting the 10235A 10 the 1645A. modem. and business machine. Interface conforms to RS-232C stundand,
Power requlrements: +15 V to 25 V and $-15 \mathrm{~V} 10-25 \mathrm{~V}$ supplied by the 1645A.
Dimensions: $132 \mathrm{H} \times 399 \mathrm{~W} \times 48 \mathrm{mmD}\left(5.2^{\prime \prime} \times 15.7^{14} \times 1.9^{\prime \prime}\right)$.
Welght: net, 1.8 kg (4 lb). Shipping, 3.2 kg ( 7 lb ).
Accessorles supplled: one $46 \mathrm{~cm}\left\langle\left(8^{\prime \prime}\right\rangle \mathrm{RS}-232 \mathrm{C}\right.$ incerconnecting cable connects 10235A to 1645A (HP P/N 30235-61606): one 46 cm ( $188^{\prime \prime}$ ) power cable connects to 1645A (HP P/N 10235-61602): one accessory pouch, alaches to side of 1645A (HP P/N 1540-0385): one Operating Note.

## Indlcator and control functlons

Indleators: cighe light emitting diodes (LED) provide logic HI or LO indications for corresponding patch pins in the programming matrix. $+3 V$ lights LED.
Audlo: buile-in loudspeaker and volume control.
Control switches: eight switches supply control signals tbrough the progrom malrix 10 business machine/modem conneclors. On is +5 $V, O F F$ is $-s V$.

Interfaces	Price
Model l0387A for Type 303 modems (wish cable)	$\$ 390$
Model 10388A for CCITT V35 (with cable)	$\$ 290$
Model 10389A Breakout Box (RS-232C) (with cäble)	$\$ 165$

Model 10389A Breakout Box (RS-232C) (with cajble)
MIL-STD-188C and oher interfaces available on special order. Contact HP Field Engineer.

## Accessorles

Printer Interconnecting cable: Model 10233A cable connects the 1645A 10 HP Model 5055A or 5150A printers: 36 pin male connector on one end and 50 pin male connector on the other
Front panel cover: protecis 1645A [rond panel during 580 masil and provides convenient arrying handle (HP PN 5060-8767). This cover is nor needed when u 10235A Interface Cover is ordered with a 1645 A , or with a l645S Data Transmission Test Sel.

## Orderlng informatlon

1645A Data Error Analyzer
$\$ 2300$
Opt 908: includes rack mounling kit
Opt 910: additional set of manuals
add $\$ 10$
10235A Interface Cover add $\$ 15.50$

16455 Data Commusnications Test Sel*
$\$ 1000$
Opi 910: addilional set of manuals
$\$ 4100$
add \$25

3770 A \& 3770B

- Delay and Attenuation Distortion measurements
- Compatible with CCITT Recommendation 0.81
- Rugged, portable, and really easy to use


3770A

## Description

The HP 3770A and 3770B are designed for audio data line characterization to CCITT standards. The 3770A measures the basic parameters affecting data lines. The 370B makes. in one combined bnit, all of the routine maintenance measurements listed in CCITT Recommendation M. 1060 for high speed data lines. This inaludes the measurements periormed by the 3770A.

The 3770A measures group delay, allenuation distortion, and absolute level in the frequency range 200 Hz to 20 kHz . It has aulomatic ranging. zeroing, and symchronization, with simultaneous LED readout of measurement result and frequency. The sender and receiver are combined in a single, rugged, porlable unit.

The 3770B. in addilion, measures weighred noise, noise-withconc, and impulse noise. Furher, an optional slave facility for group delay and attenuation distorion measurements allows the measurement results for both directions of transmission on a 4 wire circuit to be displayed at one end of the circuil. Also, the measurements in both directions can be controlled from one end of the circuir, leaving the slave unit unatlended.

The 3770A and 3770B both have $\mathrm{X}-\mathrm{Y}$ recorder outpuls to enable a permanent swept record of the measurements to be made. A suitable portable X-Y recorder can be supplied as an option. Pre-printed graph paper showing CCITT limits for group delay and attenuation distortion measurements can also be supplied.

Both instruments also have a buill-in telephone facility 10 allow voice communication in a 2 - or 4-wire mode over the líne or lines under tesi. An integral loudspeaker allows the operator to monitor either the receiver input or sender oulput.

## Measurement princlples

For group delay and attemuation distortion measurements, the operation of the 3770 A and 37708 is compatible with CCITT Recommendation 0.81 . With this method, the sender generates a carrier signal which switches between the reference and measuring frequencies al a rate of 4.166 Hz . The composite signal is ampliude modulated by a 41.66 Hz sinewave and transmitted through the channel to be analyzed. The relative group delay of the channel at the lwo frequencies is measured by compariog the delay of the envelope recovered during the measuring period with that recovered during the reference period. The relative athenuation measurement is made by comparing the amplitude of the two envelopes.

The receiver can measure the absolute level of either the measuring or reference caltier within the range -50 to +10 dBm . As the

## 3770B only

- Makes all the maintenance measurements listed in CCITT Recommendation M. 1060
- Optional slaving facilities


37708
sender output is calibrated in dBm, this measurement allows the absolute loss of the transmission path to be calculated. In addition to normal operation absolute level measurements can be made using a pure tone.

transmitter op signal
Background noise can be measured in two ways with the 3770B: weighted noise measurements, and weighted noise-with-tone measurements. Weighled noise measurements are made in accordance with CCITT Recommendation P.53A. The inpul is applied 10 a psophometric (or telephone) weigheing filter and then the power is measured using a true rms detector. The filter simulates the combined characteristics of a telephone handset and a human ear, and is used to make the noise reading correspond to the subjective effect of the noise on the human car. Also avalable with the 3770 B is a 3 kHz flat filler which gives the noise power in the channel without psophometric weighting. In the weighted noise-with-tone mode, the 37708 measures the background noise while a 1004 Hz cone is applied to the cbannel. This is particularly important with, for example, PCM channels where the noise measurement would be inaccurate unless the channel is loaded. At the receiver, the 1004 Hz tone is filtered ou: before the noise power is measured.

The impulse noise measurement is compatible with CCITT Recommendation V.55. Impulsed noise can be caused by switching. lightnong. elc., and is characterized by lange spikes exceeding the normal background noise level. It is measured by counding the number of spikes which exceed a given threshold level. In the 3770 B , the threshold ievel is adjustable in 1 dB steps over the range 0 $10-49 \mathrm{~dB}$, where 0 dB corresponds 10 l .1 V (ihe peak voltage of a 0 dBan sinewave info $600 \Omega$ is I.JV). Pulses exceeding the threshold and of greater than $50 \mu s$ duration are counted; pulses of less than 20 $\mu s$ duralion are not. Also, there is a dead time of approximately 125 ms during which further impulses are not counted.

The specifications which follow apply to both the 3770A and 3770 B. unless otherwise stated.

## Speciflcations

## Sender

Reterence carrier： 0.4 to 19.9 kHz in 100 Hz sicps．
Measurlng carrler： 0.20 to 20.00 kHz in 10 Hz steps．
Modulation envelope trequency： 41.66 Hz （Mod．Index 0.4 $\pm 0.05$ ）．
Identlicatlon－bursl frequency： $166 \mathrm{Hiz*}$（Mod．Indcx $0.2 \pm 0.05$ ）．
Cartier changeover trequency： 4.166 Hz ．
Accuracy of above frequencles：$\pm 0.1 \%$ ．
－Loctued to enverepe frequticy
Measuring trequency swoep rates： $10.20,40,80.160 \mathrm{~Hz} / \mathrm{s}$ ．nom－ inul．
Measurling frequency sweep limits：settable in range 0.2 to 19.9 $\mathrm{kHz}(100 \mathrm{~Hz}$ steps）．Accuricy as for measurement frequency．
Carrler level： $0 \mathrm{lu}-49 \mathrm{dH}$ in in 1 dB steps．
Carrier harmonic distortion：＜ $1 \%$（ 40 JW ）total．

## Recelver

Operating level range：$<-50 \mathrm{dBm}$ to $>+10 \mathrm{dBm}$ ．
Frequenoy measurement accuracy： $0.1 \%$（with sender other than $3770 \mathrm{~A} / \mathrm{B}: 0.1 \% \pm 5 \mathrm{~Hz}$ ）．

## Recorder

X－axis output： 0 to $+5 V$ for 0 to 20 kH z or 0 to 5 kHz ．
Y －axls output：$\pm 5 \mathrm{~V}$ for $=\mathrm{FS}$ of the reconder range selected：avail－ able for group delay．attenuation distortion．noise and noise－with－ tone me：isurements．
Outpul／inpul clrcuits
Impedance： goon bitimed．
Return loss：$>40 \mathrm{~dB}$ ．
Degree of balance：$>50 \mathrm{~dB}$ ．（Receiver $200 \mathrm{~Hz} 106 \mathrm{kHz}:>60 \mathrm{~dB}$ ）．
Maximum operating common mode voltage（having regard to balance）： 10 V ac rms． 100 V de．
Maximum sale common mode voltage： 150 V ac rms， 50 Hz to 20 kHz ．or 100 V de．
Comblned sender and receiver
Frequency range： 0.21020 kHz ．

## Group delay distorton

Delay range： 0 to $=10 \mathrm{~ms}$ ．
Inherent group delay error ol sender（rms）： $0.2100 .4 \mathrm{kHz},<5$ $\mu s .0 .4100 .6 \mathrm{kHz},<2 \mu \mathrm{~s} ; 0.6$ to $20 \mathrm{kHz},<1 \mu \mathrm{~s}$ ．
Hecelver measuring accuracy（rms）：（ $5^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ ） 0.2100 .4 $\mathrm{kHz},<15 \mu \mathrm{~s} \pm 1 \%$ of reading： 0.4 to $0.6 \mathrm{kHz},<8 \mu \mathrm{~s} \pm 1 \%$ of reading： 0.6 to $20 \mathrm{kHz},<5 \mu \mathrm{~s} \pm 1 \%$ of reading．For $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ ． $=1 \%$ of reading becomes $\pm 2 \%$ ．For additional group delay specifications，see Data Sheel．
Attenuation distartion

Aocelte Level Range withla which both Moasurement and Relcrence carflea levals are contrined	Recolver Maximumer Eras or Altanuation in the range 0 to－ 40 de		sendy Max fror
	$51040^{\circ} \mathrm{C}$	010 S0．C	
－ $510-5$ dim	$01516=1 \%$	$0.1588=1 \%$	0.188
－ $510-20$ d8m	$0.15 \mathrm{~dB}=1 \%$	$0150 \mathrm{~B}=1.5 \%$	0.1 d9
＋10 to－ 3088 mm	$0.2 \mathrm{dE}=1 \%$	0 ？明 $=2 \%$	0.18 dB
＋1016－40 d8m	$02 \mathrm{~dB}=1.5 \%$	03 明 $=2 \% \%$	01 dB
＋ $1010-50 \mathrm{dBm}$	0． $6 \mathrm{~dB}=25 \%$	0.1 明 $=30 \cdot 0$	0.1 dB

Level measurement（without changeover and unnodulated） Recelve range：+10 dBm to -50 dBm ．
Accuracy

	51040 C		01050 C	
	Sender	Receiver	Sender	Recelver
$+1010-20 \mathrm{dBm}$	$=0.268$	－0．2 ${ }^{\text {d }}$	－02 $\mathrm{dB}^{\text {d }}$	$\therefore 0.3$ us
－20 $20-30 \mathrm{dBm}$	＝0．208	$=0.488$	$=0.3 \mathrm{~dB}$	$\pm 0.540$
－36 tir 1088 Bm	$=0.360$	： 0.788	． 04 dB	－0．8d8
－4010－50 d8m	$\pm 0.5 \mathrm{~dB}$	$=1.208$		$\pm 1.688$

Level measumements can also be made with modulation and changeover．
Welghted nolse（3770B only）
Measurement range： 0 to -85 dBm ．
Detector type：tue rms．
Welghting fliters；CCITT telephone，and 3 kHz flat．
Method；compatible with CCITT Recommendalion P．S3A．

Nolse－wlth－tone（3770日 only）as for weighted noisc，except：
Measurement range： 0 to－ 80 dBm ．
Tone frequency： 1004 Hz ．
Impulse nolse（3770B only）
Threshold：single level، adjustable in I d8 steps from 0 to -49 dB
（ 0 dB is equivalent to 1.1 V ）．
Dead tlme： $125 \pm 25 \mathrm{~ms}$ ．
Method：compalible with CCITT Recommendation V．5s．
Slave facllity（optlonal－37708 only）
Modes：remote control．and remote retransmission．Slaving applies 10 group delay and athenuation distortion measurements only．
Remote conlrol；the master nnit controls the measurement and reference frequencies of the stave unit．
Remote retransmission：the slave retums the group delay and atuenuation distortion information to the master fordisplay and re－ cording．
General
Slze： $200 \mathrm{H} \times 330 \mathrm{~W} \times 560 \mathrm{~mm} \mathrm{D}\left(70 / 10^{1{ }^{\prime}} \times 13^{\prime \prime} \times 22^{\prime \prime}\right)$ ．
Welght： $3770 \mathrm{~A}, 12 \mathrm{~kg}$（ 26.5 lb ）： $3770 \mathrm{~B} .14 \mathrm{~kg}(30.9 \mathrm{lb})$ ．
Temperature ranges：uperaling： $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ udess otherwise specificd：storage：$-40^{\circ} \mathrm{C}$ 10 $75^{\circ} C$ ．
Supply voltages： $115 \mathrm{Vac}+10-29 \%$ or $230 \mathrm{Vac}+10-18 \% ; 48$ to 66 Hz ．
Power consumption：1770A． 75 VA：3770B， 100 VA.
3770A Options
Opt 001：send level range extended to -49 to +10 dBm ．
Opt 002：loop holding provided for sender output and receiver input．
Maximum de loop holding cursent： 100 mA ．
Vollage drop at maximum current：approximately 12 V ．
Dynamic output Impedance：approximately $50 \mathrm{k} \Omega$ ．
Opl 005：tone hlanking．
Range：two bands in the range 0.2109 .9 kHz ．
Range limils：any multiple of 100 Hz ．
Frequency range blanked（ kHz ）：Option number specifies range．

$z \quad O p$	$\mathrm{kHz} \quad \mathrm{O}$	kHz
0.4 to 0．6－117	2.0 to 2．4－104	2.6 to 3．3－110
$0.5100 .7-101$	$2.1102 .5-105$	$3.0103 .4-111$
0.6 to 0．9－102	2.2 to 2．6－106	$3.2103 .6-112$
$0.8101 .2-115$	$2.3102 .7-107$	$3.4103 .8-113$
1．4 10 1．8－116	$2.4102 .8-108$	$3.6104 .0-114$
．9102．2－	2.6	

Other ranges available on request．Quote Oplion 100 instead of the above numbers，and specify the required frequency ranges．
In－lid operating Instructlons：English－sid：German－Option 031：French—Oplion 032；Italian－Option 033；Spanish－Option． 034.

Opi 040：suitable pormble X－Y Recorder in cartying case．Pre－ printed graph paper showing CCITT limits also available－ Amplitude Distortion（9280－0403）．Delay Distortion（9280－0402）．
Opt 061：rack mount version．
Opt 910：additional set of manuals．

## 37701 Options

When ordering is 3770B．select ONE option from the table below （i．e．select the standard instament OR one oplion）．This completely specitics the messurements welected．Note that group delay，atenu－ ation distortion and absolute level measurement facilities are pro－ vided with ALL instruments．

Messuramam facilities	0 Otion											
	STU	Uإ1	U12	UUS	U14	IU5	UuS	301	Uu8	Ufs	UW	011
Maisa	$\checkmark$		－	－	＊	－				－	－	－
Slaving		－	－				－	－	－	－	－	－
＋ 10 d8mm out put				－		－	－		－	－		＊
lone blanklag					＊	－		－	－		－	$\ldots$

Opt 012：loop holding－see 3770A Options for specifications．
Tone Blanking；ranges and range limits as for 3770 A．Other options （ln－lid insiructions，X．Y recorder，rack mount version，and addi－ lional manuals）as for 3770A．
Orderlng Informaflon Price
3770A Amplitude／Delay Distortion Analyzer \＄6500
3770 B Telephone Line Andyzer
$\$ 7445$

# TELECOMMUNICATIONS TEST EQUIPMENT 

15 Hz to 50 kHz selective voltmeter

## Model 3501 C

- Voice grade testing
- Wideband data circuil testing
- Single frequency interference
- Spectrum analysis



## Descriptlon

The 358 IC Selecuive Volumeter has found wide application in testing special service circults in both inside and outside plant maintenance. The 3581C is used to do spectrum analysis, measure nonUnear distortion (harmonic distortion) and to locate and measure unwanted spurious and induced tones. The unit can be operated from ac line or from optional internal baneries.

## Specifications

Frequency range: is Hz to 50 kHz .
Olsplay: 5 digir LED readout. Resolurion: I Hz . Accuracy: $=3 \mathrm{~Hz}$.
Typleal stabllity: $=10 \mathrm{~Hz} / \mathrm{hr}$. after 1 hour. $=5 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.
Automatlc frequency control (AFC), hold-ln fange: $=800 \mathrm{~Hz}$.
Puth-In range: $>5 \times$ bandwidth for $3 \mathrm{~Hz} 10100 \mathrm{H} \neq$ bandwidth; $>800$ Hz for 300 Hz bandwidth for full-scale signal.
Lock frequency: center of passband $=1 \mathrm{~Hz}$.

## Amplitude

Instrument range
LInear; 30 V to $100{ }_{\pi} \mathrm{V}$ full scale.
Log: +30 dBm or dBV $10-150 \mathrm{dBm}$ or dBV.

## Amplltude accuracy:*

$15 \mathrm{~Hz}-50 \mathrm{kHz}$, frequency response

Log	Linear
$\pm 0.4 \mathrm{~dB}$	$\pm 4 \%$
$\pm 0.5 \mathrm{~dB}$	$\pm 5 \%$
$\pm 2 \mathrm{~dB}$	$\pm 2 \%$
$\pm 0.3 \mathrm{~dB}$	$\pm 3 \%$

Amplitude display
Input attenuator
Amplitude reference level
(IF Allenuator)
Most sensilive range $\quad=1 \mathrm{~dB}=10 \%$
All other mapes
 wers! case diccid diy :s significanily better fo: measurementand at ha exarmes.

Dynamic range $>80 \mathrm{~dB}$
Nolse level


Nolse sldebands; greater than 70 dB below CW signal. 10 bandwidths away from signal.
IF faedihrough: inpul level $>10 \mathrm{~V}$ : -60 dB : inpul level: $<10 \mathrm{~V}$ : -70 dB .
Spurious responses: $>80 \mathrm{~dB}$ belaw inpul reference level.
LIne related spurlous: $>80 \mathrm{~dB}$ below inpul reference level or -140 $\mathrm{JBV}(0.1 \mu \mathrm{~V})$ or -90 dBm on 3581 C in balanced terminated mode.
Zero beal responge: $>30 \mathrm{~dB}$ below full scalc al $25^{\circ} \mathrm{C}=5^{\circ} \mathrm{C}$. $>15$ dB for $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Smoothlng: 3 position, rolloff is a function of $B W$.
Overload indlcator: this LED wams of possible input amplifier overloading.

Uncal indicator; the variable input attenuator may be set 10 positions between steps. This is useful for sealing signals. When this feature is being used, the Uncal indicator clearly shows the instument is not on a standard sering.
Meter gcales taut band with mirror backing:

0 dB to -90 dB	Log
0 dB to -10 dB	
0101	Linear
0103.2	

Callbrator: the 10 kHz fundamental of the calibrator may be used along with the 10 kHz cal adjustment 10 set the meter to full scale. This calibrates the circuitry that follows the input attenuator to an accuracy of $\pm 1.5 \%$ at full scale, 10 kHz and same bandwidth.

## Sweep

Scan width: 50 Hz 1050 kHz . These scans can be adjusted to cover a group of frequencies within the overall instrument range.
Sweep ifmes: 0.1 s to 2000 s .
REP: in the repetitive mode, sweep will continuously sweep the specified band.
SIngle scan: after triggering a single sweep, HP's 358 IC will remain al upper end of swecp. A sweep may also be triggered externally through a BNC connector on the rear panel tabeled "extemal Irigger ${ }^{*}$ Grounding inhibits internal Irigger.
Reset: HP's 3581 C is set to the start frequency of sweep.
Manual: in combination with concentric knob, manual sweep fully duplicates span of electronic sweep.
Off: sweep circuits and associated controls are tumed off.
Sweep error light: this LED indicates a sweep that is too fast to caplure full response. When the light is on, response will be lower than it should.
Zero scan: to look at the time varying signal at center or start frequency within bandwidih selected.
External trigger: a shon to ground slops nomal sweep. Opening the shor theo enables a sweep.
Input

$\begin{aligned} & \text { Maten } \\ & \text { Scst } \\ & \text { gunons } \end{aligned}$	Peramanod	$8 \mathrm{Crag} \mathrm{l}_{\mathrm{y}}$	Unbalanood
	Chers of meme iv mst most ine ims on moner	  Vivm shnuu give   ims on mete.	
		input impedafle 10 lit 9000 lermination Fiecessary to be calibrated with scuree that has goon oulpur impadonce gives meie.	
Vole		Nol 1 y vilic cometinazan.	

Unbalanced (UNBAL)
Impadence: I M $/ / 40 \mathrm{pF}$.
Max. Input level: 35 V rms or $\pm 100 \mathrm{~V} \mathrm{dc}$.
$+30 \mathrm{dBm} 10-10 \mathrm{dBm}$ sensitlulty: 100 V rms or $=100 \mathrm{~V} \mathrm{dc}$.
-20 dBm to -70 dBm senaitulty; 50 V rms or $\pm 100 \mathrm{~V}$ dc.
Balanced/brldged (BRDG)
Impedance: $10 \mathrm{k} \Omega$.
Max. Input leval: 35 V rms or $=100 \mathrm{dc}$.
Frequency response: $40 \mathrm{~Hz}-20 \mathrm{kHz}$, $\pm 0.5 \mathrm{~d}$ m for sigals $<20$ dBm.
Dynamic range: 80 dB for signals $<0 \mathrm{dBm}$ and $>100 \mathrm{~Hz}$.
Comman mode rejection: $>70 \mathrm{~dB}$ al 60 Hz .
Baiancod/teminated (TERM)
Impedance: 600 $1 / 900 \mathrm{n}$ balanced.
Max. Input level: $+27 \mathrm{dBm}-0 \mathrm{~V}$ dc.
Frequency response: same as balanced/bridging.
Dynamic range: same as billanced/bridging
Common mode rejectlon: >64 dB at 60 Hz .
Input connector: accepts WECO 310 plug-input is iransformer coupled.

## Output

Tracking generator outpul (also known as BFO or tracking osciliacor output).

## Restored output

Range: 0 to 2 V rms.
Frequency response; $\pm 3 \%$ is Hz to 50 kHz .
Frequency accuracy: $\pm 1 \mathrm{~Hz}$ relative to center of filter.
Impedanca: 600 $\Omega$
Total harmonic and spurious content: (for Lracking generator ourput) $>40 \mathrm{~dB}$ below 1 V ims signal level.
LO output: 100 mV signal from I MHz to I.S MHz as input is cuned from 01050 kHz .
Output connector: WECO 310. for connection 10 tracking generator output or restored output. In addition to monitoring restored ourput with headphones. an internal speaker also provides an audio indication of signal content.

## Restored and tracking generator

Output impedanoe: 600 $\frac{1}{}$ balanced.
Frequency response: $=0.5 \mathrm{~dB} 100 \mathrm{~Hz}$ to 20 KHz .
X-Y recorder analog outputs
Verical: 0 20+5 $\mathrm{V} \pm 2.5 \%$.
Horlzontal: $010+5 \mathrm{v}=2.5 \%$.
Impedance: 1 kn .
Pon litt: contact closure 10 ground during sweep.
General
Operating temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$.
Humldity: $95 \%$ relative, maximum at $40^{\circ} \mathrm{C}$.
Power requlrements: $100 \mathrm{~V}, 120 \mathrm{~V} .220 \mathrm{~V}, 240 \mathrm{~V}+5 \%-10 \% .10$
VA typical, 48 Hz to 66 Hz .
Slze: $412.8 \mathrm{H} \times 203.2 \mathrm{~W} \times 285.8 \mathrm{mmD}\left(161_{4}{ }^{\prime \prime} \times 8^{\prime \prime} \times 111_{i^{\circ}}\right)$.
Weight: 11.5 kg ( 23 lb ); Option 001.13 .5 kg ( 30 lb ).
Acceasory avallable: 70358 Option 20, X-Y recorder.
Optlon 001 battery: used to make floating measurements or to break ground loops: 12 hours from full charge: 12 hours to fully charge. The intemal battery is protected from deep discharge by an automatic tum-off.
Orderlng Information
Price
3881 C Selective Vollmeter $\$ 3500$
Opt 001: Batlery Pack
add $\$ 385$
7035B Opt 020: X-Y Recorder
add $\$ 1770$

- Voice grade testing
- Data circuit testing



## Description

Hewlett-Packard's 35SIA (North American Memurememt Standard) and 3552A (CCITT) Transmission Tcst Sels are rugged, porable and ideally suited for measurements on voice. program and dara circuits up $1050 \mathrm{~kb} / \mathrm{s}$.

These four function test sets are capable of measuring tone level. noise level. and frequency, while simultancously sending tone. Both level and frequency arc fully auzoranging.

A normal sampling of $10 /$ sccond in lone level and frequency allows a "direct feel" between an adjustgent and the ensuing reading. In addition. a damped sample rate of $\mathrm{y} / \mathrm{second}$ is useful when reading noisy signals. The digital LFD (Light Emilling Diode) readout displays either the level or frequency of the inpul or outpul regardless of terminal function selected.
Appropriate resolution, time constant and sample rate are automatically provided to smplify operation for the user.
These icst sets can micasure both two-wire and four-wire balanced circuits. Impedances of 135,600 . and 900 ohms can be sclected on the 3551 A : impedances of 150,600 . and 900 ohms are available on the 3552 A . In addition, the receiver may be cither terminated or bridged.
The test sets may be powered by either ac line or internal rechargeable balleries and are suited for both inside and oulside plant maintcnance.
A full wave average detector is used for tone level roeasurcments. Automatic ranging eliminates the need to sel atlenuators and thus reduces the possibility of errors due to faulty calculations. Direct
digital readour gives a 0.1 dB resolution over the entire 85 dB dynamic range.

For frequency measurements. a four-digil autoranging frequency counter is provided. The readout is calibrated in kHz and fealures I Hz resolution from 40 Hz io 10 kHz and 10 Hz resolution from 10 kHz to 60 kHz . The decimal point is automacically positioned to avoid the possibility of errors due to overflow of the four digits.
Noise measurements are made with a QUASI RMS delcelor and displayed in dBm on the 3591 A and dBm on the 3552 A , with 1.0 dB resolution. Display rate is slowed to 2 per second to provide amalog feel of slowly changing noise levels. Both test sets have the capability of measuring noise-with-tonc, message circuic noive. and noise-lo-gruend. Four switch selectable weighting nelworks are provided: C-messige. Program. 3 kHz . and 15 kHz Flat in the 3551 A : and Telephone (Psophome(ric), Progranme, 3 kHz Flat and 15 kHz Flat in the 1552A. In the noise-with-tone position, a noteh is insented before the selected weighting network.
Send oscillator covers a frequency range of 40 Hz to 60 kHz in three bands; 40 Hz 10 $1 \mathrm{kHz}, 200 \mathrm{~Hz} 106 \mathrm{kHz}$ and 2 kHz 1060 kHz . The output level is continuously variable from $+10 d \mathrm{Bm} 10-60$ dBm .
In addition, atixed position is provided to be used as the holding tone when making a noise-with-lone measuremeni.
A convenient set of clip-on dial teminals for connecting a lineman's handsen is provided. This allows a line comnection to be dalaled up and then held in an off-hook (busy) condition while making either reccive or send measurements on a two-wire wet line.

Specifications, Model 3551A \& 3552A

## Receiver

Level Measurements
Frequency range: 40 Hz to 60 kHz .
Dynamic range: +15 JBm to -70 dBm .
Resoluflon: 0.1 dB .
Sample rate: $10 /$ second nomal. Ilsecond damped.
Detector type: average responding.
Accuracy: at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$, temperature coefficient: $=0.009 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ beyond ithis lange.


## Frequency measurements

Frequency range: 40 Hz 1060 kHz .
Dynamic range: $+15 \mathrm{dBm} 10-70 \mathrm{dBm}$.
Resolution: I $\mathrm{Hz}(40 \mathrm{~Hz}$ to 10 kHz$) .10 \mathrm{~Hz}(10 \mathrm{kHz}$ 10 60 kHz$)$,
Sample rate: 10 second normal. $2 /$ second dimpcd.
Accuracy: $\pm 1$ count.
Transmltter 3551A \& 3552A
Frequency range: 40 Hz 10 60 kHz .
Ranges: 4() Hz to : kHz .200 Hz to 6 kHz . 2 kHz to 60 kHz .800 Hz fixed. (Oiher frequencies available 3552A.) 1004 Hz fixed. 3553 A . Resofulion: $1 \mathrm{H} /(40 \mathrm{H}<$ to 10 kHz$)$. $10 \mathrm{~Hz}(10 \mathrm{kHz}$ to $60 \mathrm{kH} \%$ ). Sample rate: lujscond.
Harmonle distortion:--50 dB (THD 100 Hz to 4 kHz : $<-40 \mathrm{~dB}$ (THD 40 Hz co 100 Hz and 4 kHz to 20 kHz ) : $<-30 \mathrm{~dB}$ (THD 20 kHz 1060 kHz ) : <-55 dH (all harmonics 100 Hz to 4 kHz ): $=-60$ dA (THD 1004 Hz fixed).
Accuracy: $=1$ count.
Level range: +10 dBm to $-60 \mathrm{dBm}(40 \mathrm{H}$; 10 60 kHz$\rangle .+6 \mathrm{dBm} 10$ -60 dBm . ( 1004 Hz fixed- $3551 \mathrm{~A}: 800 \mathrm{~Hz}$ fixed-3552A).
Resolullon: 0.1 dB .
Sample rate: $10 /$ second.
Accuracy; at $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. temperalure coefficient: $=0.005 \mathrm{de}$ / ${ }^{\circ} \mathrm{C}$ beyond this range.


## 3551A Noise measurements

Dynamic range
Message clrculy nolse: 0 dBmito $10+85 \mathrm{dBm}$.
Nolse-wlth-tone: 10 dBm to +85 dBm .
Noise-to-ground: $40 \mathrm{dBm} 10 \div 125 \mathrm{dBm}$.
Resolution: I dB.
Sample rate: 2/second.
Detector type: Quasi-RMS responding.
Accuracy
Message circult nolse: $\pm I \mathrm{~dB}\{+20 \mathrm{dBr}$ to $10+8 \mathrm{dBm}$ ) $=2 \mathrm{~dB}(0$ $\mathrm{dBm}(0+20 \mathrm{dBrm})$.
Nolse-whh-tone: $=1 \mathrm{~dB}\langle+20 \mathrm{dBm} 10+85 \mathrm{dBm}) . \pm 2 \mathrm{~dB}(+10 \mathrm{dBm}$ $10+20 \mathrm{dBr})$.
Nolse-ta-ground: $=1 \mathrm{~dB}(+60 \mathrm{dBm} 10+125 \mathrm{dBrn}) .=2 \mathrm{~dB}(+40$ dBm $10+60 \mathrm{dBm}$ ).

3552A Noise measurements
Dynamis range
Message clrcult nolse: $-90 \mathrm{dBm} 10-5 \mathrm{JBm}$.
Nolse-wlih-tone: -80 dBm to -5 dBm .
Nolse-to-ground: $-50 \mathrm{dBm} 10+35 \mathrm{dBm}$.
Resolutlon: I dB.
Sample rate: $2 / \mathrm{sec}$ and,
Deteclor type: Quasi-RMS responding
Accuracy
Message clrculi nolse: $\pm 1 \mathrm{~dB}(-70 \mathrm{dBm} 10-5 \mathrm{dBm}) . \pm 2 \mathrm{~dB}(-90$ $\mathrm{dBm} 10-70 \mathrm{dBm}$ ).
Noise-wlim-tone: $=1 \mathrm{~dB}(70 \mathrm{dBm}$ to $-5 \mathrm{dBm}),=2 \mathrm{~dB}(-80 \mathrm{dBm}$ $10-70 \mathrm{dBm}$ ).
Nolse-to-ground: $=1 \mathrm{~dB}(-30 \mathrm{dBm} t o+35 \mathrm{dBm}) .=2 \mathrm{~dB}(-50 \mathrm{dBm}$ $10-30 \mathrm{dBm}$ ).
Weighting fliters: Telephone (CCITT Psophometric). a kHz that, is kHz that. Progetmme.

## General

Monltor: built-in speaker, monitors received os Iransmitied signal.
Balanced Impedances: $115 \Omega, 600 \Omega, 900 \Omega$ (1551A).
Balanced Impedances: $150 \Omega, 600 \Omega, 900 \Omega$ (3552.A).
Bridging loss: $<0.2 \mathrm{~dB}$.
Return loss: $>30 \mathrm{~dB}$.
Longltudinal balance: $>60 \mathrm{~dB}$ at $6 \mathrm{kHz},>126 \mathrm{~dB}$ al 50 Hz .
Hold circulf; 20 millitmps constant curtent. $<0.2 \mathrm{~dB}$ loolding loss, resiscive fuse protection.
Input/output protection: blocks 300 V dc.
Marimum longitudinal vostage: 200 V rms.
Battery supply: $>4$ hours continuous operation on intemal rechargeable balteries al $25^{\circ} \mathrm{C}$. Ballery drain is uutomalically tumed off when dischar'ged below proper operating level. Complele recharge in 12 hours.
Power requirements: $100 \mathrm{~V} .120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V} \pm 10 \%$ : 48 Hz to $440 \mathrm{~Hz}: 4 \mathrm{VA}$.
Temperature range: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$. operating: $-20^{\circ} \mathrm{C} 10+66^{\circ} \mathrm{C}$ siorage.
Relalive humldity: 0 to $95 \%\left(<40^{\circ} \mathrm{C}\right)$.
Dimensions: $133 \mathrm{mmH} \times 343 \mathrm{~mm} W \times 254 \mathrm{~mm} \mathrm{D}\left(51 / 4^{\prime \prime} \because 131 \mathrm{~m}^{\prime} \times\right.$ $10 \%$.
Welght: ne1. 6.6 kg ( 13 lb ). Shipping. 7.3 kg ( 16 lb ).
Optlons Prices
C01-3551A, C01-3552A: 19 inch rack mount. ac add $\$ 75$ power only (no balteries)
H10-3551A: Exlends frequency range 1085 kHz add $\$ 300$
Ordering Informatlon
3551A Tranmmission test sel $\$ 2000$
3552A Tramomission sel (C(ITT) \$2343

TELECOMMUNICATIONS TEST EQUIPMENT

## Transmission \＆noise measuring set Models 3555B \＆3558A

－Voice and carrier testing


## Description

Hewlelt－Packard＇s 3555日 Transmission and Noise Measuring Scl is designed especially for telephone plant maintenance．It measures attenuation．distortion．cross－talk coupling and noise．Weighting ne works comply with Bell System Technical Reference Publication number 41009 ，ind include C－message． 3 kHz .15 kHz flat and pro－ gram．

HP＇s 3556A performs the same tasks as the 3535B．It also bas built－in weighting networks that comply with 1960 CCITT require－ ments．which include teleptione（psophomeric） 3 kHz flat，and is kHz flal．Programme（P53）weighting filters．
Operating instructions printed in the prolective cover are avail－ able in different languages at no exira change．

Complementary equipment for the 3953B is HP 236A Telephonc Test Oscillator（236A Opt．H 10 for the 3556A）．When used logether． they make a complete transmission test sel for accurate，convenient voice and carrier measurements．


Specifications

	35558 anarla dmerican suncims）	3536S（CCITT Standard）
VOICE CALOUENCY LEYEL HEASUREMENTS； 20 Hz to 20 Hzl		
dismolt lance	$-91 \mathrm{dBra} 10-31 \mathrm{dBm}$	
Lerel accuazy．	$=0.5 \mathrm{yE}, \geq 0.2$ te． 40 He to 15 kHz ，level $>50 \mathrm{dBm}$	100 Hz to $5 \mathrm{kHz}=0.2 \mathrm{dB;} 20 \mathrm{~Hz} 1020 \mathrm{kHz}:=0.548$
Injun	Terminated or bridged 6000 or $900 \Omega$ balanced．Bridging ross： $<0.3 \mathrm{~dB}$ st I khz．Balance：$>808 \mathrm{~B}$ at $60 \mathrm{~Hz}>70 \mathrm{~dB}$ at 6 $\mathrm{kHz} z_{,}>50 \mathrm{~dB}$ to 20 kkz ．Return loss： $30 \mathrm{~dB} \min$（ 50 如 to 20 $\mathrm{k}+2 \mathrm{H}^{2}$	Terminated 600 n symmetrical，Non－terminated 10 kn symmetrical．Non－terminated error，$<0.4 \mathrm{d8}$ at 800 Hz ． Symmetry $>80 \mathrm{~dB}$ at $50 \mathrm{~Hz},>70 \mathrm{~dB}$ it $6 \mathrm{kkz},>50 \mathrm{~dB}$ to 20 kHz Raturn loss $3058 \mathrm{~min}(50 \mathrm{~Hz}$ to 20 ）kht
Muiding circult	7001）de resistance， 60 mat mar．loop line eurent al 300 Hz ．	in，above specs apply from 300 Hz to 4 kikg
NGISE MUSUREMENS		
08／volt range	－198m $10-12188 \mathrm{~m}$	－78d日m $10-32$ d⿴m／0．1 mVY to 30 VF ．S．
Weighting filters	3815 kHz fiat，C－message，and program IBell system technical reference pub $\% 42009$	3 s ： 5 IMg Ilst，felephone and Programme（P53，cCIT）
Imput	Same de for valce frequancy mondurmants	
CIRRIDR TRICOUEAEY LIVII MEASYREAENTS：		
18／voll range	-61 d8m te＋11 d8m	－48 d8m to $10.12 \mathrm{d8m} / 3 \mathrm{mY}$ to 3 VF．S．
Lemel nocur noy	6000 balanced（symmetrical）： 1 thz to $150 \mathrm{ktz},=0.5 \mathrm{~dB} ; 10 \mathrm{k}$ $t 0600 \mathrm{kHz}, \pm 0.5 \mathrm{6B}, 10 \mathrm{kHz}$ to $300 \mathrm{kHz},=0.26 \mathrm{~B}, 75 \mathrm{\Omega}$ unbala $=0.5 \mathrm{~dB}$ ；I MHz to $3 \mathrm{MHz}, \pm 0.5 \mathrm{~dB}=10 \%$ of meter readirg	2 de．1350 balanced tor 150 nbalancedit：）hhy al）： 100 Hz to $600 \mathrm{kHz},=0,2 \mathrm{~dB} ; 30 \mathrm{~Hz}$ to ？MHz，
Input	Ferminaled or bridged 1350\％or $600 \Omega$ balanced（symmetrical）	ced（Jsymmetrical）
Reuin lass		： 3068 min． 103 MHz
Ba emmitry	$\geq 70$ ¢8 to $10 \mathrm{kHz},>60 \mathrm{~dB}$ to $100 \mathrm{kHz},>40 \mathrm{~dB} \mathrm{to} 600 \mathrm{kHz}$	
OPVPRAL，		
Mater	Linear ul xcalo	Lineal aBm scale
External battery	24 V or 48 V office mattery，$<15 \mathrm{~mA}$	
Interal battery	Single NEDA $202.45 \mathrm{\gamma}^{\prime-g} \mathrm{~g}^{\prime \prime}$ battery Option H03 uses． rechargeable batteries and similar to 3556 A	4 rechargeable batteries（25 Y tolat or power line from 80 v to 250 V ac， 48 Kg to $440 \mathrm{~Hz}, ~<10 \mathrm{VA}$ ．Option $00!$ uses same battery as 35558
$A C$	115 or 2330 V （specify for 35558 ）（switch for 3556 A$) 48 \mathrm{~Hz}$ to 44	
Oirianslons		
Weght	Net． 6.8 kg （15 b）Shipping， 7.5 kg （17 l0）	
Jabis	Will accept Western Dectric 241，309，310，358，289 and 347 plugs： 1011 B hand－set or 52 typo headset	Will accept Siemens 9 REL KL1－6A， 4 mm diametes Danana plugs or 3 －prong Siemens 9 REL．STP－6AC connector
＂For lewils $>1$ dem accutacy edec applies only for Inec，abewa 100 Hz  		

HP 236A．Op1 H 10 Telephone Test Oscillator（com－

## - Voice and carrier testing




## General

Hewlet1-Packard's Models 236A and 236A Option Hi0/H20 Teiephone Test Oscillators are particularty useful for fineup and maintenance of telephone voice and carrier systems when used with their companion instruments 3555B and 3556A Transmission Noise METERS. CCITT requirements are met with the HP 236A Option H 10 and HP 3556A when used together.

$$
\begin{array}{lr}
\text { Ordering information } & \text { Price } \\
\text { HP } 236 \text { Option H10, CClTT (ac line and dry battery) } & \text { add } \$ 235 \\
\text { EP } 236 \text { A Option H20. CCITT (ac line and recharge- } & \text { add } \$ 340
\end{array}
$$ able batteries)

Af 236A Telephone Oscillator (North American)
$\$ 780$

Specificatlons

	230A (tarili)	236a Dpilion NLO (ccst)
Frequency range	50 Hz 10560 kHz	
Frenuency diai accuracy	$=3 \%$ ol setting	
Trequenty sesponse		
6000] outpul	$=0.3$ dia tromi 50 HP 10 20 sHz	
goon output	-0.3 d8 from 30 Hz to $20 \mathrm{AH}_{2}$	
1350 vutput	$=0.548$ from 5 kHz to 550 kHz	
150 and 750 outputs		20.5 d8 Irom 5 kHz 10550 kHz
Oulput level/accur sey		
Noise	At least 65 d below (atal ounpul of -90 dBr-whicherer noise is greater 3 kHz bantwidh	
Olstarion	a! toast 40 dB below fundamental oulpul.	
Oulpul clicull		
Output limpedance	600 and 9000 : $5 \%$ fram 50 Hz to 20 KHz $1350 \times 100 \%$ lion 3 人He 10550 kHz	600 and 1500 symimet 1 cal 7501 asymmencal
Outoun balance zuilpeli symmein)	135 and 1500 oulputs 50 rie at $5 \mathrm{kHz}, 30 \mathrm{~dB}$ al 560 kH	
Output latks	Acceats Whestarn Bectice 24i, 309, and 310 plugs.	Acceprs 3-prons Siemens 9 REL. STP   5 AC or 4 mm diameter banana plugs.
	elinding posis accepl banana plugs, spade tugs ohone sips of bast, wires.	
Olat jacks	Accepts Western Electric 309 and 310 plues Clio posts accept Western Electr:c 1011 B tineman's tand-set clips	Accepts 3-pronk Siemens 9 RLL STP 6 RC on 4 inm diameter pherss. Cllp posis sccept inge mann's hand-set clips as allgator clips.
OC holding coil		
Power requltrments	Internal batiery single NTDA 20245 " "8 battery    $90 \mathrm{Vac}-250 \mathrm{Y}$ ac, $48 \mathrm{~Hz}-240 \mathrm{~Hz}$ - 10 mo during battery charge.	
Werght	$\mathrm{Net} .6.1 \mathrm{~kg}(13.5 \mathrm{lbl}$ Shipping. $7.7 \mathrm{Mg}(17 \mathrm{lb})$	
Camplementary equlpment	HP 355s8 Insismission and Noise Measuting sel	HP 35564 Psophometer

hp TELECOMMUNICATIONS TEST EQUIPMENT

## Transmíssion impairment measuring set (TIMS)



4940A

## TIMS-Transmission impairment measuring

 setMosi of the importani analog paramelers can be measured by a combined assorment of analog test sets which measure only a few parameters. However. TIMS are 'stand alone' combination test sets that measure 71015 parameters depending on the model and options selected. Thus TIMS can replace a large number of analog rest sets. The major advantages of TlMS are that they cost significanty less and are more compact and more portable ihan a combinalion of rest sets required to do the same measurements.

In addition 10 its cost savings and porability. TIMS arc easy 10 operate. The switches on the front panel are logically arranged in functional groups. Simple straight-forward operaing procedures allow the craftsperson or eagineer to quickly and easily analyze voice channet-transmission lines.

## 4940A TIMS-complete analog testing

The HP 4940A measures all the necessary paramelers to completely describe the ability of a voiceband channel to carry medium and high speed datr. The 4940A is the ideal tool for analyzing and troublesthooring T-channel and DI conditions mansmission lines.

With the HP 4940A it is possible to simulteneously observe all of the imnsients that cause data errors. By counting phase hits, gain hits, droputs and three levels of impulse noise at the same cime, a more accurale analysis can be made of emor causes and channel quality. All of these transicats are tovalled by TIMS during the selected count lime and stored in memory. The pushouttonselectable count limes are 5, 15 minutes and continuous. During the test and at the end of the count time, either the impulse noise totals or the hits and drop-oul totals may be displayed from mernory.

## 4940A Specifications

For detajled specifications ask your local HP sales office for a 4940A TIMS data brochure.
General
Power: 105 volts to 129 volts AC. $60 \mathrm{~Hz}, 130$ watis.
Dimenslans: 46.4 $\mathrm{cm} \mathrm{H} \times 47.0 \mathrm{cmW} \times 32.4 \mathrm{~cm} \mathrm{D}\left(1814^{\prime \prime} \times 181 / \mathrm{cm}^{\prime \prime} \times\right.$ $12 \% \%^{\prime \prime}$ ).
Weight: net, $18 \mathrm{~kg}(39 \mathrm{lb})$. Shipping. 25 kg ( 54 lb ).
Optlons
Price
001: adds P/AR measurement
002: adds nonlinear distortion measurement
003: adds P/AR and nonlinear distortion measurements
add \$300 add $\$ 800$

4940A Transmission Impairment Measuring Sel $\$ 9000$

- Compatible with North American Standara
- Complete analog testing of the voice/data channel in communication systems


Measures level and frequency, message círcuit noise ( C -message and 3 kHz flat weighted), noise-with-tone, 3 level impulse noise, hits and dropouts, phase jitter, envelope delay, noise-lo-ground.
HP 4942A simple aperatlon plus portabllty
The HP 4942A fealures speed and ease of testing. At 26 pounds the 4942A is easily portable.

The MASTER SLAVE COntrol fealure makes transmission impairment tesling faster and easier. A 4942A operatiog in the SLAVE mode ar far-end of the transmission line is controlled automatically from a 4942A operaling in the MASTER mode at the operator end. One operator can control testing of all parameters in both directions of a full duplex (4-wire) circuit. All test results for eact direction of test are displayed at the MASTER unit for ease of logging test data.

With the addition of HP-IB (Opt O10) the HP 4942A can be remotely controlled by a calculator or computer and can output data for printing. plotting and further analysis.

## 4942A Specifications

For delailed specifications ask your local HP sales office for a 4942A TIMS data brocure.

## General

Power: 117 V ac $\pm 10 \%, 50 / 60 \mathrm{~Hz}, 45$ walls.
Dimenstons: $196 \mathrm{~mm} \mathrm{H} \times 338 \mathrm{~mm} \mathrm{~W} \times 533 \mathrm{mmD}\left(77 / 0^{4} \times 133 / 10^{14}\right.$ $\times 21 \%$.
Welght: net, 11.8 kg ( 26 lb ). Shipping 205 kg ( 45 lb ).
Opltons and accessories
Price
010: Adds HP-1B Interface
019: 19" rack mount adapter
910: Addilional Sel of Maneals add $\$ 500$ add $\$ 150$

Accessories for Model 4942A (To be used wizh Option $010 \mathrm{HP}-1 \mathrm{~B}$ interface)
Model 10631 A ASCll Interface Cable I m (3.3)
Model 10631 B ASCII Interface Cable 2 m ( $6.6^{\circ}$ )
Model 1063 IC ASCII Interface Cable 4 m (13.2)
$\$ 75$.
4942A Transmission impairment Measuring Set $\$ 5800$
Measures level and frequency, $C$-wessage circuil noise, noise-with-tone. channel signal-to-noise ratio, I level impulse noise, envelope delay. With MASTERSLAVE control and portable mainfmme.


## HP-IB




## 4944A TIMS

Key analog parameters of volceband channels
Non-linear distorion is measured using the four tone intermodulation distorion lechnique. This technique is licensed under Hekimiam Laboratories. Inc. USA Patent No. 3862380 . The 4944A TIMS computes the 2nd and 3rd order products and automaticaliy correets the readings for noise.

## 4944A Specifications

For detailed specifications ask your local HP Sales Office for a 4944A TIMS Dala Brachure.
General
Power: 120 V or $240 \mathrm{~V} / 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ Power Operation
Slye: $196 \mathrm{H} \times 338 \mathrm{~W} \times 591 \mathrm{mmD}\left(7.7^{\prime \prime} \times 13.3^{\prime \prime} \times 23.3^{\prime \prime}\right)$.
Weight: 12.2 kg (27 lb).
Options Price

010: HP-1B Interface add 5500
015: 18055A Transit Case add S500

019: 10491日 19" Rack Mount add $\$ 300$

910: Exira set of manuals add $\$ 50$

4944A Transmission Impalrment MeasurIng Set $\$ 7200$
Measures Level and Frequency, message circuil noise (Cmessage and 3 KHz Flat weighted), signal-ro-noise ratio. I level impulse noise, envelope delay, non-linear distortion. two holding coils. MASTER.SLAVE festure, and porable mainframe. bD TELECOMMUNICATIONS TEST EQUIPMENT

Portable test set
Model 3550日

- Voice and carrier measurements



## Description

Hewlett-Packard's Model 3550B Poriable Tes1 Set is designed specifically to measure transmission line and system characteristics such as conlinutity and attenuation distortion. It is particularly useful for lineup and mainienance of multi-channel communication systems. Model 3550 B contains a wide range oscillator, a voltmeter. and a patch panel to mateh both oscillator and voltmeter to 135,600 , and 900 ohm lines. These instruments are mounted in a combining case that is equipped with a splash-proof cover. In addition. the oscillator, voltmeter, and patch pancl may be used separately whether they are in or removed from the combining case.

Both the oscillator and voltmeter are transistorized and operate from their internal rechargeable batteries or from the ac line. Batteries provide 40 hours of operation between charges and are recharged automatically during operation from the ac line.

## Specifications

Oscillator HP 204C Opt H20
(Refer to Page 335)
Voltmeter, HP 403B Opt 001
(Refer to Page 39)
Patch panel, HP 353A
(Specifications apply with oscillator and volımeter).
Input (rocelver)
Frequency range: 50 Hz to 560 kHz .
Froquancy rasponge:
$=0.5 \mathrm{JB} .50 \mathrm{~Hz} 10560 \mathrm{xHz}$.
Impedance: $1350,600 \Omega$, and $900 \Omega$ and bridging a 10 kll center tapped).
Balance: better than 70 dB at 60 Hz for $600 \Omega$ and $900 \Omega$; better than 60 dB at) kHz for 600 n and 900 n : better than 40 dB over entire ficquency range for $135 \Omega .600 \Omega$, and $900 \Omega$.
Insertion loss: less than 0.75 dB al ) kHz .
Maximum level: +22 dBm ( 10 V rms at 600 ohms).
Output (send)
Frequency range: 50 Hz to 360 kHz .
Frequency response: $\pm 0.5 \mathrm{~dB}, 50 \mathrm{~Hz} 10560 \mathrm{kHz}$
Impedance: $135 \Omega, 600 \mathrm{n}$, and $900 \Omega$ center tapped.
Batance: bether than 70 dB at 60 Hz for $600 \Omega$ and 900 n : better than 60 dB al I kHz for $600 \Omega$ and $900 \Omega$; belter than 40 dB over entire frequency range for $135 \Omega, 600 \Omega$, and $900 \Omega$.
Insertion loss: less than 0.75 dB at 1 kHz .
Diglorton: less than $1 \%$, 50 Hz to 560 k Hz .
Maximum level: +22 dBm ( 10 V rms into 600 ohms).
Attenuatlon: 110 dB in 10 and 1 dB steps.
Accuracy, 10 dB section: error is less than $\pm 0.25 \mathrm{~dB}$ al any step. Accuracy, 100 dB section: error is less than $=0.5 \mathrm{~dB}$ at any step. Connectors: two 3 -terminal binding posts for external circuit connection and two BNC female connectors for oscillator and voltmeter connection.

Hold clrcult (rec terminals)
-Frequency response: $300 \mathrm{~Hz} 53 \mathrm{kH} \%=0.5 \mathrm{~dB}$. 1 kHz reference.
DC reslstance: 240 ohms nominal.
Maximum DC current: 100 mA .
Maximum DC voltage: 150 volts.
Athenuallon: $23 \mathrm{~dB}=0.5 \mathrm{~dB}$ (i-step slide switch).
Hold clrcult (send terminals)

- Frequency response: 300 Hz 10 $3 \mathrm{kHz} \pm 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ refer. ence.
DC reslatance: 240 ohma nominal.
Maximum DC current: 101 mA .
Maximum DC voltage: 150 volts.
Connectors: special telephone jacks to accepl Westem Electric
No. 309 and 310 plugs. Sleeve jack is connected to sleeve of jacks
309 and 310. Two 3 -terminal binding posts for external circuit connection.
Two terminals (Tel Sel) connector for Hand Set, two BNC female
connectors for oscillator and volimeter connection.
Patch panel, Opt H03.353A
(Same ais Model 353 A except as indicated below).
Hold circult (rec terminals)
- Frequency response: 300 Hz 10 $3 \mathrm{kHz}=0.5 \mathrm{~dB} .1 \mathrm{kHz}$ reference.
DC reslatance: 240 ohms nominal.
Maximum DC current: 100 mA .
Maxlmum DC voltage: 150 volts.
Attenuatlon: $23 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$ (1-step slide sivích).
Hold clrcull (send terminala)
- Frequency response: 300 Hz to $3 \mathrm{kHz} \equiv 0.5 \mathrm{~dB}, 1 \mathrm{kHz}$ reference.
DC resistance: 240 ohms nominal.
Maximum DC current: 100 mA .
Maximum DC voltage: 150 volts.
Connectors: special telephone jacks to accepr Westem Electric
No. 309, 310 and 241 at send and rec terminals. Sleeve jack is connected to sleeve of jacks 305 and 310.
Two terminal (Tel Set) connector available for Hand Set. Two BNC female connectors for oscillator and voltmeter connection.


## General

Size: $489 \mathrm{H} \times 213 \mathrm{~W} \times 337 \mathrm{~mm} \mathrm{D}\left(19^{1} .4 \times 8^{2} / \mathrm{m}^{\prime \prime} \times 131 / \mathrm{c}^{\prime \prime}\right)$ with cover installed.
Welght: net, $13.5 \mathrm{~kg}\left(30^{1 / 2} \mathrm{lb}\right)$. Shipping. $18 \mathrm{~kg}(40 \mathrm{lb})$.
Ordering information
Price
3550B Portable Test Set (with 353A Patch Panel)
$\$ 1750$
H02.3550B (with H02.353A substituted for standurd
add $\$ 150$
353A)
H03-3550B (with Hal-353A substituled for standard add $\$ 150$ 353A)

[^37]Patch panel, Opt H02-353A
(Same as Model 353A except as indicated below).
Attenuator: 2 s diB $=0.5 \mathrm{~dB}$ (1-step slide switeh).


## Analysis-The Key to Success

Trying to locate a short, ground. cross, (shor berween to conductors) and open in buried plant means you are literally working blind. Analysis provides the clues to help you visualize what's going on in the cable and, therefore, a pretry good idea of what caused the fault.

To locate a fawl in buried plant the first problem we must solve is 10 locate the cable. With the Hewlett-Packard Cable Fault Locator Model 4904A this problem is easily solved. The 4904A is a tone set that has a very stable transmiluer output siznal, and a sharply tuned recciver unit to allow you ta locate cable path and depth under the most adverse conditions. This instrument is designed to reject the nomal noise interference from 60 Hz power lines. As the cable pach is being located the depth of the cable can be measured and sheath damage can be pinpointed.

Now that the path and depth of the cable are known the exact location of the fault may be determined. If the fault is resistive.
(short, cross. grounded conductor, baltery cross) we will use the Hewhett-Packard Model 4930A Conductor Fault Localor. In plastic insulated conductor (PlC) cable the resistive faults can range in severity from a few ohms to many thousands of obors. The 4930A will locate the exact distance (in feet or meters) to the faul( regardless of the Eault resistance. The operator need only follow the easy to understand diagrams and instruction in the lid of the instrument to locate the mosi complex resistive fault.

The third instrument required for fautt locauing is the Hewlett-Packard Model 4910 G Open and Splis Locator. The open conductor is located as quickly and easily as the resistive faults using the 4910 G . The instrument uses the latest in electronic technology, which allows you to make very accurate measurements wilhout the need of repective operation. This miemprocessor based instrument performs several measurements automatically and displays the distant to the open digitally. In many cases an open conductor is not open but split with
another pair. The 4910G will locate the split 10 widsin one manhole. The 4904A Cable Fault Locator can now be used to verify the split location before the splice case is removed. As you can see the 4910G Open and Split Locator will save you many hours in locaung boh opens and splits.

In order to be able to effectively and efficienly find faults in multi-pair cable the craftsperson musi be equipped with a Cable Fault Locator (4904A), Conductor Fault Lecator (4930A), and the Open/Split Locator ( 4910 G ). With this family of instruments all cable faults can be located quickly. This will therefore keep down time, and customer complaints to a minimum.

When several pair have tigh resistance faults in the same cable, whter in the cable is a good possibility. With the ease of operation and speed at which the operator can deternime the fault locations, the size and lecation of the wet section of cable can be quickly measured and the decision to repair or replace that section can be made with confidence.


Telephone cable construction
Teicphone cable construction involves installing, splicing and then testing new cables as well as rearranging and testing old eabies. Such telephone cables, containing many hundreds of conductor pairs. provide the most effective melhod of transmitting voice band information signals from a distribution point to the communications cerminal as the subseriber's location. Most of the larger cables use noncolor-coded paper and puip insulation for the palrs. Prior 10 termonation in the field, the new pairs must be identified by pair number. Traditional methods of pair identification were lime consuming and later semi-automatic methods oflen proved unreliable. An increasing need to rearrange telephone cubles and pairs as well as a higher labor content associated with such activities has resulted in a need for fasi. reliable pair identification equipment.

## New 4960A/4961A automatic palr ldentller system

The 4960 A/4 61 A Sysicm reliably idenlifics and ests working and nonworking telephone ceble pairs in loaded or nonloaded rele. phone cables up to 40.000 feet in length. The system has 1 wo perts . . . the 4960A Office Unic and the 4961A Field Unit. The Office Unil operales unmanned once it is connected to the switching office mainframe using slandard lest connectors (shoes). The Ficld Unit is operated by the eraftsperson at the field location. A pushbutton starts the operation of testing, identifying and determining the status of each pair.

There are four operating modes: Self Check, Shoe Check, Scan Mode and Sclect Mode. Self Check tests the operation of the units. Shoe Check determines if fll the pairs in the shoe are making good contacl to the mainframe. Scan Mode determines the pair number of a randomly chosen pair within the hundred pair count. Select Mode instructs the Office Unil to apply an audible tone to any selecled pair in the count. The Select Mode is useful for identifying pairs that do not idenify in the Scan Mode and for deteming the problem on a faulied pair.

The system is noninterlering to voice and most data circuils. No control pair is required for communication between the Office and Fisld Units. Other features include bad, busy and reversed pair indications as wetl as lauge. lighted digital displays.


## Cable fault locating

Of prime interest in telephone cable maintenance is the location of physieal damage to the cables. Telephone cable fall location has become an especially acute problem in recent years as more cable is placed underground. Athough beller piotected from the environment. the cable is subject to new dargers and the telephone crafisman is faced wilh locating damage hidden by several ficet of earth. In addition. higher Iraffic density on cablev and demands for bigher quality iransmission have placed more emphasis on cable reliability and quality.

## Direct reading fault locators

Field instmments thal provide a direct diatance-10-faull reading in feet (or metres) have the benefit of relicving the craftsman of the drudgery of performing manual calculamons. Localing faules becomes fasier, requires less traning and is less error prone than with manuad bridge techniques.

## 4930A conductor fault locator

The 4930 A is an automatic. digital, direcl reading test set operating on the Wheatsone Bridge principle. It is designed to locate exvemely high resistance shors. crosises and grounds. such as might occur from minute amounts of moisture in plastic insulared cable (PIC). The 4930A is connected to the eable pratix it on access point and the farend of the cable is strapped to form a bridge conliguration. Two nulling operations are performed and then either the distance to the fault, distance strap to fault or the distance to the farend is oblained on the autoranging digital display. The 4930A includes pushbutton checks of the fault resistance, the condition ol the strap as well as of its 12 V batlery. A self check circuit is bull into the sel. The a930A is housed in a sugged polycarbonate casc.


## New 4910G open and spllt lault locator

The 4910 G is designed to provide direct distance readings to both opens and splits. An open is a discontinuity in one or boch of the wires of a cable pair. Opens can be the result of bad splices us well as the restilt of damage caused by shorgun pellets, squirels. gophers or shovels. A split is a splicing error in which one side of a pair is inadventently cross-connected with one side of a second pair while the remaining sides are splieed correctly. The split is the only cable fault that is virtually always man-made. The 4910 G operates on a capacitance charge sampling principle which selates the charge placed on a length of wire to its capacitance and bence its leagth. A built-in microprocessor performs automatically the measurements and calculations necessary to locate opens and splits. The test set averapes out the effect of noise on the line by automatically taking several readings on the pair prior to displaying the fault distance on its autoranging digital display. The 4910 G is sel automatically ior standard 0 osimis/mile exchange cable but can be reset to other typer of eable by means of the D Factor conerol.

## Tone type fault locators

The tone type locator. such as the Model 4904A. places a pulsed tone on the favled circuit which is traced by an inductive pick-up coil and a sensitive tuned receiver. At the point of the rault. the signal drops in level, the reby pinpointing the exact physical location of the ixalt. The lone locator also has the advanage of heing able to precisely trace the path of the cablie and, by triangulation. determine its depth at any point. This information is necevsaty for use in accumatcly localing the fauls. 11 is isso necessary for accurately marking the cable location to protcat it from construction and excavation work being performed in the vietnity of the cable. The tone lucator systen is designed sn that only the transmilted signal is detected, and interfering signals (such as power line harmonics) do not interfere with the measumement. Output power of the transmiter is kept low io prevent interierence with other working circuits in the cable and to prevent "carry-by" of the signal beyond the fault.

## 4904 A cable lault locator

The 4904A is a pulsed tone system for localing shorts, crosses and grounds in direce buried, undergraund (ducled) and uerial utilities cable. It also accurately locates pith and depth of buried cables and pipes. The rensitive narrow bandwidih receiver rejects ac lum and permils locating high resintance falls. I1 produces a pulsed $990 \mathrm{H}_{2}$ ione for burial cable fault locating and a pulsed 150 Hz tone for acrial cable. The tone transmiters unit also has a built-in ohmmetor for andyying fauts. The accessory earth contact frame is cspecially useful for locating high reistance pinhole faults in the cable sheathing. It comes complete wish transmiter, receiver. search wand. earth contaci Frame. cables and ground row.


## 4901A cable fault locator

The 4901 A is un economically priced cable fauli localor functionally similiar to the 4904 A . I (produces only the pulsed 990 Hz and is limited to locating palt. depth and low resistance faults, It has a built-in ohmmeter.

## 4900A cable fault locator

The 4900A is identical to the Model 4910A except without the ohm-meter feature. The earth contacl frame is optional.

## Ultrasonlc leak detectlon

As pressurized escapes through an apemiure, it creates considerable noise in the ultrasonic region of 30 to 44 kHz . The HP Ulirasonic Translator Detectors (such as Model 4905A) detect this chameteristic sound with a sensituve. directional Barium Titanale microphone and trumslates the signal to audio by mixing it with a 40 kH 2 lecal oscillator signad. The iudio signal is then amplified and monitored on a speaker and level meter.

The mosi common causes of pressure leaks in cable plant arc corrosion (paricularly in coastal areas). elecirolysis, squirrcis, boring beedes, abrasion from wind and weather. hunlers, and oulside workmen. Abrasion (during instal)ation) and corrosion are the most frequent causes of cable sheath trouble in cable inslalled underground in ducted passages.

To detect leaks in aerial cables, the craftuman merely scans the cable from the ground with the flashlight-size microphone, listening for the charicteristic hissing sounds of a lenk. By simultaneously observing the level meter, he can "peak in" on the leak ond determine its exact location. Pole mounted accessories are available for closer scanning of the cable and the 18043A Ultrasonic Reflector accessory is a parabolic type dish allowing exact aerial leak localing from ground level.
Leaks in ducled underground systems are located with a unique "Duct Probe" atcessory.

## 4905A ultrasonle translator detector

The 490SA is a lightweight, porable ultmsonic detector which includes a directional probec, a 6 -ft. coil cord and a leather utility case. It hus a self-conlained speaker, a logeing metcr. and provision for headphones.

## More Information on tejephone plant Instruments

U.S.A. Customers. HP Dejcon products are sold direcly to the customer from the manufacturing division. Please direct all ordess and inquiries to:

## HEWLETT-PACKARD COMPANY

Delcon Division
690 E. Middlefield Road
Mountain View. CA 94042
Telephone (415) 969-0880
Customers outside the U.S.A.: Orders should be directed to your loon Hewlet1-Packard distributor or representative.

## Carrler testing (FDM)

FDM carriers are used to transmil lange numbers of communications channels simulthneously over a single transmission medium. The channels are slacked in the frequency specirum.

Microwave Radio systems rypically carry up to 1800 channels on each RF carrier and coaxial cable systems carry up to 3600 chansels on each coaxial "tube". In high density siluations as many as 10,000 chan. nels can be packed into the 60 MHz bandwidth of a single sube of a coaxial cable.

## Measurements on FDM cerriers

In the design, manufacture, installation and maíntenance of FDM carrier systems several types of measurements are necessary.

HP offers a variety of selective ievel malers. level generalors, broadband power melers. atomic scandards and pulse echo test sels to satisfy your FDM measurement needs. Of the many FDM measurements made. the more common are:

Measurement	Test Set
Channel and lnterchannel Noisc	Selective Level Meler (SLM)
Camier Leak	SLM
Line Pilots	SLM
Reference Pilors	SLM
Spectrum Search	SIM
Channel Power	SLM
Frequency	SLM and
Response	Generator
Relum Loss	SLM, Generalor and Hybrid
Crosstalk	SLM and Gonerator
Delay Distorion	$\begin{aligned} & \text { Delay Distorion } \\ & \text { Test Sel } \end{aligned}$
Intermodulation Noise	White Noise Test Set
System Power	Broadband Power Meler
Frequency Accuracy	Aromic Standard
1 Impedance	Pulse Echo
Regularivy	Test Set

## The Ideal selectlve level meter

A loaded FDM carricr system presents several measurement challenges to the Selective Lever Meter (SLM).

When measuring single tones. the SLM should have enough frequency accuracy. stability and resolution to measure a carrier leak which is just 80 Hz away from the group pilot.

When measuring channel noise, the SLM should satisfy a number of requirements:

1. It should provide a noise measuring filler which has ' C ' message or Psophometric weighting. Fal weighting (i.e. 3.1 kHz fat) is adso a useful feature.
2. The noise measuring filler shoukd be accuralely centered over the noise. which is contained from 300 Hz io 3400 Hz . in the voice channel.
3. An rms delector should be med.
4. To aid in noise idencircition a demodulated oulput should be provided with good listening fidelity. For ease of usc. the SLM should measure noise and provide the demodulated ouspui simultancously.
5. The SLM should be capable of measuring channel noise as low as -125 dBm .
6. Level accuracy requirements vary from a few dB to better than a tenth of a dB. Noise measurement accuracy varies from a few dB to a few tenthe of a dB.
Finally, the SLM must be casy to use. reliable and ideally be adaptable for use in a system. Cost is also an important factor.

## Selectlve level meters

There are several allemative approaches to the design areas of SLM's. balancing cost and performance.

1. Frequency accuracy: The ideal SLM provides accurate and stable tuning to the signal(s) 10 be measured. This is achieved by using a synthesizer as a local oscillator, or phase-locking the oscillator 10 a suitable extemal reference.

Cost savings can be made using the alternative approach of a free-running local oscillator, with reduced stability and resolution. This approach needs manual senrehing in the region of the signal to. for example, peak the meter on the pilat or carrier.
2. Sensitivity; To measure chantel noisc at the very low level eest points, which sometimes occur. can require sensitivities in the onder of -125 dBm . To achieve the very low noise floor required to make measurements at this level is extremely difficult. if compromises are not to be made on the ability to measure high level signals accurately. The practical approach is to cover the majority of situations, with an SLM noise floor of ~ 115 dBm and, for the very low level test points. provide extemal low noise amplifiers.
3. Noisc measurement fillers: Traditionally 1.74 kHz effective noise bandwidth fillers have been used in SLM's to approximate the measurement made with true psophometric and ' C ' message weighted fl . ters. The advantages realized are in cost
savings and. in the ability to disregard the facl thal a channel can be crect or inverted, since the fillers are symmetrical.

The ideal solution is to use a flat-topped 3.1 kHz -channel filter over which o Irue psophometric filter or ' $C$ ' message filler can be superimposed. The bene lils which follow are a measurement of all signals in the 3.1 kHz voice channel bandwidih including. for example, signals at the band edge with no assumption about the type of noise, when used in conjunction with a lrue RMS detec. tor. Additionally, a demodulated oulput from the Пat-opped 3.1 kHz channel Thther can be used for accurate further analyses with standard audio test gear.
4. RMS versus Average Detecior: The majority or SLM's in use today contain average responding delectors which respond faster and cosil less than mos responding delectors.

The average responding detector is a irade-off for single tonc measurements, but noise measurements are a problem. Unless the noise under measurement is pure gaussian, il must be summed in an moms fashion (the way the human car sums noise) to ensure an aceurate result. The average detector's error can be offsel. however, by assuming the noise is white noise and by widening the noise measuring filter so that the answers obtained with the average delector are the same as answers obtained with an mos detector. For CCITT weighting the corect bandwidh to use with an average delector is 2100 Hz . For ' C ' message weighíng, use 2650 Hz .

## Manual teating

The 312B and 313A tracking generator is widely used in all FDM applications from R\&D to system maintenance. These units provide a relatively low cost solution when an SLM and tracking source is required.

312D and 3320C stand alone generators are specially designed for FDM system installation and mainenance. The SLM and level generalor are among the lowest priced units designed for this application.
Model 1040A Network Analyzer is used in R\&D and manufacturing. It can be used on FDM camiers up 102700 channels. It is a sumulus-response lest set only \{no sclective level capability).

It is used to characterize two-pon linear devices like amplifiers and fiters. The test sel has $0 . \mathrm{J} \mathrm{Hz}$ frequency resolunion. 0.01 dB amplinde resolution, 0.01 degree phase resolution and I nanosecond delay sensitivily.

The 3040 A can also be automated by adding HP-IB control hardware and a sysiem controller like tbe 9825A Programmable Cabculator.

The 3044A provides a precise racking generator and selective level meter. This lest ser features 0.1 Hz frequency resolution and 0.01 dB level resolution plus digital readoul and keyboard control. It can easily be automated by adding HP-18 control hardware and a system controller like the 9825A Programmable Calculator.
The 3745A \& B Selective Level Measuring Sels are designed to be as close to the ideal SLM as possible.
For ease of use under manual conirol, the 3745A/B is the first SLM to offer keyboard entry of an FDM channel by FDM nomenclature (e.g.. MG 6.SG 4. Group 12). FDM plans are stored intermally in memory. When an FDM channel is enlered. the 3745A/B goes to the correct frequency avomatically. The 3745A/B also features automatic pilot scans. broadband group power measurements, plus phase jitier measurement. In offers considerable time savings for routine lests such as carricr leak. pílot level, noise monitoring.

The 3745A is tallored for CCITT use and the 3745B for AT \& T. Both SLM's can be ausomated by adding a system controller such as the 9830A Programmable Calculator.

## Automatle testing

Hewlett-Packard manufactures a widc line of HP-IB automatic system compo. nents. These make the implementation of automatic system ideas relatively straight forward from both the bardware and software standpoints. HP-IB systems make automatic testing more economically jusitifsble.
The 1042A Network Analyzer offers aucomatic stimulus response testing of level, phase and group delay. It is used in the design and manufaciure of FDM carriers up io 2700 channels.

The 3042A is widely used in the design and manufacure of linear, (wo-pon FDM devices like amplifiers and fiters. The basic system consists of a precision source and tracking detector under the control of a programmable desk-1op calculator. Many other programmable test instruments are offered as complements to the 3042A so that a system can be specially tailored to your application.
FDM manufacturers have found that automatic testing with the 3042 A can result in much faster testing. . . . . up to 20 times faster than previous manual testing. Also, the 3042A provides state-of-the-an accuracy and repeatability.
The 3045A is used primarily in FDM design and manufacture. The system consists of a precision sourec and tracking detector under the contral of a programmable deskiop calculator.

The 3045A can be used for stimulus response cesting as well as for level and noise measurements. Also, you can build a system for your particular application by adding other HP-IB controliable test instruments to the 3045 A .

Manufacrurers of FDM equipment have found that the 3045A has helped reduce test lime on radio equipment by a factor of $t 0$. Equaliy important is :hat manufacturers have found that 3045A programming can be handled inhouse withoul needing soflware specialists.

All the capabilities of the $3745 \mathrm{~A} / \mathrm{B}$ can be remotely controlled through the HP-IB, to permit the buiding of completely automatic selective level measuring systems. controlled from either simple desk-fop controllers or computers. Also available is an au. tomatic switthing capability to access lest points within the equipment. The 3754A Access Switch achicves this task. The Access 5 witches are controlled from the 3755A Switch Controller. The 3755A is controllable manually. from a front pancl keyboard. or remotely. via the HP-IB.

Such systems are already making significant coneributions in the maintenance and surveilance of Frequency Division Mutriplex systems throughoue the world.

## Manual Selectlve Level Meters

MEASUREMEMS	317日/dis	$3120 / 3320 \mathrm{C}$	$3044 \lambda$	314501 $3320 \mathrm{COpt} \mathrm{HO2}$	37458/3820C
Chamet \& itechannal moise   Camer taks \& pilols   frequency response   spectrum scan   Phase illat   G: oup Powe	Yes Ulal) Yes Yes Manual With Exiemal meter No	Yos   ( ( 1 ()   Yes   Yes   Maryal   with exiernal moter No	T15   (is) nd-touban litter,   Yes   res   Aulo No No	$\begin{gathered} \text { Yes } \\ \text { (psooho or (lal) } \\ \text { Yes } \\ \text { lauto scitl } \\ \text { Yes } \\ \text { hulo } \\ \text { internal } \\ \text { Y\&s } \end{gathered}$	Yes (C-message of [1at) Yes Yes Autia internal Yes
TEST SRT CHARACTERTSTILS   Irecuency page   Wuse sieasulements   Defectar type   filter type   StM naise 1 loor   Tane measting bondmidth   flequeng accuracy	$1 \mathrm{kH}-18 \mathrm{MHz}$   Averspe 2500.3100 Inst   - 117 dm   200 \$1   $\mathrm{SO}_{\mathrm{H}}$	1 $\mathrm{kHz}^{2}=18 \mathrm{MK}_{2}$   Averago 23002100 Jla   $-117 \mathrm{~d} \mathrm{~m}$   50 Hz   So ki	$10 \mathrm{IL}-13 \mathrm{MH}$   Average   3 WHi !oulld 100日ed   -110 6Bm   3 Hi .10 Hz ,   30 Hz 300 Hz $5 \mathrm{~Hz}_{2}$	$\begin{gathered} 1 \text { Wha - } 25 \mathrm{MHz} \\ \text { ims } \\ 3100 \mathrm{Ilat} \text { and } \\ \text { C-message or } \\ \text { osophometric } \\ -115 \mathrm{dBrm} \\ 22 \mathrm{~Hz} \\ 5 \mathrm{HI} \end{gathered}$	
Pales	67445	\$10,000	\$14,005	\$22065	521.600

# TELECOMMUNICATIONS TEST EQUIPMENT 

25 MHz and 90 MHz Selective Level Measuring Sets
Models 3745A. 3745B and 3747A, 3747B

- Frequency range 1 kHz to $25 \mathrm{MHz}(3745 \mathrm{~A} / \mathrm{B})$ 10 kHz to 90 MHz (3747A/B)
- Selective filters for pilot, channel and group power measurements
- Autoranging attenuators and automatic tuning to stored frequency plans

- Out-of-limit alarm with hardcopy record on separate printer
- Automatic routines for unattended measurements - HP-IB compatible


## Description

The 3745A \& B and 3747A \& B Selective Level Measuring Scts (SLMS's) are denigned to make fast, accurate selcedive level mealsurements. A built-in frequency synthesizer gires accuratc, stible tuning to the precise frequency at which the measurement is to be made. This simplifies the tuning of the SLMS. The 3745N/B and 3747A/B can be iuned over their frequency ranges (1 kHz to 25 MHz and 10 kHz 1090 MHz respectively) with a resolution of 10 $\mathrm{H}_{2}$.
The SLMS's measure irye ms power belween : 15 dBm and -115 dBm with 0.1 dB or 0.01 dB resolution. Fully atutoranging atienuators and amplifiers simplify operation further by eliminating the need to set attenuators and add meter readings. Measurement results are automatically displayed to the selected resolution, in dBn or 4 B felative terms, on an LED display. The absolute accuracy of the measurements over wide level and temperature ranges is $< \pm 0.25 \mathrm{~dB}$ and liathess is typically $< \pm 0.1 \mathrm{~dB}$.

Many benefils are denved from the purpose-designed filters contained in the SLMS's. The pilot filter has a nat-1op. necessary for automatic tuning. and achieves high out-of-band rejection so that. for example, carrier leak and adjacent pilots can be measured on active systems. The channel filter is a flat-topped 3.1 kH , filler which measuges all signals in the voice-channel with high out-ofband rejection-ensuring that pilols, residual carriers, signalling tones. elc. . $\mathbf{d o}$ not interfere with measurements. Optional weighted filters are available to make either true ' C '. message or CCITT prophomeltically weighted noise measurements. With these options. phase jitter on a voice-channel can be accurately measured. A 48 kHz filher for group power measurements is also provided. 10 faciltate fast location of high level signals on a mulliplex.
The SLMS is intemally-conirolled by a microprocessor which provides several case-of-use and time-saving features. As well as tuning exacily to an entered frequency, the SLMS can refer to BELL or CCITT multiplex frequency plans in its memory and aulomatically tune to the correct frequency at any level in the mulliplex. Other frequency plans can be insialled to special order. This eliminates the need for FDM Plan Chans and Tables. The SLMS's can outomatically step through piloss. channels. group powers, carnier leaks, eic., across the baseband of a multiplexcomparing levels with pre-determined alarm limus and providing a print-out of out-of-limil signals on a separate Thermal Printer. 250 pilol measure ments can be made in about 2 miputes or, 2700 channe powers or carrier leaks cin be measured in about $1 \leq$ minutes Specinm analysis measurcments of a voice-channel, group. supergroup
or even the whole baseband can also be made. Measurements can be made unallended, ror example. ovemight.
The SLMS's are fully programmable via the Hewlell-Packard Interíce Bus ( $\mathrm{H} \mathrm{P}-\mathrm{B}$ ) and so can form the basis of a powerful. (ully-aulomatic surveillanee system.
Speciflcations (Unless otherwise statco. all specifications are for $\theta^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ afier 30 minute warm-up)
Frequency range
75!) Unbalanced Input
(3745A/8): 1 kHz to 25 MHz .
(3747A/B): 10 kHz to 90 MHz .
124!) Balanced Inpul ( $3745 \mathrm{~B} / 3747 \mathrm{~B}$ ): 10 kHz to 10 MHz .
$135 \Omega$ Balanced Input ( $37458 / 37478$ ): $10 \mathrm{kH} \geqslant$ to 10 MHz .
$150 \Omega$ Balanced input ( $3745 \mathrm{~A} / 3747 \mathrm{~A}$ ): 10 kHz to 10 MHz .
Minlmum frequency step size: 10 Hz .
Frequency tuning accuracy
With internal reference oscillator
initial setling accuracy: $< \pm 2 \times 10^{-}$pars, $=1 \mathrm{H} \%$
Ageing rale: $< \pm 1.5 \times 10^{-8}$ pars $/$ monlh, $\pm 1 \mathrm{H} 2$.

## Measurement ranges

$75 \Omega$ Unbalanced Input

nlier	Range (alsm)	Nolse froo (dBing (with apen-circult ingut)	
		50 KHz 10300 kHz	300 kHz 1025 MHz   (3)45A/B)   300 kdt 10 go MHz   (3747d8)
22 Hz -Pitol	$11510 \cdot 120$	$<-110$	$\therefore-115$
31 kHz -Chansel	$-1510-115$	$\begin{array}{cc} 3745 & 3147 \\ =-100 & 95 \\ \hline \end{array}$	$<-115$
$\Delta B^{\text {k }} \mathrm{kz}$-GIOUD	$-1510-75$	-	$\leqslant-100$
1npur PowerBrosiband	$\begin{gathered} +1510-35 \\ 13745 \% B \\ -156-58 \\ (3747 / B) \end{gathered}$	-	-

Inpul clrcuits
impedance：75n．
Retarn loss：$>32 \mathrm{~dB}$（ 50 kHz to $25 \mathrm{MHz}-3745 \mathrm{~A} / \mathrm{B}$ ）．
$>30 \mathrm{~dB}(50 \mathrm{kHz}$ to $70 \mathrm{MHz}-3747 \mathrm{~A} / \mathrm{B})$ ．
$>22 \mathrm{~dB}(70 \mathrm{MHz} 1090 \mathrm{MHz}-3747 \mathrm{~A} / \mathrm{B})$ ．
Maximum ac lnput power：$\downarrow-25 \mathrm{dEm}$ ．
Spurious emlssions from input（In－band）：$<-120 \mathrm{dBm}$（up 10
25 MHz －3745A／B：up 1090 AHz －3747A／B）．
Measurement accuracy
$75 \Omega$ Unbalanced Input－selective measurement

frequency fange	Level Accuracy（0⿴囗⿱一一廾彡） ove ine lomperature range ice to    （afier autocalibration－soo Note？） $+1510-60 \mathrm{dBm} \quad-6010-80 \mathrm{~d} 8 \mathrm{~m}$
	$< \pm 1.0$（nonima）
	$<0.35 \quad \div 10$ frominza
  50 WH 1070 Mm （3747NB）	$\leq 0.25 \sim 0.35$
20 Mb to $25 \mathrm{NH:}(3345 \mathrm{NB})$   $70 \mathrm{MH}_{1}$ to 90 MHz （3 3 Z 7 NB ）	$<0.35$

$75 \Omega$ Unbalanced Input－mbroadband measurement

Fraquoncy Aange	Level Accuracy（dB）   over the temperature range $0^{\circ} \mathrm{C}$ io $35^{\circ} \mathrm{C}$ （afler autecalibration－～see Nota 2）
	$<-1.0(+1588 \mathrm{~m} 10-3548 \mathrm{mb}$
50 MHL L0 $70 \mathrm{MH}(3747 \mathrm{~A} / \mathrm{B})$	$< \pm 1.01+15 \mathrm{ABm}$ t0－55 dmm$)$
$70 \mathrm{MHz} \mathrm{to} 30 \mathrm{NH2}$（3747NB）	

Kele I：for all selective measurements in the frequency fange 10 whe to $90 \mathrm{MHz}^{\text {，}}$ to eriend ine lemperature range $160^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ ，add 0.1 dB
Kote 2：The following errors are eliminated by autocalibration．
Temperature Coefficient： $0.01 \mathrm{~dB} /{ }^{\circ} \mathrm{C}$ ．
Stability： $0.1 \mathrm{~dB} / 24$ holiis fat constant temperature）．

## Measurement display

## Long averaging

Fesolution： 0.01 dB ．
Normal averaging
Resoluthon： 0.1 dB ．

## Fllters

Pllat itiler－ 22 Hz
Ripple over 22 Hz bandwlath：$=0.1 \mathrm{~dB} \mathrm{pk}$－pk．
3 dB bandwldth： $38 \mathrm{~Hz}=10 \%$ ．
Adjacent plot rejection $(=80 \mathrm{~Hz}$ ）：$>38 \mathrm{~dB}$ ．
Rejection at $>=110 \mathrm{~Hz}:>60 \mathrm{~dB}$ ．
Channel flter－ 3.1 kHz
Ripple over 2.6 kHz bandwidth：$<0.5 \mathrm{~dB} \mathrm{pk}$－pk．
3 dB bandwidth： $3.1 \mathrm{kHz} \pm 10 \%$ ．
Virtual carrler rejectlon al $=1.85 \mathrm{kHz}:>55 \mathrm{~dB}$
Adjacent channel rejectlon（ $=4 \mathrm{kHz}$ ）：$>70 \mathrm{~dB}(3745 \mathrm{~A} / \mathrm{B}$ ）．
$>65 \mathrm{~dB}(300 \mathrm{kHz}$ เo 70 MHz （3747A／B） $>63 \mathrm{~dB}(70 \mathrm{M} \mathrm{Hz} 1090$ MHz （3747A／B）．
Equivalent nolse bandwidth： $3.1 \mathrm{k} . \mathrm{Hz}$（nominal）
Group fller－48 kHz
3 dB bandwldth： 48 kHz ．$=15 \%$ ．
Adjacent group re｜action（ $=48 \mathrm{kHz}$ ）：$>25 \mathrm{~dB}$ ．
Rejection at $>=80 \mathrm{kHz}:>-40 \mathrm{~dB}$ ．
Intermodulation and spurlous products
Intermodulatlon rejection：$>70$ dB．
Spurious products（non－harmonically related）；-80 dB with re－ spect to inpul signal．

IF and Image rejection：$>70 \mathrm{~dB}$ ．
Typical measurement times
Pllot filter： 450 ms （for pilots in a typical multiplex system）．
Channel fllter： 300 ms （for channels in a lypical multiplex sysicm）．
Group filter： 360 ms （for groups in a lypical multiplex system）．

## Additional output

Audlo output
Frequency response：$\pm \mathrm{I} \mathrm{dB}(600 \mathrm{~Hz}$ to 3.1 kHz$)$ ．

## General

Slze：（excluding feet，handles，controls and connectors）： $268 \mathrm{H} \times$ $425 \mathrm{~W} \times 505 \mathrm{~mm} \mathrm{D}\left(10.6^{\prime \prime} \times 16.8^{\prime \prime} \times 19.9{ }^{\prime}\right)$ ．
Weight：net， $40 \mathrm{~kg}(88 \mathrm{lb})$ ；shipping． $54 \mathrm{~kg}(120 \mathrm{lb})$.
Power：
Voltages： $100 / 120 / 220 / 240 \mathrm{~V}(=10 \%), 48$ 10 60 Hz ．
Consumption： 200 VA ．
Options
Connectors：A range if consector gptions is available（see Dala Sheel for information）．
Opt 027：phase jinter＋psophometric weighted filter
Phase Jitter
Ranges： $3^{\circ}$ and $30^{\circ}$ FSD．
Residual phase｜liter：$<0.5^{\circ}$ ．
Accuracy：$\pm 15 \%$ of reading + residual phase jitter．
Bandwldth： 20 to 300 Hz ．
Measurements are made on a tone after the input signal has been dentodulated．The demodulated test－tone must be within the tange
950 Hz 101050 Hz ．
Welghting ther
Weighting curve：CCITT recommendation $\{.53$ superimposed on 3.1 kHz channel filter，as specifed．
Opt 022：phate jither $+{ }^{\prime} \mathrm{C}$＇－message weighted filter
Phase fitter
Aanges： $3^{\circ}$ and $30^{\circ}$ FSD．
Realdual phase jitter：＜0．5．
Accuracy：$\pm 150$ of reading + residual plase jitter．
Bandwldih： 2010300 Hz ．
Neasurements are made on a lone afler the inpul signal has been demodulated．The dentodulated test－tone must be within the range 950 Hz to 1050 Hz ．

## Welghting filter

Welghting curve：＇ C ＇－message weighting superimposed on 3.1 kHz chamel filter，as speciried．
Options
Price
Opt 023： 800 Hz notch filter（3747A／B）
add $\$ 220$
Allows the SLMS 10 make notched psophometric
weighted measuremenis（to CCITT standard）．
Opt 024： 1010 Hz notch filter（3747B）
add $\$ 220$
Allows the SLMS to make notched＇$C$＇－message
weighted measurements（to BEL＿L．slandard）．
Opl 025： 2.5 kHz channel fitter（ $7747 \mathrm{~A} / \mathrm{B}$ ）
Ripple over 2.3 kHz bandwidth：$>0.8 \mathbb{d B}$ 30 dB bandwidth： 25 k kz ．
Adjacent channel rejection（ $=3 \mathrm{kHz}$ ）：$>60 \mathrm{~dB}$
Equivalent nolse bandwidh： 2.5 kHz
Op1 040：X－Y recorder／X－Y display driver
Allows SLMS to drive an $X-Y$ recorder or $X-Y$ display

## Miscellaneous optlons

910：extra set manuls

## Ordering information

3745A／B Selective Level Measuring Set
Opt 021：phase jitter＋psophometric weighted ialer
Opt 022：phase jitter $+{ }^{\circ} \mathrm{C}$＇－message weighted frl－ ter
Op1 040：X•Y output
add $\$ 220$ add $\$ 220$
add \＄1145
3747A／E Selective Level Mcasuring Sel
Op1 021：phase jitier＋psophometric weighied filler
Opt 022：phase jitter＋＇$C$＇－message weighted til－ ler
Opt 040： $\mathrm{X}-\mathrm{Y}$ oulput

# Access switch and controller ( 10 kHz to 25 MHz ) 

Models 3754A, 3755A

- Frequency range, 10 kHz to 25 MHz
- Insertion loss $< \pm 0.1 \mathrm{~dB}$ from 50 kHz to 20 MHz
- Selects 1 from a possible 10 RF inputs
- Cascaded switches allow selection from 1000 inputs
- Local or remote input selection using HP-IB
- Single 3755A can control 111 switches



3754A

## Description

The Model 3754A Access Switch is an ac-coupled. unidirectional, en-input switch with a frequency range from 10 kHz to 25 MHz . The input selection technique employs relays which swirch between true-ground and inpul to a vinual-ground amplifies. Sevcral important benefits are obtained by including a virtual-ground amplifier in the switching path. These bencfits include minimizing the effects of stray capacitance. the ability to compensate for flatness variations across a wide frequency range and presel gain 10 compensate for losses in the interconnecting cables.
Incorporating a virtual-ground amplifier in the signal path gives an insertion loss of less than $=0.1 \mathrm{~dB}$ from 50 kHz to 20 MHz . In addition. pre-set gains of 1,2 and 3 dB are interrally selectable to compensate for additional cable loss. Switching between virtual ground and true-ground ensures that voltage swings at the switch contacts are smadl. and the effects of stray capacitance are negligible. This means that high levels of isolation are achieved across the whole frequency range. The isolation between any unselected input and the output is greater than 85 dB and the isolation between any two inputs is greater than 90 dB .

The Model 3755A Swith Coniroller has a small, easy-10-operate keyboard with a 3-digit LED display to denote the input selected. Each Access Switch input is given a I digit code, therefore selection From 1000 inputs requires a 3 -digit code (000 to 999) where each digil represents the input of the appropriate Access Switch at each of the 3 levels.
The 375SA Coniroller can be remolely controlled over the Hewlell-Packard Interface Bus ( $\mathrm{H}-1 \mathrm{~B}$ ) by a desktop computing controller or computer. Selection of the RF input to be accessed is achieved using the 3 -digir code that defines the paricular inpul required. Since it is the 3755A which is controlled via the HP-1B. only one bus address is used for up to 111 Access Switches.
Using a separate Switch and Controller format, it is possible to locale the Access Sivitches remotely from the Controller. The control signal can be transmitted over the same cable as the RF signal, which eliminates the need for separate control cables and maxes iblerconnection changes casier. The control signal is a switched de level which is only present between the Controller and Switch. or between Switches, during selection of a Switch inpur. This control signal has no effect on the RF signal source.
The control signals can also be sent along a separate two-wire path. This is necessary when the continuous de path between the Switches and the Controller is interrupted. for example, by an
equalizer inserted into the line to compensutc line frequency response.

A combination of both methods of interconnection can be incorporated into the same Access Switch system.

## Specifications

Access Switch
Frequency range: 10 kHz 1025 MHz .
Insertion loss: $<=0.1 d B(50 \mathrm{kHz}$ to 20 MHz ).
$< \pm 0.7 \mathrm{~dB}(10 \mathrm{kHz} 1025 \mathrm{MHz}$ ).
Isalation: $>85 \mathrm{~dB}$ (input/output).
$>90 \mathrm{~dB}$ (any two inpurs).
Return loas: $>30 \mathrm{~dB}$ (selected inpur).
$>23 \mathrm{~dB}$ (unselected input).
$>30 \mathrm{~dB}$ (oulput).
Nolse power ratlo: $>70 \mathrm{~dB}$.
Overload level: 0 dBm (dara along signal path).
+10 dBm (data along separate path).
+8 dBm ( $50 \Omega$ version).
Maximurn ac Inpul power: +25 dBm .
Swith Controller
frequency range: 10 kHz to 25 MHz .
Insertion loss: <0.1 dB (inpul/oulput on rear parel).
$<0.2 \mathrm{~dB}$ (input/ourput on front pancl).
Return losa: $>30 \mathrm{~dB}$.
Nolse power ratlo: $>70 \mathrm{~dB}$.

## General

Power: $100 / 120 / 220 / 240 \mathrm{~V}( \pm 10 \%), 481066 \mathrm{~Hz}$.
Consumptlon: <20 VA.
3764 A only: $\pm 15 \mathrm{~V}$ dc ( $=2 \%$ ).
Dimensions: $89 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 350 \mathrm{mmD}\left(31 / \mathrm{m}^{*} \times 16^{3} / \iota^{\prime \prime} \times\right.$ $14^{\prime \prime}$ ).

Optlons*	Price
907: Front handle kit	add $\$ 10$
908: Rack nange kit	add $\$ 15$
g09: Front handle/rack flange kit	add $\$ 20$
For Other optlons, refe lo Data Sheet	
Ordering Informatlon	
3754A Access Swith	$\$ 1805$
3755A Swith Controller	$\$ 1245$

Introductlon
The $3745 \mathrm{~A} / \mathrm{B}$ or $3747 \mathrm{~A} / \mathrm{B}$ can be incorporated in automatic test systens which have been specifically tailored to FDM measurement requirements.

Possible configurations include: 1) fully-automated systems for FDM surveilance. 2) for resting in a production or commissioning Fully-automated system for FDM survellance
environment. In both cases, remote control of all, or part, of the sysiem can be provided, using a siandard telephone circuit.

A deskiop computing controller (such as the Model 9825 A ) or a computer (such as one of the 21 MX Series) can be used to con(rol the system.


For FDM System surveillance, the 3754A Accesss Switch can be used to access a number of baseband test points in a station and the SLMS is used to perform routine checks of:

1) Pilols
2) Carrier leaks
3) Chancl powers
4) Inter-supergroup noise slols, eic.

Testing for producton/commissioning

Control cin be exercised locally, or remotely, using a pair of Common Carrier Interface (CCI) Units (Models 59403 A ) with a conventiond modemstelephone circuit configuration.

An SLMS system of this type can be used to provide contunuous monitoring of FDM System performance with print-out of fault condilions (and system alarm if necessary). It can provide: I) an analysis of 1 rends in FDM System levels. for early fault delection, and 2) reconds of system perfomance.


The 1745A/B and 3747A/B SLMS can be used with the 3335A Generator for end-lo-end testing of FDM Sysiems or for testing sysilem components during production. The 3754A Access Sivitch provides programmable section of test components. Applications include the testing of cables. filters and mixers. The system can be
used for many measurements including:

1) Flamess
2) Retum loss (with I5582A Accessory)
3) Crosstalk between cable pairs
4) Mixer spurious products


## Description

## General

Hewlett-Packard Model 312D Selective Level Meter and companion Model 3320C Level Generator provide an accurate. easy-to-use cransmission measuring set in the i kHz to 18 MHz frequency range ideally suited for mainterance and operations requirements. It provides proper input and output connectors and impedances to interface directly inso most FDM carrier multiplex equipment.

HP's 312D has a norse equivalent bandwidth that provides a direct reading of $C$-message or psophometric noise. The instrument has sufficicnt fidelity to act as an invisible channel bank 10 downconvert any 4 kHz voice channel and make eypical measurements such as phase jitter and impulse noise. It also features 10 Hz frequency resolution. 0.02 dB level resolution on the meter expand scale, and an input overload lamp to assure valid meusurements.

HP 3320 C companion generator is a frequency synthesizer that provides signals with an amplitude resolution of 0.01 dB over a frequency range of 10 kHz 1017 MHz with 20 Hz resolution.

## 312D Speciflcations

Frequency
Range: 1 kHz to 18 MHz : 18 bands: 300 kH \% overlap: coarse and fine cuning.
Accuracy: $\pm 10 \mathrm{~Hz}$ plus time bisc atahulity.
Stabllity
Aging rate: $=20 \mathrm{ppm} /$ year.
Temperature ( $25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ ); 20 ppm .
Line voltage ( $\pm 10 \%$ ): 0.1 ppm.
Resolutlon: 10 Hz read on a scven digit LED display.
Amplitude leval
Pange: $-120 \mathrm{dBm} 10+23 \mathrm{dBm}$, annucrator displays each 10 dB selected input level regardless of switch combinations.
Aftenuator accuracy: $\pm 0.1 \mathrm{~dB}$ ( 0 through -50 dB range): $\pm 0.2$ dB ( -60 dB range).
Flatness ( $75 \Omega$ matched load; 0 dBm max. level): $=0.5 \mathrm{~dB}, \mathrm{I}$ kHz to $10 \mathrm{kHz}:=0.2 \mathrm{~dB}, 10 \mathrm{kHz}$ io $10 \mathrm{MHz}:=0.5 \mathrm{~dB}$. $10 \mathrm{MH} \% 10$ 18 MHz .

Stability: $0.1 \mathrm{~dB}, 90$ days.
Ovenoad: lamp indieates incorrect range selection. Selectulty: the exact midband of the selected filter is identrifed by a 3 Hz rejection notch.

Banduy	$308 \mathrm{Fa\mid ccllan}$	60 68 Aelectron
$\begin{aligned} &-50 \mathrm{~Hz} \\ &= 150 \mathrm{~Hz} \\ & \because 174002300 \mathrm{~Hz} \\ &=3100 \mathrm{~Hz} \end{aligned}$	$\begin{array}{r} 50 \mathrm{~Hz}=10 \% \\ 130 \mathrm{~Hz}=10 \% \\ 2300 \mathrm{~Hz}=10 \% \\ 3100 \mathrm{~Hz} \pm 10 \% \end{array}$	$\begin{aligned} 106 & =10 \% \\ 320 & =10 \% \\ 4800 & =10 \% \\ 6200 & \pm 10 \% \end{aligned}$

- Selter one bandwidth only, 50 te standard, 150 Hz 0 Dt 001
 Hz lram center o! rejection notich

Passband Illainess: <0.2dB.
Meter range: (backlighled scale shows whether normal or expand mode is selecied).

Normal: $-20 \mathrm{~dB} 10+3 \mathrm{~dB}$.
Expand: -1 dB to +1 dB .
The expand meter will expand any two dB portions of the meter from -7 dB to +3 dB in 1 dB steps.
Tracking: $\pm 0.05 \mathrm{~dB}$ expand; $\pm 0.1 \mathrm{~dB}$ normal ( $10-10 \mathrm{~dB}$ indication).
Input impedance: $75 \Omega$ unbalanced, accepts WECO 358A plug: $124 \Omega$ bälanced, accepıs WECO 408A plug: $135 \Omega$ balanced: accepts WECO 241A plug.

## Recelver

## Modes

AM: average responding diode demodulated audio.
Beat: beat frequency. carrier remserted at $f_{0}$.
LSE: product demodulated audio, cartier reinsered at $f_{a}+1.8$
kHz .
USB: product demodulated audio. carmier reinserted at $f_{0}-1.8$ kHz .
Distortion
1 kHz to 1 MHz : $>55 \mathrm{~dB}$ belaw zero reference.
1 MHz to $18 \mathrm{MHz}:>65 \mathrm{~dB}$ below zero reference.
Residual response: 72 dB below zero seference with no input.
Nolse level: $<-117 \mathrm{~dB}$ in 2300 Hz bandwidth.
Internal callbrator output: 1 MHz square wave: $-40 \mathrm{dBm} \pm 0.1 \mathrm{~dB}$ into 75S temination: accepts WeCO 358A plag.
Common mode rejection: $>40 \mathrm{~dB}, 1 \mathrm{kHz}$ to $5 \mathrm{MHz} ;>30 \mathrm{~dB}, 5$ MHz to 18 MHz .
Output levet (fromt panel):
+14 dBm into $600 \Omega$ with full scale meter deflection.
Accepts WECO 464A plug for operator head set.
Accepis WECO 310A plug for $600 \Omega$ oulput.
Speaker is normally in the output circuit unless a plug is insered.
then speaker is disconnected.
Auxillary outputs (rear panel)
I $\mathrm{MHz}:>0.5$ volt $\mathrm{p}-\mathrm{p}$ sine wave into $1 \mathrm{k} \Omega$. BNC female.
$30 \mathrm{MHz}: 40 \mathrm{mV}$ to 70 mV rms into 50 , BNC feriale.
Local oscillator: 30 MHz to $48 \mathrm{MHz}, 60 \mathrm{mV}$ to 90 mV mis into 50 n , BNC female.
Auxiliary input (rear panel)
Extemal reference trequency: $1 \mathrm{MHz}, 0 \mathrm{~d} \mathrm{~mm} \pm 10 \mathrm{dBm}$ into $50 \Omega$.
General
Slize: $266 \mathrm{H} \times 425 \mathrm{~W} \times 467 \mathrm{mmD}\left(10^{18 / 98^{\prime \prime}} \times 16^{3 / 4^{\prime \prime}} \times 189 / 8^{\prime \prime}\right)$,
Woight: net, $20.7 \mathrm{~kg}(46 \mathrm{lb})$. Shipping 26.6 kg (59 lb).
Power: 115 or $230 \mathrm{~V} \pm 10 \%$, 48 to $66 \mathrm{~Hz},<100 \mathrm{VA}$.

## Speclifications, 3320C

## Frequency

Range: 10 kHz to 17 MHz in one range ( $75 \Omega$ ).
Resolution
Vernler out: 10 kHz .
Vernier in: 20 Hz .
The frequency counter in the 312D can be used to count the output frequency of the 3330 C to within 10 Hz .
Accuracy
Vermler out: $\pm 10 \mathrm{ppm}$ of seting.
Vernier in: 10 kHz to $12.5 \mathrm{MHz}: \pm 600 \mathrm{~Hz}$.
12.5 MHz to $17 \mathrm{MHz}:=750 \mathrm{~Hz}$.

Stabliliy: $\pm 10 \mathrm{ppm} /$ year.
TC: $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}: \pm 5 \mathrm{ppm}$.
LIne variations of $10 \%$ : 0.1 ppm .
High slability crystal reference oven available (Option 001).
Phase noise: <-40 dB in io 30 kHz band, excluding $\pm 1 \mathrm{~Hz}$,
Hemanice and epurlous: $>50 \mathrm{~dB}$ down.
Internal frequency atandard: 20 MHz .
Amplitude level
Fienge: + 11.99 dBm to -79.99 dBm .
Resolutlon: 0.01 dB .
Accuracy: +11.99 dBm to $-60 \mathrm{dBm}: \pm 0.25 \mathrm{~dB} .-60 \mathrm{dBm}$ to -79.99 dBrm : $=0.4 \mathrm{~dB}$.
Output Impedance (tront panel awfich selectable)
$75 \Omega$ unbalanced: accepts WECO 358 A Plugs.
$124 \Omega$ balanced: accepts WECO 408A Plugs.
$135 \Omega$ balanced: accepts WECO 241 A Plugs.

## Auxillary outputs (rear panel)

-Tracking output: Tracks natill output with 20 MHz offsel.
$>100 \mathrm{mV}$ rms inlo SON. Female BNC.
-Low lever output: same frequency as main output but remains between 50 mV rms and 158 mV rms into $50 \Omega$ Fermale BNC.

- 1 MHz output: Reference oulput, $0 \mathrm{dBm} \pm 10 \mathrm{dBm}$ into $50 \Omega$.

Female BNC.
Can be used as extemal frequency source for the 312B or 312D.
Auxillary Input (rear panel)
External frequency reference Input: may be phase locked with an extemal signal which is within 200 mV rms and 2 V rms and which is any subtharmonic of 20 MHz from 1 MHz through 10 $\mathrm{M} . \mathrm{Hz}$ (e.g.. I M Hz, $2 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ ). Female BNC.
High stablity erysial oven (Option 001)
$\$ \mathrm{M} . \mathrm{Hz}$ reference in temperature stabilized oven.
Stablity: $\pm 1$ part in $10^{6} /$ day or 1 par in $10^{7} /$ manth.
Accuracy: $\pm 1$ part in $10^{\circ}$ of setting/moneh.
For field installation order Accessory Kit 11237A.

## General

Operating temperature: $25^{\circ} \mathrm{C}=5^{\circ}$
Power: 115 V or $230 \mathrm{~V} \pm 10 \%$, $48 \mathrm{~Hz} 1066 \mathrm{~Hz}, 110 \mathrm{VA}$.
Welght: net, 15.4 kg ( 34 lb ). Shipping, 22.2 kg ( 49 lb ).

312D Selectlve Level Meter	$\$ 6000$
Opt 001: 150 Hz bandwidth	$\mathrm{N} / \mathrm{C}$
Opt 908: Rack Flenge Kit	add $\$ 15$
Opt H03: CCITT Version	add $\$ 400$
3320C Level Generator	$\$ 4000$
Opt co1: Crystal Oven	add $\$ 500$
Op1 908: Rack Flange Ki1	add $\$ 10$
Opt H02: CCITT Version	add $\$ 485$

## Selective voltmeter, 20 Hz to 620 kHz

Models 3591A/3594A

- Voice grade testing
- FDM testing



## Description

Hewlelt-Packard's 3591A Mainframe and 3594A Plug-in combine to form a general purpose 20 Hz to 620 kHz frequency selective level meter. The 3591 A/3594A feanures automatic level ranging, wide dynamic range, log and linear $x$-y outputs as well as several inpur impedances and AM/SSB demodulation capability.

The $3591 \mathrm{~A} / 3594 \mathrm{~A}$ has found wide acceptance in communications laboratories. manufacturing and field maintenance.

## Specifications

Frequency range:) 20 Hz 10620 kHz .
Ampllitude ranges: $3 \mu \mathrm{~V}$ to 30 V full scale in 15 ranges.
Amplitude accuracy with Input terminated
Meter switch In normal position: overall accuracy: $=0.43 \mathrm{~dB}$ to $=0.67 \mathrm{~dB}$ of reading depending on frequency. including
Frequency response flatiess, total devlation; $600 \Omega$ : 20 Hz to $100 \mathrm{~Hz} \pm 0.53 \mathrm{~dB}( \pm 5 \%) ; 100 \mathrm{~Hz} 10620 \mathrm{kHz} \pm 0.26 \mathrm{~dB}(=3 \%)$.
All other terminatlons: 5 kHz to $620 \mathrm{kHz}=0.26 \mathrm{~dB}( \pm 3 \%)$.
Meter Iracking: $\pm 0.1 \mathrm{~dB}$ or $\mp 1 \%$ of reading. 0 dB to -10 dB .
Meter gwilch in linear dB position: overall accuracy: $\pm 1 \mathrm{~dB}$. Internal callbrator: frequency, $100 \mathrm{kHz}=10 \mathrm{~Hz}$ : amplitude, rull scale on 0 dB range in CAL mode: accuracy. $=0.1 \mathrm{~dB}$.
Dynamic range: (IM and harmonic distoction products) $>85 d B$ below zero dB reference level when absolute measurements are being made ( $>70 \mathrm{~dB} 20 \mathrm{~Hz}$ to 50 Hz ). $>80 \mathrm{~dB}$ below zero dB reference level when relative adjustment is used ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ),
Resldual responses
$>80 \mathrm{~dB}$ below zero reference ( $>70 \mathrm{~dB}$ for 20 Hz to 50 Hz ).
Return loss: 100 Hz to $620 \mathrm{kHz}, 600 \Omega>30 \mathrm{~dB}: 5 \mathrm{kHz}$ to 620 kHz . 150 ת. $135 \Omega .75 \Omega,>35 \mathrm{~dB}$.
Nolse level

Bandivish	laput noise leval (8000) Inpul impadanee)
10 Hr and 100 Hz I KHz and 3.1 kHz	$\approx-12548 \mathrm{~m}=0,44 \mu V$ $=-\$ 15 \mathrm{~d} \theta \mathrm{~m} \text { or } 1.38 \mu \mathrm{y}$

## Selectlvity

Qejection	10 Hz	100 Mz	Bundwathe 1 thu	3.1 th
$\begin{array}{r} 3 \mathrm{~dB} \\ 60 \mathrm{~dB} \end{array}$	$\begin{aligned} & 10 \mathrm{~Hz} \\ & 35 \mathrm{H} \end{aligned}$	$\begin{aligned} & 100 \mathrm{~Hz} \\ & 320 \mathrm{Fin} \\ & \hline \end{aligned}$	$31 \begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$	$\begin{aligned} & 3.1 \mathrm{kHI} \\ & 9.6 \mathrm{kHz} \end{aligned}$

(frequency accurect $=10 \%$ )
inputs: balanced or single-cnded, not floating, terminaling, or bridging.
Automatic frequency control
Capture threshold: 75 dB below 0 dB reference.

Dynamic hold-In range: >3 bandwidths. Tracking rate proporLional to bandwidth.
Inpup functions
dBm: levels calibrated in dBm for impedances selected.
Abs Vm: level calibrated in volts.
Rel: input level can be se! abitracily to 0 dB Ref. ( 10 dB set level range).
Input Impedances*
Reslstances: $75 \Omega$, $135 \Omega$, $150 \Omega$. $600 \Omega$ terminated: $50 \mathrm{k} \Omega$ (single ended bridging) and $100 \mathrm{k} \Omega$ (balanced bridging).
Capactiance (each terminal to ground): $10 \mathrm{mV}, 30 \mathrm{mV}$ ranges $<55 \mathrm{pF}$; 100 mV 1030 V renges $<40 \mathrm{pF}$.
common mode relection: 20 Hz to $620 \mathrm{kHz},>40 \mathrm{~dB}$.
Automatlc ranging: 8 ranges, 0 dB to -70 dB . Ranging rate proportional to bandwidth.
Output: amplizude: adjustable 0 10 IV rms open circuil.
BFO frequency response flalness: $\pm 0.2 \mathrm{~dB}$ or $\pm 2 \%$.

## Resistance: $600 \Omega$.

L.O. oulput: frequency, 1.28 MHz to 1.90 MHz ( $1.28 \mathrm{M} . \mathrm{Hz}+$ tuned frequency): amplitude, 0.65 V rins $\pm 20 \%$ open circuit: resistance. $250 \Omega$.
Recorder outputs

X.axts	Pluatin lequency rangor   62 rbs 620 kHz	
X-axes linear uitput.	$010-12.4 \mathrm{~V}$	010-124V
(1) kn source resastance)	$(200 \mathrm{mV} / \mathrm{kHz}=5 \%)$	$120 \mathrm{mb/WFr}=5 \%$
X-bris log ouloul	5 Y decore $\therefore 5 \mathrm{t} / \mathrm{m}$	5 V /decade : 5 ¢ ${ }^{\text {a }}$
(1 hn source resistance)	(50 Hz-62 h (2)	( $500 \mathrm{~Hz}_{2} 620 \mathrm{ldo}$ )

Y-Axls
Linear Yaxis output: $+10 \mathrm{~V} \mathrm{dc} \pm 2 \%$ for full scale meter indicasion. $1 \mathrm{k} \Omega$ source resistance.
Log $Y$ exls output: $+1 \vee 10+10 \mathrm{~V} \mathrm{de}$, proporional to línear dB meter indication ( -90 to $0 \mathrm{~dB} .0 .1 \mathrm{~V} / \mathrm{dB}$ ) $\mathrm{k} \Omega$ source resistance.
Power: 115 V or $230 \mathrm{~V}=10 \%$. 50 Hz to $400 \mathrm{~Hz},<70 \mathrm{VA}$.

Welght: ne1. 17.2 kg ( 38 lb ). Shipping, $24.9 \mathrm{~kg}\langle 55 \mathrm{lb}$ ).
Accessories furnished: rack mounling kit for $19^{\prime \prime}$ rack.

## Opilons

908: Rack Flange Kit
Price

3591A Selectlve Voltmater and 3594A
sweepling local oscillator plug-in
-Other terminations avalable on speciai order.

In many countries the nain communicasion system consists of a nework of FM microwave radio links. Typically, these links can earry up 101800 FDM telephone channels. using a 70 MHz IF carrier and an RF band in the range 600 MHz to 18 GHz . However, some countries arc now installing 140 MHz IF microwave liaks which can cany up to 2700 FDM telephony channels.

All information signats (speech, television. or data) carried by these links have a common objective- 10 convey the information with maximum fidelity. Failure to keep distorion in a link within specified limits results in an unacceptably high level of intermodulation noise. This prevents the link from carrying the designated channel capacity and the link operator incurs a severe financial penaly due to loss of revenueearning channels. The qualitative tests shown in Table 1 are paricularly relevant as indicators of overall system performance.

The use of noise-loading measurements to establish the intermodulation performance of FDM telephony links is well known and
they provide 'go/no-go' eriteria for the (ransmission qualizy of system beiween basebind (BB) terminals. Allhough such measurements can separate the basic and intermodulation noise components. they do not localize the noise sources.

The main contributors to distortion in FM microwave radio links are the modulators. demodulators and carrier circaits at IF such as amplifiets, and carricr circuits al RF such as non-linear amplifiers. The distortion parameters of thene circuits ean be ineasured in tems of nonlinearity. amplitude vimations and group delay vardations. To do this, test equipment must interface with the links at BB. IF and RF. Commimioning microwave link equipment involves minimizing these cireuit distortion parameters by adjustment or equalization.

On lower eapacily systems, these adjustments are normally enough to reduce intermodulation distortion 10 an accep table level. With increased traflic capacity, the tolerances imposed on the circuil parameters becorne more and more striel and nomal

Table 1. Qualitative teata to verily padio syatem periormance

Yest	FDM	Video	Olgisi
1. Inserjon Gain	-	-	-
2 2. Frequency Pesponse	-	-	-
3 Emutape Delay Distorition		-	-
4. Spurious interference Tones	*	*	-
5 Phermal Noise	-	-	,
6. Wille Noise Loading	-		
1. Wideo Havelorm tests		-	
8. Vides System Prorram Channel (Subcarrier) Yests		-	
9. Bit Ertor Rale leats			-

Table 2. Dlagnostc tests to maintaln radio aystem pertormance

Moasuramem	88	If	RI
1. Module Power Le:els, Gains and Losses	-	-	-
2. Medeni Centre Ciequencies		-	-
3. TX and $\mathrm{R} x$ Local Oscillator irequeneier			$\bullet$
4. Tfansmitier fr Duiput frequency			-
5. Spruious Popes	*	*	-
Q. $P$ M Mod + Denod Desiation Sensitivity	-	-	-
1. FM Mod - Demod Limearity	-	*	-
8. Ralun Loss	-	-	-
9. Amplinues ilatmess	-	-	$\bullet$
10 Grom Delay		$\bullet$	$\bullet$
11. DiHerential Gain ond Priase		-	-

commissioning methods often do not produce satisfactory results. Consequenly. relating the circuit parameters to the intermodulation noise (measured by a noiseloading test set) becomes increasingly more difficule.

The main source of discrepancy is the result of amplitude modulation to phase modulation (AM/PM) conversion in the transmission cartier path. This AM/PM conversion occurring ill non-linear nerworks introduces additional internodulation from the signal deviations arising in preceding networks. These 'coupled' responses can be arsessed only by differential gain/ differential phase (DG/DP) measurements with high-frequency test tones.

DG/DP measurements have the advantage of characterizing a link more completely and they yield valuable diagnostic information. Furthermore, these two measurements are mathematically related to the BB measurement of noise power ratio. This information allows microwave link manufaceurers to design link parameters with much more cerainty and it allows microwave link operalors to optimize performance in a more cost effective way. HP Application Note AN 175.I 'Differentia! Phase and Gain al Work' covers this subject in considerable detail.

HP microwave link analyzers (MLA's). at 70 MHz IF and 140 MHz IF . were developed specifically for the pumose of measuring various forms of distortion on terrestrial and satellite mierowave radio links. The messurement capabilities of HP link analyzers were cstallished in close cooperation with the telecommunications indusiry Table 2.

A valuable extcnsion of the MLA measurement capability can be oblained using RI up and down conventers. The circuit distortions al RF have identical effects to the IF circule distonions when the carrier signal is eventually demodulated. Hence, the RF distortions cian be analyzed using an MLA. provided a trimpirent $R F$ to $\$ F$ inserface is availatic. A down converle provides such an intertice and allows independent mea. surements an microwave transmiters. A scocalled 'up-converer' in fact provides a tiansparent BB to RF interiace, allowing independent mensurements on microwave receivers. Both conveters used with an MLA provide an RF 10 RF memurement cupability.

Microwave Link Analyzers
Models 37104 and 3790A MLA systems

- Isolate and characterize causes of intermodulation distortion in wideband microwave radios
- Baseband and IF inierfaces



## 3710A <br> 70 MHz IF <br> MLA System

- 70 MHz or 140 MHz IF capability
- Test analog and digital radios


3790A
140 MHz IF
MLA Syslem
instrumentation (3730A and 8630C).
Because HP MLA's have low inherent distortions they provide extremely accurate and rapid radio measurements. The specifications of HP MLA's are conservatively defined to assure adequate performance over wide operating ranges and long-time periods. The system specifications and oscillograms on the following page illustrate performance capabilities of HP MLA's.

A series of oplions are also provided with the MLA's. The options include:

- lest-lone frequencies.
- connectors.
- balanced $124 \Omega$ baseband impedance.
- sweep frequencies.
- variable plase oulput of sweep signal.

Detailed information and specifeations are provided in the 3710 A MLA and 3790A MLA data sheets.
With this performance capabilify and range of options, a highly. accurale and flexible measurement system is available from HP. Therefore, the HP MLA's provide forimproved design, production, commissioning and maintebance of wideband analog and digital Microwave Radio Systems.
Ordering intormation
Price
3710A Microwave Link Analyzer
$\$ 6115$
3790A Microwave Link Analyzer
$\$ 7530$

MLA IF－IF System specifications
3710A 70 MHz IF MLA System

Measurement Capability	IF Range   （MH2）	Range	Maximum Senstivity	Maximum Inherent Stope				Maximum Inherent Noise（rms）		
								$\begin{gathered} \text { 日B } \\ \text { frequency } \end{gathered}$		If－IF
IF Response	451095	0 to $=3 \mathrm{~dB}$	$0.1 \mathrm{~dB} / \mathrm{cm}$	$\begin{aligned} & =0.05 d \mathrm{~g} \text { at }+5 \mathrm{dBm} \\ & \pm 0.1 \mathrm{~dB} \text { from }+5 \text { to }+21 \mathrm{dBm} \end{aligned}$				－		
BB Llnagrity Ditferential Galn	$\begin{aligned} & 50 \text { to } 90 \\ & 45 \text { to } 95 \\ & \hline \end{aligned}$	0 to 50\％	0．25\％／cm			2\％ $4 \%$		－		
Group Dalay	$\begin{array}{r} 55 \text { 10 } 85 \\ 501090 \\ 45 \text { to } 95 \\ \hline \end{array}$	200 ns	$0.25 \mathrm{~ns} / \mathrm{cm}$			4ns 675 0.5		$\begin{aligned} & 83.333 \mathrm{kKz} \\ & 250 \mathrm{kz} \\ & 500 \mathrm{kzz} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{n} s \\ & 0.20 \mathrm{~s} \\ & 0 . \mathrm{Ins} \end{aligned}$	with 200kHz rms dev．
Differental Plase	$\begin{aligned} & 551085 \\ & 501090 \\ & 451095 \end{aligned}$	$\begin{aligned} & 18^{\circ} \text { or } \\ & 31.4 C^{6} \text { rad. } \end{aligned}$	$0.5 \% / \mathrm{cm}$	$\begin{aligned} & 0.4^{\circ} \\ & 0.4^{\circ} \\ & 0.6^{\circ} \end{aligned}$	$\begin{aligned} & \mathrm{at} \\ & 2.4 \\ & \mathrm{M} \mathrm{~N}_{2} \end{aligned}$	$\begin{aligned} & 0.4^{\prime \prime} \\ & 0.6^{\circ} \\ & 0.8^{i} \end{aligned}$	$\begin{aligned} & \text { at } \\ & =2.4 \\ & \mathbf{M H z} \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{MHz} \\ & 4.4 \mathrm{MHHz} \\ & 5.6 \mathrm{MHZ} \\ & 8.2 \mathrm{MHz} \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1^{\circ} \\ & 0.1^{\circ} \\ & 0.1^{\circ} \end{aligned}$	with 500kHz ms．dev． $\qquad$
If Motum Loss	451095	101049 dB （accuracy depends on Hybrid used）	$1 \mathrm{~dB} / \mathrm{cm}$			dB		一		－

3790A 140 MHz IF MLA System

Measurement Capabilly	If Range（MHz）	Aange	Maximum Sanslivily	Maximum InherentSlepe	Maximum Inherent Hoise（mms）		
					$\begin{gathered} \text { 日品 } \\ \text { Frequancy } \\ \hline \end{gathered}$		F－IF
If Aesponse	115 to 165	$010=3 \mathrm{~dB}$	0．02518／cm		－		
88 Unearity \＆ Olfferential Gain	$\begin{array}{r} 125 \text { to } 155 \\ 115 \text { to } 165 \\ \hline \end{array}$	0 to 50\％	0．25 \％ cm	$\begin{aligned} & 0.2 \% \\ & 0.4 \% \end{aligned}$	－		
Group Delay	$\begin{aligned} & 125 \text { to } 155 \\ & 115 \text { to } 165 \end{aligned}$	200ns	$0.25 \mathrm{~ns} / \mathrm{cm}$	$\begin{aligned} & 0.2 \mathrm{~ns} \\ & 0.5 \mathrm{~ns} \end{aligned}$	83.333 kHz 250kHz 500 kHz	$\begin{aligned} & 0.6 \mathrm{~ns} \\ & 0.2 \mathrm{~ns} \\ & 0.1 \mathrm{~ns} \end{aligned}$	$200 \mathrm{kHz}$ mis dow.
Differential Bain	$\begin{aligned} & 125 \text { to } 1555 \\ & 11510165 \end{aligned}$	$\begin{aligned} & 188 \text { or } \\ & 31.4 \% \\ & \hline \end{aligned}$	0．5\％m	$\begin{aligned} & 0.2^{\circ} \\ & 0.5^{\circ} \end{aligned}$	2.4 MNz 4.43 MHz 5.6 MHz 8.2 MHz 12.39 MHz	$\begin{aligned} & 0.1^{\mathrm{E}} \\ & 0.1^{\circ} \\ & 0.1^{\circ} \end{aligned}$	500kHz rims dev
IF Retum Loss	175 to 165	101049 dB （accuracy depends on hybrid used）	108／cm	148			

Typlcal HP MLA Performance

－． 0.1 AB
3710A MLA system：Amplitude liatness performance al 0 dBm inpul level．
$=$


3710A MLA system：Differential galn．


3710A MLA system：Group delay（mask Includes inherant noise slope and inherant noise specillcations）．


- RF to IF frequency conversion
- 1 to 12 GHz frequency range
- Extends test capability of microwave link analyzers to RF


3730A RF Down Converter Malnframe


## Description

The 3730A RF Down Converter and plug-ins provide RF to IF conversion and RF test capabilities for Microwave Link Aralyzers (MLA's). The RF range ( 1 to 12 GHz ) is accommodated by a series of local-oscillator plug-ins, allowing easy tuning to the desired operating irequency and convenient change of RF operaling bands. A durnmy plug-in (37301A) allou's the user to conneat bis own local-oscillator source to the Down Converter mainframe.
The Dowo Converter mainframe features an IF cenire frequency meter (to facilitate RF tuning), an AFC (to maintain centre frequency), an input-overload waming light and an optional I dB step variable gain control. Special options are avalable to extend the RF range up to 18 GHz and down to 0.5 GHz . A special 140 MHz LF output is also available. (Contact your local HP representative for details on these options).

Using the 3730A RF Down Convener. RF Transmitter performance can be verified and the performance adjusted locally instation. This minimizes the amounl of compensation required in the Receiver for Transmitter distontion. Thus it provides a more rapid System trouble-shooting/alignment procedure and improves System performance by minimizing Transmitter distortions at their source. The 3730A cats also be used at the RF Receiver pre-selector output to isolate path/antenna/feeder problems.

## Specifications

3730A RF Down converter mainframe
Frequancy range: 1.0 GHz to $12.0 \mathrm{GHz}(0.5 \mathrm{GHz}$ to 12.0 GHz and 1.0 GHz to 18.0 GHz are available as special options*). RF Input level range: 0 to - 16 dBma (standard) ( 0 to -40 dBm with $25 \mathrm{~dB} / 1 \mathrm{~dB}$ step variable gain control-Opt 010).
Maximum Inpul level: 0 dBm .
RF Inpul impedance: 50..
RF input VSWR: <1.4.
IF Output frequency: $70 \mathrm{MHz} \pm 25 \mathrm{MHz}(140 \mathrm{MHz}=25 \mathrm{MHz}$ a vailable as special option*).
IF Output impedance: $75 \Omega$.
IF Output retum lose: $>28 \mathrm{~dB}$.
$\dagger$ RF-IF Amplitude flatness: $<0.5 \mathrm{~dB}$ over any 50 MHz band ( $<0.7$
dB over any 50 MHz band with Op( 010).
tRFIF Group delay: $<1.0$ ns over any 50 MHz band
-Comtact your HP revesesertalive loc detalis on spectar aptiona

TRefel to wla Data Sheet ior detales sweifledions )
3730A RF Down Converter

- Swept RF source
- MLA RF source (with proper MLA interface option)
- CW RF source
- Source for RF return loss/antenna-waveguide fault location measurements


Aiso available are: 86222A/B Opl H80 (0.5 to 2.4 GHz )، 86245A Op1 008 ( 5.9 to 12.4 GHz ) and 86260A Op1 H82 (12.0 to 18.0 OHz )

## Description

The 8620 C RF Sweeper and plug-ins provide a high-performance, solid-state RF source for Microwave Radio testing. The $8620 \mathrm{C} /$ 86200 Senies system provides a swept RF source. CW RF source and MLA RF source.

The $8520 \mathrm{C} / 86200$ Series system provides the RF stimulus for:

- Swept amplitude flatness mebsuremenis.
- RF Receiver AGC Eilibruion.
- Antenna/waveguide retum loss and fault location.
- MLA test signal generation (when fifted with MLA interface oplion).
When the 8620 C RF Sweeper is used in conjunction with the 3730A RF Down Converter, Microwave Radio component testing can be performed a: RF-lo-RF. This provides the facility to make group delay, differential gain. amplitude fiatness measurements ete. on RY devices and components.

Mocal	MLS Optlon	gF Swater   Frequency   Range (0Hz)	Unearity (\%)	Group Delay (ns)	Differential Cain (\%)	Olfterential Phase ( $\phi$ )	Frequency   Sensitivity ( $\mathrm{MH}_{2} \mathrm{~N}$ )	Price with hun Dption
$86222 \mathrm{~A} / \mathrm{B}$	480	0.5-2.4	$<2.5$	$<3$	$<2.5$	$<3$	not specilied	\$4400/\$5400.
86235A	008	1.7-4.3	$<2.0$	$<2$	$<2.0$	$<2$	+20	\$5050
86240 C	-	$3.6-8.5$	$<0.5$	<1	$<0.5$	$<1$	-20	\$4700
862420	008	5.9-9.0	$<0.5$	<1	$<0.5$	$<1$	+20	\$3350
86245A	008	5.9-12.4	$<0.5$	$<1$	$<0.5$	$<1$	+20	\$4850
862500	008	8.0-12.4	$<0.5$	$<1$	$<0,5$	$<1$	+ 20	\$3450
86260A	H82	12.0-18.0	$<25$	-3	$<2.5$	$<3$	not specillad	\$4200

Test-Lone frequentles Linearly and Group Delay: 277.778 kHz
Diffarential Gain and Phase: 2.4 MHz
The options shown after each pluer-in provide the special MLA interface capablitiy, Rerei to pages
388 to 395 for details on other RF Sweeper plug in specifications and options.


3743A IF Amplifier

## 3744A 日旦 Sweeper

- Operates with 70 MHz or 140 MHz IF MLA's to provide swept baseband stimulus and amplitude detection.
- Frequency range, 100 kHz to 15 MHz .
- Fiamess, $<0.1 \mathrm{~dB}$ (from 100 kHz to 8.5 MHz ).


3750A Altenuator

For detailed performance specitications on the 3743A. 3744A and 3750 A. refer to the appropríte dato sheet.

Forderails on additional MLA atcernurics. refer to the MLA dala sheels. These additional accessories include:

## - $75 \Omega$ volles.

- Test hybrids. loads and calibrated mismatch.
- Tansit cases.

Fur ucessories which suppor the 3730A RF Down Converter and 8630 C R Sweeper, rifer to the appropriate date sheels and sections of this catalog.

## 3743A IF Amplifier

- Improve MLA IF input sensisivity $10-40 \mathrm{dBm}$.
- Frequency range, 45 to 95 MHz .
- Group delay, <0.3 ns.
- Amplitude flatness. <0,2 dB.
- Retum loss. $>26 \mathrm{~dB}$ (75 $\Omega$ ).
- Noise figure, $\leq 8 \mathrm{~dB}$.


3744A BB Sweeper

## 3750A Attenuator

- Impedance. $75 \Omega$.
- Atlemuation range, 0 to 99 dB in 1 dB steps.
- Frequency range. de to 100 MHz .
Ordering Informatlon Prlce
3743A IF Amplifier ..... $\$ 670$
3744A BB Sweeper ..... $\$ 1690$
3750A Altenuator ..... $\$ 365$


## PCM/TDM transmIssion testing

## Transmission testing

Measurements on digital transmission systems (including the higher level TDM multiplexes) are aimed at establishing data transparency (i.e. how truthfully the data is transmitted).
The principal measure of quality is bit error rate (BER). which is defined as the total number of erros in the received signal divided by the total number of transmitted bits, As such, it represents the prohubility of any reccived bit being in error. The standard technique of measuring BER is to stimulate the transmission system with a piseudorandom binary dats stream. The sequence length should be chosen to simulate a normal traflic signal and vary sufficiently in pattern to adequatcly test pattem-senstive parts of the equipment (e.g. clock recovery circuits). A1 the Iransmission system gutpur. the data stream is synchronized with a locally generated, enor-free pattern and then a bil-by-bil compurison surried out. Any differences are bit emors, and if commed over ia know number of clock bits. can be displayed as BER.
BER measurements are made under a number of differing conditions, including:
a) nommal conditions of bit rate, signal level, noise, and crosstalk.
b) lesis with added timsing jitter (phase variations of the clock fiming instants).
c) tests with the dita bit rate offsel from the normal clock rate.
d) Rests with noise added to the data sig. Dal.

BER measwrements are made on the unipolar data stream (i.e. after any interface code has been removed). This is especially important for systems where the interface code is not transmitted through the system (e.g. digital multiplex and digital radio systems). However, binary access is not always available and it is necessary for test equipment to supply and accept both unipolar and bipolar pattems. It is also useful 10 measure code violation errors on cable transmission systems where the line code is the same as the ineerface code. Delection of code errors is relatively simple and can be done withour taking the system out of service. For AMI line coding, two consecutive ' 'ones' having the same polarity constitute a code error known us "bipolar vioiation." For HDB3. B62S, and B3ZS. combinations of "ones" and "zeros", including bipolar violations which do nol obey the coding rule, constitule code errors.

## Test equlpment

The measurement needs of development. manufacturing and field applications are quite different. Test instrumenk have been developed that address the specific problems of each srea. For $R$ \& $D$ use, the 3760 A Data Generator and 3761 A Error Detector provide flexible capablity with a wide range of bit rates. patterns. and variable binary interfaces, For production test. installation. and mainterance the 3780A
provides binary and code efror measurement up to $50 \mathrm{Mb} / \mathrm{s}$. Standard bit mate generation, standard interface levels and data formats, clock recovery, and aulomatic patlem recognition are provided, with a sclection of enter detector oulpuls for erpor analysis. Frequency offset generation and measurement are also included. The 3762A Data Generator and 3763A Error Detector comprise a dedicated ersor rale measurement sy'scem for evaluating higher speed digital transmission equipment up to $150 \mathrm{Mb} / \mathrm{s}$. Some of these systems use a new interiace code called Coded Mark Inversion (CMI) and this is available in the 3762A/3763A. Also provided is BER roeasurement on patterms with zero subatitution. This is useful for checking the pathem dependence of a system. or for testiog the effectiveness of scramblers. The 3762A/3763A have also been devigned to operate in burst mode for TDMA satellite applications.
Testing mulli voice channel PCM (or FDM) systetns in production, instiallation and maintenance using automatic testing ean now be made casier with the 3777AChannel Selector. This instrument has Iwo identical banks of relays: each bank comprises up to 30 balanced, bi-directional. two-pole changeover switches. To provide a "quiet" termimation for telecommunications equipment, all unsclected channels are terminated in $600 \Omega$. Control of the 3777 A is via the HP-IB with independent selection of $T x$ and Rx channels.


## $150 \mathrm{Mb} / \mathrm{s}$ PCM/TDM error measuring set for general use

 Models 3760A \& 3761A- Internal variable or crystal clocks
- Wide range of test patterns
- Variable binary interfaces with optional delayed data output
- Clock/data phasing
- Automatic, manual, or external synchronization
- Bit-by-bit error detection
- Wide choice of error count period
- BCD printer output


The 3760A:376la Error Rate me;anurement system has been designed for general use in the evalutition of digital systems operating in the frequency range $1 \mathrm{~kb} / \mathrm{s}-150 \mathrm{Mb} / \mathrm{s}$. It has particulir iapplicitions in the design and development of PCM/TDM sy:tems.

The measurement yystem comprises the 3760A Data Generator. which provides a variable length PRBS to the item or system under test, and the 3761A Errur Delector which has been ipecifically designed for operation with the pseudo random sequences produced by the Data Generator. Frrur detection is accomplished by comparing the output from the item under test, bit-by-bit, with an independent. closed loop, reterence sequence in the 3761A Ertor Detector. This technique ensures detection of every error. random or systemalic, and avoid the problems swociated with open loop reference sequence generation. Errorx mily be counted and direcluy displayed in the 376 IA either as Bit Error Rale (BER) or Total Error Count (COUNT).

The 3760 A Data Gencralos is a versalue PRBS and WORD generator and can supply many of the test sequences required for the development and evalulation of degital transmission equipmenı. For a fuller description of the 3760A's features and facilities, refer to the entry in the Pulsc and Word Generators section of this catalog.

The 3761 A Error Detector requires both clock and datu inputs. The inputs accept continuous or hurst signals in the frequency range I kHz to 150 MHz . Synchrunization to the incoming data can be accomplished automarically. manually or extemally.
The BER measurement is computed from more than 100 errors and the resulns dinplayed disectly in the form A.B: $10^{-11}$ giving as range $0.1 \times 10^{-11} 109.9 \times 10^{-1}$. The COUNT metsurement totalizes errory over a gating period, which may be controlled internally, manually, or extemally, and the result is displayed as a four digit
number with leading zeros blanked. The intemal gating period can be selected within the range $10^{3}$ to $10^{11}$ clock periods and can be single shot or reperitive in operation. When a count of 9999 is exceeded an "overlow" fing is lit.

In both BER and COUNT modes. the display is continually updated at a rale which may be set by the operator.
A BCD printer outpui of the current display is available from a rear panel sockel. This outpul is in 8421 format and includes the sync loss and overfow flag indications. An outpur of one transition per enor is also avainble al the rear pancl for further analysis.

## Specifications

## Measurements

Blt error rate (BER)
Range: $0.1 \times 10^{-0} 109.9 \times 10^{-1}$. automatically scaled.
Gating; automalic.
Accuracy: compulation based on at least 100 errors.
Total error count (COUNT)
Range: 0 io 9999.
Gatling: intemal, single shol or repelitive, manual or extemal.
Internal: $10^{5}$ to $10^{18}$ clock periods.
Manual: front pancl swith.
External: TTL logic levels.

## Patterns

PABS: maximal length $2^{n}-1$ where $n=3$ to 10 and 15 . Frequency range: I kzz to 150 MHz .

Ordering information	Price
3760A Dala Generator	$\$ 6525$
3761A Error Detector	$\$ 5630$

## Binary and code error measurements

- Internal crystal clocks and clock recovery at standard bit rates
- Clock frequency offset generation and measurement capability
- Ternary coded and binary interfaces
- PRBS and WORD pattern generation and detection
- Automatic receiver synchronization
- Printer and recorder outputs


The 3780A Pattem Generator-Error Detector is a comprehensive etror measuring set in one porable package. The instrument measures Binary Ertors and Code Frrors in digital transmission equipment operating at bit rates between $1 \mathrm{~kb} / \mathrm{s}$ and $50 \mathrm{Mb} / \mathrm{s}$. Frequency offsel genenation and measurement are also provided at the standard bit rates used in PCM/TDM transmission.

Bidary errors are delected by simulating the system with a test pattem and comparing the oulput bit-by-bis with a separate internally generated, error-free patterm. Code errors on interface or line coded information are detecred during decoding into binary data. The errors can be counted over a chosen gating perind and displayed directly as bit error rate (BER) or total error count (COL'NT).
Estor measurements can be made with PRBS or WORD pittems and the receiver has automatic pattem recognition and synthronization. Zero add facilities atlow investigation of regenemtor elock recovery performance. This capability can be extended by the optional addtition of programonable word and altemating word generalion.
The clock frequency in the pattem generator can be offsel and measured in the receiver. The offsel is displayed as a fraction of the nominal crystal centre frequency. In additions, the offset of external clocks applied to the genemator can be measured provided that the frequency is within 25 kHz of one of the installed erystal frequencics.
BER or COUNT results cas be displayed directly by LED's on the fromt panel or monitored via a BCD printer and strip chart recorder. This makes the 3780A ideally suited for unattended longterm measurements.
The 3780A has been designed principally for use in ficld triats. comusissioning, and maintenance of digital transmission terminal and link equipment it is particalarly suited for testing digital muluplex. radio, and line systems but will also find application in development of more advanced sysems such as opticil fibre transmission and time division switching.

## Specifications

## Measurements

Einary errors: closed loop bit-by-bit Actection on any pattem proJuced by generator, excluding added zeroes or altemating words. Code errors: violations of cading rule detected on any pattern with AM1. HDB3, or HDE2 coding (optionally AM1, B6ZS, or B3ZS). Frequency offset: measurement of fractional offset of generator clock oulput from installed crystal rates.
Options Frice

Word/connector options
001; all words replaced by a 16-bit from panel pro- aidd $\$ 215$ grammatle word
002: Siemens 1.6 mm connestors
add $\$ 55$
003: combination of 001 and 002
add $\$ 270$

## Frequency offset option

099: frequency offisel capability-measurement only, less $\$ 370$
generacion facillity deleted
Frequency/codec optlons
100: internal clock freguencies of 2048, 8448, and
N/C 34368 kHz : $\mathrm{HDB} 3 / \mathrm{HDB} 2$ codec.
101: internal clock frequencies of 1544, 6312, and N/C 44736 kHz ; B6ZS/B3ZS codec.
102: intemal clack frequencies of 1544,6312 , and 3152 N/C
kHz; B6ZS/B3ZS codec.
Model 3780A Pattern Generator-Error Detector \$6050

Models 3762A \& 37B̄̄AA

- Crystal clocks and clock recovery
- Frequency offset facilities
- Bursi mode operation
- Binary and interface codes
- Input equalization
- Error detection on PRES + Zeros
- Built-in interval timer
- Recorder and printer outputs


The 3762A Daua Generator and 3763A Error Detector comprise a dedicated error rate measurement sysiem for evaluating high-speed digital transmission equipment. Basically, there are two versions of the syatem available. One featires CMI and binary dota formats and is specifically intendod for use in field commissioning and maintenanoe of digital radio (terresorial mierowave. TDMA satellie, and waveguide) systems. The other version, with CMI and temary (HDB3 and 83Z5) dava formats, is designed for digital muluplex and diginal cable systems. Although optical fiber systems are still undefined, the 3762A and 3763A have sufficiens built-io capability and nexibility to cover applicasions in this rapidly developing area of refecommunications.
The 3762 A is a dual chanoel generator with the data on one channel delayed relative to that of the other. The pattems available are $2^{10}-1,2^{13}-1$, and $2^{23}-1$ bil PRBS, two 10 -or 16 -bil programmable words. two 1010 . . . repetitive patterns, and iwo 8-bit words alternated by an exiemal signal. The $2^{26}-1$ bit PRBS is as specified by CCITT. The $2^{23}-1$ bit pattem conforms to the sequence currently proposed by many administrations for $140 \mathrm{Mb} / \mathrm{s}$ serrestrial systems and by Intelsal for TDMA satellite systems. The coded data outputs from the 3762A are al standard levels and impedances for direct connection to the equiporent under test. The binary interfaces have variable amplitude and offset to suit different logic families. Two intemal crystal clocks are provided at standard PCM/TDM hierarchy rates. in the range $3010150 \mathrm{Mb} / \mathrm{s}$. These can be offset by up 10 $\pm 60$ ppor from nominal.

In the 3763A. the output from the system under test is compared bit-by-bit with an independent, error-free reference pattern. Synchronization can be under automatic, manual, or external control. Errors are displayed in BER (bit error rale) or COUNT formats. Io BER mode, a reading is given after 10 or 100 errors are counted. In COUNN, the gating period can be selected intemally, excernally. or snanually; using the inlerval timer, the gating period can be set from 1 minute up 1024 hours. Clock recovery from interface coded data is provided at the rates of the installed ecystal clocks with equalization to compensate for up to 12 dB of loss in instation cabling between the sysiem and the equipment under test. Also, frequency offet can be measured in the 3763A.

For long term eitor measurements and more delaided studies of error distribution etc, error, printer, and recorder outpuss are provided. together with a time-of-day clock and an interval timer. With this, results can be primied out at the end of every gating period, or at selected intervals, together with the time of day.

Blocks of zeros may be substituted into PRBS panems to test scrambiers/descramblers, elock recovery, and regenetator circuits. The position of the zero block within the sequence can be selected via a trigger word. Clock gating inputs allow bust mode gating control of pattern generation and error detection. In addition. a second gating input in the detector allows examination of the errors occurring in a window within the burst

## Specificatlons

## 3782A Data Generator

Internal clock: two crystal clocks in the range 30 to 150 MHz ; crystils fitted in standard unit are 139.264 and 141.040 MHz ; offsel continuously variable up to $=60 \mathrm{ppm}$.
External cloek input: 1 kHz to 150 MHx : $75 \Omega$ : $300 \mathrm{mV} \mathrm{pk}-\mathrm{pk}$ sensitivity, with choice of inpul termination and trigger level.
Bursi gating Input (rear panel): disables clock for burst mode operation: $50 \Omega$; ECL levels.
Clook output: CLOCK or CLOCK: $15 \Omega$ : preset amplitude and offist or fixed ECL levels.
Patterns: $2^{10}-1,2^{15}-1$, and $2^{23}-1$ PRBS: two 10 - or 16 -bit programmable words; two 1010 ... repelitive patterns; two 8 -hit words altemated by an external signal; PRBS patterns can be gated off for 1 to 999 clock periods after trigger pulse (zero substitution): error add facilitics.
Alternating word control Input (rcar panel): dc $10100 \mathrm{kHz}: 250$ $\mathrm{mV} p k$-pk sensitivity.
Data output A: PRBS or WORD A: DATA or DATA. in CMI. NRZ or RZ format; 75ת: preset amplinide and offset or fixed ECL levels.
Data output B: PRBS delaycd, or WORD B, in NRZ or RZ format; other specifications as for Data output A.
Trigger output: one pulse every sequence or word; variable in position, selected by word switches, two clock periods wide, but stretched in zero substitution mode; SON: 1 V .
Auxillary outputs (rear pancl): clock and data (both A and B) outputs in binary ECL levels.

## 3763A Error Detector

Data input: CMI, NRZ, or RZ formats: 75R: DATA or DATA: 300 mV pk -pk sensitivity on binary inputs, with choice of termination and trigger level: 12 dB axed equalization at 70 MHz on CMI inpuls with clock recovery.

## Extamal clack: as 3762A.

Burst gating Input (rear panel): as 3762A.
Clock output: monitor output: $50 \Omega$; ECL levels.
Patterns: all the patterns of the 3762A. including zero substitution. but excluding altemating words.
Synchronization: automatic, manual, or external (ECL); sync loss $>10000$ errors in 90000 bits: resync sime typically $<800$ bits.

## Trigger output: as 3762A.

Error measurements: closed loop bil-by-bit comparison at the binary level with an independent, error-free local reference.

BEA: looks for 10 or 100 errors and lakes reciprocal of clock counter: result displayed on LED's as $X . Y \times 10^{-n}$ where $n=1$ to 9. with aumatic scaling.

COUNT: Iotalizes ertors over a selected gating period: intemal period can be $10^{* *}, 10^{*}, 10^{10}$ clock periods or 1 min 1024 h , repeli-
tive or single shot: manual star/siop or exiemal (ECL) control: resuli displayed on LED's as ABCD.
Measurement gating input; gates envor and clock inputs 10 error connter, providing a measurement "window"; 50\&: ECL levels.
Fsequency offset measurement: measures deviation of received bit rate from nominal rate: result displayed on LED's as $\pm \mathrm{BCD} \times$ $30^{-6}$.
Flags: gating: errors: overflow; sync loss.
24 hour clock: provides local time of result on primer output.
Interval timer: controls gating period in COUNT and print me when periodic printing of results is required.
Printer output (rear panel): 8-4-2-I BCD, 10 -column output of result. plus local time, if reguired, and flags: TTL print command pulsc.
Recorder output (rear panel): constanl current drive oulpul of BER or COUNT result, with flags.
Display output (rear panel) overflow digits of error com available: 50n: I V.
Error output (rear panel): one transition per error: or one pulse per error below $75 \mathrm{Mb} / \mathrm{s}$ : 50 n ; 1 V .
Counter gate output: error colinter gating periad brought oul to enable simultaneous gating of external counter: TTL levels.
General (3762A \& 3763A)
Slae: $3762 \mathrm{~A}: 133 \mathrm{H} \times 425 \mathrm{~W} \times 40 \mathrm{mmD}\left(51 / 3^{\circ} \times 16^{3} \%^{3} \times 17 \%\right.$
 Welght: $3782 \mathrm{~A}: 12 \mathrm{~kg}(26.5 \mathrm{lb}) .3763 \mathrm{~A}: 14 \mathrm{~kg}(31 \mathrm{lb})$.
Power supply: $115 \mathrm{~V}+10 \%-22 \%$ or $230 \mathrm{~V}+10 \%-18 \%$ : ac, 48 to 66 Hz : power consumption approx 12 VA . each.
Oplions (3762A/3763A) Price
105: $75 \Omega$ interiaces changed to $50 \Omega$. Frequeacies are 60.032 and 30.016 MHz .

201: Dala oulpul B roi delayed; HDB3/B3ZS/AMI:
$75 \Omega$; $=1$ V. Second data input (B) on 3763A; 75n:
HDB3/ B3ZS/AMI: antomatic equalization for up to
12 dB cable loss at $1 / 2$ bit rate relative to a $=1 \mathrm{~V}$ signal:
elack recovery at installed crystal frequencies. Channel B cannol be used simulzaneousiy with A. Frequencies are 139.264 and 120.000 MHz .
202: as for Option 201 except frequencics are 139.264 and 34.368 MHz .

```
-$210/+$300
+$228/+$250
-$261/+$180
```

and $44,736 \mathrm{MHz}$. In addition, clock and binary data
interfines changed to $50 \Omega$.
801: front cover.

- \$70/-\$70
330: as for Option 201 exeepl frequencies are 137.088
Ordering information Price
3762.A Data Generator $\$ 709 \mathrm{~S}$
3763A Error Delettor $\$ 7770$


The 15507 A Isolntor is a passive unit which provides isolation from longitudinal voltages appearing on connections to digital transmission equipment.


The 15508 B Converter is a I 1010 MHz balanced interface providing $75 \Omega$ unbalanced/I $10 \Omega$ balanced impedance conversion. It has been designed as a passive converter for use in applications where the interface to the digital equipment requires a balanced signal.


The 15509A Amplifice provides sufficient gain on a digital signal appearing al a slandard digital equipment monitor point to lrigger the 3780A or 3763A error delector inpul. It can be used with the 3780 A 10 monitor, for example. i frafic signal for code violations.

## Specifications

Insertion loss: $0=2 \mathrm{~dB}$, from 0.1 to 150 MHz .
Relum loss: $>20 \mathrm{~dB}$ againsı $75 \Omega$, from 0.5 to 150 MHz .
Longitudinal attenuation: $>40 \mathrm{~dB}$ at 50 Hz .
$>35 \mathrm{~dB}$ at 100 Hz .
$>20 \mathrm{o}^{\mathrm{B}}$ at IkHz .
Connectors: 75 ANC .
Case dimenslons: 22 mm dia $\times 86 \mathrm{~mm}$ long ( $0.88^{\prime \prime} \times 3.38^{\prime \prime}$ ).

## Specifications

Frequency range: I to 10 MHz .
Turns ratio ( $75 \Omega / 110 \Omega$ ): $1 / 1.2$, nominal.
Connectors: 7511 UNBAL-BNC.
$110 \Omega$ BAL-accepis WECO 310 Jack Plug.
Case dmenslons: 22 mm dia $\times 86 \mathrm{~mm}$ long ( $0.88^{\prime \prime}$ ) : $3.38^{\prime \prime}$ ).

## Specifications

Gain: $25 \pm 2 \mathrm{~dB}$ al 0.1 MHz .
$21 \pm 2 \mathrm{~dB}$ al 45 MHz .
$18 \pm 2 \mathrm{~dB}$ घ1 75 MHz .
Input Impedance: $75 \Omega$, typically: return loss $>20 \mathrm{~dB}$ ito $70 \mathrm{MH} \%$.
$>-15 \mathrm{~dB}, 7010150 \mathrm{MHz}$.
Required laad impedance: $75 \Omega$.
Maximum safe input: ac. 3 V peak: dc. $=20 \mathrm{~V}$.
Maximum sate dc applled to output: $\pm 10 \mathrm{~V}$.
Power supply: $+15 \mathrm{~V} .0 \mathrm{~V} .-12.6 \mathrm{~V}$ : consumption I VA.
Case size: $19 \mathrm{~mm} \mathrm{D} \times 163 \mathrm{mmL}\left(0.75^{\prime \prime} \times 6.4^{\prime \prime}\right)$.

Ordering information	Price
15507 A Isolator	$\$ 70$
15508 C Converter	$\$ 95$
15509 A A.mplifier	$\$ 1.30$

- DC to 110 kHz
- 2-wire/4-wire balanced switching
- Modular construction
- Up to 304 -wire channels


The 3777A is in HP-1B controlied Channel Selectur It nrovides test point access for maintenance and production testing of PCM and FDM telecommunications systems.

The instrament contisins two identical banks of relays, termed 'Transmil' and 'Receive.' Each bank comprises up to 30 baldanced. bi-directional, iwo-pole changcover switches. The Transmit bank enables switcting of a single source 10 any one of up to 30 ourputs. In the Reccive bark. any one of up to 30 inputs can be switched to a common output. To provide a quiet termination for telecommunications equipment, all unselected channels are terminated in 6000 s.

The wo switch banks are controlled independenty via the HP-IB from a computer or a programmable calculator. For autontatic lest systems. the 3777 A can scan, under external progrim control, through a number of channels in any desired sequence.

Consinction of the 3777 A is modular, with the 30 channels in bolh Transmit and Receive banks artanged in 5 blocks, each block hoving 6 Transmit and 6 Receive channels. 12 and 24 channel versions with only 2 or 4 blocks are available as options.

Priscipal applications are in testing telecommunications equipment where the 3777A may be used 10 swich PCM primiry multiplex chamnels. FDM voice elrannels or groups. and voice frequency telegraph cireuits, for measurements during production. instalkation. or maintenance. The bigh quality relays employed in the 3777A also make it suitable for many other general purpose appliestiuns requiring an HP-IB controlled channel selector.

## Specifications

Insertion loss: $<0.05 \mathrm{~dB}$ al 110 kHz .
Resistance of through path: $<500 \mathrm{~m} \Omega$ each leg.
Return loss of terminated port: $>20 \mathrm{~dB}$ against $600 \Omega(800 \mathrm{~Hz} 10$ 110 kHz ).
Crosstalk (isolation)
Transmil $/ / P$ to recelve $O / P ;>105 \mathrm{~dB}$ (dc to 4 kHz ).
$>75 \mathrm{~dB}(\mathrm{dc}$ to 110 kHz$)$.

Tx I/P to ungelected $T \times O / P: 7>100 \mathrm{~dB}(\mathrm{dc} 104 \mathrm{kHz})$. Unselected Rx $/ / P$ to Rx O/P: $>80 \mathrm{~dB}$ (dc to 40 kHz ).
Any Rx I/P to any Tx O/P: $\Rightarrow 70 \mathrm{~dB}$ (dc to 110 kHz ).
Changeover time; <20 ms (incliving bounce).
DC isolatlon to ground: 130 V nax.
Max DC differentlal voltage: 60 V .
AC proof voltage to ground; 184 V peak.
Max AC differentlal proof voltage: 84 V pk .
Max DC current capability
DC (Through): 120 mA .
AC (Terminated): 20 mA rims.
Connectors: Siemens andio connectors for transmit I/P and receive O/P. A 37-way D-type connector is issociated with each group of 6 receive $1 / \mathrm{P}$ 's and transmit O/P's.

## General

Welght: 7 kg ( 15.4 lb )
Dimenslons: $145 \mathrm{~mm} \mathrm{H} \times 425 \mathrm{mmW} \times 350 \mathrm{~mm} \mathrm{D}\left(16.8^{\prime \prime} \times 3.5^{7} \times\right.$ 13.9").

Power supply: $100 / 120 / 220 / 240 \mathrm{~V} .+6-13 \%$; ac. 48 to 66 Hz : consumption 10 VA .

## Options

Price
001: 24 channcls in transmit and receive banks. WECO 310 connectors used for transmil $1 / \mathrm{P}$ and receive $O / P$
002: 12 channels in transmil and receive hanks. less $\$ 850$ Sicmens audio connectors used for transmit $1 / \mathrm{P}$ and seceive O/P.
003: 12 channels in transmit and receive banks. less $\$ 850$ WECO 310 connectors used for 1 ransnit I/P and receive $O / P$.

## General Information

Hewlett-Packand introxiuced the world's Eirst pockel scientific calculator in 1972. Since then. Hewlett-Packard has introdueed several pockel and personal priming calculators with ecehnologically advanced features: each with sifferent capabilities for different tevels of problem sophistication. To properly select a calculator, you musi consider not only the problens you're facing today, but those you're likely to fuce tomorrow.

## Personal Calculators

If your problems are fairly stmighforward bul still include coordmate conversions, log and trig functions, the HP-21 may be just perfect for you. The HP-21 is the lowest priced scientific pocket calculator Hewlett-Packard offers. yet it has all the functions and features you'd expect to fiod in a quality scientific pockel calculator.
For repetitive or iterative problems, two HP calculators are practically "cusion made" for you-the HP-25 and the HP25 C . These two calculators have iuentical programming power and identical preprogrammed functions including conditional rests, full editing. eight addressable memories, and a great many mathemation and statistical functions. But the HP-25C also hats a continutus memory that relains your programs and saves your data even when you lum the calculator off.
To bridge the gap berween scientific and business calculations. you should consider the HP-27 Financial/Statistic:-1/Sclenüitic, which gives you every scientific function we've ever offered in a preproghamed calculator-phis the added power of statistics and ginance. The HP-27 will be ex. iremely valuable to any scientist, businessman or engineer whose responsibilities extend into targeting, budgers. cost amalysis. and other financial and forecasting considerations.
If your problems are more business oriented, take a look at the HP-22 or the new HP-10. The HP-22 Business Mantigement Pocket Calculator provides a desirable combination of fimancial, mathematical, and slatistical capabilitics often used in modem business. For the person requising the performance of a desktop machime in a light weight. pockel-sijed model, the new HP- 10 may be the answer. And the whisper-quiet thermal printer gives you a valuable printed recond of your calculations.

For the businessman that musl evaluato large numbers of invesiment alternatives. the new HP-92 provides solutions quickly. easily. and accurately. The themal printing feature gives you an indispensable record of ume and money solutions.
For the ultimate problern solving power in any field. Hewleu-Packard offers you two compatible. fully programmable calculators-the HP-67 Pockel Calculator and the HP-97 Printing Calculator. The HP- 97 combines exceptional programming power-plus a battery-operated printer-all in one self-concained unit. The $\mathrm{HP}-67$ pro-

vides the identical power of the HP-97 in the classic pocket size. Used separately-or together-these compatible, fully programaible calculators do the joh faster and with less chance for error.
To increase the veratility of your fully programmable HP calculator. HP has an extensive library of "Application Pacs." By using these Application Pacs. you'll discover that the solutions you require may already exis. Each program in a pac is fully documented with commented program listing allowing the adoption of programming techniques useful to each applícation arca. The Application Pact greatly extend the capabilities of the fully programmable models and signilicandly increase problem solving potentiad. Application Pac topic areas include:

- Slat Pac
- Math Pac
- EE Pac
- Business Decisions Pac
- Clinieal l.ab and Nuclear Medicine
- ME Pac
- Surveying Pac
- Ganies Pac
- Civil Engineering
- Niavigation

To compliment the Library Application Pacs, HP has a full line of personal calculator accessories to keep your HP calculator safe and sound. 'To protect against a "mysierions disappearance" of your HP calculator, there is a ruggedy-designed. key-operated security cradle avaituble to protect your investment. The crade does not interfere with normal operations of the calculator and may be secured via four different methods (hardware included with crade). For deskrop moodels, a six-foot sccurity cable is available. For outdoor calculator operations. HP has a hard leather case to guard against nurmal environment conditions encountered in the field.
To kcep jour HP calculator operating al peak efficiency, several difiterent models of rechargeable battery packs are available to counter untimely power losses. Simply slip the batlery pack into the holder, plag the holder into the recharger/AC adapler supplied with your calculator, and in six-toeight hours you have a fully charged battery. (HP-67 fechsirging time, $14-17$ hours.)
Whichever HP calculator or accessory you select, you can be assured that it is the finest in its class . . . because the HewlettPackard standard of quality permits nothing else.


## HP-21

The HP-2I is the lowest-priced suientific pocke calculator HP offer. yet it has all the functions and ieatures you'd expect to find in a scientife pockel calculator. The HP-21 performs 32 prepregrammed functions and opetations including logarithms, trig calcub=tions and polar 10 rectangular convervions: in either radians or degrees. The RPN logic system ackles ever the most complex problems efficiendy and gives you continuous and immediate feedback. Cumbining the HP-2I's capability with its low eost. you have a price'performance ratio that's simply unbeatable.

## HP-21 Specificatlons

## Pre-Programmed functions

Trigonometric (all in degrees or radians): Sin x: Arc Sin x: $\operatorname{Cos} \mathrm{x}$ : $\operatorname{Arc} \operatorname{Cos} \mathrm{x}$ : Tan x : Are Tan x .
Logarlithme: Log x: Ln x: $\mathrm{e}^{5}$; $10^{\prime}$.
Other: $y^{5}, \sqrt{x}: 1 / x: \pi$; rectangular/polar coondinate conversion: iull register aribnectic.
General
Memory: one addressatle register: four-register operational stack. Display: Up to 10 significant digits in fixed-decimal notation: up 108 significant digits plus two-digit exponent in scientific notation: full display formatring in either mode with selective round-off: indicators for improper operations, low battery.
Dynamic range: $10^{-39}$ to $10^{99}$ (200 decades).
Power: AC ; $115 \mathrm{~V}, \pm 10 \%, 50$ to 60 Hz Hattery: 25 V de nickelcadmium rechargeable battery pack.
SIze: $30 \times 68 \times 130 \mathrm{mmD}\left(1.2^{\prime \prime} \times 2.7^{\prime \prime} \times 5.1^{\prime \prime}\right)$.
HP-21 Scientific Pocket Calculator

## Continuous Memory (HP-25C only)

The continuous memery capatility of the HP-25C cint provide remendous values in time-saving and converience to any scientist, engineer or student who uses a few long programs repeatedly-for example, if 20 percent of your programs will solve mont of your problems.

The HP-25C retains a progim-no matter how often you switch it on and off-by means of sophishicated complementary metal oxide silicon circuitry ( $C-M O S$ ). The last program you store is

saved. ready for use, until you clear it or enter a new program.
The \& data starage registers are also continuous, allowing constants or data to be stored indefinitely, to be available as needed.
The HP-25 is identical to the HP-25C but without continuous memory.

## HP-25/25C Specitications <br> Pro-Programmed functions

Trigonomatric (all in decimal degrees. radians, or grads): $\operatorname{Sin} x$ : Arc $\operatorname{Sin} x: \operatorname{Cos} x: \operatorname{Arc} \operatorname{Cos} x: \operatorname{Tan} x ; \operatorname{Arc} \operatorname{Tan} x$.
Logarilhmic: Log $x: \operatorname{Ln} x, e^{x}, 10^{x}$.
Stanstical: mean and standard deviation: summations giving n. EXx. Ex ${ }^{2}$, Ey, Exy,
Other: $y^{2}: \sqrt{x} ; 1 / x ; \pi ; x^{*}$; \%; conversions between decimal hours, $\mathrm{d} c$ grees, radians, or grads and hours (degrees)/minutes/seconds: rectangular/polar coordinate conversions, integer/fraction truncation: abselute value: full register arithmexic.

## Programming leatures:

49-xiep program memory; condicional branching based on any of cight relational lests ( $x<y, x \geq y, x \neq y, x=y, x<0, x \geq 0, x \neq 0, x=0$ ): dired branching: ability to review or execute programs step-by-step: ability to add or modify program steps; PAUSE and NO-OPERATION program instructions.
Genera!
Memory: eighl addressable regislen: four-registcr operallonal stack: last-X register.
Display: up to io significant digits in fixed-decimal notation: up to 8 significand digits plus 2-digit exponent in scientific or engeneering notation (in engineering notation all exponents are displayed as multiples of z3); fill display formating in any mode with selective roundoif, indicators for improper operations. low battery: linenumberkey matrix program display.
Dynamic range: $10^{-54}$ to $10^{\text {pe }}$ (200t Uecades).
Power: AC: $115 \mathrm{~V} .=10 \%, 50$ to $\mathrm{K0} \mathrm{~Hz}$. Battery: 2.5 V de nickelcadmium rechargeable buitery pack.
Size: $30 \mathrm{H} \times 68 \mathrm{~W} \times 130 \mathrm{mmD}\left(1.2^{\prime \prime} \times 2.7^{\prime \prime} \times 51^{\prime \prime}\right)$.
Ordering information
HP- 35 Scientitic Programmable Pockel Calculator ..... $\$ 125$
HP-25C Scientific Programmable wilh ContinuousMemory$\$ 160$


The new HP-19C and HP-29C are a pair or advanced programmable calculators with continuous memory. Continuous memory retains a user's pragrams or data. even with the power tumed off. The HP-19C combines a full range of scientific functions, advanced programming features ind RPN logic wish a battery powered printer in a converient hand-held size. The HP-29C offers the same features and functions in an even smaller "pocket size." These functionally identical calculaton provide exceplional utility to profersionals and students in science or engineering fields.

## Specifications

## Pre-Programmed Functions

Angular:Sin.Cos,Tan.Sin - I. Cos-I. Tan-1: Hours - Minutes -
Seconds Conversion 10 decinal hours; polarírectangular cenversion; degrecs. radians, grads angular modes.
Logarlthmic: Log. $10^{x}$, Ln. $e^{\lambda}$.
Statlstlcs: Summations $n, \sum x, \sum y, \sum x^{2}, ~ \Sigma y^{2}$. $\Xi x y$ : deletion of unwanted data, mean. slandard deviation
Other: $+,-,-\cdots, y^{r} \cdot x^{2}, \pi, \sqrt{x}, V / x, \%$. Integerinumation:
fraction inuncation: absolutc value.
Programming leatures: 98 steps of continuous memory (all functions merged): 16 continuous memory dala slorage registers; 14 volatile data storage registers: four-register slock: lasi-X register. $x=y . x=y . x>y, x \leqslant y: x \neq 0 . x=0, x>0, x<0$. $\ln c$.
rement/decrement storage register and skip on zero.
Label addressing: indirect addressing of labels and dala storage: relative addressing: three levels of subroutines.
Editing: single step execution: single step and back step inspection of a program; insert/delece editimg; position the calculator al any step in program memory. Pause-review intermediate results or key in datai in the middle of a program.

## General

Dlsplay: fixed decimal. scientific ind engincering notation.
Print select swltch: print only when you desire; print digit entries and functions avtomatically: or trace an execuling program.
HP-19C Physical specifications

Size: $40 \mathrm{H} \times 88 \mathrm{~W} \times 165 \mathrm{mmD}\left(1.6^{\prime \prime} \times 3.45^{\prime \prime} \times 6.5^{\prime \prime}\right)$.
HP-29C Physical speciflcations
Power: AC 115 (00 230 V ) $10 \%$. 50 10 60 hz .
Size: $30.2 \mathrm{H} \times 68.3 \mathrm{~W} \times 130.2 \mathrm{~mm} \mathrm{D}\left(1^{3 / 16^{\prime \prime}} \times 21 / 1 \mathrm{n}^{\prime \prime} \times 51 / \mathrm{m}^{\prime \prime}\right)$.
Ordering information
MP-19C Printing Programmable with Conlinuous $\$ 345$
Memory
HP.29C Programmable with Conlinuous Memory

- Exceptional programming power and ease of use for lengthy, repetitive calculations.
- "Smart" magnetic card reader frees your mind by automatically recording the display mode setting, angular mode setting, and the status of the four flags when you record your program.


HP-67 Fully-Programmable Pocker Catculator
HP-97 Fully-Programmable Printing Caiculator

These are the most powerful personal calculators HewlettPackard has ever made. The HP-97 combines exceptional programming power-plus a battery-operated printer all in one selfcontained unit. The HP-67 provides the identical programming power of the HP-97 in the classic pocket size.

The HP-67 is completely compatible with the HP-97. Programs recorded on the unit may be loaded and execuled on the other even the print commands (c.g., when the HP- 67 executes a Print $X$ command, it pauses, and display's the cerrent result.

Used separately - or together -- these compatible fully programmable calculators do the job faster and with less chance for error.

## HP-97/67 specifications

Pre-programmed functions
Mathematical: Sin. Cos, Tin, Sin '. Cos ', Tun': Degrees, radians, grads angular modes; Coordinate Conversion; Degree/radian conversion: Hour/minules/seconds addition and conversion to decimal hours: Log, $10 \times$. Ln, er; Integer truncation: Fraction truncation: Absolute value: Rounding: $+,-, x,-, y^{r}, x^{2}, 1 / x, \sqrt{x}, N$ !, $\% . \% \mathrm{CH}, \pi$.
Statisucal: mean and standard deviations; Summalions $n, ~ \Sigma x, \Sigma x^{2}$. ミy, $\Sigma y^{2}, \Sigma x y$; Deletion of unwanted data.
Programming teatures
Card Reader features: Record/Lond all dala registers: Load selected data registers; Record/Load entire program memory: Merge program subsections; Angular mode, flag settings, and display slatus are recorded with program recording and reset with pro. gram loading: User is prompted for proper opemtion when loading: Catd reader operalions can be initiated manually or under program conlrol (except progmm recording).
Addressing: label addressing: indirect addressing of labels and data storage: Relative addressing: 10 user-definable keys or 20 user-
definable labels: Three levels of subroutines (GSB).
Conditionals: $x=y, x \neq y, x>y, x \leqslant y, x \neq 0, x=0, x<0, x>0$ : Four flags: Increment, decrementstorage registers and skip on zero. Editing: single slep execution: Single step and back step inspection of a program; Insen/Detele editing. Position the calculalor at any slep in pragram memory (GTO - nnm).

## Other Programming features

PAUSE to review intermediate results. key in data or load magnetic cards.
General
Memory: 224 steps of program memory (all functions art merged and occupy only one step of program memory): 26 data registers: Four-register automatic memory stack; Lasi-X register.
Display: up to 10 significant digits with selective round-off to desired number of places in fixed decimal notation; up to 10 significane digits plets two digit exponent and appropriate signs in scientific and engineering notalion (where values are displayed with exponents that are multiples of 3 ).
HP-97 Printing features
Quiet, themal printer lets you record and level your calculations. Print mode switeh selects three printing modes. In addition you cas print and label the contents of the stack registers. the primary data stomge registers, program memory, and the display.
Dynamic range: $10^{-50}$ 10 $10^{50}$ (200 decades).
HP. 97 Power: 90.127 Vac or 200.254 Vac . 50 to 60 Hz or 5.0 V dc nickel cadmium rechargeable battery pack.
HP-67 Power: $86 \cdot 127$ Vac or 172.254 Vac , 50 to 60 Hz or 3.75 V de nickel cadmium rechargesble batlery pack.
Hp. 97 Slye; $63.5 \mathrm{H} \times 228.6 \mathrm{~W} \times 203.2 \mathrm{mmD}\left(2.5^{\prime \prime} \times 9^{\prime \prime} \times 8^{\prime \prime}\right)$.
HP-87 Slze: 18 to $34 \mathrm{H} \times 81 \mathrm{~W} \times 152.4 \mathrm{~mm} \mathrm{D} 10.7^{\prime \prime}$ to $1.4^{\prime \prime} \times 3.2^{\prime \prime} \times$ $6^{\prime \prime}$ ).
Ordering information
Price
HP-97 Fully Programmable Printing Calculator
HP-67 Fully Programmable Pockel Calculator


HP-10
The New HP-10 is a desktop printing calculator enginecred to exacting HP standards to meet your aribmelical problem-solving requirements. Incredibly versatile, the HP. 10 uses a combinution of RPN and arilhmetical logic to ensure fast ind aceurate solutions for all your business calculations- the right logic to ensure fast and accurate solutions for all your business calculations-the right logic system for your office needs. A whisper-quiet inernal printer gives you a permanent tecond of all your husiness transactions. A 10 -digit display can be nsed alone or in conjunction with the printes. In addition 10 the accumulator. a memory is available to store and recall a constant-or if your prefer, to maintain a separate running total of your calculations. The HP- 30 performs instant quetations. commisssions dividends.. percentage for taxes. The buffered keyboard. add mode. fixes and foating puint notation. and the printer sepanator add up to making the new. HP- 10 the most powerful unachine in its class.
Keyboard features: Paper advance. add to and subract from memory, clear eniry. clear all, print data, ptint separator, printer and/or display selector.
Arithmetical: percent. moltiplication and division, subtraction. addition.

## HP-10 Specifications

Power: IISV ac (or 230 Vac ) $=10 \%$, 5010 60 Hz .
Slze: $40 \mathrm{H} \times 88 \mathrm{~W} \times 165 \mathrm{mmL}$
HP-10 Business Printing
Calculator
$\$ 175$

## HP-22

The HP- 22 business management pocket calculator puts an ideal combination of financial, mathematical and statistical functions al your fingertips. With it. you can handle everything from simple arilhmetic 10 complex time-value-or-money computa(ions. You can even handle planning forecasling and decision analyils. And, you can approach business problems in a variety of ways to arrive at intelligent decisions and reconomendations based un facts.

The HP-22 atutomatically calculates discounted Ensh hows; percentages: ratios: proportions: compound interest: remaining balance: annoities: depreciation: mean and standard deviation: mete of relum: amonization and more.

## HP-22 Specifications

## Pre-programmed functions

Financial: time-value-of-money calculiscions involving $n$ ( number of compounding perioxh). i (pcriodic inferest rate), PMT (payment amound), PV (present vidue of inoney). FV (future value of money): simple interest: accumulated interest beiween payment periods of a loan: remaining balance of a loan.
Statistical: mean and standard deviation: linear regression: lincar estimate: summations giving $n, \Sigma x, \Sigma y, \Sigma x, \Sigma x y$.
Percent: $\%, \Delta \%$, percent one number is of another, percent one number is of a totsl; markups; discounts.
Other: Ln: ex: w: $V_{x}$ : full register arithmetie.

## General

Memory: 10 addressable regisiens; five financial registers; four-register opcrational stack.
Display: up 1010 significant digits with selective round-off 10 desired number of decimal places ( 0 to 9) in fixed-decimal nolation: s significant digits plus two-digit exponent and appropriate signs in scientific notafion: indicators for improper operations. low butlery.
Dynamle sange: 10 to 10 ( 200 decades).
Power: AC: $115 \mathrm{~V}, ~=10 \%$. 50 10 60 Hz .
Battery: 2.5 V de nickel-cadmium rechargeable battery pack.
Size: $30 \mathrm{H} \times 68 \mathrm{~W} \times 130 \mathrm{~mm} \mathrm{D}\left(1.2^{\prime \prime} \times 2.7^{\prime \prime}\right.$ $\times 5.1$ ").
HP-22 Business Management
Pocket Calculator
$\$ 125$

## HP-27

The HP-27 Financial/Statisrical/Scientific Calculator is the mosi powerful preprogrammed pockel calculator Hewlett-Packand has ever builf. Its highly sophisticaled design effectively integrates financial, statistical. and seientific functions-thus elim-


Inating the need for separate calculators. The versatility of the HP-27 will be extremely valuable to any businessman or engineer whose responsibilities extend into such areas as: tangeting, budgets, cost analysis, financial and forecasting considerations, technical calculations.

## HP-27 Specifications <br> Pre-programmed functlons

Financia!: time-valuc-of-money calculations involving in (number of compounding periods), i (periodic interest rate), PMT (payment). PV (present value of moncy). FV (future value); net present value; internal rate of retura; percent, percent difference, and percent of total. Statistical: $x+$ accommalates $x, y, x^{2}, y^{3}$, xy, and $\mathrm{n}, \mathrm{x}$ - deletes unwanted data; linear regression; correlation coefficient; mean and standard deviation; variauce; normal distribution factorial.
Sclentilic: $\operatorname{Sin}, \mathrm{Cos}$, Tan, Sin , Tan Degrees. radians. and grads angular modes: Ln, e, log. $10^{x}, y^{x}, x^{2}, 1 / x, \pi,+$. $-\mathrm{X}_{\bullet} \rightarrow \rightarrow$ H.MS $\rightarrow$ H. H.MS $\pm$ : Coordinate conversion.

## General

Memory: 10 addrespable registers: five financial registers: foul-register automatic memory stack; and a Last-X register.
Clearing options: clear the display: clear the saack: elear statistical registers: clear addressable registers: elcar the status of the financial regislers: clear the prefix keys.
Dlsplay: in to 10 sienificant digits in Exeddecimal notation: up 108 significant digits plos 2-digit exponent in scientific or engineering notation (values are displayed with exponents that are multiples of 3): full display formatting in any mode with selective round-off; indicalors for improper operalions, low bathery.
Dynamle range: 10 to 10 ( 200 decades).
Power: AC: 115 V . $\pm 10 \%$. 50 to 60 Hz . Battery: 2.5 V de nickel cadmium rechargeable bancry pack.
Slze: 30.2 H $\times 68.3 \mathrm{~W} \times 130.2 \mathrm{~mm} \mathrm{~L}\left(1.2^{\text { }}\right.$ $\times 2.7^{\prime \prime} \times 5.1^{\prime \prime}$ ).
HP-27 Financial/
Statistical/Sclentific


## HP-92

The new HP-92 Investor is a portable printing financial calculator for the person that must evaluate a large number of investment alternatives quickly, eacily, and accumately. The HP-92 solves problems involving tine and money: compound interest, balloons, discounted cash flow, bonds and notes. depreciation, nel present value, internal fate of remin. The flick of a switch engages the quiet thermal printer that provides an inlispensible record of your calculagions. 30 slorage registers. Printing and clearing functions. And with all its powerful computational capability, the Investor fits into a standard-sized brieicase-an invaluible fearure for the person on the go.
HP-92 Specifications
Compound InteresI

- Stores ar conpules number of perieds.
[12 X] - Converts number of periods from months 10 years.
[i] - Stores or computes interest rale per compounding period.
[12:] - Converts inferest from yearly 10 monthly mise.
[PV) - Siores or computes present value (initial eash flow at the beginning of a financial prohlem).
[FV] - Stores or computes future value (Final cash flow at the end of a financial problem).
(PMT] - Siores or computes payment amount.
Dlscounted Cesh Flow Analysis
[NPV]
- Compules nel present value of fulure cash how's.
[IRR] - Computes internal rate of relum of series of up to 30 future cash flows.
Bonds and Nates
[PRICE]
- Stores ur compules price of bond or note.
[YIELD) - Slores or computes yield (percentage) of a bond or note.
[1S.ST] - Stores the issue and setuement dates of bond or note for calculations.
[AT] - Stores the maturity date of a bond or note.
[CALL] - Stores the call price or redemplion value of a bond of note.
[CPN] - Stores the coupen amount (percentage) for Depreciallon
[STL] bond or note calculations.
- Culculates straight-Ine depreciation schedule.
[SOYD] - Calculnes sum-of-the years' digits depreciation sehedule.
[DB] schedule.

[BOOK)	- Stores book value of an asset.
[LIFE]	- Stores depreciable life of an asset.
[SAL]	-- Stores salvage value of an assel.
[ N 1$]$	- Stores the searting year for a depreciation schedule.
[N2]	- Stores the ending year for a depreciation sehedule.
Percentage [\%]	- Computes percent.
[ $\Delta \%$ ]	- Computes percent of change between two numbers.
[\%区]	- Computes percent one number is of a colal.
Calendar 2000 Year	
Calendar   [Date + Days]	- October 15, 1582 to November 25, 4046.   - Computes a futare or past date from a given date and a fixed number of days.
[ $\triangle$ Days]   [s) [PRINT X]	- Compines number of days belween dates.   - For a given date, prints its day of the week.
Statistica	
[ $\Sigma+$ ]	- Automatically accumulates two variables for statistics problents; $\sum x, \sum y, \Sigma x^{2}, \sum y^{2}, \sum x y$. and number of terms.
[2-]	- Deletes statistical variables for changing or correction.
[ $\overline{\text { ] }}$	- Computes mean for $x$ and
[s]	- Computes standard deviation for x and y .
[L.R.]	- Linear regression or trend line.
(3)	Linear estimate.
[r]	Correlation coeflicient.
Storage	
[STO]	- Stores numberin one of 30 storage registers. Performs stomge register arithmetic upon 10 of the registers.
[RCL)	- Recalk mumber from onc of 30 slorage reg.

## Printing and Clearing

(AMORT] - Prints amerization schedule.
LIST: - Prinss all values for compound interest.
[FINANCE] - problems, bonds and notes.
(PRINT X) - Prints contents of display.
LIST: [STACK] - Prines contents of operational slack.
LIST: (REG) - Together print contents of 30 addressable
$-[\Sigma] \quad$ slorage registers.
[CLX] - Cleans display.
[CL FIN] - Clears financial functions for new problem.
[CL REG] [CLS] - Together clear 30 addressable storage registers.
[CLEAR] - Clears entire calculator-display. operafional stack, all stomage registers and financial functions.
Number Entry and Manlpulation
[ENTER $\uparrow$ ] - Separates numbers for arithmetic and other functions.
[CHS] - Changes sign of displayed number or exponent.
$[x \neq y][R \backslash][R \dagger]$ - Finctions to manipulate numbers in operational stack.
[EEX] - Enter exponen of 10.
[RND] $\quad$ - Rounds actual number io display 10 number seen in display.
(LAST X] - Recalls number disphayed before last operation back to display.

## Mathematics

[ $\left.y^{2}\right]$ - Raises number to power.
$\left[\mathrm{c}^{*}\right]$ - Naturad antilogarithm.
[LN $)$ - Nalural logarithm.
$[\sqrt{x}]$ - Square root.
[1/x] - Reciprocal.
$[+][-][x](\div]$ - Arithmetic functions.
Power: AC: 115 or $230 \mathrm{~V}+10 \%, 501060 \mathrm{~Hz}$.
SLze: $63.5 \mathrm{H} \times 229 \mathrm{~W} \times 203 \mathrm{~mm} \mathrm{D}\left(2.50^{\prime \prime} \times 9^{\prime \prime} \times 8^{\prime \prime}\right)$,
HP-g2 Investor


The system that makes H all seem simple; for efficient manegement. you should have a computer system that adapts to your EDP setup white handiling those day-to-day departmental jobs you need to automate. The HP 3000 ooes precisely that. By forming a network of HP 3000 s, each department can take care of its own workload and also share programs and dala bases with the sest of the organization.

## Introduction

Hewleu-Packard has taken its place as a major supplier of computers and computer systems for companies of all sizes. The following pages contain a glimpse of these proflucts. Equipment that lends itself readily to a catalog format, like terminals and desktop computers. is covered in more detail than larger, more sophisticated system-level products. Kindly consult your local HP sales office or complete the enclosed reply card, for further information.

## Background

Hewlelt-Packard entered the compulation field by designing a minicomputer to interface with is measurement/lest instruments. For the first lime, customers could combinc dala gathering with data processing. HP computer producis have since entered the business, industival, scientific, and educational communitics. Applications include compuration. dala management, information
retrieval. and measurement/est automa(ion.

## HP 3000 Systems

The new HP 3000 Series 11 genemalpupose computer system is a flexible, versatile iddition to the product linc. Coupled with the new Distributed System 3000 capability. HP 300's have the abilizy to share data bases in a single network throughour your operalion.

## HP 1000 Systems

Six different models form the HP 1000 family of upward-compatible compuser systems. At their hearn lie hith-speed IIMX-E processors. HP's RTF lamily of real(ime surtware and IMAGEIGOU data base manasemem soflware both run on HP 1000 s. These iystems handle tasks from scheduling to computer-aided design.

Desktop computers
Hewleti-Packand offers another compuler
advance in a line of desktop computers. Various memory sizes give you cost-effective computing power integrated desigo with built-in processors and displays give convenience: and peripheral interface capability allows you to monitor production processes or quickly solve your technical or business problems.
The HP 9815A and 9825A afford standalone computation and system control copabitities. The new HP 9845 A is a complete integrated systems with buill-in cathode ray tube display and graphies capability. II also inerfaces with as many as 14 peripheral deviees simultaneously. It is the most poweriul computer in our desktop line.
The HP 98\%A Computation System is a compacl. complete work station for informalion management. It is a viable computer system for small and medium-sized manufacturers. distributors. and servite onganizations, with capability to handie gencral accounling, payroll. statistical and engincering computations.


## CRT Display terminals

HP's computer produce line is complemented by the 2640 CRT display terminal family. Speed. full editing capability. minicartridge mass storage, and high resolution display help account for their increasing popularity. The serminals appear in Internarional as well as Domestic versians. Established as the industry standard for serviceability, these units are easily mainained because of plug-in boands and buill-in selfresting cirevitry.

## Customer value through product

 researchWhen purchasing HP computational equipment. you are assured of raditionad value inherent in any Hewlelt-Packard instrument.
To maintan this quality, the company consistently invests $10 \%$ of net income in rescarch and development.

HP achitvements include the firs! limeshared computer system based on a minicomputer ad the firsi user-microprogrammable CPU from a major manufacturer. A recent innovation, the first miniconputer with all semicanductor memory from a major monufacturer, dramatically reduces CPU size, weight, power consumption, and cost. while improving speed and reliability.
Computer value through experience
Hewlett-Packard has one of the world's largest insalled customer bases. Over 20.000 HP compulers are presenlly opeiating on every continent and in most counries. A world-wide netwerk of sales and survice offices support these installed bases.

Customer value through support
Added customer support is provided by hardware and söfware uming courses. Both maintenamie and user-oriented courses are uflered. And, video tape facilities successfully bring HP factory expertisc to remote locations. Hewlets-Packard also supports a number of user gromps with up-todite information crehanges, periotic publications. and regionsl meectings.

## Customer value through quality contral

For years, useas in critical applications have specified Hewlell-Packind products bceause of respecied reliabitily and environmental standards. This quality control ean be enaced partially to HP management praclices. All HP quality assurance functions report directly to division management. This meins thet any product in. adequacies receive top priority. and products that thil 10 meet lough slandarits are not shipped until they do!

## HP 3000 Systems

Applicalions for HP 3000 Computer Systeros encompass the full range of dala processing tasks. For many small-o-medium companics in HP 3000 landles the entire data processing load, from inventory control. to enginecring design, siles order entry, payroll, and personnel records. Larger mudtidivisional copporations tic a mumber of HP WOOS to a host computer and to each other io forsm a betwork and dismibute computing power throughoul the compiny.

Kcy feathecs of the HP 3000 include a gowerful opcrating sysicm (MPE), concumerl balch and interactive processing, full data management fucilhies, and six programming languages. plus nelworking sotiwate for Series II models.

Series I sustens offer the Iraditionat HP 3000 features, excepl networking capabilitics, at an exceptionally low cost. They have a suandard 128 kb memory (non-expandable) and may be upgraded ar the customer's site to a Series II. Prices start is $\$ 75.000$ for the Series I Systems.

Twa slandard Serics 31 configurations are available-Models 6 and 8 . The basic diliference belween the rwo madels is in the size of the nemory. Morlel 6 has a 128 kb main memory which is expandable so 256 kb . Model 8 fealures a 320 kb memory (expandable 10512 kb ) which gives it increasod pertomance eapabilities. At any time. Model 6 may be upgraded 10 a Model 8 with no applications solnware changes required. Every HP 3000 can be zugmented from a full selection of line printers, card readers, Ierminals. dises, interactive CRT eerminals, and other peripherals. Prices sian an $\$ 110.000$ रor the Series II Syisems.

## HP 2026 Systems

The AP 2026 is a low cost system dedicared in remole source duta enrry and data commuaications. Corporations wishing to link geographically separated divisions find the HP 2026 an oulstanding syam for extablishing a regionat. national, or worldwide comumbicalions nerwork. With an HP 2026 at each company location, communications betwcen thero is effocted over eicher leased or voice-grade lines. Prices for the HP 2026 star al $\$ 38.500$.

Dedicated real-time computer systems
HP 1000 Systems

- Computation
- Instrumentation
- Operations management


HP 1000 Model 20 Computer Sysiem with HP-IB Instruments and optional Flexible Disc

The HP 1000 family now includes two new memory-based systems, Models 20 and 21, offering efficient computation and instrument control capabilities at a lower entry-level price than the discbased HP 1000 Model 30, 31, 80, and 81 Computer Systems.

## Computation

HP 1000 Systems use HP's powerful 21MX E-Series Computer. which delivers performance formerly achieved by computers two to three times its price. Standard instructions support floating point computations: integer multiply and divide; byte moves and scans; and word, byte, and bit manipulation. 1/O transfers run at rates to 2.28 million bytes per second. Optionally, memory management instructions provide flexible access to as much as 1.7 million bytes of highly-reliable semiconductor main memory by processor and 1/O channels alike. Faull control is available with standard memory to enhance its already excellent reliability 3 -fold or more.

Optional high performance memory with 350 ns cyele time offers up to $30 \%$ performance increase over standand memory. Further performance increases may be achieved by microprogrammed subroutines, such as those in HP's fast Fortran processor, which run 2 to 20 times faster than the same routines in software. In the disebased HP 1000 Systems, the user can also develop his own performance-boosting microprogrammed routines with the aid of the optional RTE microprogramming package, test them in writable conirol store, and prepare tapes to bum PROMs for permanent installation in the computer. The resulting microprogrammed routines cin be used in any of the HP 1000 Systems.
Through microprogramming, the user also gains access 10 a microprogrammable processor port, which can provide direct access by special processors to the E-Series 11.4 million byte per second internal bus.

## Instrumentation

HP-IB Instrument Clugters in addition to their computational coprabilites, HP Into Syntems are well-wited for contol and in(eraction with HP-IR (Hew)ett-Packadd Interfite Bus) instruments and devices. Up to 14 HP -1B devices can connect to the sustem via a single interface card. and multiple automatic test or measurement station instrument clusters can be conirolled by the HP 1000 System wat mutiple HP-IB merfaces. Including the new 2240 A Measurement and Control Processur (page 576), more than 100 different HP-1B test and mearurement mstruments are now avaibable from Hewlent - Packard and 22 uhacr manufacturers.
Measuremenl and Control Stations The HP 1000 Systems can aisu peiform measurement and control functions via the 9 (illR Measurement and Coniral Sutions, which offer medium-upeed local or remute low-level and high-level amalog 1/0 and isohted digital t/O cupatilities. Simplified scren-leminad connection is availabis.
Plug-in analog $1 / 0$ Subsystem For nondler andiag input needs, the HP 1000 Systens can also vise the 9 fono A Plug-In A maloe-to-Digital Interface card with a capacsty of 16 single-ended or 8 differuntal $\therefore 10.24 \mathrm{~V}$ fa analog inpurs.
Digital Test Stations for automaiie dipital testing, any of the disebased HP 1000 Systems can function as the contraller of up to three 9571a Digital Test Stations io a DTS-79 Digital Teir System.

## Operations management

For data intensive operations management applications involving tent records, order entrs'. inventory' contel. or factory data collestion, the full data bisce management capability of $1 \mathrm{MAGE} / 1000$ is provided in the HP 1000 Model sll and $\$ 1$ Syskems. and can be added to the Model 30 and 31 Systems. This data base management nystem provides all necessary tools for building, maintaining. and restruchuring a tue data base of information required fur onerations minigesnent. Once established, the SMACiF/1000 dita tase can be accessed by multiple users with QLERY, an Enylish-like inquiry language that simplifies information relrieval and resort generation.

## Six models to choose from

Model 20 licindes? 1 IaB Computer with 64 k hyles of main memory and a 2645 A Display Stalion as system consolle, with dual mini cartridge $/ 10$ as standand input/outpur unil. Optional thexitice dise adds full program development and file management capabilities. The system is smpplied in an attactive desk-style work station. Its operations are managed thy the powerfill, flexible memery-based RTE-M uperating systen.
Model 21 Furctionally identical to the Model 20. Whe Model 2l is supplied in a ningle upright rack cabinct. which provides more space Ihan the desk for rack mounting of additional cquipment.
Model 30 Provides sitme equipment as Model 20 in deak style cabinel, plus 14.7 M hyte cartridge dise subsyctern in matching dise minirack. Its operations are managed by the dinc-based. forcyround-tackground RTE-11 operating system; the multipartition RTE-HII uperating system is optional.
Model 31 Functionally identical to Madel 30, bu: suppled in a single upright rack cabimes. which provides nore spice than the desk plus minisack for rack mounting of additional eytipment. Offers a choice of 14.7 M byte dise or lower priced $4,9 \mathrm{M}$ byte disc.
Model 80 Desigued Fir data base management applications, the Model 80 includes all equipment supplied with the Madel 30. plus line prister and magnetic tape subsystems. The Model 80 comes with 128 k byles of nain memory and the IMAGE/IOON data base
management system and is managed by the RTE-111 operating system. A desk-style workstation is provided for the compuler and the syslem console and a single upright mabinet houses the 14.7 M byle dise and the magnetic tape drive.
Model 81 Functionally identical to Model 80, but supplied in rwo uprizht rack cabinets that provide more space than the Model 80 for rack mounting additional equipment.

HP 1000 Systems aummary

HP 1000 Madels	20	21	30	$31^{\circ}$	80	85
Base mamory (bytes)	64k	64 k	64k	64k	128k	128k
max. Memary (bytes)	1024k.	1792k	1024k	1792x	1024k	1792k
Cablnal	Desk	Rack	Desk	Ratk	Desk+ Rack	Rath
Peripharsis						
Syrlem consale	sto	516	sto	sld	sid	1.3
ata'l fermanals	opt	opl	opt	001	oul	out
Cartidge disc			std	Std	sid	s10)
Top loading alise			opt	opl	0.01	ODt
liexitie disc	0et	ept	00t	opl	opl	opt
Hag lape entr	apts	00ts	opls	001s	stod	St
Line printer	opt	00\%	apt	opt	sid	sid
Puncheli tape $1 / 0$		opi		oot		ODt
Carli reader		apt	apt	Opl	60.1	opt
TV interlace	oul	cot	oot	opt	opt	opt
Amator 10	$n \mathrm{Fi}$	OUt	OCl	adt	0 ap	opt
$01 \mathrm{ntal} 1 / 0$	upl	not	OD!	opt	$n \mathrm{pl}$	opt
Disc ytorage (byles)	0 5M	05 N	14 m	:4720	14.7M	14.7 H
Max storage (bytes)	2 M	2 M	365M	365 K	365M	365 M
dvall 1/0 channels	12	12	11	11	B	3
Mar. Av. Ifo chan.	12	28	11	27	8	24
Oparatinit aystems						
R1E-M	Sld	sld				
RTE-II			std	std		
RTE-III			001	001	sed	sid
Program languages						
BASIC	516	std	opt	out	opl	apt
Foriran Il	9	D	sild	510	std	sto
forlisin IV	3	D	$3 t d$	sid	std	cto
HP Assambly	0	D	sta	510	sid	514
Adiditional sotware						
IMARE/1000			0.01	opl	314	sld
Wlmaprogram dex.	1	L	Or	opt	0 OH	001

-Model 31 can also be ordered with lower cost 4 , 9 M byte disc, expandable with adritienal drives to 12. 6 K byte storage.
$\Delta$ Requires additional cabinet
 only microprogramming suppôt in Models 20 end ?1

Ordering information	Price
HP 1000/20 Computer System (2173A)	$\$ 21,000$
HP 1000/2 Computer System (2174A)	$\$ 22,000$
Flexible dise for Model 20/2 (2173A/74A Opi 032)	$\$ 4,500$
HP 1000/30 Computer System (2172A)	$\$ 36,500$
HP 1000/31 Computer Syslem w/4.9M byte disc	$\$ 31,500$
(2170A)	
HP 1000/31 Computer System w/14.7M byte disc	$\$ 36,500$
(2171A)	
HP 1000/80 Computer System (based on 2172A)	$\$ 61,700$
HP 1000/81 Computer System (based on 2171A)	$\$ 62,700$



2240/2241A Measurement and Control Processor
The microprocessor-based HP 2240A Measurement and Conirol Processor provides 128 channels of both analog and digital input/ output signals. with interrupt bandling for complete measurement and control capability in one unit. The HP 2241A Extender adds up to 128 channels to extend the capability to a total of $256 \mathrm{t} / \mathrm{O}$ points. The microprocessor inteligence of the 2240 A enables it to execute computer-independent. real-time tasks delegated from the controlier. A powerful command set. bailored for measurement and control applications. is built into the 2240 A to simplify and reduce proeramming. Programming of complete tasks can be done in BASIC, FORTRAN. HP Assembly or HPL fanguages via the HP-IB.

The 2200A can be used with a HP 9825 A Deskiop Computer for sland-alone benchiop operation or with the HP 1000 Computer System as part of a production testing or facility monitoring station. Multiple 2240A test stands can be added via the HP-IB as part of a distributed measurement and control netivork. You can remote the 2240A up to 1000 meters over a single twisted pair of wires, or delegate rasks over phone lines with the HP 59403A HP-IE/ Common Carrier Inferface and indusiry stindard modems.

A variery of measurement and control function cards is available for the 22+0AN2241A:

- 22900A Analog Irput Card
\$1,600
32 single-ended or 16 differcnitial channels, $\pm 10 \mathrm{~V}$.
12 bits including sign, 20 kHz sample/scan rate.
Auto correction for gain and offset temperature
drift.
- 22901A Analog Oulput Card

4 channcls, 0 10 to V or $-10 \mathrm{~V} 10+10 \mathrm{~V}$ outpul. 10 bits with dual level storage. Auto readback from first Icvel. 4 -lead remole sense (Kelvin) connections.

- 22902A Digital Inpul Cand

32 channcts. TTL or CMOS levels.

- 22903a Common Intermupi Card

16 channcls. TTL or CMOS levels, individual channel enable and transition direction, interrupt test.

- 22904A Digital Oulpur Card

32 chamnels. TTL or CMOS. open-collector outpu. dual level siorage, auto readback. \&evel or pulse outputs.

- 22905A Counter/Siepper Motor Cand
$\$ 800$
4 channels for event counting. frequency or periou measurement, or stepper drive output. Internal selftest clock. TTL compalible.


## 22920A Signal Conditioning Tray

The HP 22920 A Signal Conditioning Tray is a separate stmelure that provides maximum isolation for the 2240A Measurement and Control Processor from high voltage inputs and clectrical noise.

Each 22920A holds one signal conditioning card. with provision for Field wiring (14-22 AWG) Connection to 56 screw terminal connectors. Signal conditioning eanis available for the 22920A are:

- 22912A Relay Oulpur Card
$\$ 290$
16 channels. 2 amperes. 125 VACIDC. 60 VA rating.
Form-C (SPDT) hermelically sealed relays.
- 22913A Isolated Digital Inpul Card
$\$ 430$
16 channels. 5 to 120 VDC and 16 to 230 VAC with
selectable response times and overload fuses.
- 22914a General Purpose Breadboard Card

16 channe)s for analog/digital, input/output signal conditioning. Pad layouts for user-installed signal conditioning components such as amplifiers. relays. filters, fuses, resistors and voltage regulators.

## 9611R Remote Measurement and Control <br> Station

The HP \%/IR is an industrial measurement and control station for compuler-based measurement and connrol applications where digital and analog inpuloulput lines to machine/process sources, control actuators, and indicator panels are some distance. up 103 km ( 10,000 feet), from the compuler. The 961 R accepts from 1610496 andos inpuls and from 12 to 900 digital I/O signal lincs. with signal conditioning options to meet a wide variety of conditions encountered in indusinal measurement and control applications. The 96IIR can be used with HP 2300 S or HP 21MX/E computers, or HP 96 MX or HP 1000 series Computers Systems. and includes a onebay cabinet, a 91063 A Digital $1 / 0$ Subsystem. a 62005 A 5 VDC, 2A Power Supply, and provisions for screw-ieminal connection assemblies for field wiring from transducers/control aetuators.

## 2313日 Analog $1 / O$ Subsystem

The HP 2313B Analog I/O Subsystem consisis of control, sampling, and analog-to-digital conversion modules in a mainframe designed for rack-mounted operations with HP 2100 S or HP 21 MX computers. or HP 96 MX or HP 1000 series Computer Systems. The subsystem I/O eapacity is expandable to 528 difierential analog inpuls or 44 analog outpuls. or combinations of inpuls and outpuls.
Plug-In Subassemblies
Individual measurement and control interfaces are contained on plug-in subassembly cards for HP 2100 and HP 21MX computers:

- 91000 A Analog-to-Digital Interrace Subsysem
$\$ 2.275$
A complete $\pm 10.24 \mathrm{~V}$ is analog input subsusterm.
including interfise and control logic, sample and
hold amplifier, ADC, and inpu multiplexer.
- 125518 16-Bit Rclay Ourput Register

Provides 16 floating contact closures for controlling
1 to 16 devices and optional readback circuitry for data verification.

- 12930A Dual-Channel Universal Interface
$\$ 850$
16 -bit inpul/ $/ 6$-bit oulput plus control and status dald. Choice of differential or TTL logic. Up to I million 16 -bil words.
- 12555B Digita-lo Analog Converter Provides two analog outputs ranging between 0 and +10 volts, 8 -bil resolution.
- 22556 B 40-Bia Regíster
$\$ 650$

40. Bit ( 10 BCD digit) capacity for driving program input lines. choice of ASCll or binary output modes.

- 12604B Data Source Interface

32-Bit (8 BCD digit) capacity, accommodates logic levels benween - 100 V and +100 V .
Ordering information
Price
2240A Measurement and Concrol Processor $\$ 2,750$
2241^ Extender
22920A Signal Conditioning Tray
9611R Remote M\&C Station $\$ 10,900$
2313B Analog I/O Subsystem
$\$ 6.950$

## 8542B Automatic Network Analyzer

The HP 8542C Automatic Network Analyzer is a precision phase and amplitude measurement system used to measire complex of sransfer functions. 1018 GHz , in order to characterize components or circuits. The 8542 C achicves high accuracy by calibrating with precision standends to characterize, store, and correct for systemtalic errors-mismach, directivity. crosstalk, and frequency response entors are thus removed. The 8542 C is supplied with a complete set of ready-to-rim Microwave Applications Programs (MAP), and with a BASIC language interpreter containing high-level microwave measurement insiructions.

## 8580C Automatic Spectrum Analyzer

The HP 8580 C Automatic Spectrum Analyzer measures absolute frequency and characterizes mixers, doublers, and other frequency conversion devices to 18 GHz . It is also a valuable tool for gathering spectral data on signals present in complex electronic equipment or in a geographic region.
The 8580C Oplion 400 is an automatic receiver system (ARS -400) that provides signal monitoring. detection, and analysis in the 100 kHz to is GHz frequency ringe. The receiver system is used in a varicty of applications including spectrum manage ment. system monitoring. electronic intelligence, electromagnetic inferference and site surveillance.

## DTS-70 Digital Test System

The DTS-70 Digital Test System is designed for high throughput production testing and fash, accurate fault location of loaded digital printed circuit boards. The system is versatile in that it can be used concurrently for lest program generation, multi-station production tesling and manufacturing data management tasks - all on a single system computer.
The DTS-70 is comprised of three basic elements: a mulliprogramming computer system, a 9571 A Digital Test Slation, and the 91075 B TESTAID-III rest generation software.

- The recommended DTS-70 System controller is the HP 1000 Computer System. It offers extromely fast processing speeds. up to 608 K bytes of main memory. Real Time Executive (RTE) operating system software, and multiple terminad operation. Other HP computers, HP 2100 and 21 MX series, together with a HP 7900A or 7905A Dise Memory can be used as the DTS-70 controller when configured for the RTE operating system software.
- The 9571A Digital Test Starion is capable of testing TTL. CMOS, and mised logic families. It can test large PC brands. up to 200 MSI IC's and 360 test pins, with production-oriented test fixture and lest adapters for simple operation and high lest pattern rates for maximum throughput. Computer assisted guided probing gives high accuracy faul isolation. and test results are automatically printed ous on hard copy.
- 9107 B TESTAID-III Test Generation Software is an advanced software simulator that enables comprehensive test program generation economically for large and complex digital PC boards. Modeling tools include an extensive device library (over 1000 1C's) and is primitive elements (ROM's RAM's shift registers, etc.). There are three oethods of generating inpul súmulus parerns - auramatic palh-sensitization, pseude-randorn pattems, and manual techniques.


## Switch Pioducts For Automatic Test Systems

New HP-IB switch products are used in HP automatic test systems and are available individually for those Automatic Test Equipment (ATE) builders who manufacture their systems in-house and other ATE Lsers who have complex switching requirements in their automated test setups. The new switches provide a commenically available solution to one of the most important paris of an ATE system-connecling the system to the unil-under-tesi (UUT). Three types of switching untits are available, all controlled by a


Switch Products Installed in an Automatic Test Systam
single 9411A Switch Controller that provides microprocessor control of up 108 switch mainframes.

New HP-IB switch products are also avadable individually. 9』11A Switch Convoller
$\$ 2,350$
The 9411A provides control signals and relay power for other switching units. The 9411A is controlled by the antomatic test system computer via the HP-lB. and in tum provides control logic for up to eight switching unics and +12.5 VDC (4A maximum) relay power for up to four switching units. Intemal firmware in the 9411A enables it to perform a comprehensive self-test and fault isolation of all signal relays in the 9412A and 9414A switching units.
9412 A Modular Switch
$\$ 10,000$ to $\$ 35,000$
The 9412 provides high-density, multi-function switching of signals up to 10 MHz for automatic test equipment. A built-in 1768 -pin ( $34 \times 52$ matnix) interface panel signifinently improves signal performance and eliminales the "spider web" eabling found in other ATE switching confugurations. The 9412A accommodates five types of switchcards in any combination up ho a total of 25 cards.
9413A VHF Switch $\$ 2,000$ to $\$ 7,000$
The 9413 A provides modular, nexible high-frequency switching of pulse and video signals up to 500 MHz for automatic test equipment. The 9413A accommodates up 1012 coaxial swich modules.
9414 A Malrix Switch

## $\$ 5,000$ to $\$ 30,000$

The 9414 A provides maximum flexibilily in switching of signads yp to 10 MHz for automesc test equipinent. The unit is designed for high-density. highperformance switching in a modular package that atlows any UUT pin to be switched to any incirument in the ATE system. The 1 t-input matix switch can be configured in 30 -pin increments (UUT pins) up 10120 pins. A distribution bus capability allows the sharing of up to four of the 16 matrix inputs with multiple measurement instruments.
Ordering information Price
8542B Automalic Nerwork Analyzer
8580B Automatic Specimum Analyzer $\$ 150,000-\$ 250,000$
9571A Digital Test Smrion
$\$ 24,000$
91075B TESTAID-Il1 Tesi Gencration Software
$\$ 15.000$


The Hewleu-Packiard 2liMX family of computers is based on in architecture proven successful in over 16,000 inslallatinns, ind provides the tlexibility and power required io salisly a wide variety of computing needs

The 2IMX Family ranges from the tumomical M-Scerith for cont. criticil computer applications to the new high. petformince E-Sieries for applications that require extremely fast processing speeds. And, for high-volume, specisized ipplications, there is the K-Series of computer components. Beralisc the entire 21MX famuly uses the same instruction set and interfacing logic and electionics. the uscr can change models with minimal effect on softwar, peripherals. service, training, and spares provisioning.

## 21MX M-Series

Buiding on a vuccessful heritage that includes the HP 2100A compuler, the M-Series puts the power of the 2IMX archilecture in an economical package. If includes the HP 2105A, 210RA, and 2112 B Computers, which ofter a range of memory capacities from 64 102048 k bytes (using the new 128k byle jumho memory' modules and a memory extender) and $1 / 0$ capacity from 4 io 14 I/ÓO channels (up to $461 / 0$ channels with iwo $1 / 0$ exienderi). Most of the features needed in compuler systems-memory parily, extunded arithmetic. floating point instuctions. and a full front panel--zte included at no extra cost. Memory expinsion. faule control (error correcting) memory, and special procescibls required for more specialized uses. are offered as reasonably priced accessories.

## 21MX E-Series

The $2 I M X$ E-Scrie combincs the sime powerful insinuction sel and $1 / 0$ structure an the rest of the 21 MX family with a central
processing unit nearly rwice as powerful as the M -Series. In addition to varibble microcycle lining and streamlined instruction sei microroutines for faster executiun. microprogrammable block 1/0, a microprocessor port. asynchonaus memory and a much larger con|rol store address space for the user further enhance the flexibility, power, and erowth potential of the E-Series as compared with other members of the 21 MX f'amily. Asynchronous memory aceommodates slandard and fault control memories and the new 350 ns highperformance memory. which provides up 10 30.fe additional inprovement in performace. E-Series computers are aválahle in two morlels, HP 2109 B and 2113 B , with a shnice ot maximum nainframe memury capacities from 640 to 1280 k bytes and 9 or $141 / 0$ channels

## Extension of memory and //O capacities

A memory exicnder supporis ennugh iddilional memory modules to nearly double manfame capacity of the largest 21 MX computer. $1 / 0$ extenders ean increste $1 / 0$ capacity of nny of the 21 MX computers by 32 channels.

Edmpallem model	21054	21098	21128	21098	21138
Ponnei heigh? finches)	525	8.75	12.25	8.15	1225
Sories	M	M	4	E	E
Max malnirame mernery	6akb	680 ${ }^{\text {b }}$	1220kt	640*6	128010
Acrory extente: capacity	H.A	1157,	76idt ${ }^{\text {c }}$	1152 kb	76845 ${ }^{-1}$
Macriftame l/O ckannels	4	9	14	9	14
10 Chan w/one pxtendur	20	25	30	25	30
170 chan witwo exendes	36	41	45	$4!$	46




## K-Series computer components

For high-volume applications that require the processing power of a minicomputer at lower unil censts, the K-Series makes major subassemblics of the M-Series avaidable in component form. The 2108 K processor board, for example, is far more powerful than a microcomputer. bun only slightly higher in cost. With it, the user has a high-performance 24 -bil microprocessor with 211 instructions and a very fast 325 ns cycie lime. Adding a 21 MX instruction ROM converis the 2108 K to a full "computer-on-a-boand" that is fully compatible with the 2IMX standard and faull control memory systens, $1 / 0$ subsystems, software, and peripherals.

## Microprogramming accessories

## Fast Fortran Processor

The fast Fortran processor provides firmware microcode for over a dozen instructions-four-word precision operations, two-and three-dimensional array processing, and other eommonly-osed routines previously written in Fortran-that run 2 to 20) times faster than software execution speed.
User Microprogramming Capabiltiles
Two new accessories are offered for installation of userdeveloped meroprograms. For microprograms under development or that are swapped to and from dise diring operations, there is a 1024 (24-bit) word wriable consrol slore module. There is also a 2048 (24-hit) word user control store board for user's microprograms that have been "burned" into PROMs for permanent use. These caphbilities, which provide access to additiunal high-speed registers. are soltware supporied by a reat-time microprogram development package.

## New memory capabilltles

Memory capatilities available with 21MX computers now include new l28k byte jumbo standard pefformanee memery modules. making possible up to 1280 k bytes in the mainframe of the largest 21 MX computers. New fault control memory controller and check hit array boards offer an MTBF improvement of 3 times of greater over the already excellent religbility of HP's standard semiconductor memory sysfems. And new high-performance memory boosts E-Series computer speed up to $30 \%$.

2IMX compunie derles	Manay Speed	
		E
Starnara memory	650 ns	$595=33 \mathrm{~ns}$
standard memory w/dynamic mabring	650 ns	$665=35 \mathrm{~ns}$
Fauln conitol	650 ns	$630=35 \mathrm{~ns}$
Faul contuol memary w/dyazmis mapping	650 ns	$700 \div 35$ ms
Litigh performance memory	N.A.	$35 \mathrm{f} \times 35 \mathrm{~ns}$
High performance memary wicymamic mappine	N.A	$420=35 \mathrm{~ns}$

## New memory expansion packages

Now memory expansion pachages offer various increments of standard, high performance and Fault Control (F/C) memory idong with the dynamic mapping system required for expansion beyond 64 k bytes at atractive package prices.

Ordering Information	Price
2105A Computer	\$4100
2108B Computer	\$5300
21128 Compuler	\$6200
21098 Computer	\$5850
21138 Computer	\$6850
12990B Memory Extender	\$3500
12979日 Dual-Pon I/O Extender	\$4500
2108K Microprogrammatle Processor	\$1475
12977A (M-Series) Fast Fortran Processor	\$950
13306A (E-Series) Fast Fortran Processor	\$650
13197A Writible Control Store	\$2000
13047A User Crrl Store board for uscr-zdded PROMs	\$550
2102B Standard Memory Controller	\$600
12998A 16k byie Memory Module	\$750
13187832 byte Memory Module	\$1600
12747A 12Bk byie (jumbo) Memary Module	\$6400
2102C Fialt Control Memory Controller ${ }^{\text {\% }}$	\$600
12779a 256k byse Check Bit Array Buard	\$2750
12780A 512k byte Check Bit Army Board	\$5000
2102E High Performance Memery Controller	\$600
12741A 32k byce High Performance Memory Module	\$2100
12763A 64k byte Std Memory Exp Package (M-Series)	\$3500
12763B 128k byle Sid Memory Exp Package (M-Series)	\$6400
12763 C 192k byle Std Memory Exp Packoge (M-Series)	59300
12766A 64k byie Sid Memory Exp Package (E-Series)	\$3500
127668 128k byle Sid Memory Exp Package (E-Series)	\$6400
12760C 192k byte Sid Memory Exp Package (E-Series)	59300
L2767A 6-1k byte High Penf Memory Exp. Package	\$4500
127678 128k byle High Peff Memory Exp. Package	\$8400
12767C 192k byic High Perr Memory Exp. Package	\$12300
12782A 128k byte F/C Memory Package (M-Series)	\$9000
12782B 256k byze F/C Memory Package (M-Series)	\$15000
12783C S12k byte F/C Memory Parkage (M-Series)	\$29000
12782D 1024k by(e F/C. Memory Package (M-Series)	\$51200
12783 A 128k byte F/C Memory Package (E-Scries)	\$9000
127838 2s6k byte T/C Memory Package (E-Series)	\$15000
12783C 512k byte F/C Memory Package (E-Series)	\$29000
12783D 1024k byte F/C Memory Package (E-Series)	\$51200

[^38]

9815A


## 9815A

The $9815 \lambda$ reatures a buill-in high specd data cartridge, a 16 character alphanumeric thermal printer. an aulo-stur switch. programming keys that double as Special Function keys, and two oplional I/O channels. These capabilities can be used in foum basic ways:

1. Ouick keystroke catculatlons: 28 buil1-in scientitic funclions. the powerful Reverse Polish1 Nolation Lagie System also used by the HP pockel calculalors, a buffered keybord. large Jisplay. and readable permanent prinlout provide you with advanced probIem solving at your fingertips.
2. Dedicated problem solving; Hewleth-Packind offers several software packnges with a prerecorded earridge. Special Function key overlay. and easy-to-follow instructions for each program. Ser the switeh to nimo-siar, slip in the cartridge, put the overlay in place., and turn on the 98 ISA . The first file will be antomalically loaded und the program executed. The tedious set-up wark is dune for you.
3. Programmable problem solving; the slondard 9815 A has 472 program steps and ten data registers and can be expanded to 2008 steps. The nemory can be allocated by you into any combinalion of program steps and data regielefs you wish. The programming lunguage includes such sophisticaled features as FOR-NEXI loops: symbolic. absolute or calculated addresses: automalic address updaling during editing: descriptive error messages: and subroutines nested to seven deep. The 9815 memory flex $\begin{aligned} & \text { bility } \\ & \text { to handle many of your mosi complex compula- }\end{aligned}$ lional problems.
4. Interfacing: the 9815A has seven interface cands. The HP 98310 A is an interface card for the 9872 Ploticr, the HP 98131 A is a 9871 A Character Impact Printer Interlace Card and the HP 98122 A is an interface cand for the 986 2 A Plolter. The HP 98133A BCD 1,0 accommodates 9 -digit BCD imput with high-speed mode and 8 -bit parallel oulput. The HP 98134A General $1 / 0$ is a bidirectional $X$-bit parallel interface which enables the user to conneet it to the 9800 Series deskiop computers. The 98135 A HP-JB 3/O will aceept up 10 14 HP-IB interconnected instruments. The $9815 \lambda$ can be used 10 conirol the data how to and from the instruments. gattering and processing that data simultancously. The HP 98134^ Serial $1 / 0$ provides RS-332-C compatibility as well as 20 mA and 60 mA curneni-loop. receive-only options.


9825A
HP-IB

## 9825A

The $825 A$ Deskion Compucer, desmated orincipally for ine in engineering, research and stalistics. has many fertures previously round only on minicomputers. It is a powerful stand-alone device and is partientarly suited to controller applications.

Signilicant contributions include Iso-level priority interrupl, live keyboard. direct memory access wilh inpul speeds up to 400k 16.bil words per second, high-perliogmance bidinectional tape drive. mulLidimensional amys. automacic memory record and load, and cxtended internal calculation range $\left(=10^{511} 10 \pm!0=1\right)$. Some of these are standard features and others are available in optional plug-in read-only memorics (ROMs).

HPL. a high level. fonmula-oriented language. is easy to learn and is designed for controllet upplicitions is well as for data processing. HPL provides for subrourtio necting and flags and allows 26 simple variables and 26 mullidimensiomal alray variables, limited only by the size of 9825A's memory. Extiting of lines and characters is simple, and crror locations are idencilied by a bashing cursor in the display. Fixed. and fooating-point Fommats an be set from the 1)'pewriter-like keyboard.

The keyboard has tweive Special Function keys that. conntrined will the shin key. can landle 24 different operations. These keyn help in progrion wiring and in peripheral and instrument conerol. They can serve as immediate execute keys, as call keys for subroulines, and as ryping mds.

With the live keyboard. never before found on a desktop computer, the user can examine and clange protem variables. periorm complex calculations, call subroutines, and record and list programs while the 9825 A is pertorming other operations.

Interrupt capability, available in the Extended $1 / O$ ROM, permits the 9825A 10 acl bs a controller for severad instruments or peripherals requring attention at unpredictable rates or times.

A 32 -character LED display and a buile-in 16 -character thermal printer provide alphanumeric readout inchating both capilal and lower-case letters. Some European ind Greek characters are also available in an opional ROM.

The bigh-speed bidirectional datn cartridge holds 250 k bytes of information and has an average access linte of 6 seconds to any place on the ape. Bidirectional search speed is $2286 \mathrm{~mm} / \mathrm{s}(90 \mathrm{in} / \mathrm{s})$, and read/write speed is 559 mmis ( $22 \mathrm{in} . / \mathrm{sl}$ ). The entire memory can be recorded on the carfidge for reloading at a later lime. Verification of fles is automstic on recording.

Ordering informatlon	Price
$9815 A$ Desktop Computer	$\$ 2900$
$9825 A$ Deskiop Computer	$\$ 5900$



## 9830A/B

The Hewlett-Packand 9830 is a general purpoise deskiop computer. designed for a wide range of applications.

The language of the 9830 is BASIC. This casy-io-use language couples simplicity with power and appeals to the new deskiop computer ounter as well as the experienced programmer. The 9830 alltomatically inherits a comprehensive range of proven software packages. including finance, mathematies, statisties, and education.
A minimum 9830A provides $3 \$ 208$-bil bytes ( 1760 words) of user read/write memory. This can be expanded to 15808 byles ( 7904 words). In addition, ilic user can select from a wide range of read-only memory (ROM) plug-in blocks for inereased compusational capabitity or peripheral control, or both. The 9830A allows up to 16k bytes of add-on ROM for a 10lal of eight plag-in blocks.

The 98.30 B has 158088 -bil bytes ( 7904 wordi) user read/write memory, expandable to 30144 bytes ( 15072 words). Matrix operations and string variables are built in, and six addilional ROM blocks are available.

A broad range of peripher din in anailable will cither the 9830 A or 9830 B 10 allow the uner maximum flexibilis' in putting logether that specific system required to solve paricular problems.

The result is a cost-effeclive system that can meet your data handing problems todas' and continue niccing then an your needs expand.

## Features

- Alphanumeric keybuard
- 32-character LED display
- Buill-in tape casselle
- BASIC language
- 12 significant digits
- Full irigonomctric capability
- Boolean algebraic capability
- Expandable user medory
- Add-on read-only memories (ROMs)
- Fomalled oukpi
- Broad range of perípherals available


## Programming in BASIC

The 9830 is programmed in BASIC, a formal, interactive language similar to FORTRAN. Depending on your needs, you may choose to do all your own programming, If you've alresdy been working with BASIC. you can, with minor modifications, use your existing program. Since BASIC is a standard computer language, you will find there are many prograns already written and available at nominal cost.

## 9880B Mass memory subsystem

The HP 9880B Mass Memory Subsystem supplies the HP 9830A and 9830B with the substantial data storage required for such industrind, scientific. and commereial applications as structural design, statistical analysis, payroll, account maintenance, ioventory control, patient records, and credit verification.
The memory media of this peripheral are a permanemtly installed memory platter and an interchangeable eirridge (HP 12869A), each having a capacity of 2.4 million bples, this is the equivalent of more than 600000 total irems of daia of twelve digits each.
One of the main advantages of this system is dara safety and security. Master dala can be reconded on the removable canridge, iransfered imto the 9830A for manipulation, stored temporarily on the fixed memory planer for further use by the program. and modified on the removable eartridge. Duplication of data files is also easily accomplished. Errors are corrected simply by repenting the operation, since the initial data still resides on the rempvable memory cartridge.
A $10 \times 10$ array can be transferred to the 9880 B carridge in about 1 second, and a lypical 250 -inc program of 2000 words can be Iransferred in less than 2 seconds.

Ordiering information	Price
9830 A Desktop Computer	$\$ 4900$
9830 B Deskiop Computer	$\$ 8350$
9880 B Mass memory subsysiem	$\$ 10950$



9831A
The HP 9831A is a desktop computer that can be used as either a stand-alone device or with peripherals in an integrated computing system for industrial. commercial and scientific applications.

One of the main features of the 9831A is its BASIC language. Because BASIC is a commonly known computer language and is similar to English, it is easy to learn. At the same time the 9831 's BASSC is powerful enough to meet the demands of experienced programmers.

To facilitate programming, string variables and general inpul/ output commands have been built imo the 9831 . These enable the machinc to accept and manipulate alphanumeric information and also provide for basic peripheral operations. In addition there are 24 Special Function keys ( 12 with shifi, 12 withoul) which can be used 10 represen text. functions or entire prograns with keysiroke simplicity.

For fast storage and retrieval, a two-track tepe cartridge drive has been built into the 9831 A . The storage medeum, a high-density. rapid-access tape carridge, records up 10250 k byles of information and also features automatic verification of data.

The 983IA comes standard with 7162 bytes of read/write memory and is expandable to 31738 bytes. Other features of the 9831 include a 32-character LED display, a typewriter-like keyboard with upper- and lower-case alphanumeric and three $1 / 0$ slots and four ROM channcts for exiending language capability and peripberal control.

## Fealures

- Alphamuneric keyboard
- 32-character LED display
- Built-in tape carnidge drive
- Hardwired BASIC language
- Add-on read-only memory (ROM)
- Expandable read/write memory
- Up to 12 significant digits

- Boolean algebraic capability
- I2-24 Special Function keys (shif1 included)
- Brood range of peripherals


Inierfaced with the 9825A. 9831 A or $9845 A$ Deskiop Computer. Hewler-Packard's 9872A Plotter will provide permanent four-color (blue. green, red and black) graphic autput that's easy to read and is immedialely ready for camera reproduction.

This microprocessor-based plotter (A3 size) provides automatic or manual pen selection and gives high-resolution line and characier quality via addressable moves in lengits as small as $0.025 \mathrm{~mm}(0.001$ in.). Seven different dashed-line fonts are also available for trace differentiation and ensy interpretation.

In program mode, pen speed may be adjusted 10 any of 36 rates from $10 \mathrm{~mm} / \mathrm{s} 10360 \mathrm{~mm} / \mathrm{s}$ in $10-\mathrm{mm}$ increalents. This precision velocity control helps you produce high.quality graphics not only on paper bui on other media such as mylar or acetate as well.

Window plotting, another significant feature, provides the 9872 A with the ability to handle offscale data. The 9872 A graphs to the point where offscale data is encountered and continues graphing at the point where onscale data is again encountered with no loss in accuracy. Point digitizing is used to determine coordinates and transmit them to the controller. By combining poim digitizing and window ploting, you can magnify sections of an onginal graph for detailed analysis.

For more user flexibility in 9872 has five builh-in character sets including Spanish, Scandinavian and French/German. You can also change character size, slant and direction or even design your own chajacters.

A wo-letter graphics code drives the 9872A via the HP-1B. To further simplify use of the plotter mnemonics, these read-only mentories (ROMs) are recommended:

- 98215A Ploner-General 1/O or 98216A Plonter-General 1/O. Extended 1/D ROM for use with the 9825A Desktop Computer.
- 9822313 Matrix Plotiar ROM for use with the 9831A Deskiop Computer.
- 98437A Graphics ROM for use with the 9845A Deskeop Compuler.


## Features

- Programmable selecion of four pens
- Selectable pen speed
- Point digitizing
- Electrostatic hold down
- Five characler sels
- User-defined chafaciers
- Dashed-line fonts
- Buile-in self lest
- Error-free offscale data bandling
- Symbol mode plotting
- Window plotting
- HP-IB compatibility

Ordering information
Price
9831 A Desktop) Computer
$\$ 7200$
9872A Plotter
$\$ 4200$


Series 9800 System 45

## Series 9800 System 45

This Hewlel-Packand integrated desktop computer is a powerful. converien sysem for such applications as mithematical modeling. design analysis, production test eonicol, text processing and linear programming.

Distinctive System 45 fentures include a CRT display. an oplional huth-in thernal line printer, an entanced BASIC language. and a rape currridge (fwo drives optional).

The $310-\mathrm{mm}$ ( 12.1 in.) diagonal CRT, an inegral pan of the System 45 , lets you view data, lise programs, and display keyboard inputs, messiges and system commands. The CRT's alpha mode provides 1920 chameters in a split-sereen area with 24 lines. Twenty lines are reserved for datia program listings and editing, while the remaining four lines provide an interactive display for prompts or user instruetions. data inputs, error messages and calculation results. Special highlighting features-underlining. blinking, and inverse video-are provided for visual impact.

The CRT also has an optional graphics mode containing a 256 k bit readíwrite memory for image refresh and a read-only memory (ROM) modute for languige enhancements. This allows high-specd intenclive plotting within a $560 \times 455$ dot matrix. presenting ciear. well-defined lines and curves. By gising the DUMP GRAPHICS command, you can also iransfer on-screen graphics to the optional kuilt-in themal printer for precise hard-copy output.

The optional thermal printer also prints up to 80 characlers per line at as much as 480 lines per minute, and draws strip-chan-like plots at about $25.4 \mathrm{~mm} / \mathrm{s}\left(1^{\prime \prime} / \mathrm{s}\right)$. The printer offers two means of emphasizing sections of hard copy. You can either indicale oversize characters which are $50 \%$ higher than standard or specify underlining the desired chatacters.

Thernial pitper for the printer connes in both black-print and blueprint types. with both available in English and metric widths. The pefforaled bleck-print paper is useful for repars and permanent records requiring pige control. The more economical blue-print paper in continuous rolls can be used for more routine daily aclivities.

System 45's enhunced BASIC language provides for malsix and sling maniputation, error trapping, fexible tracing, multi-characier variables and subprogramming capability. It provides 15 levels of progmmmable prionty interrupt capability. It also provides for mass slorage opernions. Whichever storage devioe you choose, you use the same set of statements to address the media, which are the HP 9885 M/S Flexible Disk Drive. the HP 7905 and 7920 disc drives and the built-in $217 \mathrm{k}-$ byte hape cantridges. The hinguage consistency suves you time and money by eliminaling the need for program changes when addressing diflerent stomge deviees.

A second mpe canridge drive available as an option adts 217 k byles of slomge and adso fumishes high-speed tape duplication capobility and flexibility for program/data separation.

For bandling lange amounts of data, the System 45 has a standard reath/write mentry of 13472 byes. This memory can be expanded oplionally to 62 624 bytes.

Should your applications require more computational capability and peripheral/instrument control. the System 45 is designed to handle these using appropriate ROMs and interfaces. Interface types include BCD, bit-parallel, bit-serial (Specification RS-232-C). and HP-18 (IEEE Specificacion 488-1975).

## Features

## Computer

- Enhanced BASIC language
- Two built-in tape eartridges (one standard, one oplional)
- Overlapped pracessing of $1 / 0$ and compulation routines
- Built-in, unified mass storage operalions
- Typewriter-like alphanumeric keyboard with language options
- Read/write memory of $13 k$ bytes expandable to $62 k$ bytes
- Interface capability

CAT Display

- Graphics package (oplionad)
- Quadify alphanumeric and graphics display
- Highlighting capatilitics
- Special editime chameteristics
- Off-screen storage with scrolling capabitity
- Reduced screen glare
- Adjustable screen brightness
- Unified graphics langunge

Thermal Printer

- Fast printing'plotting
- Low cusi
- Quiet operarion
- Easy-co-read hard copy
- Fasi lransfer of gmphies from CRT igraphics oplion sequired)
- Character gencration flexibility
- Optional character sels in English. German. Spanish and French
Ordering information
Price
9845A Desk Top Compuer $\$ 11500$ 98455 Desk Top Computer Sysiem $\$ 20000$



## Desktop computer peripherals

Desklop computer peripherals are the inpul/oulput devices that Iet you tailor your desklep compler to your specific computing requirement.

## High speed tape reader subsystem

The 9883A uses the HP 2748B Photo Reader to increase the speed of the 9863A Tape Reader. The 9883A reads tapes optically at 300 char's
Tape punch subsystem
The 9884A provides a fast and reliable method of direclly mans. ferring output onlo punched tape al 75 char/s.

## Card readers

The high-speed 9869A Hopper Card Reader handles 80-colvmn punched cards as well as mark-sense cards.

## Tape cassette

The high-speed 9865A Tape Cassente lets you easily store. update, and retrieve dista and programs. A fast, bidirectional search feature lets you find any file on the tape without rewinding. The 9865 A bat a minimum capacity of 48 k bytes.
Interfaced with the 9825A or the 9831A. the 9877A Extemal Tape Memory provides an inexpensive method of storing up to 1 M bytes of information. In addition, it offers fast duplication of up to four tapes in less than 60 min . The 9877 uses the same type of lape cartidge as that designated for the 9825A and 9831A desklop compulers.
Paper tape reader
Data from analylical instruments, machine tools and computer lerminals goes directly into your desklop compuler. The 9863A reads a wide variely of formals of 20 char/s.

## 1/O expanders

The 9868A 1/O Expander allows you to plug up to 13 peripherals or test instmments into your 9810 A .9820 A . 9821 A and $9830 \mathrm{~A} / \mathrm{B}$. The 9878A provides six addilional I/O slots for the 9825A and 9831 A.

## Digitizer

The 98taA Digitizer reads a curve or any irregular shape as a series of discrete points. Your HP deskitop compuler then prints out the dimensions of the tine and the area of the contained shape.
Ordering information Price
9863A Paper Tape Reader \$1710
9864A Digitizer
9865 A Tape Cassette
9868a I/O Expander
9869A Hopper Card Reader
9877A Extemal Tape Memory


## Llne printer

The 9881A Line Printer Subsystem comists of the 2607A Linc Prister, whith is a rehiale, low-cost, $5 \times 7$ dot matrix printer, and the II $2 x /$ A Line Printer Interface Card. Its unique prinl mechaninm maken it quiet cnough for any businest envifinment and provides up to six consistent, clean copies. It prints al 200 lincsimin regardlesi of the line length and bas full 132 -column line width.

## Thermal printers

For high-quality, harl-copy ousput, the 9866A/B Thermal Printers are hard to beal. The 9868 A/B printers produce pige-width, fully formated, alphanumeric text, tables, or simple plots it 240 lines) min. The 9866B has upper and lower-case chataciers and verical line printer capabilities.

## X-Y plotter

The 9852A X-Y Ploter with a peripheral control function block aulomatically scales your data, generutes words is well as numbers and sets up hoth axes, complere with labels and tick marks - all in your designated units.

## Interfacing

HP offers many interface cards designed for those customers who desire to build custom, desktop contputer-controlled instrumentation systems. These cards are:

## $9815 A$ Interface cards

-98133A BCD Interfice - 8-digit BCD input with high-speed mode. 8-bit parallel eutput.

- 98134 A Gencral Interface - bidirectional 8 -bit parallel interince.
- 98135 A HP-IB Inteifince - gencial connection for HP-IB compatible insiruments (in conformance with IEEE Std. 488-1975).
-98136A RS-232-C Serial Interiace - conforms to ElA RS-232-C recommended specifications.
9825A, 9831A and 9845A interface cards
- 98032A 16-bii Duplex Interface - latched 16 -bil inpul/output for bidirectional trunster of information.
- 98033A BCD Input Interface - connects the 9825A with bit parallel, digit-patallel BCD devices.
- 98034A HP-IB Interface - allows commusication with as many as 14 HP-IB compatible insinuments per interface.
- 98035A Clock/Timer/Pacer Inteiface - adds real time reference and lime-related control capabilities to the 9825A, 983/A and 9945A desktop computers.
- 98036a Serial lnterínce-provides bil serial commuñication be(ween the desktop computers and asynchronous EIA RS-232.C devioes such as data terminals and modems.


## 9830A/B Interlace cards

- 11202A I/O Interface - 8-bil parallel input/output card wilh TTL compalible drivers and receivers.
- 11203 A BCD Inpui Card - 9 digits of 842l-coded BCD data. plus other functions (input from instrument to $9830 \mathrm{~A} / \mathrm{B}$ only).
- II205A Serial I/O Interface - bil serial inpuloutput card conforming to EIA RS-232-C recommended specifications.
- 59405 A Hewletr-Packard Interface Bus - byle serial interface offers plug-to-plug compatibility betiveen instruments.
- II285a Data Communications Intefface - allow's communication with other 9830A/R's and computers via telephone lines and modems that meel ELA Specification RS-232-C.
- 11297 B Binary Synchronous ROM - when used with II285A nllows $9830 \mathrm{~A} / \mathrm{B}$ to act as a remote batch terminal emulating IBM 2780.
- li298B Interactive ROM - when used with 11285A allows 9830 A B to act as lime-sharing terminal emulating ASClI Teleprinter.
Ordering Information Price
9862A X-Y Plotler $\$ 3200$
9866 A Thernal Printer $\$ 3145$
9866B Themal Printer $\$ 3350$
9881 Line Printer Subsystem $\$ 7990$
98133 A BCD Inlerface $\$ 600$
98134A General \&-bit Parallel Interface $\$ 300$
98135A HP.IB (IEEE SId. 488-1975) Interface $\$ 600$
98136A RS-232-C Serial Interiace $\$ 600$
98032A 16-bit Duplex Interfite $\quad \$ 400$
98033 A BCD Inpul Intertice $\quad \$ 400$
98034 A HP.1A (IEFE. Std. 488. 1975) Interface $\$ 400$
98035A Clock/Timer/Pacer $\$ 600$
98036a Serial Interface $\$ 600$
$\$ 1202$ A 8-bil Parallel 1/O Inieriace Cand $\$ 225$
11203 A BCD Input Intertace Cand $\$ 330$
in 205a Scriad Inieriace Card $\$ 435$
11285A Data Communications Incerface and ROM \$1575
11297 Binary Synchronous ROM $\$ 525$
11298B Interactive ROM \$52S



## 9896A

Hewleu-Packard's 9896A Computation System is a complete. flexible disk-based data processing systern. suitable in both commercial and selected scienlific Eields. It can handle many jobs, including:

- accounting
- production planning and scheduling
- wage and salary administration
- literature and imquiry handligg
- inventory control
- engineering calcusations
- medical analyses
- business staristics

The standard 9896 is a system of exceptional periontince configured to start solving your computational problems now. The system consists of:

- Deskiop computer with integral keyboard and display for total system control
- Flexible disk drives (2) for rapid access to prograns and data
- Full eharacter impact printer to provide hard-copy prinouls and sjaphics
- Systems desk to provide work station convenience and single power switch and printer paper storage
In shor, this computational product provides a system approach to ensure total performance and quality bue retains Rexibility to meet your specific requirements.

For specific/industrial use، the 9896A offers on-site, quick-access data processing and computational facilities. The speed and ease with which it produces information maken it very attractive to general depanments of larger onganizations with data-handling requirements.

## The Desktop Computer

Controlling the entire system is the 9831A Desktop Computer which feanures rapid dala processing and casy-lo-undersiand BASIC language.
Valuable characteristics of this language include easy manipulation of alphabe tic and numeric information, rapid sorling of rows of columns of data and efficient location of specific values in those rows or columns. These characteristics are particularly useful for searching and soning applications such as inventory control.

Many statements and functions built into the 9831A simplify progranming. For example, if you want a cerain message to appear on the printout, jusi key in PRINT and the specific message. To find the square root of a number, you type in SQR, then the number and press the execate key. This is an advantage of BASIC-slatements and function names that the 9831 knows are also easy for you to understand.

## The Printer

The system's hard-copy output device is the 30 character-persecond 9871A Full Character Impact Printer. It is controlled by the 9831 Compurer.
The 96 -character interchangeable disk provides the full character quality impact printout. Ouber character disks available are European, ASCII. Kalakana, Cyrillic and APL.

The 9871 A can print reporis, letters, checks and invoice forms on a single sheet or continuous fan-fold, pin-feed paper with maximum width of 351 mm ( 15 in. ). A form-feed mechanism is provided with the standard system for tse with contiruous paper. As many as six copies can be produced. An optional sound enclosure allows the system to be located in a quiet office environment.
Additional features of the 9871 indudegraphic plotung; a 335 mm ( $\{3.2$ in.) writing line; a 158 -characier buffer - automatically Fills if characters are received faster than print rate and also frees the 9831A for other operations.

Oher peripherals available: The 9881 A 200 line-per-minute printer: the 9866 B Thermal Line Printer for rapid, quiel printouts: the 9862 A or 9872 A Ploter for graphics and chatling, and input/ outpul peripherals such as paper tape reader und punchcs, card readers and data cartivige cassette memories.

## The Mass Storage Unit

Mass slorage on the 9885 provides the 989 K System random access to approximately 500.000 bytes of information per removable disk.

The sandard 9896 System contains iwo disk drives-one master and one slave. The master drive has a buil-in controlior that regujates is many as three slave units. The master, in turn is conmolled by the 9831 . This configuration of 1 wo drives provides a means of casy "backup" of critioal information or random access to nearly 1 million bytes of diala.
The 9896 System's data reliability is enhanced by the 9885 automatic write/verify fealure, ensuring that the information recorded on une dist is identical to the source information in the 9831's memory.

## Sottware

For commercial use, business information cranagement programs arc available for accounts receivable. accounts payable. payroll. inventory control, and general ledger. All programs can be used separately or the first four can be integrated with the fiflit. the getseral ledger program. This package of five programs comprises the Financial Information Control Software (FICS).

## Ordering Informasion <br> 9896 A Compulation System

Price
\$18,700
FICS Package
\$1,300

# 9871A; 9885M/S 



## 9871A

The HP 987:A is a full-character serial impact printer for use with 9800 Series programmable computing systems. The platen accommedates paper up to 381 mm ( 15 in .) wide. The 9871 prints a standard 132 columns at 10 characters $/ \mathrm{in}$.: however, character and líne spacing can be defined to increase or decrease the number of characters per line. Any of six different interchangeable print disks (96 characters each) provides full-character quality impact printing.

## Plotting and form tilling

Bidirectional motions of the platen and print mechanism provide plotting capabilities for chars and graphs. Programmable tabulation, bolh horizontal and verical, simplifics ploting and form-nilling on this printer. The optional 98020A Soft Sound Enclosure allows locating the 9871 in quiet office environments. Additionally, an oplienal form-feed mechanism. HP 98021A, feeds continuous Z-fold paper in one direction and aids in produeing dear mutiple copies. The $4 \mathrm{si}^{2} 2$ IA option includes a basker for stacking the paper priniout.

The 9871 is fully self-contrined and can be easily interfaced with any 9800 Series desktop computer for use in scientific, industrial and commercial applications.

## Features

- Full-character quality serial impact
- Bidirectional carrier and platen
- 96-character interchangeable print disk
- 335.3 mm (13.2 in.) writing lide
- User-defined character and line spacing
- Programmable page formatring
- Plotting


## Specifications

Speed: average text line at 10 characters/in: 30 characters/sec
Paper: single sbeet, continuous feed (form-feed mechanism recommended for continuous feed): single-pant or multi-par. 2106 parts- 0.46 mm ( 0.018 in .) total naximum thickness. Maximum width 381 mm ( $15^{\prime \prime}$ ).
Optlons and accessorles

- Standard print disk
- ASCII prina disk
- European prine disk
- Katakana print disk
- Cyrillie print disk
- A PL print disk
Ordering information
Price
9971 Character Impact Printer
\$3,400
98020A Soft Sound Enclosure
$\$ 125$
98021A Form-feed Mechanism with Paper Stack Baskel \$275


Low cost, high speed, large capacity, reliability and ease of operation in data management make the HP 9885 Flexitile Disk Drive a valuable addition to the desktop computer system. Mass storage on the 9885 provides random access to approximately 500,000 bytes of data per removable disk.

The flexible disk drive comes in two versions, the 9885 M (master) with a built-in controller, and the 9R85S (slave). Up to three slaves can connect to one master. This expendability provides a means of ensuring easy "hackup" of critical information or providing random access to nearly 2 million bytes of data.

Average transfer rate between computer and disk drive is $23 \%$ bytes/s. Double-density read/write on the flexible disk further enhances access rate and increases total stomge capacity. Average access time to any location on the disk is 267 ms .

## Special features and benefits Include:

- Random access
-Store or retrieve any file(5) on the disk in less than $1 / 3$ sec.
- Smart directory
-Files referenced by "name"; user designates tbe file "name"
(i.c.. gel "Jones").
-Quick aceess to eatalog (index) of stored files (available anytime). The disk directory tells the drive when and where a file exists-the drive does not waste time searching for files not on that disk.
- Catalog update occurs "automatically" as system operations are execuled.
- Dynamic size allocations
- Provides the most efficient packing of data on the disk.
-A deleted fie will be automatically replaced by another file equal to or smaller in size than the old.
-User may "repack" "̄िles so that all unused or available space is collected together on the disk.
- Write-verify feanire
-Ensures that the information recorded on the flexible disk is identical to the source information in the computer memory.


## Sample Commands

get "Test I" Loads prograin from the disk to the computer.
save "T Test"Stores program or specified pans of it in a specificed file.
chain Loads a program from the disk to the computer, retaining variable values.
copy Duplicates contents of ane file into another file or drive.
Ordering information
9885M Flexible Disk Drive Master and
Opt 025: for operation with 9835A
9885M Flexible Disk Drive Master and
Opt 031: for operation with 9831A
98Bss Flexible Disk Drive Slave $\$ 2500$


Hewlell-Packard bas a growing family of general-purpose display terminals which include: the new 2648A Graphies Terminal. 2649 A Microprogrammable Terminal, 2640B Display Terminal, the high performance 2645A Display Siation, the 2640C/N/S. 2645R/S Inremalional Termínals, the 2641A APL Display Terminal and a number of accessories for filling the needs of a variety of applications. Hewlelt-Packard display leminals are in wide use today in manufacturing, service ongamizalions, government and education performing in such applications as:

- dala enlry - dita slorage
- inquiry/response - printing
- editing lext order eniry
- file updating - batch operation
- Iransaction processing - time-sharing
- programming - graphics
- off-line operalion

The 2ti48A graphics terminal is the firsi CRT ierminal from Hewlett-Packard that was designed specifically for graphics. More imponandy, soffers high performance graphics capabilitics to users requiring low cost graphic terminals: capabilities normally found only in larger CPU-based systems. Being microprocessor driven, it has lucalized invelligence that offers users the opportunity to explore new areas and to try out new ideas in graphics nol before available in a leminirl.
Raster scan technology: the 2648A can be used in high ambient light environments since raster scan provides a bright, easy-to-read display. This helps to minimize eyc faligue when exiended sessions at the temminal become nccessary.

With refreshed raster scan tecbnology. the ability 10 modify selected porions of a picture is a nalural fealure.

Modification of picruras does not require that the complete display be erased and redrawn. This helps to minimize the CPU overhead requirements and the user wait lime.
Independent alphanumeric and graphic memories: there are 8 K bytes of RAM available for display alphanumeries. This is expandable to 12 K byles maximum. Independent of the alphanumeric memory is the graplics memory, consisting of 16 each 16 K RAM integraled packels providing a 360 by 720 dol resolulion. Now. computer dialogue and the final picture reside in separate memories. Since either onemory can be inhibited withoul disturbing the olher, readability of the display is enbanced.
Hardware zoom and pan: the graphic memory of the 2648A can be magnified up to sixteen (16) times. facilitating investigatoms and/or modifications of dense areas of the display. Panning is avaikable 10 view any area of the magnified display nol in the viewing window. The complete display can be panned through without reinitializing the display data. This capability is available to the user whether on or olf-tine from the CPU.

Sophisticated users as well as users having little or no programming skills can take advantage of the 2648A's capability to plot column-wise tabular data automatically.
Automatic plotting: a simple menu is provided to lead the user through a question and answer session about the data. With a few simple keystrokes, a fully labeled plot of the specified data can then be presented on the display. This feature makes graphies friendly, easy to use, and can be done with or without a supporing CPU.
Rubber band IIne: trigl graphies can be performed with or withoul CPU suppont using the Rubber Band Line mode. Quick, userinitiated peture generation and/or modification before final commiment to design is now ponsible.
Pattern generation with rectangular area shading: userspecified palterns can be generated for usc in shading defined rectangular areas of the display. This enhances the shading of parts assemblies or facilitales differenciation of bar graphs where color would normally be used.
Compatbility mode: when in compatibility mode, the 2649A can be used with most terminals that have a 780 by $102 A$ dot displayable area. Data is mapped on a 1 lo 1 basis inlo the 2648A's display space, or it may be sealed to fis in the 360 by 720 dot data space. This capability will help to minimize user conversion time and loss of the initial software investment

Additionally. since the 2648 A is a member of the 2640 Series Family of Terminals, it has many features that make it an outstanding dphanumeric leminal.

## Some of these features are:

- Choice of Communicalions Environments: RS232C Aynchronous SCII: Full or Half Diplex

Oplional 20 mA Current Loop
Optional Asynchronous or Synchronous (BISYNC) Mulsipoinu/Polled
Widc Selection of Modems

- 8 User Definable Sofi Keys
- Fulty Integrated Mass Storage Opiion

Two Carridge Tane Drives
110 Kilobvtes of Storage per Cartridge Tape

- Alpha/Numeric Field Checking
- Automatic Data Logging
- Character Wraparound
- Adjustable Margons
- Full Editing

Insen or Delefe Lines or Characters
And much more!
Model 2649 A microprogrammable terminal
The Hewlell-Packard Model 2649A nicroprogrammable terminad offers a reliable, cost effective solution to the need for an inielligent terminal in a broad range of business, industrial and research applications. The 2649A combines all of the desirable [eatures of the $264 X$ family of display terminals with a powerful mictoprocessor to produce an exisemely versatile source of intelligence.
Network or stand alone operation: several 2649A's may be used in conjunction with a central processor to create a distributed intelligence network. In this environment, the 26-49A can be programmed to preprocess data sent to the central proccssor and postprocess data received from the cenlral processor. By sharing the dasa processing workload in this manner the throughput capability of the cental processor is effectively increased and overall systern performance is improved.

In applications with less demanding throughput requirements, the 2649A is capable of operatimg in a scand-alone mode. In this mode, where no central processor is required, the tertninal may be used 10 process limited amounts of dala and to provide control for a wide variety of extemal devices to which it may be interfaced.
Modular architecture: modular architecture allows the OEM or end user to oplimize both hardware and fimmare configuralions to match each specific application. Thus, unneccessary hardware and firmware is avoided with a resulting cosi savings to the user. Modular architecture also means greater flexibility so that as the application grows. The capability of the terminal may be enhanced by adding more memory, peripherals or firmware.


Cholce of Interface memory optlons: interfacing is made casicr because there is a wide selection of general purpose, peripheral and data commonications interfaces 10 choose from. A viriely of memory options, including RAM, ROM and PROM modules. is available to meet program and dala storage requirements in a highly elficient manner. Memory opilons may be configured to support up to $60 K$ byies of combined RAM, ROM and PROM.
Simpllfled Hardware/Flrmware Development; development of hardware and firmware is simplified by the sorinisticated development tools whish are available. These include a comprehensive hardivare and firmware documentation package, a RAM based development ierminal and a firmware support packige which includes a microprocessor assembly language cross-assembler which executes on a Hewlett-Puchurd System 1000 Computer System.

## Model 26408 display terminal <br> \section*{Easy to read display:}

the large 5 Inch by 10 Inch display of the 2640 E presents up to 1,920 charecters ín a 24 line by 80 column format. A $9 \times 15$ dot character cell allows lange characters to be represented accurately. Wide character and line separation, inverse video, and optional plug-in character sets with undertining, half-hright, and blinking are enhancements designed to inerease clarity and ease sessions at the terminal.
Full ediking capabillty: the 2640 B (mansmits character-by-character as an interactive termmal or is capable of operating on variable length blocks of information. Local editing allows the user to mudify data before tansmission to the computcr. Editing and computer conneci timers can be significanly reduced by such standard features as:

- character or line inscrion and deletion
- cursor addressability and positioning (up. down, left. righı, home)
- programmable protected fields in any combination of display posilions
- off-screen storage with scrolling (scroll up. scroll down, nexi page. previour prige)
- standard horizuntal tabs and protected field tabulation
- eight special function keys for user-defined routines, such as forms entry or on-jine error detection
- posisional memory lock

Plug-In character sets; bere is the capacity 10 use up 10 four IzB-character sets concurrenty (wwitch selectable on a character-by-character basis): the Roman set including displayitble control codes for program debugging: the line drawing sef for forms drawing and limuted graphics capability: the math set with frequently used math symbols and Greek characters: the large character set for enlarged character presentation: or user-defined character sets.
Cholce of communicatans capabilitles: the standard 2640B operates at up to 2400 baud and offers both full and half duplex asynchronoun commanication using an ELA RS232C interface. It is Bell 103A and 202C/D/S/T modem compatible with a choice of main channel and reverse channel prolocols. Oplions include 20 mA DC curtent loop, split inpui/ourpul speed and custom baud rates.


Versatlle keyboard: the dclachable, exponded ASCII keythoard is easy to use and flexible enough to fill a wide variety of applications. It containc it ten key numeric pad, cursor control. tab and page control pus. editing and special function keys.
Hulti-page display memory: because of efficient memory allocaion. the stimdard 2640 B with its 1024 bytes of memory can display from 8 ro 50 lines dependent on line length. With memory exparsion 108 k byles, over three pages of data can be stored. Informalion can be viewed 24 lines at a time by serolling forward or backward a line or a page al a lime.
Hard-copy Interface: a wide variety of hard-copy devices can be accommodated via an optional RS232C serial interface or HP printer compalible parallel interface. Cummands to print data can be initiated either locally from the terminal keyboand or remotely from a computer.
Selt-test: every element of the 2640B has bean engineared for high reliability and case of service. For example, the Self-Test fealure gives the user an instant diagnostic lest that the terminal is operaling properly.
Madular archltecture, microprocessor controlled: microprocessor implementition and modular archicecture produce a terminal with a wide raoge of capabilities; and, as needs grow, the polential for flexibly adding such featuses in additional display memory. printer iulesfaces and ouher character sets.
Model 2645A dlsplay station
All 26408 features: the high performance 264SA Display Siation offers a supersel of the eapabilitics of the 2640 B . It has the same features and benents as the 2640 B (see 2640 B features description) and has the many significant additional fcatures described below.
High speed; the 2645A can opcrate at speeds up to 9600 bits per second and, like the 2640 B . transmits either character-by-character as a fully intemcive terminal or can operate on variable length blocks of information.
Choice of communicatlons capabilltes: the standand 2645A is a telerypewriter compasible (EIA RS232C serial asynchronous. ASCl1, half or ful) duplex). Optional capabilities include $20 \mathrm{~m} \wedge$ current loop: and either asynchronous or synchronous polling for multipoint communications networks. Polling offers the cost saving benchits of shared communicalions resourees - modems. data lines and computer $1 / 0$ channels; as well as improved transmission ettor checking and communications compatibility with a wide range of computer systems. The 2645A operates as a single unit or can be daisychained to other 264SA's on a single communication line. Synchronous mulkipoinl (IBM Binary Syachronous Multipoint Communicalions, Bisync) and asynchronous mulipoint (pattemed after Bisync) can optionally be used for polled communications networks. Also. the 2645 A can be used with a wide selection of modems over dialed or leascd lines.
User-deflned soft keys: each of 8 special function keys can be casily set to issue a user-defined string of up 1080 data characters or several control sequences stored in the 2645A. This feature allows the keyboard to be more specialized to each application, and can

## Interactive display terminal family



Figure 1. Data communications capabillities of the Hewlett-
Packard family 10 terminals.
considerably simplify use of the keyboard and result in greater efficiency - each soft key performs the operations of several key sequences. For example, the soft keys can issue frequently used programming sequences; search for files; aid forms construction for data eniry: dymamically configure the lerminal: or issue insiructions to the user. computer or both.
Fully Integrated mass storage: many operations normally requiring connection to a computer system ean now be done offline with the $26-45 A$. Optional, dual carridge tape anits allow batching of intormation, and add exiensive stand-alone capabilities whith can: significandy reduce user time: conserve bolh computer and communications resources: provide a tape buckup: and very importandy. allow the terminal to keep on working even when a computer is unavailable. Single keys for the most frequently performed funclions, and color-coded prefix keys to exercise the 2645A's full capabilitics suit the 2645 A to a wide variety of users and applications. Gold and green prefix keys provide full access to the 2645 A 's multiple dala paths to allow information to be moved between any of the functional units of the display station-carridge. display. keyboard, printer, and data communications interface. Also, the rapes are fully conerollable from either keyboand or compuler. The highly reliable, interchangeable MiniCarridge tapes each provide the eapacicy of I.C.E. up to 110000 characlers of storage formatted in variable lengit records and files. The tape units leature rapid data transfer and bi-directionad high-speed search 10 necess any file in seconds. The MiniCarridge is ideally suited for storing dita, forms, programs, or text, and is an excellent subsutute for paper tape.
Addtional capablittea

- Numeric/Alpha field checking
- Display memory expandable to 12 k bytes
- Avtomatic data logging-stores data as it leaves the display automatically on the optional tape carridges
- Line wraparound-when inserted text requires mare than 80 columns per line.
- Adjustable margins-for variable column width/multiple columns/split screen
Internatlonal terminals
The $2640 \mathrm{C}, 2640 \mathrm{~N}$, and 2640 S are intemational versions of the 2640 B Display Temiral. Each has basically the same features and benefits as the 2640B (see 2640B features description). The 2645R and $2645 S$ are intermational versions of the 2645 A .
Model 2640 C -Cyrllile (Rueslan): the 2640 C is capable of displaying the full 128 -chameter sel opt.). Cyrillic and Roman chameters can be generaicd from a single keyboard with all keys labeled and
located in the accepted positions for Cyrillic keyboards. Pressing at single key switches between standard Roman and Cynilic. Adjacent characters on the display can be from the Roman. Cyrillic. or oplional plug-in characler scts.
2640N-Danlsh/Norweglan: the 2640N is a unilingual terminal in which the Danish/Norwegian chafacter sels are displayed and present on the keyboand
Model 2640S/2645S-Swedish/Finnleh: the 2640S/264.5S is a unilingual terminal in which the Swedish/Finnish chartacter scts are displayed and present on the keyboard.
Model 2845R-Arable: the 2645R is a dual character terminal in which Arabic and upper case Roman characiers are displayed and present on the keyboard.


## Model 2641A APL Display Station

The 2641A APL Display Slation retains all features and capabilities of the 2645 A. An additional APL character sel, including overslrike charecters, is standant. Keyboard layout conforms to industry conventions. Integrated cartridge sape storage optional.
Famlly enhancements and accessories
13231A Display enhancement: with the 13231 A individual characters or fields of characters can be displayed in any of the sixteen possible combinations of blinking. underline, half-bright or slandard inverse video. The 13231A also provides the capacity for adding up to three 128 -character sets. A line drawing set, math symbol set and large character sel arc currently available.
13245A Character set generation klt: the high resolistion display and $9 \times 15$ dot chameler cell are available for special character set design with the 13245 A . An included manual documents the steps neccssary to désign individual chameters, assign the desired ASCll code equivalent, and generate the information to purchase Programmable Read Only Memories (PROM) which store the userdefined chanacter sels.
13238A Duplex reglster: the 13238 A provides a parallel output interface which supports the HP 9866 thermad line printer and 9871 character-serial impact printer.
132508 Serlal printer Intertace: the versatile 13250B supports a wide variety of RS232C serial interface compalible printers at speeds up to 9600 hiss per second. Hewlett-Packard pinters that the 13250B interface supports are the HP 2762A and 2762日.
13254A VIdeo output Interiace: the 13254A provides the capabi. ity of generating video output which can be uned by compatible television monitors and video hardeopy units to duplicale whatever is being displayed by one of the Hewlett-Pachard family of display terminals.


## Farnily specifications

## General

Screen size: $127 \mathrm{~mm}\left(5^{\prime \prime}\right) \times 254 \mathrm{~mm}(10$ ) $)$.
Screen capacity: 24 lines $\times 50$ columins (1,920 characters)
Character generation: $7 \times 9$ enhanced dot matrax: $9 \times 15$ dol character cell; non-interlaced raster scan.
Character sles: $2.46 \mathrm{~mm}\left(0.097^{\prime \prime}\right) \times 3.175 \mathrm{~mm}\left(0.125^{\prime \prime}\right)$.
Character aet; 64 upper-cuse Roman: 128 character APL set with 2641A: 64 character Danish/Norwegian ser with 2460 N ; 64 character Swedish/Finnish set with 2640 S or $26 \mathrm{HSS} ; 128$ character Roman/Arabic set with 2645R.
Curgar: blinking-underline.
Display modes: white on black; black on white (inverse video).
Relresh rete: 60 Hz ( 50 Hz optional).
Tube phosphor: P4.
Imploslon protection: bonded implosion panel.
Display memory: 2640 B 1 k sid., 8 k max $2645 \mathrm{~A} 4 \mathrm{k} 5 \mathrm{dd} . .12 \mathrm{k}$ max
Keyboard: detachable. Full ASCII/APL keyboard for 2641A. Full ASCII code keyboard; 2kata 20 control/estiting keys, 26458 userdefined soft keys and 36 addational controllediting keys; ten-key numeric pad; cursor pad; multi-speed auto-repeat, $n$-key roll-over; 1.22 m (4 fi.) cable.

## Cartidge tape:

two mechanisms, 10 lps read/wite speed, 80 lps search rewind speed, 800 bpl recording, max 110 k bytes of storage per MInICartridge. Optlonally avaliable for 2041A and 2645 serles.
Data communications
Data rate: 110, 150, 300. 1200, 2400 ( 4800 on 2641A \& 2645R, 9600 also on 2645 A ) and exiemat-switch seleetable ( 110 selects two stop birs).
Std. asynchronous communleations: EIA RS232C: compatible with Bell 103A modems: compatible with Bell 202C/D/S/T modcms.
Transmission modes: full or half duplex, asynchronous.
Optional communicatlons interfaces:
Current loop, split speed, custom baud mates.
Asynchronous multipoin! (2641A, 2645A/R/S).
Synchronous multipoint ( $2641 \mathrm{~A}, 2645 \mathrm{~A} / \mathrm{R} / \mathrm{S}$ ).
Operating modes: on-linc: character, block.
Parly: switch selectable (even/odd/none).

Environmental conditions
Amblent temperature
Non-operating: $-40^{\circ}$ so $75^{\circ} \mathrm{C}\left(-40\right.$ 10 $\left.167^{\circ} \mathrm{F}\right)$ : $-10^{\circ}$ to $60^{\circ} \mathrm{C}\left(-15^{\circ}\right.$ $10140^{\circ} \mathrm{F}$ ) with tape.
Operating: $0^{\circ}$ 10 $55^{\circ} \mathrm{C}\left(32^{\circ} 10131^{\circ} \mathrm{F}\right)$ : $5^{\circ}$ to $40^{\circ} \mathrm{C}\left(41^{\circ} 10104^{\circ} \mathrm{F}\right)$ with lape.
Humldity (non-condensing); 5 to $95 \%$ (20 to $80 \%$ with lape).
Heat disslpation: 540 Bru/bour (L58 W).
Altitude
Non-aperating: sea level to 7620 metres ( 25000 fect).
Operating: sea level to 4572 metres ( 15000 fect ).
Vibration and shock (1ype tested to qualify for normal shipping and handling in original sthipping container).
Vibrallon: $0.25 \mathrm{~mm}\left(0.010^{\circ}\right) \mathrm{pp}, 10$ to 55 Hz .3 uxes.
Shock: $30 \mathrm{~g} .11 \mathrm{~ms}, 1 / \mathrm{s}$ sine.
Physical speclficapions
Dlaplay monhor welght: 19.6 kg ( 43 lb ).
Keyboard welght: 3.2 kg ( 7 lb ).
Display monitor dimensions: $342 \mathrm{~mm} \mathrm{H} \times 444 \mathrm{~mm} \mathrm{~W} \times 457 \mathrm{~mm}$ $D\left(13.5^{\prime \prime} \times 17.5^{\prime \prime} \times 18^{\prime \prime}\right), 648 \mathrm{~mm} \mathrm{D}\left(25.5^{\prime \prime}\right)$ including keyboard).
Keyboard dimensions: $90 \mathrm{~mm} \mathrm{H} \times 44 \mathrm{~mm} \mathrm{~W} \times 216 \mathrm{mmD}$ (3.5 $\times 17.5^{\prime \prime} \times 8.5^{\prime \prime}$ ).
Power requirements
Input voltage: $115(+10 \%,-23 \%)$ at $60 \mathrm{~Hz} \pm 0.2 \%$.
$230(+10 \%$. $-23 \%)$ at $60 \mathrm{~Hz} \pm 0,2 \%$.
Power consumption: 85 W to 150 W max.
Product support
Warranty: 90 day on-site paris and labor warranty.
Ordering information
Price
2640B Interactive Display Terminal $\$ 2600$
2640C Cyrillic Display Teminal $\$ 4250$
2640N Norwegian/Danish Display Terminal $\$ 2750$
2640S Swedish/Finnish Display Terminal \$2750
264 LA APL Display Terminal $\$ 4100$
2645A Display Station $\$ 3500$
with Lape $\$ 5100$
2645k Arabic Display Terminal $\$ 4350$
2645S Sivedish/Finnish Display Terminal $\$ 3750$
2648A Graphics Termigal $\$ 5500$
with tape
$\$ 7100$
2649A Micrapragrammable Temintal $\$ 2150$
Shert-teom lease and quanhty discounts arailable.

- Custom labels
- Prompting lights
- Special function keys
- Numeric keyboard and display 3070A



## Description

## General

The $3070 \wedge$ and 3071^ Real Time Applications Terminds are compact. desk-1op devices that can be tailored by the individual to suit the application. Convenient, keyboard definition labels allow one 10 customize special function keys and prompling lights. These keys and lights provide a fast and easy communicalion with a computer system. In addition to a 16 -digit display the terminals contain a 10 -dign buffered numeric keypad grouped logether with Delete. Decimal Point, Minus and Enter kcys.

## 3070A Terminal

Multipic 3070A Terrminals may be connected to an HP 21MX or $2100 \mathrm{~A} / \mathrm{S}$ Series computer system using a unique serial link and fully suppored software. The link is a single "1wisted pair" cable, which connects io an HP computer inierface card, and can be of lenglh up to 4 kilometers ( 2.4 miles). Terminals can be connected to any point on the cable. The protocol used to link teminals to the computer includes all the necessary commands 10 enable them 10 be used 10 conirol HP-1B compatible devices. Up 1013 HP -18 devices may be connected to the slandard HP-IB connector of each terminal, see Figure 1.

## 3071A. Terminal

The 3071A functions with any computer sysiem which supports its standard RS 232 asyncbronous communications interface and may be used with ful duplex. low-speed asynchronous modenis. Use of a shint key (special funcrion wey no. 1) increases the effecive number of special function keys to eighteen.

- Multidrop
- Distributed control of HP-IB devices
- Fully supported soffware 3071A
- RS 232C/CCITT V24 communications


## Speciflcations

## General

Display: 16 position (written left to right).
Display character set: 0 1hrough 9. decimal point, space, minus sign. letter E (e.g. Emror).
Character goneration: seven segment, gas discharge (orange behind bronze linted window).
Character slze: $6.42 \mathrm{~mm}\left(0.253^{\prime}\right) \times 3.38 \mathrm{~mm}\left(0.133^{\prime}\right)$.
Prompting lights: 15 red light emitung diodes.
Power-on Indleator: green light emiring diode.
Keyboard ready Indeator: green light emitting diode.
Keyboard: sealed contath, buffered numeric keypad, 9 special function keys plus a gold key (used as a SHIFT key on the 307IA to provide 18 combinations). 12-key mumeric pad, ENTER and DE, LETE keys.
Environment
Temperature (sree space ambient)
Non-operating: $-40^{\circ} 10+70^{\circ} \mathrm{C}$
Operating: $0^{\circ} 10+55^{\circ} \mathrm{C}$
Humidity: $5 \%$ to $95 \%$ (non condensing).
Heat dissipation: 1508TU/hr.
Vibration and shock: type tested to qualify for normal shipping and hamdling.
Physical
Weight: net, 4.7 kg ( 10.3 lb ). Shipping 7.1 kg ( 15.6 lb ).
Slze: 117 H .277 W .400 mm D. ( $4.6^{\prime \prime} \times 10.9^{\prime \prime} \times 15.7^{7}$ ).
Power requirements
Input voltage: 100, 120. 220.240V ( $-10 \%$. $+5 \%$ ).
inpul frequency: 47.5 to 66 Hz .
Power consumption: 30w.
Serial link communications (3070A only)
Cable: shielded rwisted pair (HP model no. 92902A).
Signal levels: 5 volss, differential, isolated ihrough optical couplers.
Distance: total length of link cable may be up so 4 km . Computer and terminals can be randomly connected at any point on the link providing no terminal is more than $2 k \mathrm{~m}$ from the computer.
Transmisslon speeds: lirk operates at 25000 bils/second, effective data imasfer rale depends upon the number of terminals connected and varies between 12 iransfers/second/terminal (63 lemminals) to 230 transfers/second/rerminal (I terminal).
Data communications ( 3071 A only)
Data rate: 110. 150. 220.300 baud (switch selectable). 110,220 selects two stop bits. 150, 300 selects one stop bit.
Parity: odd, even, none (switch selectable). Detected parity errors cause E symbol to be displayed.
Transmission mode: full duplex.
Communlcations interlace: EIA RS 232C/CCITT V24 (103 modem compatibility).
U.L. approval (listed by U.L. under ihe following elassifications): Elecironic Data Processing Equipment. Office Appliances and Business Machines.
Subsystem for 3070A
The subsystem, under the number 92900A, consists of 20280A Computer Interface Kit. one 3070A Applications Terminal. one lest cable, the cormesponding software for either RTE 11 or RTE [I]. and diagnastics.
Ordering information
Price
3070A Real Time Applications Terminal $\$ 1470$
92900 A Subsystem
$\$ 2650$
3074 Real Time Applications Terminal \$1285

# Optical mark readers for data entry and collection 

- OEM and quantity discounts available
- Service contracts available
- Customer service kit available

Image: iransmits Binary card image ins two typing characters with selectable pariy, activaled by control codes from computer.
7261A Optical Mark Reader Speciflcatlons
Card code and output codes: the information from cach card is convened by the Reader to a parallel 12-thannel format. Tah cards dimensions: standard lab card size, $82.6 \times 187.3 \mathrm{~mm}(3 / 4 \times 77 / 4$ inches) or $82.6 \times 282.6 \mathrm{~mm}\left(31 / \mathrm{up}\right.$ to $11^{1 / 6}$ inches).
Hopper capacty: 4500 cards inpur. 450 cards output.
Intertace connector: 36 Pin Cinch Micro-Ribbon - rear panel.
Common Specifications
DImensions: $610 \times 308 \times 305 \mathrm{~mm}(24 \times 141 / 2 \times 12$ inches $)$.
Weight: nel. $24,6 \mathrm{~kg}(54 \mathrm{lb})$. Shipping. $33.2 \mathrm{~kg}(73 \mathrm{lb})$.
Envlronment (exclusive of tab cards)
Stopage temperature: $-40^{\circ} \mathrm{C} 10+75^{\circ} \mathrm{C}$
Exposure power on: $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$.
Meets spacilications: $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$.
Humbility: $5 \%-95 \%$ al $25^{\circ} \mathrm{C}$ 10 $40^{\circ} \mathrm{C}$.
Vibratlon: $10-55 \mathrm{~Hz}, 01 \mathrm{in}$. peak-10-peak excursions.

AC Power: (sce Oplion 005 for $320 / 240 \mathrm{~V}$ ac uperation) 100 or 120
V. ac. $+5 \%-10 \%$. switch selected $47.5 \mathrm{~Hz} .66 \mathrm{~Hz} ; 300 \mathrm{VA}$.

Line fuse: 4 A SB.
Transformer Iuse: 2 A SB.
U.L. approval: the reader has U.L. approval and meels IEC specifications.
A typical mark sense form.


Price
add $\$ 230$
add $\$ 230$
N/C
N/C
add $\$ 70$

The Hewlell-Packard Models 7260A and 7261A Optical Mark Readers are desk-top data transmission instruments. The Readers optically (photo-renectively) read standard 82.6 mm ( 3 /4i in.) wide paper information processing cards. Card lengths from 187.3 mm to $282.6 \mathrm{~mm}(78 / 4 \mathrm{in}$. $10111 / 43 \mathrm{n}$.). having 40 or 80 -column marked or keypunched information using on-data or after-data clocking are ace cepled. With Option 003, the Readers citn also read cards without clock marks. They can handle 450 processing cards at a time al feed rates of up to 300 cards per minute.

## 7260A Optical Mark Reader Speciflcatlons

Codo capacity: recognizes 128 characters Hollerith code.
Translation: tmaslapes to bit serial i-lcvel ASCII with selectable parity.
Operational modes: demand and continuous feed.
Parlity; generates and transmits seleclable partity.
Data rates: $110.150 .300 .600,1050,1200,2400$ baud, switch select able.
Tab cards dimensions: standard tab card size $82.6 \times 187.3 \mathrm{~mm}$ ( $34 \times 7 \%$ inches) or $82.6 \times 282.6 \mathrm{~mm}$ ( $31 / 4$ up to $1 \mathrm{~T} / \mathrm{m}$ inches).
Hopper capacity: 450 cards input, 450 curds outpus.
Intertace: RS-232C and CCITT V24.
Intertace Connectors: 2 Cinch/Cannon DBM- $25 S$-reitr panel.
Invalid Code: transmits a selectable character when data outside 128 character set is marked.
Mute and Line - Local Operation: allows operation with local terminal, and allows muting of terminal Printer.
Mnemonle Control: allows 3 letter mnemonics to control Reader when control codes would interfere with system operation.

Flexible card farma

- High speed operation
- Easy to interíace

wen conirl codes would increra wit systen oparan.


Hewlell-Packard has developed a dynamic family of hard-copy printers and reminals which ser new standards in flexibility and user convenience while maintaining taditional high reliability and low cosi of ownership.

The initial HP 2630 family members are the HP 2631 A Printer and the HP 2635A Priniong Terminal.
2630 Familly tealures

- Three Print Modes
- Auto Underine
- 128-Character Sot
- Optional Secondary Characler Set
- Long Life Print Head
- Easy Loading fibbon Carridge
- Convenient installation
- Multiple Verical Line Spacing
- High Throughpul
- Slmple Mechanical Design
- Interiacing Flexibility
- Forms Handling Variery
- Functionally Grouped Terminal Keyboard


## Model 2631A Printer

High Throughput: the 2631 A Printer is a smarl bidirectional printer. Under microprocessor control, the printer constanily evalutes incoming dita to derernine the most efficient print directions based on the line lenglh and current position of the print hend. Ten or more embedded space chasaciers are defected and coase the priml head to skip these at high specd. Lines without printable characters result in a high speed papes slew to the next primable line. The result is maximum throughpu for any given input.

The design limit print speed on a serial character basis is 180 characlers per second. Using smart bidirectional printing. this transbates to a line per minute speed in normal mode ranging from 70 lines per minute for full 136 character lines 10500 lines per minute for 10 characier lines.
128-Character set: the standard 2631A provides a full 128 . USASCII character sel. The $7 \times 9$ dos chatactér cell allows high resolution printing of Ine lower case characters and. with the display function enabled, representalion or ASCll control coder. An oplional secondary chamcter set can he selected by conirol codes when required for the outpul.
Long llfe print head: the durable print head used in the 2631A is conservatively rated at 100 -million characters and, 10 keep cosi of ownership low, has been designed to te easily cleaned and, when reguired, replaced by the operator.
Easy loading cartridge rlbbon: the ribbon is connaned in a unique plastic carridge and is casily removed and installed withou touching the ribbon itself. Drive for the ribbon is provided by print head motion climinating the need for a separate ribbon Urive motor or electronies.

Multiple vertical line spacing: seven different vertical line spacings from 1 line per inch through 12 lines per inch are program selectable. Line spacing of 6 and 8 lines per inch can be selected from the control pancl. Using 12 lines per inch spacing, thie superscripls and subscripis can be printed.
Interfacing flexbbility: interfaces are available for a wide range of applications. The slandard interface for the 2631A is a HewlettPackazd \&-hit differenlial line drive for the with the 12845B interface board in the HP 2100 family of computers.

## Model 2635A Printing terminal

The 2635A Printing Terminal has the same features and printing capabilities of the 2631 A plas additional advantages to meet the respons ibilities required for full-scale terminal operations. The functionally grouped terminal keyboard is easy to use and will fill the needs of a wide range of applications.
Self test, display functiens and special programming capabilities are additional conventience features of both machines.
Interlacing flexiblilty: interfaces are available for diflerent applications. The standard interface for the HP 2635A is an E1A Standard RS332C asynchronous interface without modem control and is compalible with Bell 103 and Bell 202 ype modems.

## HP 2630 Family specifications

Physlcal
Helght: $216 \mathrm{~mm}\left(8.5^{\circ}\right)$.
Width: $\left.640 \mathrm{~mm}(252)^{\circ}\right)$.

## Depth:

Printer: 470.4 mm ( 18.5 ").
Terminal: $595.4 \mathrm{~mm}\left(23.4{ }^{\prime \prime}\right)$.
Welght
Printer: 23 kg ( $\mathrm{S} \mid \mathrm{lb}$ ).
Terminal: $26 \mathrm{~kg}(57 \mathrm{lb})$.
Stand Assembly: 24 kg ( 53 ib ).
Clearance
Front and rear: adequate for uperator access.
Sides: 76 mon ( 3 inches).
Performance
Character formation: dot matrix $(7 \times 9)$.
Print directlon: bidirectional (left-tioright and right-to-left).
Printing speed: 180 characters per second.

## Line lead rate

6 LPI: $24 \mathrm{msec} / \mathrm{line}$.
$\theta$ LPI: $18 \mathrm{msec} / \mathrm{line}$.

## Form teed rate

8 and B LPI: $176.6 \mathrm{~mm} / \mathrm{sec}(6.96 \mathrm{in} / \mathrm{scc})$.
Coples: $1-6$ copies up to 0.43 mm thickness.
Print modes: Normal, Expanded, Compressed.

## Forms use

The HP 2631 A and HP 2635 A will accommodate edge perforated forms varying in width from 400 mm ( 15.75 in.) edge-lo-edge 1031 $\mathrm{mm}(1.22 \mathrm{in}$.) perforation to perforation, and thickness from 0.08 mm ( 0.003 in ) 100.43 mm ( 0.017 in .). Single or multiple pan forms including card slock and glued edge forms may be used interchangeably. Multiple parr forms and card stock should be tried for satisfactory feeding, regisiration and print quality.
Vertical Format Control
Number of channels: 8 non-programmable.

## Environmental

Temperalure
Non-Operaling: $-55^{\circ}$ to $75^{\circ} \mathrm{C}\left(-67^{\circ} \mathrm{F}\right.$ ko $\left.167^{\circ} \mathrm{F}\right)$.
Operating aurvival: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$.
Operating: $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.
Humidity
Non-Operating: 65"C (149 ${ }^{\circ} \mathrm{F}$ ) @ $90 \%$.
Oparaling: $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right) @ 5 \% 1095 \%$.
Heat dissipation: 265 watis.

Ordering Information	Price
263 A Printer	$\$ 3150$
$2635 A$ Princting Terminal	$\$ 3450$



## HP 792050 Megabyte Drive

The 7920 Dise Drive is a random aceess data stomge device utilizing a top loading removable disc pack. This highly reliable Disc Drive utilizes track follower servo-feedback head positioning to provide exceptional perfommance over a wide temperature range. On the disc pack. 50 M bytes of formanled data reside on 5 surfaces with one surface reserved for servo information. The opemar's panel has indicalors for unit select. drive ready, read only, door unlocked and drive faul. Should a faul occur, an advanced setvice feature idenfries the fault through a group of LED indicators. The master drive includes: enclosure. I3037B coniroller. disc pack and cabling.

## Condensed Specificatlons

## Seek Time:

Track-lo-track 5 ms (max.
Averige random 25 ms (avg).
Maximum stroke 45 mis (max).
Data transfer rate: 937.5 kilobytes/sec.
Power requlrements
AC voltages: $100 \mathrm{~V}, 120 \mathrm{~V}, 220 \mathrm{~V}, 240 \mathrm{~V}$, all $+5 \%-10 \%$.
Frequency: single phase, 47.5 to 66 Hz .
Power: 460 wals @ $120 \mathrm{~V} / 60 \mathrm{~Hz}$.

## Environmental Specifications

Operational: $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{F}\right.$ to $\left.104^{\circ} \mathrm{F}\right), 8 \%$ to $80 \%$ Rel. Hum. non-condensiog.
Non-operational $-40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.167^{\circ} \mathrm{F}\right) .5 \%$ tp $95 \%$ Re!. Hum. non-condensiog.
Attlude: sea level to 15,000 0. \{operational).
-1000 ft . to $50,000 \mathrm{ft}$. (non-operationa).
Tite up to $\pm 30^{\circ}$ about either horizontal axis.
Vibratlon: 1.54 g 's at 55 Hz .
Controller: same as 7906/7905.
Interchangeablity: the 7920 allows any dise pack writen on any 7920, within its operating specifications. to be read on any ouber 7920 operating within that range. Error performance/ interchangeability can be guaranceed only if HP 13394A Dise Packs are utilized.
Ordering information Price
7920 M Master Drive ( 50 MB ) $\$ 17500$
79205 Add-on Drive ( 50 MB ) $\$ 14000$
I3394A Disc Pack
$\$ 700$


Hewletr-Packard offers a wide variety of digital magnetme rape units in its 7970 Series, plus a number of fully interfaced magnetic lape subsystems.

## Magnetic tape subsystem for use with 2100/21MX based systems

12970A Magnetic lape subsystem
NRZI format 7970B. 9 -track tape drive subsystem. Provides 800 cpi capability al speeds of $25,37.5$. or 45 ips.
12971A Magnetlc tape subsystem
NRZ1 formal 7970B. 7 -Irack tape drive subsystem. Provides switch selectable 200. S56, and 800 cpi capabilizies at speeds of $25,37.5$, or 45 ips .
12972A Magnetlc tape subsystem
Phase-encoded formal 7970e, و lrack lape dive subsystim. Provides 1600 cpi capability at speeds of 25. 37.5. or 45 ips.

## 7970 Magnetic tape units

Hewlen-Packard Series 7970 Digital Magnetic Tape Unis offer a compact and reliable solution to your lape system needs. Units are available in a wide range of 7 -rack and 9 -rrack configurations utilizing either NRZI or phase encoded elcetronics. All Scries 7970 Tape Units have been designed to inelude the same features you would expect to find in higher-priced and more complex equipment. Plus you receive complete interchangeability of data with other ANSI compatible equipment.

Recl motors provide direct drive, eliminating troublesome belts and pulleys. Tape tensioning is performed by photoresistive conIrolled tension arms that eliminate the need for vacuum system components. Head as semblies consist of read slack. wrile stack and full width erase head. All major transport assemblies are easily ac. cessible for servicing and/or replacement when required.

	Denshy											
madel-0ptuon	2005	566	800	1600	manter	slave		47	HRD	Pr	80	RAM
79708127	-	-	:		$\begin{aligned} & N A \\ & N A \end{aligned}$	$\begin{gathered} \mathrm{NA} \\ \mathrm{NE} \end{gathered}$	-	-	:			:
				:	-	-		:		:		:
7970 (-152				:	-	-		:			:	
${ }_{7}^{797005-162}$			:	:	-	-		:	:		:	
$79708-164$ $79700 \cdot 165$	:	:	:	:	-	-	:	:	:		:	

All abowe units operate at 45 los
BAN
BAN = Read Alles Write
RO = Read Orily
hastes = ln|l|al PE unit
Slave = eoditional PE unif (3 Der master)
Options
Price
001: Change speed to 37.5 ips
N/C
002: Change speed to 25.0 ips
N/C
003: Change speed to 22.5 ips (7970E only)
N/C.
007: Add front panel unit select (not available with Op( 020)
add $\$ 155$
020: Add frone panel parity select (7970E. 164 and 165 only)
add $\$ 80$
021: Add dual speed (7970E-162, -163, - 164, and -165 only)
add \$105
048: For operation from 42 to 60 Vdc source
add $\$ 750$

## Specifications, 7970 serles

Tape speed: 22.5. 25. 37.5. or 45 ips .
Real diameter: up to 10.5 in ( $(26.7 \mathrm{~cm})$.
Tape: computer grade.
Whth; 0.5 in .
Thickness: 1.5 mils.
Tape tension: 8.5 ounces nominal.
Tape format: ANSl compatible.
Rewind speed: 160 ips .
StaryStop Travel: Read-After-Write; $0.187 \mathrm{in} .=0.020 \mathrm{in}$.
Power requlrements: IIS or $230(=10 \%)$ V ac, 481060 Hz single phase. 400 VA maximum (on high line).
Operating enviranment (hardware)
Amblent temperalure: 0 to $+55^{\circ} \mathrm{C}\left(+.3210+131^{\circ} \mathrm{F}\right)$.
Relative Humidity: $30 \%$ to $80 \%$ noncondensing.
Altitude: $10,000 \mathrm{~N}$. (3048 metres).
Physlcal charactertstics
Size: $610 \mathrm{H} \times 483 \mathrm{~W} \times 400 \mathrm{~mm} \mathrm{D}\left(34^{\prime \prime} \times 19^{\prime \prime} \times 15.75^{\prime \prime}\right)$. Depth from mounting surface, 305 mm (12").
Welght: $63.5 \mathrm{~kg}(140 \mathrm{lb})$ maximum.
Ordering information
7970B-127 Magnelic Tape Unit
$\$ 6360$
7970E-151 Magnetic Tape Unif
$\$ 8885$
For complete specifications and a list of accessories, request fechinical data sheeds $79708 / \mathrm{C}$ or 7970 ). OBM prices and discoumt schedules are available.

## - Build Your Own Automatic Syslem



## Descriptlon

The muliprogrammer is the vitul link beiween a Hewlett-Packard desktop computer or minicomputer and your test or control process. As shown above, muluproyramger products include interface kits, 6940 B and 694 IB mainframes, and a family of plug-in cards that provide the $1 / 0$ capabilities shown above and on the next page.
Each 6940B Multiprogrammer mainframe holds up to fifteen plug-in cards. For additional 1/O capability, a chain of up to fifteen 6941 B Multiprogrammer Extenders may be cabled to the 6940B Multiprogrammer expanding the maximum capacity of the system to 240 plug-in cards.
Thousands of Mutiprogrammers are in use now as part of user-defined-and-assembled systems for production testing and control, dala acquisition, process monitoring, lje testing, quality control. and component evaluation. Production Engineers lind that the Mulliprogrammer is a versatile and convenient instrument for industrial
measurement and control applications. Additional information for all multiprogrammer products is available in a free, 48 -page broćhure. locluded are delailou specifications as well as applica. tions, programming, and interfacing information. Ask your HP Salcs Engineer for publication number 5952-3982, or use card at rear of catalog.

Additional information for all mulüprogrammer products is availahle in a free . 48-page brochure. Included are detailed specifications as well as applications, programming, and laterfacing information. Ask your HP Sales Engineer for publication number 5952.3982. or use the card at rear of catalog.


## Multiprogrammer: versatile I/O expander \& converter Model 6940B (cont.)

- Stimulus
- Measurement
- Controll
- Data acquisition


## Multiprogrammer I/O card function

funclons			Applications	Cards used
$\left\|\begin{array}{c} S \\ T \\ U \\ M \\ U \\ U \\ U \\ U \\ S \end{array}\right\|$		Piongiammanlr   DC wollape.   and   Curem!	Die output wolhage fug to 1000) and current (isp to 1000 N of thirte-seven different HP power supplies can be programmed to provide bias in sutomatic test systems or control ol electeomechanical process equipment.	Resistanca   Output   69501A $69513 A$
		Digeital-re-ninclof Cowess:on	Treetive tit valtage and curtent DAC's for strip chart, x-y, eniul analog tarpe reordings as weli as controf ol analog programmable instruments. and process control devices with $0-5$ voll of $8-20 \mathrm{~mA}$ inputs.	Voltage DAC,   693218. Curfent DAC.   69370A. Regulator   693518
		lime and Frequency Reference	One-stivt timing pulses, programmable from 1 asec to 40 days. and crysta-euntrolled pulse trains in fixed irequencies of $\mathrm{I}, 10.100,1 \mathrm{~K}, 10 \mathrm{~K}$, and 100 kHz seme as Ime base references for control, measurement, and dats alcquissition.	Fimet, 1636000: Frequency Rel. 69601B.
$\left\|\begin{array}{c\|} \hline M \\ E \\ A \\ S \\ S \\ U \\ R \\ E \\ M \\ E \\ N \\ N \end{array}\right\|$	$\frac{\frac{1}{=}}{\frac{-}{T}} v_{x}\left(\frac{1}{4} r_{x}\right\} R_{x}$	Yoltage, Curren: and Resistance. Neasustments	Measure viltages, in the probsonee of 100 Vol common mode Taiss. Consections, a mastor acress tite input permits current measurements lor 4 - 20 mA current hoops used in process control. Combine voltage menitor and currert DAC cards for esistance measurements.	vijlrage Manitan, 69/21A, Gurtent D4C, 69370A, Regulator 69351日
	${ }^{v} \pm \wedge \wedge N$	Frequency   Messurements	The oulse counter card ascumulates counts aset a precise vime interval then al programmable timer card is cemnertes p the enable line of the caunter The progism divides the count ty the time intenal to measure trequencies fran 200 Watiz to 0.001 Hz	Pulse ©ounter 69435A, Iimer 696008:
		Pulse Counting Preses Up/()own	Counter may be preset to any value wilthin count range of 0 po 4095, The programe can examine the counter withzit disturbing the counting process (fead on the fly).	Pulse Countes, 69435A.
		IIme interval Measurement	Dlapsed time between iwa events can be measured in ine range cif 10 asec to. 1 hour by counting a known treguency over the unknowni interial. The program divides the accumulsted caunt by the known fresuency to determine the inferivel.	pulse Ciounter. 69435A: Frequeni-y Reference, 696018 .
$\begin{aligned} & \mathrm{C} \\ & 0 \\ & \mathrm{~N} \\ & \mathrm{~T} \\ & \mathrm{R} \\ & 0 \\ & \mathrm{~L} \end{aligned}$		Slepung Motor Contiol	One output word to card prodeces fram I in 2047 squgre. wave pulses at eitrier of two outpuls (CW oi CCK) to contiol motar translators. Output pulses əre sisa used for pulsa train update of supervisory control stations.	Stepping Molor Gensrol. 69335A.
		OLRIEV Dulput and Sw: Ehing	Twelve the of Aata in TL Dofen coflector. or SPST retay. fontach lom provide digial cimiol al arspuments. indicators. and solid-stute al telays.	Th. 693314. Opem Collecter, 69332 A Relay Out, 6933014 Relay Out/Readtack, 692348.
$A$$C$00$U$$I$$S$1$T$10$N$		Scanning and Input Muhtiplexing	Simple single-ended switctes or mult-wire scancier miatioes are fornise by interconmecting relays on a Relay Daput or a Relay Outpitikeadback Card. The relay output card scanners act as irgut multiplexers. for Voltage Monitor. Pulse Counter, and Digutal Inpot Cards.	Relay Oulpul. 63330A. Relay Output/Readback, D8433
		Event Sansing	If is orten necessary for a system to respanid quickly to alarm conditions, operator intervention or oltier requests lor immediate service. This service request is made via a programm interrupt generated by either an want sense of a procass interripit card.	Event Gense, 59434R: Prozess internupt. 69436 A
		Digital Inpui	Digital inpul carts saccep! 12 tits of data srom digitu! measuring insituments, push bultmis. stritelies balsys. and other aigital devices in the form of log.c theish of cariact clogures. Digital data sources wifh moie thän 12 bits of data use severai digital inout cards	D:pital Inpen, 69431R    laple 69400~

## Desktop Computer-Based

## Multiprogrammers

Unless your automatic system requires the high-speed execulion of a computer, there's a good chance you can titke advantage of the cconomy, flexibility, and case-of-programming offered by a deskiop computer-hased multiprogrammer. The hear of the multiprogrammer apprusch to real-lime systom design is the HP Deskiop Connpuling Controller.
9825A HPL language computing controller: a powerful progrummable calculator that features a high-level language particularly suited to controller applications. Designed principally for engineering. rescarch, and statistics use, it has many features previously found only in minicompulers.

A busic syntem includes an HP deskiop compinting coneroller, a 6940 B Multiprogiammer, from one to fifteen plog-in l/O edads, and the interfacing accessories of your choice. Model 6941B Extender mainframes and additional l/O cards can be used to further expand the sysicm.

## HP-18 Interracing Accessories

For HP-IB systems, a 59500A Muhiproginmmes Interface unit is required, togethor with the HP-IB interface card associated with your computing controller ( 98034 A card for 9825 A conirallen).

## HP-IE Multiprogrammer Cabllng

Compuilng controller-to-59500A Intertace Unit: One HP-IB cable No. 10631 supplied with the controller interface card. Additional l0631 cables can be ordered separately in 1, 2, or 4 meire lengths.
59500A-to-6940B: Slandard 18 -inch ( 0.46 m ) chaining cable No. 1454 IA. supplied with 59500 A .
6840E-to-6941B: Standard 18 -inch ( 0.46 m ) chaining cable No. 1454 IA. purchased separately. Lengths up $10100 \mathrm{ft}(30 \mathrm{~m}$ ) are available on special order.
Plugin card-to-users device: I4SSSA connector provided with mosi multiprogrammer plug-in cards for user to fabricate own cable.

## 16-Bit Dupiex Intertace

The multiprogrammer can also be interfaced directly 10 a 9825 A computing controller using the 98032. A. Option 040. controller interface card. The 980321A. Option 040 includes the basic interime cand, it boot, and a cable that comes ready to connect to the 6940R mantiame.

## Dacumentatlon Package

A complete documentation package is supplied with each purchasc, including a User's Guide for the selected deskiop computer. a Multiprogrammer User's Guide, and Operating and Scrvice Manunals for the various Multiprogrammer mainframes, plug-in cards. and accessories.

## Minicomputer-Based Multprogrammers

Hewlett-Packard computers are interfaced 10 mos: Multiprogrammers with HP Interiace Kit 14550A. The kir contains the HP computer-fo-6940B cable, verification and driver software, and plug-in cards and cable.
14550 A intertace KIt for HP Mintcomputers
This kit provides all the equipment necessary 10 install, verify. and operate a Multiprogrammer with HP 2100 series computers. This kil includes:

1. A specially mofified 12566 card. Ih-bit duplex regiverer card that plugs into the HP compuler. Hardware manuals, a lest conncetor gad as soltware verification routine for the microcircuit card are provided in the kit.
2. A 14540 A Mulsiprogramnier-to-12556B $12-\mathrm{fl}(3 \mathrm{~m})$ cable.)
3. A 69431A Digilal Inpul Cand with Option (995, 69331A Digitad
 Complete Diagnosic tepe. This equipment is used to completely lest the digital paths betwees the computer aod the Microcircuit catd, 14540A cable, Multiprogrommer Manframe, 14541A Chaning Cables. 649113 Sultipresemmmer Extenders and each Muliprogrammer plug-in I/O slot. The diagnostic also tests the front panel lamps and proximity switches by intertacing with the opciator.
4. Binary object lapes and software operating manuals for BCS, (DOSiDOS-M).jand RTE Multiprognamier [3riveli, Also included is a tape and manual for the RCS Multiprogrammer Library that allows the Muliprogrammer BCS Driver to be used with FORTRAN or ALGOL.
5. Instrictions that allow you to completely test the Interface Kit and Mainframes. On-site installation by HP is not included with the kit. The kit is designed to helpyou become familiar with the Multiprogrammer as you install it and verity its operation.
14540A Maln Input cable: This, 12 -ft ( l m ) catele connects the Mu. (iprogrammer to the specially Mudified Ciroumd Jut 12566 B Mierocircuil Card. This able is included in the 14550A Interiace Kit.

## Comman Accessories

The following muliprogrammer accessories are common to all types of interfaces:

14641A chalning cable; This cable connects 6940B to 6941B Mainframes and 6941 B to other $6941 \mathrm{~B}^{\prime} \mathrm{s}$. Cable is $18^{\prime \prime}$ tong (. 46 m ).
14533 pocket programmer: The pocket progmmoner is used to check digital input/oulpul connector JI of the 6940B. Changes in the switch positions on the pocket programmer are visible on the fiont panel of the 6940 B , and ithe ourpus of the 6940 B proximily switches are available at test points on the pocket programmer.
14534A pocket progremmer cable: The pocket programmer plugs directly into the 6940 B . The z -foot extender cable allows you to operate the pocket programmer in front of the 6940 B .
14551A multiprogrammer service klt: This kit allows rapid troubleshooling of a multiprogrammer syritm to the plug-in board kevel to minimize system downtime. The hasic hit includes: spare components for $6940 \mathrm{~B} / 6941 \mathrm{~B}$ mainframes and plug-in liO cards, spare plug-in boards for mainframes, software ard hardware necessary to run diagnostic tests on a deskiop computer or minicomputer-based multiprogrammer, an extender card. and complete service docbmentation. If desired, the kil can be expanded in accondance with specilic needs of the user.

## Condensed Specifications

## 6940B/6941B Common Specifications

Input/output card positions: Maximum of Is plug-in input or output cards per mainframe. Hinged front panel provides access.
Malnirame data connectors: Two so-contact, ribbon connectors. Date tranger pate: up iu 20.000 words isecund.
Maximum data resolutlon: 12 bits per plug-in card.
Accessorles furnished; Data Input Plug. PC Board Extender Cord.
Coollng: Nawral convection.
Temperature: $0^{\circ} \mathrm{C}$ io $55^{\circ} \mathrm{C}$ operating, $-40^{\circ} \mathrm{C} 10+7 \mathrm{~S}^{\circ} \mathrm{C}$ stornge.
Slze: $172.2 \mathrm{H} \times 425.4 \mathrm{~W} \times 539.8 \mathrm{mmD}\left(6.78^{\prime \prime}: 16.75^{\prime \prime} \times 21.25^{\prime \prime}\right)$.
Power: $100 / 120 / 220 / 240 \vee$ ac (sclectable, $48-440 \mathrm{~Hz}, 230$ walls.

# Multiprogrammer: versatile $/ / 0$ expander \& converter <br> Model 6940B (cont). 


#### Abstract

68408 Specifications Front panel controls: Power ON/OFF switch and indicator lamp. REMOTE/LOCA.L switch for selecting computer or manaal control, 19 proximity swilches for manual data entry and conirot. Welght: nec, 15.9 kg ( 35 lb ), Shipping. 19.5 kg ( 43 lb ).

\section*{6941B Specificatlons}

Front panel controls: Power ON/OFF swith and indicator lamp. Weight: net, 15.2 kg (33.5 lb). Shipping, 18.3 kg ( 40.3


 (b).
## Programmable Plug-In Cards

## Output Cards

69500A-69506A Resistance Output Cards: Provides a single 12 -bit resistance programming channel, The programming coefficients of thesc models are compatible with HP programmable power supplies equipped with Option 040. Model 69500A is supplied without resistors allowing the user to install his own. 69510A-69513A Reslstance Output Cards: Provides (wo 6 -bit resistance programming channels: these models program the current limit of HP power supplier equipped with Option 040.
69321B Vollage D/A Converter Card: Provides a high speed, bipolar oupput voltage. Output range is from -10.240 to +10.235 V , at 0.5 mA . Conversion speed is $30 \mu$ sec maximum to within 5 mV of final value. (6935iB voltage regulator atso required.)
69330A Relay Output Gard: Provides 12 separale form A (SPST. normally open) mercury-wetted contact oulputs that reflect the stitus of 12 progrimmed data bits. Includes gite/thes cirinits for exchange of control sienals with user's device.
69433 A Relay Output/Readback Card: Provides 12 separate form A (SPST, nomally open) mercuryweited contact outpuls. Also supplies 12 inpul daw lines that can be read by the controller and which indicate the relay coil vollage stalus.
69331A Dlgital Output Card: Provides programmed microcircuit logic level outputs on 12 separate outpul lides. Card ineludes gate/flag circuits for exchange of conerol signals with user's device.
693324 Open Colloctor Output Card: Provides 12 open-collector driver oupits. IC buffers on the card act as switches for voltages up to 30 volts de and currenis up 1040 mA .
69335A Steppling Motor Control Gard: Used to drive stepper molor and pulse-update lype controls. Can be programmed to generate from I to 2047 pulse outputs to cither of two zerminals.
69600B Programmable Timer Card: Can be programmed to generatc erystal controlled, one-shot timing pulses. Time increment is variable from $1 \mu s$ co 40 days.
69380A Breadboard Oulput Card: This card allows user to design and built a custom analog or digital output card. Cand includes basic address. storage and conurol signal buffer circuits.
69325A-69328A Power Ampilfler Control Cards: Provides resistance outputs for controlling the voleage, current and gain of HP Model 6825A-6827A Power Supply/Amplifiers

696018 Frequency Reference Card: Provides sir cixed square wive oulpuls derived from a : MHz crystal at frequencies from 1 Hz to 100 kHz .

## Input Cards

69427a Voltage Montor Card: This card monitors bipolar de voltages in the range of $+10.23510-10.240$ $V$, and retums a 12-bit two's complement digital word to the conlroller to indicate the magnitude and sign of the measured voltage. Up to 150 conversions per second can be performed as commanded by the propram or an external gate input. $\pm 1 \mathrm{~V}$ and $\pm 100 \mathrm{~V}$ inputs available
69431A Digltal Input Card; This card monitors 12 bits of TTL, DTL.. or contact closure data from user's device. Card includes gale/flag círcuits for exchange of control sigrials with user's device. Return bits to controller refleal the vitalus of $1 ?$ input bits.
89430 A Isolated Digltal Input Card: Thin card monitors 12 bits of inpul das from user's device. Al input lines are isolated from one anotber and from the $\$ 300$ Multiprogrammer power supply. Eicht options of the card are available to accommodate cither ground-true or positive-Ine logic sense inpurs and various inpul levels.
69434A Event Senge Card: This card compares the magnitude of an external l2-bil inpul word with a stored reference word and generalen is tervice request for any of four conditions, depending on the placement of a jumper on the card. The four pussible conditions are: In. Ref, In $\neq$ Ref. In:- Ref. In $\because$ Ref. The reference word is loaded from the coniroller. Both the inpur and reference wonds can be read back to the controllcr.
69435A Pulse Counter Card: This card counts pulses, up or down, in the range of 010 \$095. A carry or borrow pulse is generrted as the counc goes above 4059 or below 0 . These pulses allow mulifiple counter cards to be cencirded for greater counting capability or they can serve as alarm signals. The cand can also be used as a pre-sel counler
69438A Process Interrupt Card: This card provides TTL and open collector compatible edge delectors: one positive and one negative for each of 12 slorage latches. Logic transitions lasting 100 ns or longer are detected. stored. and used to generate a service request to the controller.
89480A Breadboard Input Card: Allows user to de sign and buitt a custom analog or digital impul card. Card includes basic address and control circulls.

## 59500A Intertace Unit Specillcations

Convents the serinl ASCII iuphanumerics of the HP- 18 to the 16-bit parallel formst required by the $6940 \mathrm{~B} / 6941 \mathrm{~B}$ Multiprogrammer. The 59500 A design is optimized for ease of programming the 6940B/69418.
Front panel controls: Power ON/OFF switch and indicator. LED's indicate mode and gate/flag stalus between HP-IB and the Multipnogrammer for system check-out and mainienance. Coolling Naturel convection.
Temperature; $0^{\circ} \mathrm{C}$ 10 $55^{\circ} \mathrm{C}$ operating: $-40^{\circ} \mathrm{C}$ io $+75^{\circ} \mathrm{C}$ stomge. Slize: $82.6 \mathrm{H} \times 425.4 \mathrm{~W} \times 463.6 \mathrm{mmD}\left(3.2 \mathrm{~S}^{\prime \prime} \times 16.75^{\prime \prime} \times 18.25 "\right)$. Weight: 5.4 kg ( 12 lb ).
Power: $100 / 120 / 220 / 240 \mathrm{~V}$ ac (selectable) $48-440 \mathrm{~Hz} .15 \mathrm{~W}$.


## Laser Measurement

The Hewlen-Packird 5596A Laser Calibration System utílizes a precisely-known wavelength of light to provide a portable. easily used dimensional measurement lool for such parameters as length, angle, straightness, squareness and flatnes.

The 5526A Laser Calibration System is used in a wide variety of appliontions where very accurate physical measurements are required, such as characterizing the positioning accuracy and geometry of machine tools and measuring machines.

A wide varicly of output devices are available to record the measurement data including digital printers and $\mathrm{X}-\mathrm{Y}$ recorders. The Option Xss Laser/Calculator System allows the measurement data to be transiened directly from the Laser Calibration Systerv to uhe 9815A Programmable Cal. culator and immediately processed by prewritien metrology programs. The reduced data is then presented in cither printed format or plotled to provide repor quality graphs of the measurements.

## Quartz Crystal Technology

Hewlet1-Packard laboratories have doveloped quare erystals which respond to temperalure or pressure with amazing
linearity, stability, accuracy, and sensitivity. Quartz crystals resonate in electronic oscillator circuity at a very precise frequency. Hewlett-Packard has discovered a way to produce quarlz crystals whose resonate frequencies vary extremely linearly with temperature or pressure. For example, the resonale frequency of a 2804 A temperature sensing crystal vanes 1000 Hz (nominal) per ${ }^{\circ} \mathrm{C}$. These resonate frequencies are conditioned by electronic circuilry to produce exceptionally high resolution temperawre or pressure measurements.

## Digital Thermomeler

AP's 2804A Quarz Themmometer provides exiremely precise. reliable measure ments with standard resolution of $0.0001^{\circ} \mathrm{C}$ over the range -80 to $+250^{\circ} \mathrm{C}$. The excellent sensing characteristics of the quartz thermometer are enbanced by the advantages of direct digital readous (no bridge balancing. or reference to resistance- or voitage-temperature tables or curves), immunity to noise and cable resistance effects. and no requirement for extermal equipment such as reference junction. Temperature can be measured up to 4500 fees from the 2804 A with optional amplifiers.

Nearly all internediate range digital thermometers use resistance, thermistor, or thermosouple sensors. Bccause of its good sensing charocteristics, Hewlett-Packard uses a platinum resistance sensor in its general purpose 2802A thermometer. Platinum resistance sensors have very good accuracy. slablity, linearity and reproducibility. The 2802 A features two ranges: $-200^{\circ} \mathrm{C}$ to $+600{ }^{\circ} \mathrm{C}$ with $0.1^{\circ} \mathrm{C}$ resolution and $-100^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$ with $0.01^{\circ} \mathrm{C}$ resolution. The display unil may be used with other HP snap-in modules to make a volimeter, a multimeter as well as other insuruments.

## Quartz Pressure Gauge

The Hewlel1 Packard 2811B Quarz Pressure Gauge can detect pressure changes as sarall as 0.01 psi in 10.000 psia. Precisiod pressure measuring capabillty and rugged construction make the HP 2811B Quartz Pressure Gauge (Probe and Signal Processor) ideal for applications requiring surface readoul such as oil well logging, oceanographic reseanch, and studies of sublerranean hydrodynamics. The 2811 B recording options can be connected directly to the pressure gauge output for direel readout. strip char recording or digital printout of pressure data.

# PHYSICAL AND OPTICAL MEASUREMENTS Laser transducer for "build-in" applications Model 5501A 



## Systems description

The 5501 A Laser Transducer is the basis of a lincur displacement measuring system which brings the many advantages of interferometry so builders and users of accurate positioning equipment at a cost comparable wilh conventional devices. Using a single laser source, up 10 a axes or motion may be monitored simulianeously. This feature plus numerous other dexign innovalions, significanily lowers the cost of laser interfesometer feedback. A range of output devices offers the choice of feedback control or digital display. Although the Laser Transducer is designed for original cquipment manufaclurers (OEM), simple installation techniques make it altraclive for retrolit by end-users as well.


Optional accessorles
A wide variely of Interferometers, Retrorenectors, Beam Splitters, and Beam Benders allow application of the 5501A Laser Transducer to the moss complex neasuremem problems.
LInear Interferometer: most economical and widely used for linear displacement measurements.
Plane mirror Interferometer: used for precision menturement and control of X-Y stage motion.
Single beam interferometer: extromely smiall linear measurement interferometer for applications where size and weight are critical. Beam splitters and benders: optical components to divide and direct the laser beam to the individual measurememt axes.

## Electronle outputs

A range of outpot formats are available for the S501A Laser Transducer which provide compatibility with a wide variety of measurement applications.
Computer interface electronites: interface the 5501A laser Transducer to virtually any digital processor or controller. This universal binary interface is ideal for position conmol systems with the most demanding response requirements.
Calculator interface olectronlcs: based on Hewlen-Packard Programmable Calculators and the Hewilet-Packard Interface Bus provide completely integrated measurement packages. Designed for acquiring. reducing and displaying measurement data, this interface allows simple application of the 5501 A Laser Transducer to a wide varicty of measurement oriented machines.
Englleh/merric pulse output electronics: provide a universal inerface to zimost all numerical controls for machine took. Designed primarily to facilitate installation of tbe 5501A Laser Trans. duccr on machine tools by Original Equipment Manufacrurers. this interface provides inch or metric value pulses over a wide range of resolutions.

## Specifications

Resolution: $0.16 \mu \mathrm{~m}$ ( 6 microinches) or $0.08 \mu \mathrm{~m}$ (3 microinches) using Plane Miror Interferometer. Resolution Extension can increase measurement resolution up to a factor of 10 .
Accuracy: $\pm 0.5$ parts par million.
Range: up 1060 meters ( 200 feet) depending upon conditions (sum of axes for mulli-axis configurations).
Number of axes: up 10 six. depending on system configuration and environmental conditions. Maximum allowable measurement velocity: 18.3 meters/min ( 720 inches/min).

Ordering intormation	Price
5501A Laser Transducer	$\$ 585$
10770A Receiver	$\$ 450$
10700A 33\% Beam Spliner	$\$ 350$
10702A Linear lnterferometer	$\$ 1350$
10703A Retroreflector	$\$ 50$
10707A Beam Bender	$\$ 250$
5501A Options	
251: Hewlet-Packard Interface Bus Electronics	$\$ 5760$
450: English/Merric Pulse Outpur	$\$ 7130$

450: English/Merric Pulse Outpur

Other optical and electronic interface options available: please request 5501A data packel.


Cholce of options for Length, Angle, Flatness, Siralghtness Non-contact and $2 A x e s$

## Configuration

The 5526A Laser Mcasurement System is a major advance in economical dimensional merralogy. A choice of options allows the measurentent of length, angle, flatness, straightness, squareness. and paralielism. In addition, output options are ivailable to reduce the data to printed or ploted format. The 5526A, which forms the base of the system includes the 5500C Laser Head and the 5505A Laser Display. Measuring and output options are added to duis base systen to aslow modular build-up of measurement capability.

## General capabilitles

The system is a highly accurate displacement measuring tool with a resolution of one millionth of an inch ( $0.01 \mu \mathrm{~m}$ ) for linear measurements and 0.1 are-second for angular measurements. Fully automatic tuning, instant warm-up and remote interferometric measurement techniques assure drift-free accuracy from the moment of swith-on. A laser tube lifetime in excess of 10,000 hours can be conlidently expected and the unique optical heterodyning principle makes for practical. convenient measurements in adverse environments.

## Measurement options

## Opt 010 Incar Interterometer

This option consists of the 10565 B Remote Interferometer and a 10550B Retroreflecior. Since the Remote Interferometer is completely passive, it makes for an almosi perfect linear measuring instrument. Complete thermal stability is assured since the laser head can be some distance away on a tripod.
Opt 020 linear - angular/fatness interterometer
While ineloding all the capabilities of the Option 010 Linear lnterferometer, this option also provides angular measurement ability, The addition of passive optical modules allows fast. accurate measurements of pitch, yaw, or flamess. The option also includes two turning mirrors designed especially for rapid calibration of surface plates.

## Opt 030 atralghtness interterometer

This option converts the 5526A into an interferometric straightedge. Lateral deviations from a perfectly straight line are displayed to a resolution of one millionth of an inch ( $.01 \mu \mathrm{~m}$ ) over an axial range of 10 feel ( 3 m ). Unlike aligrment lesers, the Hewhet-Packand system does nol depend on the pointing stability of the laver beam for its reference. but instead uses iwo rigidly mounted plane mirross and a special prisn interferometer. A long range version (Option 31) is alse available with a resolution of icn millionths of an inch ( 0.1 $\mu \mathrm{m}$ ) over an axial range of 100 fect ( 30 m ).
ideal for determining geometric characteristics of machine tools. the Siraighiness Option can also measure such parameters as parallelism and with an optional optical square. squareness.
Opt X55 series lager measurement/calculator systems
The combination of the 5526A Laser Measurement System with the Model 9815A Calculator provides a complete problera solving systern for a wide variety of measurements.

A package of metrulogy applications programs enables fast data reduction and ploting of measuremens such as surface plale calibraion. lead error analysis and geometry characteristics of machinc tools and measuring machines, including straightness, parallelism and squareness. One important program included implemens the NMTBA (National Machine Tool Builders Association) recommendations for accuracy and repeatability of numerically contralled machine tools.

## 5510A Automatic compensator

The 5510A Automatic Compensator providis accuratc, continuous correction for variations in the refractive index of air and for temperalure of the material being measured. Ais temperature. pressure, humidity and material temperatare are measured by rugged sensors designed especially for use in machine shops.

## Additional optlons

Other options to the 5526A Laser Meatsurement System areavailable including a Single Beam Interferometer which in conjunction with the non-Contaci Converter measures displacement of reflective surfaces. The Plane Mirror Converter when added to the Remole Interferometer of Option 010 allows measurements from a phane mirror surface with relative insensitivity lo dirror till.

## Brief specification

## 5526A Laser/display

Lasar: Helium-Neon type. Fully automatic uning. Instant warmup. Accuracy (for itll linear displacement measurements): $=0.5$ parts per million $=1$ count (Merric $\pm 0.5$ parts per million $\pm 2$ counts).
Resolution: normal and smooth modes.
Normal $0.000,01 \mathrm{in}$. Mestc: $0.1 \mu \mathrm{~m}$. Angular: 1 are-sec X10:
0.000 .001 in . Metric $0.01 \mu \mathrm{~m}$. Angular: 0.1 are-sec.

Maximum allowable slgnal loss: $95 \%$ ( -13 dB ).
Maximum measuring veloclty: 720 in $/ \mathrm{min}$ ( $182 \mathrm{~m} / \mathrm{min}$ ).
Atmospheric and meterlal compensation: mannal input from lables. SSIOA Automatic compensator optional.

## Opt 10 Innear Intenterometer

Accuracy: as for 5526A Laser Display.
Maxlmum messuring range: up to 200 fect ( 60 m ) depending on conditions.
Opt 20 linear: angular/flatmess Interferomefer Linear specifications are as for Opl 10.
Accuraey: -0.1 are-second ( $=1$ count in last digi) up $10=100$ arcseconds. $\pm 1$ arc-scconds ( $\pm 1$ count in last digit) up to $=1000$ are. seconds, $=4$ are-seconds per degrec ( $=1$ count in last digii) up to $=10$ degrees using corrcction table.

## Opt 30 short range stralghtness Interterometer

## Accuracy

Inch: $\pm 5$ microinches/foot $\pm 1$ count in last digit.
Metric: 0.4 micrometerimeter $=2$ counts in last digil.
Callbration: $=3 \%$ of realing.
Resolutlon: as for 5526A 1 aser/Display.
Lateral range: $\pm 0.1$ inch ( $\simeq 2.5 \mathrm{~mm}$ ).
Axlal range: 10 feel ( 3 m ).
Opt 31 long range stralghtness Interterometer
Accuracy: as for Opt 030.
Callbration: $=10 \%$ of reading.
Resolution
Normal: 0.0001 inch ( $1 \mu \mathrm{~m}$ ).
X10: 0.00001 inch ( $0.1 \mu \mathrm{~m}$ ).
5510A automatic compensator
S526A/S510A System accuracy (worse case):

1. For air temperature wishin range $68-85^{\circ} \mathrm{F}\left(20-30^{\circ} \mathrm{C}\right) 1.3 \mathrm{ppm}=1$ cound (metric $1.3 \mathrm{ppm}=2$ counts).
2. For air temperature within sange $5 S-105^{\circ} \mathrm{F}\left(13-40^{\circ} \mathrm{C}\right) 1,5 \mathrm{ppm} \pm 1$ count (meric $1.3 \mathrm{ppm} \pm 2$ counts).

5526A Optlons	Price
010 Linear lnterferometer	$\$ 4520$
020: Linear + Angular/Flaness Interferometer	$\$ 7140$
030: Suraightness Interferometer	$\$ 4375$
900: Rack Flange Kit	$\$ 10$
X55: Laser Measurement/Calculator System	$\$ 35,905$
Ordering Intormation	
5510A Automatic Compensaior	$\$ 5150$
5526A Laser/Display	$\$ 11,795$

010 Linear laterferometer $\quad \$ 4520$
020: Linear + Angular/Flatness Interferometer $\$ 7140$
030: Straightness Interferometer
\$4375
ac. Rack Fiange Kit

Ordering Intormation
5526A Laser/Display
$\$ 11.795$

- 0.01 psi resolution ( 69 Pa )
- 0.025\% Full Scale Accuracy
- Direct Surface Readout


2811B Quertz Pressure Gauge
0.01 psil Resolution at 11000 psi ( $69 \mathrm{PA} @ 69 \mathrm{MPa}$ )

The HP 2811 Q Quarzz Pressure Gauge measures wellbore pres. sure with a resolution of 0.01 psi over a dynamic range in excess of 11000 psi. This capability makes it possible to measure pressure changes that cannot be detected with conventional gauges using bourdon tube transducers.

This ability to detect and record small pressure changes allows nophisticated lest technigues to be used cconomicaly. For example. since the super-sensitive HP Quartz Pressure Gauge can detect small pressure transients at observation wells. pulse tests can be conducted with extremely short pulse cycle times at the stinuulus well. Because the shut-in time is reduced, the permeability and formation thickness between wells can be determined at a substantially lower cose.

With the 2811 B recording options, pressure transiencs can be observed and recorded on the surface while the test is in progress. When the surface readout indicates the fest is completed. the gauge can be retrieved immediately. Pressure data can be read directly without intermediate sealing or other calculations.

The 2811B Quariz Pressure Gauge was specifically designed for pressure measurement in oil and gas wells and it is used by many oil companies and well service companies. However, its high resolution pressure measuring capability and rugged construction also make it ideally suited for occanographic research and subterranean hydrodynamie sludics.

## Description

The 2811 B consists of a 2813B Quanz Pressure Probe and a 2816A Pressure Signal Processor. A frequency signal proporional to pressure is transmitted from the bottom-hole pressure probe to the signal processor on the surface. It travels through a single conductor, armored electric line. The processor conditions the pressure-related signal to drive a separate electronic frequency counter for direct readout. if a presel counter is used sincluded in $281 / B$ recording options). wellbore pressure will be displayed in psi. Na scaling or intermediate calculations are necessary.

For ficld use. the 2811 B Analog \& Digital Reconding Option is available. II provides á convenient method of obtaining direct visual

- Simple Operation
- Long Term Stability
- 200-11000 PSIA Range


HP 2811 Analog \& Digital Recording Option 028/027 Mounted in Field Case
display and a permanent record of pressure dala. Pressure transients are recorded on a strip chart recorder and a digital printer. All instruments are shock mounted in a rugged field case to withstand rough handling.

## System specifications

Senaltivity: 105 Hz psi nominal ( $105 \mathrm{~Hz} / 6.9 \mathrm{kPa}$ ) output of signal processor.
Probe operating presesure range: $0-12000 \mathrm{psi}(0-82.7 \mathrm{MPa})$.
Probe operating temperature range: $32^{\circ}$ to $302^{\circ} \mathrm{F}$ ( 0 to $150^{\circ} \mathrm{C}$ ). Slgnal processor operating temperature range: $32^{\circ} 10131^{\circ} \mathrm{F}\left(0^{c}\right.$ $1055^{\circ} \mathrm{C}$ ).
Callbrated pressure range: 200-11.000 PSIA ( $1.4-75.8 \mathrm{MPa}$ ).
Resolutlon: $0.01 \mathrm{psi}(69 \mathrm{~Pa})$ when samplíng for a 1 -second period.
Repeatabllity: $=0.4 \mathrm{psi}(\underline{2} .76 \mathrm{kPa})$ over entire range.
Accuracy (al thermal equilibrium) If operating lemperature is known
with)n $1 . \theta^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ : $\pm 0.5$ psi or $\pm 0.035 \%$ of reading ( $\pm 3.45 \mathrm{kPa}$ or $\pm 0.025 \% \mathrm{R}$ ).
wlthin $18^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right):=1 \mathrm{psi}$ or $=0.1 \%$ of reading $( \pm 6.89 \mathrm{xPa}$ or $\pm 0.1 \% \mathrm{R}$ ).
with $1038^{\circ} \mathrm{F}\left(20^{\circ} \mathrm{C}\right)$ : $=5 \mathrm{psi}$ or $\pm 0.25 \%$ of reading ( $\pm 34.5 \mathrm{kPa}$ or $\pm 0.25 \% \mathrm{R})$.
Dimenglons and welghts
2813B Probe: $17 / \mathrm{m}^{\prime \prime}(36.5 \mathrm{~mm})$ OD by $39 / 9^{\prime \prime}$ ( 1000 nm ) long. Weight: $11 \mathrm{lb}(5.0 \mathrm{~kg})$.
$2816 A$ Slgnal Processor: $154 \mathrm{mmH} \times 197 \mathrm{~mm} \mathrm{~W} \times 279 \mathrm{mmD}$ $\left(61 / 10^{4} \times 73 / 4^{11} \times 11^{\prime \prime}\right)$
2811B aptlons
026: Analog \& Digital Recording. 60 Hz . and
Price
English units
027: Analog \& Digital Recording, 50 Hz , and add $\$ 11.750$

027: Analog
Metric units

## 2811日 Quartz Pressure Gauge

$\$ 16,225$

Incluges HP $28: 36$ Quartz Pressure Probe and carring case, calibration tables, manuat and HP 28164 Pressure Signal Processor. Output of HP $2816 A$ Pressure Signal Processar cornects directly to recording options.


The 2804A Quarz Themmometer allows you to easily mersure temperature with exceptionally bigh accuracy and resolution. Absolute accuracy is 40 millidegrees Celsius over the range of $-50^{\circ} \mathrm{C}$ to \$50 $0^{\circ}$. NBS traceable to [PTS-68. The useable resolution of $0.0001^{\circ} \mathrm{C}$ allows you to measure temperature changes that could not be delected by other digital thermometers.

The 2804A can be used with one or two lemperalure sensing probes. The temperanure of either probe, or their difference, can be measured and displayed under pushbutton control. Display resolsrion is selectable from 0.01 to $0.0001^{\circ} \mathrm{C}\left(0.1\right.$ to $\left.0.001^{\circ} \mathrm{F}\right)$ by pushburlons. An intemal switch allows you 10 casily select measurement in the Celsius or Fahrenheit iemperature scalo.

Temperature is measured and displayed automalically with the microprocessor and electronics provided in the 2804A package. There is no need to balance a bridge, periorm calculations using resistance- or voltage-temperature tables or curves, or to use calibration correction tables. The only adjustment necessary 10 remove effects of thermal bistory on the sensor is a simple ice point or triple point caljbration adjustment using the front pancl thumbwheed switches.

## How it Works

The 2804A temperature sensor is a quartz crystal whose precise angle of cul gives a stable and repeatible relationship between resonant frequency and lemperalure. Each quartz sensor is individually calibrated at the factory over the full temperature range. The calitmen data for each sensor is processed and stored in a calibra1100 module which is supplied with the probe.

In operation, a microprocessor in the thermometer performs the complex control and calculation operations to accurately measure teouperature from the quanz seusor frequency and probe calibration information in the calibration module. The microprocessor also performs self-checks to deteci fauli conditions. If a problem occurs that would give an improper measurement, an error message is displayed to indicate the source of the problem.

## System Oriented Design

The HP-IB option offers you a simple, yet flexible. way to conneel the Quarz Themometer to either an HP compuling controller or printer. Temperature data can easily be sent to a calculator or computer for processing and reconding. All front panel controls can be operated automatically by commands sent on the bus.

The optional analog output convens any three consecutive digits to a voltape beiween 0 and $\div 10$ volts to drive a char recorder. Froni panel controls allow easy adjustment of pen zero and full scale as well as normal or offsed (center-zero) operation. Any three digits can be selected for conversion allowing you to change the full scale value on the recorder.
$0.04^{\circ} \mathrm{C}$ Absolute Accuracy

- $0.0001^{\circ} \mathrm{C}$ or $0.001^{\circ} \mathrm{F}$ Resolution
- $-80^{\circ} \mathrm{ro}+250^{\circ} \mathrm{C}$ Range
- Display of Absolute or Differential Temperature
- Flexible HP-IB Systems Interface
- Variable Resolution Analog Output
- Easy Ice Point or Triple Point Adjustment.

Amblent Temperature Stabllly
A temperalure compensated erysoal oscillator provides the inter. nal reference time base. The displayed temperature will change less than 30 malidegrees $C$ ( 54 millidegrees $F$ ) due 10 an instrument ambient temperalure change fom $01055^{\circ} \mathrm{C}$. A onc MHz extemal frequency shandard may be supplied to the 2804A through a rear panel connector 10 improve the ambient temperature stabillty.

## 2804A speciflcations

Temperature range: -80 to $+250^{\circ} \mathrm{C}\left(-112\right.$ so $\left.+482^{\circ} \mathrm{F}\right)$.
Absolute accuracy: less ihan 50 milidegree $C$ ( 90 millidegree $F$ ) maximum error over the full temperature range with constant in5 trument temperature-NBS traceable to IPTS-68.
Resolution three levela can be selected:

Selection	Temperature Scale	
	${ }^{\circ} \mathrm{C}$	$\mathrm{F}^{2}$
L	0.01	0.1
M	0.001	0.01
H	0.0001	0.001

## General

Dlsplay: 7 digit LED with polarity, decimal, and degrec $C$ or $F$ anmuciator.
Slze: $177 \mathrm{H} \times 212 \mathrm{~W} \times 457 \mathrm{mmD}\left(7^{\prime \prime} \times 8.4^{\prime \prime} \times 18^{\prime \prime}\right)$.
Probes: a variety of probes are available for use with the 2804A. Refer to the data sheet for specifications and sheath configuraitions.

## Opflons

006: Analog Output. Provides front panel controls. rear panel connector, and electronics for variable resolution analog outpu
010: H P-IB interface. Provides electronics. rear panel connector and display annunciators for HP-iB interface to computing controller or printer

## Accessories and probes

18107A Extemal Oscillator
10108A Line Amplifier
18101A Signature Analysis Diagnostic Kir
18110A Laboratory Probe and cal module, $25 \mathrm{~mm}(1$ ")
1811ta Laboratory Probe and cal module. 230 mm (9.1")

18112A Laboratory Probe and cal module 460 mm (18.1")

18115A Heavy Duly Probe and cal module. 30 mm (1.2')

18116A Heavy Duty Probe and cal module. 100 mm (3.9')

18117A Heavy Ducy Probe and cal module, 180 mm (7.1")

2804A Quarlz Thermometer

# PHYSICAL AND OPTICAL MEASUREMENTS 

- Dual Range Resolution
- Linear Analog Output



## Description

Two modular units make up the HP 2802A Themometer: a thermomodule (lower unit) which comtains temperature measuring circuits, probe connections, and operating conirols: an HP 3740A display unit with $41 / 2$ digit light-emitting diodes, which snaps into place on the the momodule. In addition, the display unit may be used with other HP snap in modules to make a volimeter. a multimeter. a preamp ammeter, as well as other combinations offered by Hewlet1-Packard in this calalog under Digital Voltmeters. combinations offered by Hewletr-Packard in this catalog under Digital Voltmeters.
A variery of probes ean be used with the 2802A. All HP probes olfered are interchangeable and meet high sendard, in-house elecurical specifications which allow them to provide maximum accuracy. The HP 2802A drives very low currenl through the platinum sensor, so self-heating is negligible. Less than 0.1 mW is dissipated. A four-wire technique used to measure sensor resistance eliminates ertors due to connector of lead resistances.
Rugged cast aluninum cases with shock resistant slides and chemically resistant paint provide ampic protection for the HP 2802A in jusl about any operating environment.


## Specifications

These specifications are "loul system specifications" meaning they apply to both the instrument and the probe working together (not just the hese electronie specifications for the instrument by itsein. HP 2802A Thermoneler specifications relate directly to system performance under actual working conditions.
Ranges: $-200^{\circ}$ to $+600^{\circ} \mathrm{C}$ and $-100^{\circ} 10+2010^{\circ} \mathrm{C}$.
Resolution: $0.1^{\circ} \mathrm{C}$ on $-200^{\circ} 10+600^{\circ} \mathrm{C}$ range.
$0.01^{\circ} \mathrm{C}$ on $-100^{\circ}$ to $+300^{\circ} \mathrm{C}$ range.
Accuracy: $\pm 0.5^{\circ} \mathrm{C} \pm 0.25 \%$ of reading on both ranges.
Dlsplay: $41 / 2$ digis LED on HP 34740 A Module.
Stablity: $=0.2^{\circ} \mathrm{C}$ for 7 days ( $23^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ umbient).
LInear Analog Output
I $\mathrm{mV} \mathrm{V}^{\circ} \mathrm{C}$ on $-200^{\circ} 10+600^{\circ} \mathrm{C}$ range $(-0.2 \mathrm{~V}$ io $+0.6 \vee \mathrm{~F} . \mathrm{S}$.)
$10 \mathrm{mV} / \mathrm{C}$ on $-100^{\circ} 10+200^{\circ} \mathrm{C}$ range ( -1.0 V to $\div 2.0 \mathrm{~V} \mathrm{F.S)}$. Voltage accuracy equal to that of digital display. Output impedance ! $k \Omega$ on bolh ranges.
Environmental standard: HP 2802A Thermometer operates within above specifications in environments of $191050^{\circ} \mathrm{C}$ and up 10 $95 \%$ relative humidity over most of this temperature range. After calibration in some arbitary ambient temperarure, instrumens calibration remtains valid with ambient temperature changes up to $10^{\circ} \mathrm{C}$.
Power requirements: operated on any of four, single phase ac tine voltages: $100.120,220$, or 240 volts mns $(+5 \%,-10 \%), 4810440 \mathrm{~Hz}$. Power dissipation is 8.7 voll-amperes.
Dimenslons: thermomodule with display unit is $98 \mathrm{~mm} \mathrm{H} \times 159 \mathrm{~mm}$ $W \times 248 \mathrm{mmD}\left(3 / \mathrm{m}^{\prime \prime} \times 61 /^{\prime \prime} \times 93 / 4^{\prime \prime}\right)$.
Welght: net. $2.27 \mathrm{~kg}(5 \mathrm{lb})$. Shipping approx $3.39 \mathrm{~kg}(7 / / 2 \mathrm{lb})$.

## Thermometer

2802A HP digital thermomeler-Includes $41 /$ digit
Price 34740 A Display. Requires HP 18640 series probe and Opt 050 or 060 . See list which follows
$050 ; 50 \mathrm{~Hz}$. ac. single phase
$\mathrm{N} / \mathrm{C}$
060: 60 Hz . ac. single phase
001: HP digital ihermomodule-Thermometer unit only, withour display unir or probe. NOTE: Since thermomodule will not operate without display, this oplion is for those planning to use thermomodule with their own HP 34740A or HP 34750A Display Modules.

## Probes

Nole: Time constant for probes measured in water flowing al I m per sec.
18641A High Temperature Probe
Stainless sleel sheath. For $-200^{\circ}$ to $+500^{\circ} \mathrm{C}$. to $+600^{\circ} \mathrm{C}$ bon term (prevent cable movement above $250^{\circ} \mathrm{C}$ ). Time Constant 5 sec .
18642A General Purpose Probe
Sime as 18641 A probe excepl with cellon-insulated cable. Cable must be kept below $250^{\circ} \mathrm{C}$.
18643A Fast Response Probe
Stainless steel sheath, for $-200^{\circ} 10+500^{\circ} \mathrm{C}, 10+600^{\circ} \mathrm{C}$ shon term. Teflon cable must be kept below $250^{\circ} \mathrm{C}$. Time constant 1.8 sec .
18844 Probe KIt
Includes platinum sensor carridge. cablé connector, complete instructions for fow wire hookup. Time conslant 0.5 sec .


## Faxitron(B) cabinet systems

Radiography, the art and science of making pictures wihh $X$-rays, bas an important place in modem technology. It is one of the major nondestructive test methods available 10 indusiry. provides an indispensable tool in scientific investigations and is a valuable aid to law enforcement agencies. HewlettPackard makes a major contribution to these activities with $X$-ray equipment that offers a "better way" tbrough advanced technology and design. This equipment makes radiographs casier and safer to lake, provides portability for field use or offers stop-motion capatility for the study of dynamic events.

## Industrial inspection

Industrial quality control and inspection procedures. especially in the field of electronics. benefit from nondestructive testing by radiography. The advantages of a lesting method which does not ham the test objects are obvious. Radiography, therefore, offers benefits in design engineering. incoming inspection, production quality conerol. product reliability and failure analysis. X-rays are used to detcet misregistration or platethru problems in multi-hayer P.C. boands: porosity, poor substrate bonding and wining or lead location in transistors and integrated circuits; voids and other encapsulation problems in potted components; and solder balls or other defects in sealed relays.

Die casting is another industry that benefils from the nondestructive aspects and ability to "see ínside" provided by radiography. Porosity, gas voids, tramp metal inclusion and other common defects can be easily detected and the cause determined. Expensive smachining time can be avoided for castings found to be defective through $X$-ray inspection. The integrity of welds.
alignment of connectors. inspection for proper assembly and mechanical defects are further examples of tests which radiography performs for indusiry. The benefits of $X$-ray testing are reduced production cosis, better quality assurance and product safety. The results are increased profils.

## Sclentiflc appllcations

Oceanography, geology, marine biology, paleontology, pathology, holany, forestry and agricutural research are a few examples

of seientific disciptines that use $X$-rays. Applications range from the study of the interior anatomy of fossils to determining the viability of seeds.

## Law enforcement appllcations

Radiography aids many law enforcement groups Crime labs use X-rays to visualize cerain lypes of fatent fingerprints, for powder and lead splatter pattems in ballistics and for questioned-document examination. Medical examiners use X-rays for causc-of-death investigations and identification of remains. X-rays aid in examining parcels or mail to identify dangerous devices and to verify bamb circuilry.

These are among the many applications served by HP Faxitron(6) Cabinet X-ray Sysiems. They offer a unique combioation of high quality radiogpahic capability. simplicity of operation and convenience of use which is expanding the expabilities of scientific and industrial concems throughout the world.

## Portable X-ray systems

Porable systems of lightweight and small size are made possible by the field emission type tube. Hewlet-Packard markets several porkible systems including the Model 43501, a self-contisined battery-operaled porable system specifically designed for the unique field use requirements of explasive ordnance demolition squads. Iniegral power capability and small, remotely operated X-ray tubes make possible X-ray examination of suspected bombs.
$X$-ray inspection of otherwise inac. cessible components in complex structures is also facilitated by the 43501.


Model 43501日 Porlable $X$-ray

## Pulsed radatlon sources

Hewlen-Packard has pioneered in the design and manufaciure of cold-cathode, flash X-ray cubes and systems. Cold-cithode nubes, based on the field emission principle, are combined with a pulse generator and appropriate conirol units. The systems produce nanosecond burses of X-rays, electrons or super radiant lighe (SRL). Ourput voleage and energy are provided by Max-surge rype energy slorage modules charged in paraliel and discharged in series through a pressurized spark gap switch mechanism.

A number of channels can ofted be operaled from common controls enabling a series of slop motion radiographs al desired intervals.
Other capabilities include slow and fast cine-systems providing a series of motion picture-like radiographs at rates from 1 to 1000 frames $/ \mathrm{sec}$. These systems are custom designed from slandard unils.

HP pulse radiation systemes yield a reproducible $5-10.000$ a mpere electron beam in air at energies of $400-2300 \mathrm{keV}$ and pulse widths of 3.4 ) nanoseconds. Current densities of 12.500 amperes per $\mathrm{cm}^{4}$ and dose rates up to $10^{13}$ Rads/second can be obtained.

Their reproducibility, high dose-rate output, ease of operation and insinmentation and small space requirement make them ideal for radiation chemistry or pulsed radiolysis studies as well as radiation effects studies. radiation biology and laser pumping.

For specific information and consultation regarding HP X-ray systems. contact Hewlett-Packard. 1700 S. Baker Street. McMinnville, Oregon 97I28, telephone: (503) 472-5101.

## Patient

## Monitoring

- Modular insinumenis to complete systems
- Computer-based Patienı Data Mainagement \& Arhythmia Delcelion Syslems
- ECC Telemelry System ior ambulatory patienls
- Nesu mohile Resusciation Sys. Lem with ball./AC Defïbrillator organizes supplics. druns. instrunicils, etc. for resusisitation and 30 minutes" life shippors. Rィqucs Catalos \#59.22-5254.


## Respiratory <br> instrumentation

- Pulmonary Calculator System
- Ear Oximeler
- Single-Breath Diffusion System
- Respiratory Recording Systems (6)
- Modular Pulmonary Function Tiating Instiuments. Request Cathtis. \#S952-5257.


## Perinatal

## Instrumentation

- Feial/Malemal and Neonalal munitoring includes bedside fied monilors, a (inculatorbaved System. and Ceniral Suhoms
- Neunalal moniloring uses hean ralc, respiralion. Iemperalure. uthhient oxygen measuring inshrments, and a Cardiores. pirograph. Request Caralog \#5952-5158.






## Cardiography

 Instrumentation- Single- to 3-channel Elec trocardiogtaphs
- ECG Dala Manageneni Systems for computer-aided in. tepretation of ECG.
- ECG Siress Testing Systems
- ECG/Hean Sound/Pulse Recording Systems
- ECG Computer Terminals for phone cranamission or lape recarding ECG data. Request Caralog \#5952-525s.



## Consumables

Wide choice for use wish H.P and OUher medical electronic insiruments includes:

- Disposable ECG monitoring clectrodes (adull and infant)
- Disposable iransducer domes
- Disposable scalp elecirodes
- Chemical thermal medical char papers
- Реппзрарег ${ }^{\text {a }}$ charn papers
- Disposable pressure kiis
- Redux(a) electrolytus

Request Caralog \$5952-5260


## Cardiovascular

 InstrumentationIncludes complete systems from transducers to readoul for elinical research and candiac cuth labs. Computerized Cath Data Analysis Systen automates online data collection and analysis. Request Catalog \#5952-5256.

## Radiology

HP offers a group of high performance medical X-ray machines with sulomatic expusure control. They include a Mobile X-ray System shown above) designed especially for handling difficull madiog ruphic requirements in the Intensíve Care area; a Dedicaled High kV Chesl X-ray Syslemfor rapid. consisteat and low dose chesi procedures: and Faxitron Cabinet X-ray Systems for specimen radiography and for laboralory training of radialogical technicians.


Widely recognized as a leading supplier of electronic measuring instruments and data handling equipment for the engincer. Hewlen-Packard is also rapidiy developing a similar position in analytical instrumentation for the scientist. HP's amalytical products now include a full line of gas chromatographs, liquid chromatograpbs. automatic sampling systems for GC, data handling devices and systems for the analytical laboratory as well as GC/Mass Spectrometers and accessories.

## Gas chromatographs

Although less than 20 years old, gas chromatography (GC) has taken over from classical methods of analysis the bulk of analytical work performed in laboratories around the wortd. There is an excellent reason for the revolutionary popularity of the gas chromatograph in analytical chemistry: no other method gets more accurate results, at greater speed, and for less cost.

For the sclentist whose interest is the chemical asalysis of unknown samples.

Hewlett-Packard offers two basic types of gas chromatographs.
NEW - Model 6840A reporting gas chromatograph: the second generation HP 5840A is a complete GC analytical systom. It has an integral digital processor that operales the gas chromatograph and its accessories throughout the analytical run, following precisely the instructions that you give it before the run. on an easy-lo-yse keyboard or magnetic card reader.

The intelligent control center of the 5840 A , the built-in digital processor, controls all aspects of the GC andysis! all temperalures, carrier flow rate measurement, detector operation, integration of peak areas. identification of components, calculation of concentrations, ploting of chromatognan and analysis report. After you set the analysis parameters on the keyboard and inject a standard sample, a single keybuard entry causes the 5840 A to initiate a simple dialog which ealibrates for the method; thereafter, the 5840A will analyze your samples, make the calculations
by whatever method you specify - normalization. internal standard or exteroal standard - and report the results . . . all automatically.

Other HP 5840A feitures include: choice of universal injection port with glass or metal liners and oo-column injection capability; a multi-purpose glass capillary inlet system; time programming which lets you make changes throughout an andysix al a precise, preser retention time: num programoming which lets you preset analysis parameters for a series of samples before injecting the first onc; plus a variery of glass. metal, packed or capillary columns . . . all in a high periormance oven that can be controlled and programmed from $-60^{\circ}$ to $400^{\circ} \mathrm{C}$. to meet separation requirements for almost any type of sample!
MP 5700 Sertes OC's dighal, compact, modular, capable of iull automation: the HP 5700 Series breaks the traditional barrier between vervatile but expensive "rcsearch" insouments and dedicated, more costconscious "routine" instruments. This series
embraces HP 5710 Dual Column. HP 5720 Single Column, and MP 5730 Dual Column/Multiple Detector GC's which serve every research or routine laboratory need.
New fearures of the 5700 include: specific detectors, ineluding nilrogen/phosphorous FID and flame photometric . . . multidetector capability, including simultareous EC.D/FID operation with Ne carrier . . . inert TC detector . . . dual inpui/dual outpul electrometer. ., electronic baseline compensation... inlet system for glins capillaries ... metal capillary splitter. . . allglass packed column system . . . low bleed septum mounting.

## Llquid chromatographs

HP 1084A: first LC with Buill-in Proceswor. The firse high performance liquid chromiatograph (HPLC) to be concrobled by a built-in microprocessor. the HP $1084 \lambda$ gives users full control over separation parmeters. minimizes quantitative crors. and is simpler to use than conventional instruments in routine chemical analyses and in developing new unalytical methods. But the HP 1084A is much more than just a processor-based liquid chromalograph. New and advanced design features include a low ratc controlled pump. a semi-automaric variable volume injection system that only consumes the amount injected, an casily accessible temperature controlled column comparsment and an R1 coomensated UV detector with low noise and drift characteristics.
Two-way communication with the HP 1084A system is via keyboard in terms that are simple and familiar to the chromatographer. Once instructed, the instrument injects the desired sample size (from 10 to 200 microliters) an full column pressure wíhoul intertupring flow, controls solvent composition, gencrates gradients, then collects and computes chromatographic data aod reports them on heal-sensiuive, smudgeless paper all automaticaly!
New automatic sampilng system for HP 1004A: HP's 79824A new automatic sampling system enables batches of up to 60 samples to be analyped automatically in sequence. and in replicate if desired, by the HP 1084A HPLC.
As shown in the jllustration, the detachable unit containing 60 glass vials is mounled on lop of the liquid chromalograph. The variable-volume sample injector, slandard part of tbe chromatograph, then samples each vial in numerical sequence. The injeclion volume can be preset manually to any point between 10 and 200 microtiters. Only the sample amount injected is consumed by the system. making it possible to use micro-vials for upplications where only small sample quantitics arc available,
New, compact HP 1091A - offers high performance at a low price: The new compaci H.P 1081A HPLC performs rovtine LC functions with a precision and repeatability similar to that of the top-of-the-line HP 1084A but at about one-third the price.

HP I08IA has a pushbution-controlied. high performance reciprocaling diaphragm pump with in-line pukation damping and new design principles proven in the HP 1084A. Samples are injected at full column
pressures through a six-port valve (sevenport is optional). Separation columns locate in a prolected comparment. A UV delector - one of the finest available - provides exceptional sensitivity and interfaces with stripchant recorders. integrators and computer based data systems (olher detectors can also be fitted).

## Laboratory automation systems

HP Scries 3350 Laboratory Automation Syyiems satisfy the combined data handling, control, and reporting needs of the analytical laboratory, from the chemist's to the lab manager's.
Chromatographic solfware supplied with all systems automatically processes the output of gns and liquid chromatographs using standard chromalographic methods. Through compuler-initiated dialog, entirely in terms familiar to the chromatographer. the user determines the selting up of events, sample-handling tasks. data reduction parameters and report formats. No specia knowledge of computers or programming is required by lab personnel. Self-checking procedures further assist the system operator.

The 3351A system, a low cost answer to your data analysis needs, handles data from up to 15 instruments and has capacizy for 4 fully powered input/outpul devices.
The 3352C Lab Data System is a folly expandable system that allows your daka processing needs to grow with those of your latioratory up 1030 on-line instruments with up to 8 terminals. BASIC language programming capability can be added and the 3352 C is expandable to a 3354 A system.
The new 3354A Lab Automition/ Management Syslem is a superior lab auto mation system which can handle as many as 30 instruments on-liae, and handle up to 11 input/output devices through which users can develop methods. BASIC programs and route final reports for which any number of copies can be specified.

## Reporting Integrators

HP 3380 Series Reporting Integrators provide an excellent data handling function for ans existing gas or liquid chromalograph. Both integrators in this series provide the unique printer/ploter that draws the chromatogram, labels peaks with their retention cimes, fists instroment settings and prints a complete analysis report, all on a single piece of paper.

## GC/Mass Spectrometer Data Systems

New HP 5985A with dual gource, bullt-ln data system: the new HP 5985A GC/Mass Spectrometer with its dual $\mathrm{Cl} / \mathrm{El}$ source and built-in date system make it one of the most powerful analyical tools for qualitative and quantitative measurements. It incorporales the latest advances in dual CI/El source and GC/MS technology. digital electronics, and dual disc dala handling hardware and software. Features include a microprocessor-controlled GC. antomatic luning, simultancous data acquisition/ reduction, and BATCH processor soflware for full automatic system operation. Mass range is $10-1000 \mathrm{amu}$ and sensitivity 10 picograrn levels.

New HP 5993A Benchtap GC/MS with Data Syatem: A new. middle-priced GC/MS. the HP 5993A. combines the integrated gas chromatograph/mass spectiro meter of the benchiop HP S992A with a powerful disc-based data sysecm identical to that used with the HP 5985A. This polverful analytical tool incoporates the lasest advances in GC/MS system technology and compurer soflware innovations. its mass range of $10-800$ amu and its sensitivity to low picogram levels and its ease of operation make this system and excelient choice for identifying and quantifying organic samples in a variety of pollution, pestieide. drug, and biological studics.
compuler: the HP 5992A, a benchtop size GC/MS with automatic tuning. provides excellent performance at an economical price. It consists of two fully igicglated. compact modules: one is its easily-operated coniroller, a desktop computer with thermal printer-plonter: the other houses the microprocessor-controlled gas chromato graph and the mass spectrometer with its hyperbolic quadrupole mass filter. Outstanding fatures include mass range of $10-800$ aml, software for data acquisition and display, libray search, and quantitation using SIM: it offers high performance achieved with operating simplicity and convenience.

## Service

With regional service centers throughout the world, HP lends a supporting hatid where you need it, when you need it. Your local HP service engineer is factory trained and supported by an extensive inventory or parts, the hatest test instruments, and complete service kits for the maintenance and repair of your HP instament systems.
Service Agreemenis: choose from a variety of plans and options that:

- Supplement or eliminate the staffing and training of your own maintenance persannal
- Provide complete and limely worldivide service
- Maximize insuument reliabibiy Uhrough regularly scheduled maintenance visils
- Minimize mainienance cosis through eficicienl planning
- Simplify budgets through a known annual cost
- Tailor your agreement to match your specific suppori requirements

Trainlng: in-depth eustomer training is available in both operation and maintenance. A broad range of courses and trainug materials have been developed for HP customers.
Documentatlon: complete documentation is supplied with each HP insirsment or system. In addition, supplemental lutorial texis are avaidable from your local HP sales of rice.
Applications: Hewletl-Packard Applications Chemists are available to help you get the most out of your HP instruments. In addition, the company has published numerous Application Notes which describe the practical uses of HP instrumentation for a varicry of siudies.

- Transistors and diodes


HP low noise, general purpose and linear power microwave transistors are supplied in a wide variety of stripline and mierostrip packages.

Hewlet1-Packard components, utilized in consumer. indusirial, military and other OEM equipment, assure optimum performance. Advanced machinery and processing techniques are employed to produce highly sophisticated Silicon and Gallium Arsenide devices. The product lines consist of Si bipolar and GaAs ficld effect transistors: Schorky, PIN, IMPATT and Step Recovery Diodes: MIS Chip Capacilors: and Integrated Products.

## Transistors

HP silicon bipolar and GaAs field effect Iransistors till most requirements for multistage amplifiers from the VHF region through 12 GHz . Devices are available for the low noise inpul stage, the high gain intermediate stage and the power outpot stage. For example. the HXTR-6 104 low noise silicon bipolar eransistor typically offers $1,4 \mathrm{~dB}$ NF with 14 dB associated gain at 1.5 GHz . At 12 GHz . present HP GaAs field effeel transistors can produce either 20 mW of linear output power or $4,28 \mathrm{~B}$ noise figure with $\delta \mathrm{dB}$ gain, depending on bias conditions.

Hewlen-Packard Gansistors are supplied in chip form, or in various stripline packages in either common-base or common-emitter configurations. Complete data sheet characterization and excellent processing uniformity make it possible to design your circuil by calculation instead of by trial-and-ertor.


Schottky diode singles and matched quads are available in 3 types of microstrip packages: hermetic; low parasitic ceramic/plastic; and low cost ceramic/plastic.


Various stripline and coaxial packages are used for Scbottky, PIN. IMPATT and step recovery diodes.

## Dlodes

Schottky Barrier Dlodes: Scholtky diodes combine extremely high rectification efficiency with pico-second swithing speeds. low series resistance, and low noise characteristics. This combination makes the Schostiky an excelient mixer/detector diode.

AI HF. VHF, and UHF frequencies. HP delivers glass packaged devices in miltion piece quatities at cconomical prices. These same diodes have many digital circuit applications such as clipping and clamping where switehing speed is imponant.

At microwave frequencies. their low noise and repeatable RF impedance lad 10 outstanding performance either as mixers or detectors. A new series of zero bias Schotiky detecior diodes offers improved detecion efficiency without the de bias requirement of conventional delector diodes. Package contigurations for mixes/ delector diodes include beam leased devices as weil as conventional ceramic, stripline and axial lead packages.
PIN Dlodes: PIN diodes funclion as variable resistors at microwave frequencies. By controlling the DC bias, the RF resistance of a PIN diode can be varied from in to about $10 \mathrm{~K} \Omega$. This unique propery of the PIN diode makes it extremely useful as a switch, allenuator. modulator. phase shifter. limiter or AGC element at all frequencies from 1 MHz to 18 GHz and above. Package configurations include beam-lcaded devices as well as conventional microstrip. ceramic and axial-lcaded packages.


Hewlett-Packard's mixer product line includes low cost single balanced mixers for use to lGHz and double balanced mixers for both RF and microwave frequency sanges.


Solid state switches cover the frequency range from 0.1 to 18 GHz . An add-on switch driver features TTL compatible input.

IMPATT DIodes: IMPATT diodes are a fundamental source of RF power at frequencies above 4 GHz . CW devices can supply 3.5 W al 6 GHz with $10 \%$ efficiency, while pulse-optimized devices operauing at 10 GHz offer 14 W at 800 ns pulse width and $25 \%$ duty cycle.
Step Recovery Dlodes: SRD's are intended for use as comb generators and hamonic frequency multipliers. When used as a comb generator, the abrupt termination of the diode's reverse recovery current generates voltage pulses up to tens of volis with pulse widths as narrow as 100 ps giving useful power at frequencies in excess of 20 GHz . By optimizing the circuil around any specific barmonic, high efficiency frequency mulfiplication can the accomplished.
MIS Chlp Capacltors: these Metal-Insulator-Silicon capacilor chips are processed with a composite insulator on silicon. The high density thermal oxide-niltide composite layer yields excellent reliability due to dielectric breakdown stability for both DC and RF fields. Capacitance values from $0.5-100 \mathrm{pF}$ gre available.

## Integrated Products

The combination of chip and beam lead diodes with hybrid thinfilm circuir technology has led to an extèasive product line of components for the cooversion and control of RF signals.

The HMXR-5001 is a double balanced mixer which provides cxcellent broadband perfommace and reliability. This rugged mixer has low conversion loss and high isolation across the full $2-14.4 \mathrm{GHz}$ RF/LO band, while retaining a widcband IF of $0.01-1.0 \mathrm{GHz}$. For the HF-UHF range. both double batanced and low cosi single balanced mixers are availabie.

## - Integrated Products



Glass package PIN and Schontky diodes are used for high volume price sensitive applications in the HF-UHF range and for general purpose switching.

SPST switches covering the frequency range from 0.11018 GHz are offered either in modules or with connectors. Absorplive Modulators offer up to 80 dB of isolation at 18 GHz . Oither components include Limiters. Comb Generators and Mixer/Detectors.

## High Rellablily Testing

Many Hewler-Packard components are space qualified. The reliability of these devices is established by one of the sinest high reliability testing facilities in the microwave component industry. Hewlett-Packard's High Reliability Test Group maintains military approved JAN and JANTX pars in slock and can recommend $H P$ standard sereening programs. pattemed after MIL-S-19500. for any HP component. Those who wish to design their owd screening specifications can consult with and oblain quotations from Hewlett-Packard's staff or Hi Rel Test Engineers.

## Write far More Intormation

Hewlett-Packard RF and microwave component capabilites are described in individual dala sheets, application notes and application bulletirs.
Dlode and Transistor Designere Catalog: This catalog contains detailed, up-to-date specifications on our cormplete product line. It is divided into the following major sections: Schouky Barricr Diodes, PIN Diodes for Signal Conirol, Microwave Source Diodes. Devices for Hybrid Integrated Circuits. Military Approved Devices. Microwave Transistors and Integrated Products.

## Optocouplers, displays



Low input current, high gain 6-PIN oplocoupler is ldeal for use wilh MOS and CMOS.


16-segment alphanumeric display has a
64 -character ASCII sel and special characters.

$0.8^{\prime \prime}$ display can be viewed up to 10 melres (33 f).


Numeric and hexidecimal displays for indus. irlal applications have on-boand decoder/drivers.


Four character, $5 \times 7$ dot-malrix LED alphanumenc display. has full ASCII code capabllities.

Low cost components, available from Hewlet1-Packard, offer excaptional performance in consumer, industrial, mililary, and other OEM equipmenl. With sophisticated semiconductor processing equipment. and the industry's most extensive hybrid thin-film mic. rocircuit manufacturing facilities, Hewlert-Packard applies newly developed echnologies 10 component manufacturing, offering high performance solid siate numeric and alphanumeric readouls plus LED lamps. optocouplers. cmitters, and PIN photodiodes-in quantity al economically attractive prices.

## Ooloelectronics

Hewlen-Packard's Optoelectronic Division offers a complete line of GaAsP and GaP discrete light emiring diodes (LED's), numeric. hexadecimal, and alphanumeric displays. These components provide solid stare reliability to any visible readout. As status indicators, arrays, mulli-digit or mulki-characterdisplays, these compact LED's are electrically compatible with monolithic integrated circuils, with a useful life greater than 100.000 hours:

## Optocouplers

Hewlett-Packard's family of optocouplers provide economical. high performance solutions to problems caused by ground loops and induced common mode noise in both analog and digital applications in commercial, industrial, and miljary products. Hewlell-Packard's original approach toward integraled output detectors provides performance not found in conventional phototransistor outpue optocouplers. With 3000 VDC isolation. the types of optocouplers available include high speed devices capable of 10 M bils and high gain devices which are specified ut $400 \%$ CTR al input currents as low as, $5 \mathrm{~mA}, \mathrm{In}$ gddition, highly linear optocoupless are useful in amalog applications, and a new integrated input optically coupled line receiver can be connected direchly to Iwisted palr wires withoul
additional circuitry. Most of these devices are available in dual versions, as well is in hermetic DIP packages. For miliary users, Hewlett-Packard's established hi-rel capability facilitates economical, hi-rel purchases.

## Displays

Low cost numeric displays. packaged single or clusiercd, are available in character heights from . $\}^{\prime \prime}$ to.$^{\prime \prime}$, Low power, small character displays have been designed for portable instrumentation and ealculator applications. These seven-segment display units are available in red, high efficiency red, yellow, and green packages.

Integrated LED displays (with on-board (C's), avallable in plastic and hermeric packages, solves the designer's decoding/driving problem. Numeric, hexadecimal and aphanumeric displays have been designed for low cost and case of application in a wide range of environments. For example, the small alphanumeric display picqured above, fealures four $5 \times 7$ dol matrix characiers and on-board shiff registers for data storage. 1 l is contained in a 16 pin DIP which is end-stackable for unlimited possibilities in alphanameric display formatling.

The firs 16 -segment solid state L.ED alphanumeric displays from Hewletl-Packard are now available in four- and cight-character end-stackable modules. They are designed for use in compuler peripheral products, automotive instrument panels, calculators, and elecuronic instruments and systems requiring tow power consumption in an easy-10-read display. Magrifieation of the LED by an integral lens results in a chameter size of $3.8 \mathrm{~mm}(0.150 \mathrm{in})$. Drawing as litue as 1.0 to 1.5 mA average cument per segment, this enhances character intensity while keeping power use at a minimum.

These and olher integrated displays in hermetic packages are available in hi-rel screened versions for military applicarions.


Excellent uniformily botween elements and between arrays exist in these subminiature polyleds.


Panel mountable hermetićc solid state lamps are designed for protection against RFI panel leakage.


These subminiature resistor lamps contain rugged Integral resistors and reverse protection diodes.


These rectangular LEO's are avallable in high efficiency red. yellow and green.


Higin radiant intensity emitiers are obtainable in elther $\mathrm{T}-1 \overline{\mathrm{H}} / \mathrm{A}$ or subminiature package.


These low profile $T-1 \frac{1}{1}$ solid state lamps available in four bright colors.

## Solld slate lamps

Discretc LED indicator kanps are encapsulated in a panel mountable fixiure designed for hi-rel applications. They can be mounted with eljps or direedy onto PC boards. Hewlett-Pachard has wlso produced the frst easy-10-mount hermetic lamp.

A wide selection of leads. lens. brightness, and package combinations are ivailable in red. high efficiency red. yellow, and green epoxies. The reetangular solid swate lamps are stackable on 2.54 mm ( 0.100 in ) centers. They are ideally suiled for backlighting legends and llush mounted panel indicutors. Subminiature polyled :urtays are avnilable as three, four, or five elements.

## Emliters

Hewlett. Puckard ofers high mdiant inteasiry omisters near-iR in both floodight and spotight configurations. Emitters are ideally suited for use in oplical transducen and encoders, smoke detectors, but code seanners. paper-tape readers, and fiber optic drives.

## PIN Pholodlodes

Hewlet-Packard PIN photodiodes are excellent light detectors with an exceptionally fast response of I ns, wide spectral response from neir infrared to ultra-violet, and wide range linearity (constant efficiency over 6 decades of amplitude). Whth durk current as low as 250 pA al 10 V , these detectors are expecially well-suiled for operation at low lighe levels.

## Wrlte for more Information

Hewlett-Packard Oproelectronic capabilities are described in individual data shetrs. application notes. application bulletins, a complete catalog. and an applications mannal.
Sold State Dlsplays and Dptoelectronics Designer's Catalog: this conkins detailed, up-to-date information on our complete optoelecironic product line. It is divided into five major product sections: solid state lamps, solid state displays, optocouplers, emitters. and PIN photodiodes. Included in the 200 pages are producl photographs, specifications, operating characteristics, and performance graphs.
Optoelectronics Appicatlons Manual: this newly published mianual is intended to serve as an enginecring guide about the spplication of and designing with LED products. Each of the genemalized LED product types are covered, with additional chapters on contrast enhancement Iechniques, photomery and radiometry, LED reliability. mechanical consideration of LED devices, photodiodes and LED theory. This book is avallable from Hewlett-Packard or from the McGiraw-Hil Book Company.

All ilerature, including prices, are as near as your phone. Call any Hewlett-Packard Sales Office or contact any of our franchised disributors for product availability and information.


Hewlett-Packard, long recognized as the leading supplier of elecrronic measuring and computing instruments for the engineer, has developed a similar position in electronic distance/angle measurement and compuration instrumentation for the surveyor. These instruments are briefly described on this page.

## HP3805A Distance Meter

The HP380SA Distance Meter is a low cost, short range, automatic readout, infrared light source inswument, The range of the HP3805A is one mile ( 1600 merres) with the measured distance displayed in feet or metres al the nip of a switch. The HP3805A features a built-in computer that controls the instrument's intemal functions and communicates the quality of the measurement to the operator through the communicative display. A minimum of 3.000 readings are taken for each measurement and displayed in as litue as six seconds. This instrument also has an internal self-check capability of verifying electronic performance in the field or onfice, and automatic atmospheric correction. The optional baltery pod that snaps into the bottom of the instrument provides cable free operation for a lightweight portable hield system.

## HP3810A Total Station

The HP3810A Total Station is a short range, sutomatic, direct reading, electrooptical distance and angle measuring instrument utivizing an infrared light source. The range of the HP3810A is one mile (1600 metres) with the measured distance displayed in feet or merres and angles displayed in degrecs or grads. This instrument has the

ability to measure the slope distance, zenith angle. correct for the curvature and refraction and automatically compute and display the horizontal distance. Four parameters are selectable for display; zenith angle. slope distance, horizontal distance and verlical distance. The key to the Total Station's power is a built-ia microcomputer and a vertical angle sensing device. The communicative display indicates the quality of the measurement, on Larget indication, and notifies the operator of a low battery. Horizontal angle measurements are made with the $\mathbf{2 0}$ second least count horizontal angle base with estimation to 5 seconds or $10{ }^{\text {ce }}$ on the micrometer scale. The HP3810A also fearures buit-in almospheric correction to one parn per million, a snisp-in batsery pod, and a fracking mode for rapid poine setting to onetenth of a foor with updated measurements every three seconds. Precise measurements 10 one-thousandih of a foot can be made in less than six seconds.

## HP3820A Electronic Total Station

The HP3820A Electronic Total Station is a medium range, automatic, direct reading, electro-optical distance and ande measuring device utilizing a lasing diode light source. Solid state elecironics gives the HP3820A its high securacy plus a range of $3+$ miles ( 5 km ) which means long shors can be made without intermediate set-ups. The operator. by merely pressing a bution, can electronically display both horizonlal and zenith angles to one second. Both horizonial and zenith angles are automarically compensated for instrument mis-level-an HP exclusive. The instrument also displays relative
direction-that is-ite clockwise angle from the previous direction to the current direction. In addition to angle measuring capability, the HP 3820A has the ability 10 measure slope distance, zenith angle and automatically compute and display horizontal distance. Verical distance and slope dislaoce can also be displayed al the touch of a button. The HP3820A features a builtin atmospheric correcion to one part per million plus a snap-in battery pod that Eits into the insirument's left standard for a lighlweight, compact, easy to use field insenment. A built in output plug allows the operator to electronically trunsfer any of its measured components 10 an external Dara Collector or calculator.

Hevleti-Packard's versalile Distance Meters and Tolal Stations are suized for such applications as layout. location. boundary, hydsographic, lopographic, control and mine surveys. A short demonstration is all that is necessary for operator training on these instruments.

## Surveying Calculators

The Civil Engineering Division also markels Hewlell.Packard's line of desk-lop programmable calculaton and peripherals Filling the surveyor's requirements for distancelangle measuremenes and computaLion insloumentation. Application and programming specialists have developed libraries of surveying programs for these systems.

For detailed specifications and prices on these instruments and optional accessories. conact the Civil Enginecring Division, P.O. Box 301. Loveland. Colorado. 80537.


With Hewletr-Packard's extensive product line and worldivide customer mix there are two main avenues for technical customer training. Tbese are live training sessions and video tapes. Live training sessions fall into thres subcategories: applications. service and tutorim. Application seminars aimed al increasing your utilization of general purpose rest instmimeneacion are often availible at no charge. On the other hand. seminars on the operation of dedicated systems are more specific in nature and are generally charged for. Service seminars are available on a supply-and-demand basis and. as such. there is usually a change. For detailed information on all HP seminars. conlact your Hewlett-Packand field engineer or call the Hewlett-Packard office nearest you-see the inside back cover.

## HP video tapes

A better way to learn
Part of the "exira value" which comes with each Hewletr-Packard product is our continuing commitment to provide Hewlell-Packard customers with use「ul training information in the arcas of applications and service. In the past, this informalion has often been in the form of classroom seminars, cither al your nearby HewiclPackand sales office or al one of our training facilities in Califomia.

Now our capability is expanding by offering you both service and applications training via video tape. Video tope training is ex-
ceptionally convenient and readily available, ready for your own use al any time or my place. including within your own facilitis.
EHectlve: Hewlelt-Packard has found that video tape is a highly effective training medium. Vides lapes can convey more information in less time, and with higher reenation, than even the best live instruction. Hewlett-Packard programs are professionally produced and are based on measurable insiructional objectives. They consider what the student already knows. crophasize what he needs to know, and omil whar he does not need to know. Many video taper milize split-screen techniques, allowing students to walch a procedure on one pare of the screen while observing its cffect on another part. Most Hewletr-Packard video lapes are $100 \%$ visualized, as opposed to conventional. partially visualized video tape ' lec. lures."
Fioxible: With video tapes, you can laibor your training program to suit the many needs of your organization. You may select training programs for individuals with diffenent backgrounds and specific needs, present effective programs to audiences of just one or hundreds. and offer a library of technical programs your staff members can easily consult on their own . . for new information or for refrusher purposes.
Faster: It has been our experience that Hewlelt-Packard video programs compress learning time by a factor of up to 6-10-1. A video tape library also reduces the time
needed to organize and schedule your training. You can schedule highly professional presenmbions anylime and anywhere, without arranging for outside instructors or juggling the detailed logistics that are offen required for live traiaing sessions. More effective truining in one-sixth the time!
Convenlent: Video tape programs come on small, easy-to-file magretic tape reels or caskeltes. Jnexpensive playback equipment is casily operated by unstilled personnel. Programs may be viewed on small poriable monitors or on full-screen TV sels. Video tapes can be quickly searched for specific informalion using "fust forword" or "fast rewind." and many recorders can stop on a single frame for more detailed study.
Tlme-tested: All the vidco lapes offered in the Hewhett-Packard Videotape Catalog were developed to serve Hewlett-Packiand's needs for a practical, low cost source of up-10-date training in a wide variety of subjects. Now, after having been tested in HewlettPackard training activitics throughout the world, mary of these video programs are available to help meet your tmining objeclives.

## Digital troubleshoottng 90420D

Now, from Hewlett-Packard comes a videotape series developed to srain HP's own technicians. This course is especially usefui in showing how to approach real problems in real equipment.

- Praclical demonstrations
- Proven leaching techniques
- Flexibility of use for classroom or individual sudy
- Latest in digital troubleshooting tools
- Mose recent logic symbology
- Useful troublesbooting típs

Digital Iroubleshooting was made for rechnicians. It is an appropriate transition from transistors to digital electronics. It also can be used as a refresher course. Equivalent in coverage to a college term of 13 weeks, the course is presented in color on 14 vidcocasseltes having a lotal ninning time of 5 hours and 31 minutes. The lab demonstrations shown in video are from the workbook included with the series. Also included is a 180 page text and a study guide.
There is ample use of reinforcement in the presentation and in the self-scoring quizzes al the end of mosi of the modules.

## Digital troubleshooting videotapes

## Introduction to digltal electronies 90421D Lesson I 12 Mms.

 Digital produels and techniques are becoming more populis and widely used. This lesson looks at some of the areas where digital echniques are used-areas such as compulers, communications, telemetry, lest equipment, industrial control, and consumer electronics. It also points out how the integrated circuit (IC) has caused a virtual explosion in the use of digital techniques. Widely used terms and concepts such as binary, digital, analog, gates, and memory are explained. The lesson concludes with a comparison of digital and analog techniques, a summary. and a shor, self-scoring quiz.
## Blnary nature of digital clrculte

90422D Lesson 218 Mins.
Digital circuils operate using the binary or iwo-digit number sysicm. Binary digits (bits) are introduced in this lesson covering be opemion of the pure binary and Binary Coded Decimal (BCD) systems. Mechanical or trensistor switches can be used to control the two logic leveis used to represent binary dala. Either positive or negative logic systems can be used 10 represent binary numbers, and they can be iransmited in cither serial or parallel fashion. This lesson concludes with a summary and a short. self-scoring quiz.

## Basles of transistors and IC'

90423D Lesson 3 Mins.
Integrated Circuils have revolutionized digital electronics. An IC contains many transistorized circuils switch between two voltage levels that represent binary I's and 0's. Because of their importance. this lesson reviews the basics of transistors and diodes. PN junction diodes arc covered first, then PNP and NPN junction transislors are reviewed. The lesson then discusses how transistors can be operated as either saturated or con-satumated switches. Metal Oxide Semiconductor (MOS) transistor switches are also covered. Fackaging and classification of Integrated Cireuils are the sinal topic in this lesson followed by a summary and a shon, self-scoring quiz.


## Loglc gates and symbols

90424D Lesson $4 . \quad 25$ Mins. I.ogic gates and fip-flops are the two main digital bui)ding blocks. This program covers six basic logic gates and their symbols. The logic circuits covered are the AND. NAND, OR, NOR, Exclusive OR, and Inverter. After the operation of each logic element is explained using logic symbols. the operation of a circuit is demonstrated. Next. moubleshooting of gate circuits is covered, then the use of logic troublexhooring tools is demonsiraled. The lesson ends with a summary and a short, self-scoring quiz.
Note: The logit symbols included in this series ate based on ANSI Y32. 14/1IE $91-193$. This industry standard document supersedes MALL-STD-80E B/C and is approved for use by the U.S. Department of Deferse.

## Introduction to dightal IC lamilles

904250 Lescon $5 \quad 29$ Mlns. This is the IIrst of two lessons dealing with digital IC familles. In this section DCTL, RTL. and DTL are covered.

This videolape begins with a review of logic gates consisting of the circuit dingram, truth table. logic diagram, and Boolean expression. Several schematics from an actual insıtument are explajned. Equivalent gates. shown on these schematics, are discussed according to function. This is followed by a discussion of the history of gate design as it applies to the digital iroubleshooter. so that bad uroubleshooting practices can be a voided. The lesson concludes with a shon. self-scoring test.

## Modern dighal IC familles

## $90426 \mathrm{D} \quad \mathrm{Lesson} 6$ Mins.

 This is the second of two lessons dealing with digial IC families. In this section TTL. HTL, ECL and CMOS are covered.This videolape begins witl a review or the principles introduced in Lesson 5, then ex-
plains how the five subfamilies of TTl, work (Slandard TTL, Low Power TTL. High Speed TTL. Schottky TTL, and Lower Power Schotiky TTL). Also explained are open-collector TTL and three-state logic. Similar discussion occurs about HTL. ECL. and CMOS families. The lesson concludes with troubleshooting as applied only to families.

## Slmple troubleshooting iechniques

90427 D Luson 78 Mins. Experienced service lechnicians use a number of simple troubleshooting tools and techniques to help reduce repalr time and eliminate the need for electrical measurement, when servicing integrated circuit assemblies.

This program focuses attention on logical approach to troubleshooting. highlighting simple techniques of isolating and replacing defective components on integraled circuit assemblies.

## Troubleshooting dighal IC's

90428D Lesson $8 \quad 27$ Mins. Fundamental differences between analog and digital circuits make iraditional troubleshooting tools inefficient. Products designed especially for testing digital cireuits include: The Logic Clip. Logic Probe, Logic Puiser, Curtent Tracer, and Logic Conparator. This program takes a close look at these IC Troubleshoolers. Aiso covered are the types of failures found in digizal integraled circuits and how 10 troubleshoot them.

## Fip-flops

90429D
N04290 Lesson 9 MIns. Flip-flops are onc of the main building blocks of digital circuils. This program covers both the NAND and NOR RS. closed RS. D, T, and JK flip-flops. The

theory of operation of each flipflop is covered using ANSI Y32.14/IEEE 91.1973 logie symbology. Then, the flip-flop is demonstared and its operation summarized. Clocked logic, edge and level riggering. direct set and reset inputs. and trovbleshooling fllp-flops are also covered.

## Counters and shift reglstars

90430 D
Lesson 10
30 Mlns. Cowniers and Shift Registers are the two most popular uses of llip-llops. This program covers binary and decade counters, bolh ripple and synchronous types. Also covered are up and down counters. presettable counters, frequency dividers, circular shift registers and strobed displays. The operation of each circuit is first explained using logic symbols, then demonstrated. Troubleshooting is the final topic in this program. The lesson ends with a short, self-scoring quiz.

## Combinatlonal logic clrcuits

$90431 \mathrm{~L} \quad \mathrm{Le} s \mathrm{~s} 0 \mathrm{n} 11 \mathrm{Mins}$. The basic building blocks of combinational logic eircuits are gates. In this videotape we see how gates are combined 10 form line drivers, three-state drivers, one-shol multivibrators, multiplexers, adders, and code converters.

After an overview of the operation of these devices, they're shown in aclual use in a producion.

The program concludes with a section on troubleshooting, which deals with typical problems which may arise in combinational logie circuits.

## Dlaplay tech nologies

90432D Lesson 1230 Mins.
A large variety of display technologies is used with digital circuits. This program looks at the types and configurations of dis-
plays, then discusses typical iroubleshooting problems specific to them. Some of the lypes covered are neons, gaseous discharge tubes, and ligh emitting diodes (both segmented and do( matrix forms). Included is a discussion on planar tubes, incandescent displays, and tiquid crystals.

In the troubleshooting section typical fauls the technicians might encounter are discussed. Each of these faults is demonstrated and solutions are suggested.

## IC manưacturing

90433 L Lesson 13 Mins. A basic knowledge of IC manufacturing should prove helpful to anyone involved in servicing digital equipment.

Manufacruring IC's involves a photographic process, and a series of masks is used to control the areas where impuritios are allowed 10 diffuse; forming semiconductors. This program shows the steps in the manufacture of IC's, starting with an aciund wafer and following it through to a compleled IC package.

## Memories

90434D Lesson $14 \quad 25$ Mins. Due to the many unique demands of today's users of computers and caleulating devices. many different conkgurations for different lypes of memrory. This lesson considers six lypes of mermory-punched paper tape, punched cards, magnetic (reel-to-reel and canridge), magnetic dises (hard and foppy). ferrite core, and semiconductor.

This lesson defires and describes the use of sequential access and Random Access Memory (RAM), volatile and nonvolatile memory, Read/Write Memory, Read-Only Memory (ROM) and Programmable Read-Only Memory (PROM). Tips on harding the various types of memory conclude the program.

## Practleal Transistors

90100D
The widely used Practical Transistor Series is a definitive, 15 -tape excursion into the exceediagly imporiant (and mysterious) world of transistors. As outlined below. each bighly informative program in the wide-ranging series is primarily concemed with examining the many practical aspects of tansistors rather than just dwelling on theory and math. The end result, after viewing this popular series, will be a deeper working understanding of tansistors which will make maintenance and troubleshooting problems far casier and more efficient. The series is therefore highly reconmended for electronics students, service personnel and engineers.

A supplementary lexibook by imnsistor autbority Creorge Stanley Jr. (who also hosts the series), plus a complete set of homework problems and answers, is included with the nearly nine hours of video taped materia**

## Translators va, tubes

## 90030 D 330 Lesson I 30 Mins .

The sirst program in the 15 -part series introduces author George C. Stanley Jr., who defines the objectives of the course. describes the text upon which the course is based and explains the use of the homework problems. The rest of the program then reviews and builds upon the stisdent's prior knowledge to make comparisons between vacuum tubes and transistors.

## Temperature eflects

## $50030 \mathrm{D} 316 \quad$ Lesson 20 Mins.

Part 2 develops the various common techniques of biasing transistors, and emphasizes the effects of heat on transistor circuits with demonstrations.

## Currentrolisge drive <br> 90030 L 317 Lesson 31 Mins.

Part 1 is concemed with the comparison beliveen volage drive and current drive in Iransistor circuits. During wis program, several concepts are developed which become imporant building blocks for the rest of the course.

## Answers by inspection

90030D318 Lesson $4 \quad 43$ Mins. Pan 4 develops the firsi of several valuable limesaving rule-of-thumb formulas: a simplified expression for voltage gain. Demonstrations serve to illustrate the usefunhess and effectiveness of this formwa.

## Answers by Inspection

90030D319 Lesson 5 40 Mins.
Pan 5 develops additional rulc-bf-thumb formulas for the calculation of voltage gain with feedback. input impedance. output impedance, and distortion in common emitter cireuits.

Answers by Inspection
90030D331 Lessan 67 Mins.
Part 6 concentrates on the emitter follower circuit and develops expressions for irs voliage gain. and input and output impedance.


## Multlstage ampliflers <br> 90030D322 Lesson 7 Mins.

Pan 7 is devoted to applying the knowlenge gained in Parts 4. 5, and 6 to an analysis of a three-stage unansisior amplifier. Demonstrations on an actual circuit illustrate the accuracy of the approximations involved.

## Troubleshooting

50030 D 323 Lesson 843 Mins. The information oblained in preceding programs is further clarified in Part 8. which covers troubleshooting on bath single-stage and muli-stage Iransisior circuils. Class problems are presenled and solved using aciual circuits.

## Feodback ampliflers

90030D324 Lesson $9 \quad 27$ Mins. Part 9 first reviews single-state and multeslage circuils with feedback. Valuable troubleshooting tips for feedback circuits are then illustrated with demonsimations.

## Why a transistor ampilfles

## 90030D325 Lesson $10 \quad 27$ Mins.

Par 10 illustrates how and why transistors amplify clectncal sigrals. Discussion of the roles of majority and minority carriess leads to an intriguing example of the effect of nuclear radiation on iransistor performance.

## Troubleshooting

90030 D 326 lession $11 \quad 33$ Mins.
Par 11 is devoted to more practical applications of what has beea learned so far. Demonstrations of troubleshooing are given on
an actual multistage iransistor amplifier to illustrate common failure pattems.

## Fets and unljunctions

90030D327 Lesson 1234 Mins. Parn 13 provides explanations of the operation of both junction and MOS field-uffect transistors. Troubleshooting (ips and the effeets of nuclear radiation on these devices are given. The program concludes with the operation of the Unijunction transistor.

## Breakdown dlodes

90030D328 Lesson $13 \quad 37$ Mins. Part 13 compares Zener and avalanche diodes in terms of their tomperature coefficient of voltage. This leads to a discussion of the use of various kinds of diodes for temperature compensation networks.

## SCR's and tunnel diodes

90030D329 Lescon $14 \quad 28$ Mins. Part 14 covers the operation and the uses for sidicon controlled rectifers and tuanel diodes. Special video elfects help to explain the complexities of tunnel diodc operation. Comparisons are then draws lo other semiconductor devices.

## PIN, SRD, and HC diodes

و0030D332 Lesson 1528 Mins.
Part is explains step recovery diodes, hol cartier diodes, and PIN diodes, and outlincs their eypical applications. The series concludes with a shor presentasion on how the many special video effects were created for the various lapes in the series.

Ordering information
To order video programs, broks, or the Logic Lab, please contact your local Hewlete-Packard field engineer. As a convenience, regional Hewlen-Packard Sales and Service oifices are lisied inside back cover.

HP Product Number 90420 D Digital Troubleshooting (14 videocassettes, plus a lextbook, lab workbook, and srudy guide)	Prlce $\$ 3,600$
Individual videocasseltes	
90421 Introduction to Digital	\$275
90422 D Binary Nature of Digital Circaits	\$300
90423 D Basies of Transistors and IC's	\$32s
90424 D Logic Gates and Symbols	\$375
90425 D Introduction to Digital IC Families	\$375
90426 D Modem Digitul IC	\$375
Families	
904270 Simple Troubleshooting	$\$ 375$
Techniques	
90428 D Troubleshooting Digital 1C's	\$375
90429D Flip-Flops	\$375
90430D Counters and Shift Regissers	\$375
90431D Combination Legic Circuits	\$375
90432D Display Technologies	75
90433 D IC Manufacturine	\$250
9043 HD Memories	\$3
Books	
90500 E Digital Troubleshooting	$\$ 9.9$
Texbook	
90500 F Digital Experiments (Lab	\$8.9
Workbooks)	
90500G Digital Troubleshooling	\$2.50

90500G Digital Troubleshooling
Study Guide
Lab experiments are used to reinforce learning. They require access 10 a digital experimenter's kit such as the HP 5035T Logic Lab.
90100D Pracical Transisiors
(IS monochrome videocasseltes
plus a rexibook. workbook
problem sets)
$\$ 1,687.50$
90100M Transistor Basics 1exibook
$\$ 5.95$
90100N Praclical Transistors Student workbook
Local laxes, shipping and handling will be added to a lorders.

Midterm examinations, linsd examigation. examination solutions and cenificates of completion are supplied with the purchase of 901000 and 90420D, but are shipped separately. See your local HP field engineer for details.

Video programs are supplied in NTSC Standard only.

Fommats other than $3 / s^{"}$ videocasselte can be quoled on request.


Hewlet-Packard Applicalion Noles are a complation ol applications resoarch and experience which have been writhen in collaboration with HP engineers and our customers.
Some noles are lutorial in nature, while others describe very spedice "how-10" procedures. The Application Note index, Apry 1977 abstracts the current notes avallable. Included is a subject index and a listing of HP insiruments for which application noles are avallable.

Copies of any of the notes or the index are avallable trom your local field engineer or sales affice. Or. write directly to Applicalion Noles Edilor, Hewlen-Packard, 1507 Page Mill Road. Palo Allo. Callornia 94304. U.S.A.

## Automatic test systems

201-1 Rouline quality assurance measurements of precision resistors

Describe: an HP.IB bsed 21 MX computerconerolled msalation system capable of measur ing, printing and pionng atitistical distribution oì precision resislor talues

## Computers

212-1 Bullding an inventory control dala base
Using an HP 1000 computer sy:vem. The mplementalion of a common datia hatse is simpliticed for a manufichorines informamen conrol swism. The data netwirking capsbilay of LMAGF//(000 inegrates the dara for bull invenary and purchase urder centrol. Tine interactive dialog involving the QUERY languge for several sample inquiries and reports is also shown.

## CRT displays

166-2 1304A Large screen display appilications and intarfacing

The HP 1304A Large screen high speed graphic display is designedfor easy adaption for applizatons inciuding: electronic test systems such as neiwork analyzers or spectrum andlycurs'. machine vibralion analysis readouts, weather or harbor radar. patient monitoring in ICU or CCU envmonments. diagnastic uleasound systems. computer or calculathr-based waphica, and chemical and physical analymal syepems.

This note supplements AN 166; minor differences between the 1304 A and tite other HP large screen displays are explaned as well as the sclup, adjusiments and/or modifications required for iypical applicalions.

## Desktop computers

161-11 King and King archilects and the bus. iness inlormalion management syslem

One of the nation' indest unchitectural firms found that their businese record opsurations were falling hehind their arduluctural ativities. With the instaliation ol an HP 9830 destiop computer. completc with HP's Business Management Soliware, reports an now amtiline within a day afier the end of the month and oulstanding receivubles were eut from 67\% to less than 37\% in the first 30 drys of system operation.

## Digital design

210-4 Designing digltal circuits for leslability
This note given the denigner mome technigues to help atroid ixcessive consh of icsling and faule isolation in the life of a complex digital logic product. These techniques are applaiable io LSI. plinued circuil board dasemblics and complete digitul systems.

Design considerations include mitializanon. Feedback loopi, bused lengic, timing problems. test poinl sedection. and addition of logic to help enable zucomaric test genevation.

A section of non-electronic design considera. lions includes conneclors, layoul and lest fixIures.
Digital troubleshooling
223 Oscilloscope measurements in digilal systems

Desimers who have struggled to venfy that outpur signals happen correctly as a result of prograns operation will appreciate the examples given in his note. Using an HP 1740A or 1741A, with ins thind channel trigeter view, all three ports of in ree.por gates can be viewed simullaneously.

Measurements of signals in a microprocessorbascd system are enhanced by using a variable. persistence slorage oscilloscope, such as the HP 1741A, in conjuction with an HP I600A Lagic Slate Analyzer. Single shot measurements using the J74 IA scorage oscilloscope are discunved.

## Dlodes

969 An optimum zero bias Schohky delector dlode

Describes the use of the HSCH-3171 and HSCH-3486 zcro bias detector diodes. Their forward voltage characteristics are delailed is well as detailed discussions of voltage sensitivity including effects of junction capacitance, lead resistance and reflection loss on wensitivity. Tempefrature characteristic curves for both devioes are alses included.

## Electronic counters

173-1 Dynamic measuremenl of microwave voliage controlied osciliators with the 5345A electranic counter

A new class of cletronic counter meiburcment: is the fruqucticy-vs-ime characterization of microwave source: The 5.3.45A Elecironic Counler is appropriale for these measurements due to its unique frequency averaging and external gating fealures. With the set-up descrihed, the serting lime and post-tuning drift of microwave VCO's can be masured is high resolution . . as hone as 5 nes on the time asin and beter itan I MHz. on the frequenc) ixin. This techniyuc in also applicable to mbasuring İrequency-vs-time profiles within microwave pulser nis narrow is SOns.

## Frequency and tme standards

 52-2 Timekeeping and frequency calibrationDeser bes use of precise frequency standards ins
 e)urces or errors. and compermation for these erfos. Meihoth al frequency shadard comparison are discussed. Time and frequency Irussfer rechniques itre deswibed and evaluated

## Hewleft-Packard Interface Bus <br> 201-4 Pertormance evaluation of HP-lBusing RTE Operating systems

This brief conlains performance data to he-lp determinc whethir ithe Hewlell. Packard Interface Bus is suitahle for varinus inkerface upplications. A model is developed to help the HP-IB user desermine the toid tume to send or receive a dana message and the ansoum of HP 1000 or 21 MX computer vilization. Performance examples with varioun devices, such as the HP 3455 digital vol(meter and the HP 2240 measurement and conirol processart are included.

## IMPATTS

## 968 IMPATTS amplifier

Diseusses IMPATT amplifier design. A waveguide amplifier produced 2 waits of power with 10 dB gain at 13.2 GHz . Using a coaxiat structure, similar performance was oblained an 8.4 GHz .

## Instrumentation tape recorders <br> 214-2 $X-Y$ recorder dynamic response

Due to recent improvements in dynamic response, some $\mathrm{X}-\mathrm{Y}$ recorders now provide excellent performance when used in the higher frequency ranges normally associated with instrunents such as direct writing oscillograph recorders. This improved performance capability is possible because of a rather obscure specification called acceleration. This note explains accelerntion and its companion specification, slewing speed; relates them to specific performance characteristics, and indicates the typical dynamic performance capabilities of several HP X-Y recorders.

## Isolators

951-2 Linear applications of oplically coupled isclators

Optically coupled isolators can be used to ransfer an analog signal between two isolated systems. fin many instances, isolators can repliate expensive ransformers, instrumentation amplifiers, and A/D conversion schemes. This application nole discusses several circuil techniques by which $5082-4350$ series coupled isolators can be used to transmit analog information. The operation of each circuit is explained in detail and typical circuit performance is given.

## Logic test analyzer

167-6 Mapping. a dynamic display of digital system operation

Describes the unique advantages of this new measuring technique. Mapping enables a dynamic viewing of digital system operation by providing a pseudo-contimuous sweep display of system performance. It saves time by leading the investigator quickly to a specific data sequence and eliminating the tedious task of performing a state-by-state logic analysis. Included in the note are a number of photographs of sample map displays and interpretations of what they indicate. A separate section is devoled to a comparison of map and tabular fomats.

## Logic test analyzers

167-19 Systematle "turn-on" of microproces. sor systems using logic state analyzers

Presenls a systenatic, section-by-section approach to lest both hardware and sofiware as you develop a microprocessor-based sysiem using the same techniques usually used to develop a cascaded amplifier. Bring up your system "bit-bybit" using the HP $1600 / 1607$ A Logic State Analyzer.

## Microprocessor-based systems

 222 A designer's guide to signature analysisSignature analysis is a technique for rield Iroubleshonting of microprocessor-bubed products. By tiesigning the technique into digital products. a manufacturer can provide field service procedures, employing the HP 5004A Signature Analyzer, for component-level repair without dependence on board exchange programs.

## Microwave measuremerits

## 187-3 Three HP-I8 conligurations for making

 microwave scalar measuremenlsThis application note describes ilres HP-IB configured systems for measwring the scatar transmission and impedance characteristics of microwave components. One employs the HP 436A Digital Power Meter, another the HP $\$ 755$ Frequency Response Test Set, and the wird the HP 8410 B Network Analyzer. The specific hardware requirements are discussed and the relalive merits of each approach companed.

## 144 Understanding mlerowave frequency measurement

Discusses the three principal down-conversion rechniques for extending the frequency range of coumters into the microwave spectrumprescaling, heterodyne, and transfer oscillater. Compares the typical performance of the heterodyne and transfer oscillator lechniques to allow the user to choose a counter appropriate for his application.

## Network analyzers

221 Semi-aulornatic measurements using the 84 100 mierowave network analyzer and the 9825A desklop computer

Describes the configuration of a semi. autonatic network analyzer wsing the HewletPackard Interlace Bus (HP-IB). Topics reated include: block diagram of suggested equipment: methods of digitizing magnitude and plasie readings: sources of error in mierowave meaburemenls; fundamentals of one-pon vector eiror correetion; a sample program for the 9825A deskiop computer: and typical sesults and operating procedures.

## Optoelectronics

966 Applicathons of the HP HDSP-2000 alphanumeric display

This nole is intended to serve as a design and application guade for users of the HP HDSP-2000 alphanameric display deviec. Information presented exvers the theory of the device design and operation cansiderations for specific circuit desigms, thennal managememt. power derating, and heat sinking: and iniensity moúulation terhmiques.

## Oscllioscopes

185-4 Elimination ol computation of analog measurements by using the direcl reading oscilloscope 1722A

Whin new denmad for measurement accuracy. and repeatabilliy, the 1729A dual-delayed sweep oscilloscope provides an exira measure for making voltage and time interval measurements. No longer do you need to count divisions, interpolate between divisions, or multiply by the apympriate scale factor. Readings are direct on the LED display.

Techniques for making the following waveform voltage measurements are bricfly presenled: differeniial voltage, de and average vol. tage, and waveform percentage.

Timing measurements including pulse widih and period measurements. propagation delay plus transition time measwements are aiso deseribed. Pulse and word generators
227 Word genergtor lechniques in multichannel applications.

This note is inmended to acyuitint the reader with the porcmiol of a mulij-channel signal
source, the HP 8016A Word Generitor, in applicalions demanding digital simulation of slimularion. Four devices fundamental to a microprocessor system take the role of DUT for the four applications described in this note.

Although a mulai-channel source dictates the theme for this note, a receiver capable of multichannel display is required for monitoring device response. An HP 1600A Logic State Analyzer is therefore used to make logie siate comparisons of response to signal stimulus.

## Pulse power measurements

64-1 Fundamentals of it and microwave power measurement

Describes the general principles of power measurement including basic standards and traceabilily. Explores in detail the three most popular power sensors: thermocomples, thermistors, and diodes. Provides a comprehensive error analysis with particular emphasis on mismatch error. Compares advantages and disadvantages of the methods mentioned as related to various applications. Also ireats pulse power measurements.

## Spectrum analyzers

207 Understanding and using phase noise in the frequency domain

Describes the theory and practice of making phase noise measurements from 5 Hz in 13 MHz from the cartier. Emphasis is placed on the correction fantors required for making noise power spectral density measurements with wave and spectum anlyzers. Examples are given for both manual and automatic measurements.

220 Operating the HP 8585A spectrum analyzer

A complete operating guide to the HP 8565A Microwave Spectrum Analyzer ( $10 \mathrm{MHz}-22$ GHz). The reader is laken step-by-step through all the operating controls. Techniques for achicving optimiums dynamic range and improved measurement accuracy are described. Measurements of such parameters as distortion, modulation, noike and electromagnelic interference are discussed

## Synthesized signal generator

210-1 Applicalions and pertormence of the 8671 A/8672A microwave synthesizers

Describes detailid performanct of the 2.18 GH2 synthesizer including modulation. awitching, and signal characteristics. Provides recommended configurations 10 oblain liner frequency-setting resolution of 1,2 or 3 Hz over the range 2 to 18 GHz . Another section covers iecliniques and equipment for oblaining microwave signals from I MHz to 36 GHz by lise of a complementary synthesizer and exterior doub. Iers Detailed sothware examples are given with annotated subroulines io assist in writing application programs.

## $x$-ray

Describes. the use of the Faxitron 43805 for non-dentruclive resting at your workbench or in your iab. Look imside encapsulated comprnents. pinpoins defects in electronic assemblies, casiines, ar quickly view registration problems in PC baards. Apphcations requiring 10 kV 10130 kV as wefl as an explanation of the automatic exposurc control are included. Order Publication Number 5952-6781.

When you purchase a Hewlett-Packard product, you also receive the assurance that it will continue to perform to its published specifications loday, tomorrow, nexl week-and for a reasonabic number of months and years in the futwre.
We firmly believe that our obligetion to you as a customer goes much beyond just the delivery of your new HP product. This philosophy is implemented by HewlettPackard in two basic ways: (1) by designing and building excellent products with good serviceability, and (2) by backing up those products with a customer service program which can respond to your yeeds with speed and completeness.
The HP customer service program is one of the most important facets of our worldwide operations, providing a local service capability in many of our field offices (lisied inside the baek cover of this catalog.) Indeed, this customer service program is one of the major factors in HewlettPackard's reputation for integrity and responsibility towards its cutomers.

## Warranty

As an expression of contidence in our products to continuc meeting the high standards of reliability and performance that customers have come to expect. HewletrPackard products caty the following warranly:
All Hewlen-Packard products are warramed against defects in materials and workmanship. The warranty period is specified in a warrnnty statememt provided whit each preduct. During the warranty perlod, HP will, at its option, repair or replace product which prove to be defective. subject to the terms and condisions fisted in the warranty statement and to requirements for preventive maintenatce or product prorection which may be included with the probluce.
No other wartantiex are expressed or im . plied. HP spectifically disclaims the implled warranties of merchantabillty and flinesy for a particular purpase. HP is nor liable for consequential damages.

## Certifleation

Same eustomers are especially interested in the test and quality assurance programs that HP applies to its products. These Hewlett-Packard programs are documented in a Cerlficate of Conformance which is available upon request at the time of purchase. This certification states:

Products, manerials, parts, and services firmistied on this order have been provided in accordance with all applicable HewlethPackard specificutioms. Actual inspection and lest dala pertaining to this order is on file and available for examination.

Hewlet-Packard's culibrution measurcments are traceable to the National Bureau of Standards to the extent allowed by the Buren's colibration facilities.

The Hentert-Packard Qualiry Program satisfics the requirements of MIL $-Q-9558 \mathrm{~A}$. MIL-1-45208A, and MIL-C-45662A.

## Repair service

Help in maintaining your HewletrPackard equipment in first-rate operaling


With Hewlett-Packard, you get excellent products backed by a responsive customer service program
condition is as close as a telephone call to the nearest Hewlett-Packard ficld office. Whether you want to repair an instrumedt yourself, or send it to Hewlett-Packard facility for repair, recalibration, or overhaut. your local Hewlet-Packard fied office can offer a complete range of technical assistance.

Local repair facilities are backed up by Regional Repair Centers that are located in major industrial areas. The Regional Repair Centers have more sophisticated tesi equipment, factory-trained specialists, and a full line of replacement parts.

If your equipment installation is fixed. and if justiffed by the type of service required, Hewlett-Packand will perform service a your facility.

You have aceess to all of HewlettPackards extensive service network through your local Hewlett-Packard field office.

## Replacement parts

Replacement parts play a key role in Hewlet-Packard's customer service program. Prompl product mainicnance. whether it's performed in your shop or ours, depends on the ready availability of replacement pars. Your replacement parts orders are ransmitted via high speed communications systeins to Pans Centers strategically located. Most orders ore shipped the same day received at the Parts Centers.
When ordering a replacement part. please specily the Hewlett-Packard part number listed in the table and give the complete name. If circurastances require your ordering a part without specifying the pars number, please include in your order the instrument model number, its serial number, a complete description of the part, its function, and its location in the equipment.

## Customer service agreements

Your instrument maintenance requires ments in many cases may be hindied most economically by entering into a HewlettPackand Customer Service Agreement. When you have a customer service agreement, HP assumes your maintenatice responsibilities for a basic annual fee. This rebeves you of having to hire your own traibed maintenance specialists, of having to mainuain replacement pars inventories, and of having to sel up the administrative procedures needed for proper maintenance scheduling. Please contacl your nearest HP ofince for details.
Service publicallans
The Operating and Service Manual supplied with each Hewlent-Packard test and measuring product contains maintenance, calibration, diagnostic and repaik procedures. with troubleshooting charts and circuil diagrams. All replaceable parts are listed. Extra mañuals are available at reasonable cost from your nearby HewlettPackard lield office. Mast operating and service manuals with changes and service notes are now availsble on COSATI standard, positive microfiche.
New or special calibration procedures. instrument modifications, and special repair procedures are described in detail in Hewletl-Packard Service Notes. This series of publications serves as a convenient means of updating operating and service manuals.
Bench Briefs, a periodic newslether, bas servicing lips, new modifications and other suggestions to help repair and maintenance personnel get maximum performance from Hewleth-Packard instruments. It describes new service notes and other company publications as they becone available. To become a regular subscriber. ask your local HP field office to place your name on the mailing list.

## Communicating with HP

Hewlett-Packard is committed to providing convenient local support and the best possible attention to customer needs on a worldwide basis. There are more than 172 sales and service offices located in 65 counIries: A complete listing of offices appears on the inside back cover of this catalog.
Your entry point to the resources of Hewlet-Packard is through the local HP office nearesi you. Our field engineers and order support specialists there are wellequipped to provide you wiuh pre-sale assislance in product selection, is well as related business information such as curreni prodwol availability and price delivered to your location.
Many HP field offices are tied into a sophisticated intra-company communications system. This not only means prompt Iransmission of orders to any or the 30 HP product responsible divisions-it also speeds the now of regular messages among all HP field offices and factorics. The objective, of course, is to provide the fastest possible response to your product interests

## Placing your order

Hewlent-Packard people at the field office nearest you will be pleased to provide assistance in selecting the H.P equipment most appropriate to your needs. and to help you prepare your onder.
The information in this catalog will, in many cases. be sufficient for you to decide to buy a particular HP product. In those instances, a telephone call to the searest HP office will provide you with (1) information on product availability, and (2) the product's price. delivered to your location tsince any budgetary prices provided with this catalog are FOB appropriate HP factory or warehouse facility.
HP wants to be sure the product delivered to you is exaclly the one you want. Therefore, when placing your order. please specify the product's catalos (model. accessory, or part) number, as well as the product's mame. Be as complete as possible
in specifying exaculy what you'd like, including standard options.

In the event you want spectal features or capabilities such as different color or a nonslandard power line voltage, ask your HP lield engineer abrout avad́lability and cost of these "specials" lirsi-and then, to prevent misunderstandings. include special insenuctions and specificalion details with your order.

## Shlpping methods

Inslde the USA: Shipments to destinations in the USA are made directly from factories or local warehouses. Unless specifically re. quested otherwise. express or truck transportation is used, whichever is less expensive and most serviceable to you, Small items are sent parcel posi. If fast delivery is needed, we gladly ship by air freight. air express. or air parcel post, when specified on your order, at prevailing rates. In many garts of the USA. a consslidated air freight service- provides the speed of air transpon at surfice rates. Ask your HP field engineer for details.
Outside the USA: Shipments to destinatiuns outside the USA are made from the appropriate Hewlett-Packard facility by eilher surface or air. as requested. Sca shipments usuatly require commercial export packaging al a nominal extra charge.

## Budgetary prlces

Prive information which may be supplied with this canlog provides you wilh helptul budgetary guidance.

Prices appextring in this catalog, unless otherwise specified. are F.O.B. USA factory or shipping poinı and apply only 10 domestic l'.S.A. customers.

Please call your nearby Hewlen-Packard ficld ontice to deiermine a prownci'a delivered price outside of the U.S.A.

Prices firmished with this catalog are net prices prevaling at the 1 ime of printing. Hewlerr-Packard reserves the right 10 change prices, and those prices prevailing at the lime an order is received will apply.

## Quotations and pro forma Involces

Destination prices and other derails you may need to know beforc ordering can be quickly obained via telephone. Just call your nearent HP office.

If you arc an internationd customer requring formal paperwork such as pro forma invoices or $F A X$. CIF. or $C \& F$ quotations. please contact the Hewlett-Packard office or representative serving your area. Exportation or importation assistance is also available,

## Terms of sale

Inside the USA: Terms are net 30 days from invoice date. Linless credil with Hewlett-Packard hits allady been established, shipment, will be made COD or on receipt of cash in advance.

Leasing and extended financial terms are available. However, the associated costs are not included in any product prices fumished with this catalog. Your nearby HP office will be pleased to discuss your requircments, and work with you in selling up an appropriatc progrim.
Outside the USA: Terms for orders from customens outside the United States of America which are placed with the Hewlell-Packard Company, are irrevocable leners of credit or cash in advance-unless other terms have been previously arranged. Terms for orders placed with authorized Hewlett-Packard international subsidiaries or representatives/distributers are mutually determined.

## U.S. government sales

Most products in this catalog are covered on GSA federal supply schedule multiaward contracts.

## Product changes

Although produc: information and illusIrations in this catulog were current at the lime it was approved for printing, HewlellPackard, in a contmuing effort to offer excellent products at a fair value, reserves the right to change spucifications, designs, and models withoul notice.


[^0]:    ${ }^{1}$ Jo purchase a copy of the 80-page life Standard 488-!975 contat: The Institute al Electrical and [lechomes Engineers 345 Easl 47 Th Street, Yow York, N, Y. 10017

[^1]:    Ordering Intormation
    Price
    489 A 1102 GHz TWT Amplisier $\quad \$ 3250$

    Opt 908: Rack Flange Kit (for all modets) add $\$ 10$

[^2]:    

[^3]:    - 'Ranges usable fram 0.0'3 at pinge la Pull scale

[^4]:    -Accuracy of lesh voltare is < $<3 \%$

[^5]:    1. Typlesil data, varies mill number ol counts.
[^6]:    When conductance reading is less than Ifcr r, ounts

[^7]:    $=1 \%$ of reading + counts)

[^8]:    Dimenslons: standard HP 1/s module (system I) $159 \mathrm{H} \times 130 \mathrm{~W} \times$ 203 mm D $\left(61 / 4^{\prime \prime} \times 51 / h^{\prime \prime} \times 8^{\prime \prime}\right)$.
    Welght: nel, $1.8 \mathrm{~kg}(4 \mathrm{lb})$. Shipping. $2.7 \mathrm{~kg}(6 \mathrm{lb})$.
    Oraering information Price
    4440 Decade Capacitor $\$ 595$
    443A Allenualor
    $\$ 875$
    4337A Aticnuator
    $\$ 595$
    350D Allenuator
    $\$ 235$

[^9]:    -Denalied selection ohart for Igo Sories osclifoscoges on page 148.

[^10]:    - Sturling allow bo ns of sweta.

    Resolution: intervals $<1 \mathrm{~cm},>0.01 \%$ of fill scale; intervals $>1$ $\mathbf{c m},>0.1 \%$ of full scale; maximum display resolution, 20 ps .
    Stability ( 0 to $+65^{\circ} \mathrm{C}$ ): shon 1 crm . $<0.1 \%$. Temperature. $=0.03 \% 1^{\circ} \mathrm{C}$ deviation from calibration temperature range.
    Reclprocal or time Interval measurements, (1/time)
    Function: calculates and displays the reciprocal of the measured time interval.
    Display units: 0 (Hz): 3 ( kHz ); $6(\mathrm{MHz}$ ).
    Accuracy: same as Time Interval Measurements.
    Resolutlon: same as Time Interval Measurements.
    Stability: same as Time Interval Measuremeots.

    ## Mixed time base

    Dual time base in which the main time base drives the first portion of sweep and the delayed time base completes the sweep at the faster delayed sweep. Also operates in single sweep mode.

[^11]:    Double wath nluč－tns
    Repures rempte sampling head．
    Requre：Remote Pulse Generator
    4．Includes X 10 mainframe magnification，
    3．For sertical plup－ins an to 50 M Mr
    6．Regutes semale madulator and detectors

[^12]:    -For $230 \mathrm{Y}_{\text {at }}=10 \%$ operation, odor Opl 0.28. See page 220 tor complese oprion desciptions.

[^13]:    

[^14]:    -I $\mathrm{n}=$ increasing output vollage. $\mathrm{NL}=$ No culpul lasd current. FL $=$ Fufl rated output tasd corrent
    4See page 220 tor complete option and accessery descriptions.

[^15]:    1 Refer to page 201 for complete specification definiltions．
    itspecified tor combined line and luad regulation．
     response specifications are increased by $50 \%$ ．
    The oulput current isting is given in the same arder corresponding with thit collage lating

[^16]:    5 Under light loading candifions，power supply masy not meet all published specifications．The graph on the next page defines the permissiole operating regions for CV and CC modes of operation，
     derated from $100 \%$ at $40^{\circ} \mathrm{C} 1080 \%$ as $50^{\circ} \mathrm{C}$ ．

[^17]:    - See page 12.22 for complete option and accesspry destriptiane
    
    current.

[^18]:     Bused Tor haguencies up to Mots by substidutigg the values git

[^19]:    At is the gain programming resistance

[^20]:    7402A, 7404A, 17400A Series plug-ins specifications
    7402A General speciflcatlons
    Number of channels: two analog channels. One evenl mazker) timer (oplional): one event marker (optional).

[^21]:    - Set legend odoosle page

[^22]:    Puk in: o sush coniliter

    - Plug-sin to 5245 Series Counter ar 5345A weth adapter

[^23]:    $.3 \times 10^{-3}$ is due to recprocation scineme and is worse cosso

    - For smy wave shape. (bigger emor (us) is less than $0.005 \mu \mathrm{~s}$
    $\overline{\text { Signal Sroce ( }(\mathrm{i}, \mu \mathrm{s})}$
    for period average this is less than $=03 \%$ al ore oenod - derlods averaged lor signal with 40 d日 or better signal-tornoise istio.

[^24]:     (9) External IM, (10) External AM \& FM.
    

[^25]:    Tor oulgue tevels +3 u8m and telow, slightry higher from +3 to +708 m ,
    ${ }^{2}$ Measured in a 30 kith band centered on the carrier axcluding a I Hz band senteres on tho earier.

[^26]:    ${ }^{1} \mathrm{U}$ 酐 $=88$ below tha carriet．

[^27]:    I Special frequertey bands and highur power outpuis avaiabhe on requesl.

[^28]:    Option 011. Iurnished with APG 7 RF connedor
    adi $\$ 25$
    a Circular flange adaplers:
    K-Jand (UG-425:U) MFT 115154
    R-Uand lUG $381 / \mathrm{UI} H P$ JISI6S

[^29]:    Includes coupler and detector variation with frequency as read on a meter calibrated tor spuare－ law oetectors（e．g．HP $415 \xi_{\text {g }}$ ．
    －Apparent SWR at the output port of the ditactlonal detector when used in a closed－loop leveling system

[^30]:    - Complete microwave measurement systems
    - Multioctave swept frequency measurements
    - Measures all network parameters
    - System accuracy fully specified

[^31]:    'Optlons 1001,200 and 300 are identical to 110,210 and 310 itspectively except for the 84124 which is replaced by the 8413 A

[^32]:    Voltmeter residual nolse ( $600 \Omega$ termination)
    $300 \mu \mathrm{~V}$ range: $<25 \mu \mathrm{~V}$ rms.
    $100 \mu \mathrm{~V}$ range: $<10 \mu \mathrm{~V} \mathrm{~ms}$.
    Monltor output: $0.1 \mathrm{~V} \mathrm{~ms} \pm 0.01 \mathrm{~V}$ ms open circuin for full scale meter indication. $2 \mathrm{k} \Omega=10 \%$ output impedance.
    High-pase filer: 3 dB point at 400 Hz with 18 dB per octave rolloff. Normally used only with fundamental frequencies greater than i kHz

    ## General

    Power supply: $100,120,220,240 \mathrm{~V}=10 \%, 48$ to 66 Hz . approximately 11 VA. Rear teminals are provided for extemal battery supply. Positive and negative voluges between 22 V and 40 V are required. Current drain from each supply is approximately 150 mA , Welght: net. 7.5 kg ( $16^{3} / \mathrm{Ib}$ ). Shipping, 9.9 kg ( 22 Ib ).
    Dimenalons: $132.6 \mathrm{~mm} \mathrm{H} \times 425.5 \mathrm{~mm} \times 349.3 \mathrm{~mm} \mathrm{D}\left(5.25^{\circ} \times\right.$ $\left.16.75^{\prime \prime} \times 13.75^{\prime \prime}\right)$.

    ## Options

    Price
    907: Froni Handle Kit
    908: Rack Flange Ki1
    009: Rack Flange \& Front Handle Combination Kit add $\$ 10$

    810: Exira Manual

[^33]:    - Low-Pass Filtir giturit win Opl 004.

[^34]:    - All hits and rear panel standoth teet are supplied with appropriate mounting screas
    a Locking cabinets tugether horicontally in a conliguration wifer than 1 MW (full Mcdulṫ) is not recommended.

[^35]:    1 All kits and support shell tems are supglied with appropriate mounting screws and hatdwat.
    ${ }^{2}$ Cabinet lock-logether kit (506)-0094) is also requirad whenever two, three or four 5 Jb -modules :1/2 MW and/or :L. MWí are lo be poined in a confuguratión using Rack mounting adauters of Rach

[^36]:    Manges. Alse, submodutes zizbinets must be of equal depth.
    Requifes twi $5061-0055$ his it one coninet $1 / 2$ Mw is to to center-mrunted.

[^37]:    -This is the frequency response with the holding coll accoss the fine. Refer to Model 353A specificalions for response in "non-holding" conditiont

[^38]:    - Fand control manary controlier worlis with 12s98sh 131日7N/B, and 12747A Menory Modules, but nol :2741a HigR: Pefformance Memary Modules.

